RaDA: Retrieval-augmented Web Agent Planning with LL.Ms

Minsoo Kim!
Shunan Guo?

!Seoul National University

Victor S. Bursztyn?

Eunyee Koh?

Seung-won Hwang'!

2 Adobe Research

{minso009574, seungwonh}@snu.ac.kr
{soaresbu, eunyee, sguo}@adobe.com

Abstract

Agents powered by large language models
(LLMs) inherit important limitations, such as
the restricted context length, dependency on
human-engineered exemplars (e.g., for task de-
composition), and insufficient generalization.
To address these challenges, we propose RaDA,
a novel planning method for Web agents that
does not require manual exemplars, efficiently
leverages the LLMs’ context, and enhances
generalization. RaDA disentangles planning
into two stages: for a new given task, dur-
ing Retrieval-augmented Task Decomposition
(RaD), it decomposes tasks into high-level sub-
tasks; next, during Retrieval-augmented Action
Generation (RaA), it traverses the trajectory
obtained with RaD to iteratively synthesize ac-
tions based on dynamically retrieved exemplars.
We compare RaDA with strong baselines cov-
ering a broad space of design choices, using
both GPT-3.5 and GPT-4 as backbones; and
we find consistent improvements over previous
SOTA in two challenging benchmarks, Com-
pWoB and Mind2Web, covering settings with
different complexities. We show the contribu-
tions of RaDA via ablation studies and quali-
tative analysis; and we discuss the structural
benefits of our more compositional design.

1 Introduction

The adaptability of general-purpose, large language
models (LLMs) is a key driver of their growing ap-
plication across diverse scenarios. Central to this
adaptability is in-context-learning (ICL), which en-
ables LLMs to perform new tasks based on demon-
strations, bypassing the need for a dedicated fine-
tuning phase (Brown et al., 2020). This capability
is crucial in scenarios involving LL.Ms deployed as
agents in interactive environments, where finetun-
ing LLM-based agents with extensive data across

Corresponding author.

RaDA: Retrieval At d Task D

ﬁal): Retrieval Augmented
Task Decomposition

Decomposition

Task: submit form X S
Generated Subtasks) "
. Completion

as a logged user.
vi#8) "
‘Completion Verification . Recording
Click buttons login & \
submit (COMPLETED).

position & Action Generation

— Subtask
#2)Generation

Log in as a user:

Open form X.

Observation

Sub e~

Query Exemplar
Memory

\riu out header.

\Fill out (.).

Web
Environment|
v

RaA: Retrieval Augmented
Action Generation
Function (“login as user”) ;|
Generated actions:
Click login button XPath;
Click submit button XPath]

" Exemplars

Action

Figure 1: Overview of RaDA: Planning is disentangled
as Retrieval-augmented Task Decomposition (RaD, step
#1) followed by Retrieval-augmented Action Generation
(RaA, step #5). Steps #1-4 show how RaD makes effi-
cient use of exemplar memory to decompose a complex
task into subtasks. Steps #5-8 show how RaA grounds
each subtask on retrieved exemplars, executes it, verifies
its completion, and updates the state of the plan.

all possible interactions is impractical (Yao et al.,
2023; Carta et al., 2023).

However, despite their promise, existing meth-
ods of LLLM task adaptation face significant limita-
tions. First, ICL-based methods incur a significant
cost of prompt engineering. Existing approaches
rely on exemplars which must be carefully authored
by human annotators, aiming to fully detail the tar-
get task. Second, extensive research has shown
that LL.Ms exhibit a high degree of sensitivity to
prompt format and the choice of exemplars, mak-
ing prompt optimization very challenging (Madaan
and Yazdanbakhsh, 2022; Yang et al., 2024).

An increasingly prominent line of work proposes
the dynamical retrieval of exemplars for ICL con-
ferring two crucial advantages: 1) It automates the
prompt engineering process, reducing the cost of
exemplar annotation. 2) It aligns exemplars to the
task context, enhancing the robustness of exemplar
selection. These advantages lead to performance
improvements over human-engineered prompts, as

13511

Findings of the Association for Computational Linguistics: ACL 2024, pages 13511-13525
August 11-16, 2024 ©2024 Association for Computational Linguistics

empirically demonstrated in a wide range of ex-
perimental results (Khattab et al., 2022; Luo et al.,
2023; Li et al., 2023).

In the context of LL.Ms-as-agents, the closest
approach to ours is Synapse (Zheng et al., 2024b),
which retrieves trajectory demonstrations based on
semantic retrieval, and leverages them as replace-
ments to human-written prompts. In this work, we
consider Synapse as a baseline for pure Retrieval-
augmented Action Generation (RaA).

However, RaA such as Synapse seeks to infer
the entire action plan for the current task, based on
similar entire trajectories of previously seen tasks.
This process would fail to generalize when the tar-
get task is: 1) Unseen, i.e., outside of the corpus of
previously seen exemplars, and 2) Complex, i.e.,
compositions of more atomic tasks. To demonstrate
these limitations, we will experimentally show how
the performance of existing state-of-art approaches
strongly degrades in complex or unseen scenarios.

We hypothesize that this failure to generalize can
be attributed to the lack of compositional consis-
tency observed in LLMs, regardless of size (Dziri
et al., 2023; Zheng et al., 2024a; Chen et al.,
2024). That is, LLMs cannot abstract and recom-
bine learned behaviors, such that having LLMs
directly transform a task description into an action
sequence cannot generalize for unseen and com-
plex tasks. As a solution, we disentangle planning
into decomposition into subtasks, then compos-
ing retrieved actions in a two-stage process: first,
we generate a high-level plan based on a principle
of subtask decomposition via Retrieval-augmented
Task Decomposition (RaD); second, we perform
grounded action generation for each of the subtasks
via RaA.

Our approach is closely inspired by two funda-
mental concepts in human cognitive processing: 1)
the ability to disentangle planning and behavior
grounding through the use of abstraction (Lachmy
et al., 2022), and 2) the efficient reuse of mem-
ory through retrieval, to adapt to novel situations
through the effective utilization of existing knowl-
edge (Zhao et al., 2022; Sumers et al., 2023).

By leveraging contextually retrieved subtask
knowledge in the form of exemplars, RaDA ef-
ficiently leverages the LLMs’ context in an adap-
tive manner, while alleviating the need for manu-
ally annotated few-shot exemplars. We evaluate
our method on two challenging benchmarks for in-
teractive Web environments, covering a range of
complex scenarios, while comparing it with strong

Method Annolt-iltlir(r)lsriiffort Input Length g(e)nmeri;);iztil?il:)ari
DECOMP | High | Short | v/
RCI | High | Short | X
SYNAPSE | None | Long | X
Ours | None | Short | v/

Table 1: Comparison of related LLM approaches. High
human effort indicates requiring manual authoring of
optimal few-shot prompts. None indicates no manual au-
thoring effort of exemplars, i.e.) passive demonstrations.
Compositional generalization refers to the capability to
generalize to novel compositions of existing tasks. Our
approach targets compositional generalization, while
minimizing human annotation and maximizing context
efficiency.

baselines covering a broad space of design choices.
Our contributions can be summarized as follows:

* We propose RaDA, a novel retrieval-
augmented planning method for LLMs, which
disentangles planning and action grounding to
enhance compositional generalization.'

* We show that our method improves gener-
alization in challenging scenarios, signifi-
cantly outperforming competitive baselines
on both the CompWoB interactive tasks, and
the Mind2Web dataset.

2 Related Work

This section classifies baseline models (Table 1)
based on two axes: their target focus and the degree
of human supervision involved.

2.1 Decomposition and Planning in LLM

Decomposition Prior literature has explored
LLM prompting which aims to induce a modular
reasoning structure based on decomposition. Least-
to-Most prompting (Zhou et al., 2023) demon-
strates that breaking down in subproblems aids
generalization in symbolic manipulation, com-
positional generalization, and math word prob-
lems (Cobbe et al., 2021). DecomP (Khot et al.,
2023) further enables diverse decomposition struc-
tures, including recursion and other non-linear de-
composition structures, extending the applicability
to long-context multi-hop QA. Wang et al. (2023)
show that decompositional prompting is effective
for math reasoning even in zero-shot settings, and

!Code is available at:
RaDA

https://github.com/1ldilab/

13512

https://github.com/ldilab/RaDA
https://github.com/ldilab/RaDA

Drozdov et al. (2022) shows that combining de-
composed subproblems with dynamic exemplar
selection enhances performance on compositional
generalization in simple NLU tasks (Keysers et al.,
2020).

RaDA tackles compositional generalization, by
leveraging exemplar retrieval of actions per dynam-
ically defined subtask, which allows the agent to
flexibly compose grounded plans that can general-
ize to new scenarios. This is closest to DecomP in
Table 1 (column 3), which demonstrates composi-
tional generalization on a multi-hop reading com-
prehension task. Differently from DecomP, RaDA
does not require extensive manual exemplars, and
thus can be evaluated on interactive tasks.

Action Generation for LLM Agents LLM have
been leveraged as agents in diverse scenarios, for
their ability to adapt and ground actions to envi-
ronment observations, such as robotics (Ahn et al.,
2022; Huang et al., 2022). Building on these, Re-
Act (Yao et al., 2023) proposes to interleave the gen-
eration of both reasoning traces and task-specific
actions, enabling the LLM to track and update ac-
tion plans for interactive tasks in virtual environ-
ments. An extension of ReAct, Reflexion (Shinn
et al., 2023), adds a trial-level memory mechanism,
enabling the agent to learn from multiple attempts
of the same task, through trial-and-error.

For our target application of LLM-based agents
for Web tasks, the following baselines have stud-
ied the use of LLMs with human-engineered exem-
plars. RCI (Kim et al., 2023) leverages a process
of iterative self-refinement, to enhance grounding
by repairing errors through LLM’s self-critique.
AdaPlanner (Sun et al., 2023) leverages an adap-
tive planning mechanism, which utilizes few-shot
exemplars to revise a plan in response to errors.

RaDA is closest to Synapse (Zheng et al., 2024b)
in Table 1 (column 1) as neither requires human-
engineered exemplars, instead obtaining exem-
plars through retrieval, where an exemplar retrieval
corpus can be constructed by collecting trajecto-
ries with little to no annotation effort. However,
Synapse requires the retrieval of whole-trajectory
exemplars, which often do not exist in memory;
and even when they do, can become too lengthy
for LLMs’ context. In contrast, RaDA (Table 1,
column 2) can leverage partial trajectories via RaD,
making more efficient use of the context and al-
lowing for improved compositional generalization.
Comparative discussion with respect to human an-

notation follows in the next section.

2.2 Human Annotation

For supervising the ICL process, early work ex-
plored the use of human-engineered, task-specific
exemplars (Wei et al., 2022; Liu et al., 2023). How-
ever, this approach not only incurs high annotation
cost we aim to avoid, but also exhibits various types
of sensitivity to the specification of prompts, such
as the format of the prompt text (Min et al., 2022;
Kojima et al., 2022; Yang et al., 2024; Wei et al.,
2023; Madaan and Yazdanbakhsh, 2022), or the
order of the exemplars presented in the few-shot
prompt (Zhao et al., 2021; Lu et al., 2022),

Similarly, methods such as DecomP can become
too costly and ineffective to annotate, as it requires
detailed manual demonstrations of problem decom-
position and subproblem solution. In contrast, our
method disentangles prompts into high-level sub-
task planning and subtask-level demonstrations, al-
leviating the need for annotating exemplars that
demonstrate subtask composition in detail, and en-
hancing robustness in compositional generalization.
Simultaneously, the same process improves context
length efficiency, by removing the need for lengthy
exemplars for the overall task.

3 Method
3.1 Compositionality Challenge in Planning

Before describing our method in detail, we first pro-
vide a description of standard LL.M-based agents,
within which we highlight the challenge of compo-
sitional generalization.

Language Model Agents Formally, given a task
instruction 7", an LLM agent 7 is configured with
the prompt P, with the goal of generating a plan I"
for the task, as follows:

FT = {CL1, ...,at} <« 7T('|P, T) (1)

where the plan consists of a sequence of actions to
be executed in the environment Env, as

St4+1,Te41 = EnV(se, ay) (2)

and task success is measured by the episodic reward
function : S x A — {0, 1}.

Compositional Consistency Existing planning
methods which are encapsulated by Eq.1, includ-
ing RCI and Synapse, amalgamate both overall
task planning and the generation of environment-
specific actions, as a simultaneous process. This

13513

Algorithm 1 RaDA

Input: task 7', environment Env, retriever ¢, and 7p, 7q ., Tv, representing LLM-based RaD, RaA, and subtask completion

verifier, respectively.
1: s < Env.reset(T)

2: history « {}

3: C—{}

4: T — {}

5. h<5

6: while Env is not terminated do

T T = {7,070} — 7 (|$(T, B), 5,T)
8 while C # I" do

> Subtask Decomposition (RaD)

9: Qr < wv(s,T,T,C, history[—h :]) = Subtask-compositional Query
10: {ai,..., a0, } < TQr (|6(Qr, E), 5,Qr, history[—h :]) > Action generation (RaA)
11: fora in {a1,...,a,, } do
12: s, r,info « Env.step(a)

13: history < history u {(s,a)}

14: end for
15: Verified « 7wy (s, T, T, C, history[—h :]) = Subtask Completion Verification
16: for v in Verified do
17: C—cCu{v}

18: end for

19: end while
20: end while

is effective when task 7" as a whole maps to action
sequences in the memory, but would not gener-
alize for tasks that are complex and novel com-
positions of existing behaviors, unless LLMs can
abstract and recombine learned behaviors (or, com-
positional consistency), which is known to lack in
LLMs regardless of model size (Chen et al., 2024).
We make consistent observations and replace LLM
inference with compositional retrieval to overcome.

3.2 Proposed: Disentangling Planning as
RaD+RaA

Our proposed approach aims to tackle this chal-
lenge, through a principle of disentangling plan-
ning into hierarchical components: 1) A decompo-
sitional planner which breaks down a task into a set
of high-level subtasks and tracks their completion
status, and 2) retrieval-augmented, dynamic sub-
task functions which operationalize the execution
of subtasks, converting them into action sequences.

Rather than inferring planning and action gener-
ation for an entire task 7" from a singular prompt P,
we decompose unseen or complex tasks into seen
subtasks and compose their efficient and general-
ization execution.

3.2.1 Compositional Exemplar Memory

Formally, the core component of our method is a
nuanced, adaptive retrieval mechanism, with the
basic unit of this retrieval process defined as the
subtask, denoted by ~y. A query for subtask retrieval
is Qr, or, subtask-compositional query, defined as
below.

Given a set of subtasks I' = {v1,72,..., 7},
which decomposes the task 7T, a subtask-
compositional query is formulated as:

Qr=71@7®...0@Mm 3)

where @ denotes concatenation, and -y; represents
the j-th subtask of the m selected subtasks for the
query composition. RaDA composes such queries
to search its task memory, leveraging the retrieved
exemplars to ground its action generation. The
formulation in Eq.3 enables effective search for a
flexible array of composed task descriptions, rang-
ing from focused, single-subtask queries to com-
plex, multi-subtask compositions, which we further
detail in Sec.3.2.3.

For the retrieval model, we leverage dense
retrieval using pre-trained sentence embed-
dings (Karpukhin et al., 2020). Given a query @,
the retriever ¢ produces a ranking over a corpus F
of encoded exemplars {eq, €9, ..., e} as follows:

{sim(Q,¢) [e € E} — 6(Q, E) “4)

Note that in Zheng et al. (2024b), the query @ is
predetermined to be the full textual description of
task 7. Our distinction is leveraging ¢ with a dy-
namically composed query (Q7, which is adaptive
to the current state of the plan.

After ranking, the retriever outputs the top-k ex-
emplars, where k is a hyperparameter set to 3. For
the retriever setup, we follow Zheng et al. (2024b).
We use cosine similarity as the similarity measure,
and leverage pre-trained embeddings to encode the

13514

task description, complemented by additional in-
puts of state and task metadata for CompWoB and
Mind2Web, respectively. The retrieval corpus is
constructed by successful trajectories from 48 base
tasks of MiniWoB, and for Mind2Web, trajectories
in the training set are used.

In RaDA, ¢ is flexibly utilized in two ways: First,
with T" as the query during the initial decompo-
sition stage (RaD; Eq.6), and second, using the
subtask-compositional query)7, during the action
generation stage (RaA; Eq.7), which we describe
next.

3.2.2 RaD: Retrieval-augmented Subtask
Decomposition

The first step of RaDA is Retrieval-augmented Sub-
task Decomposition (RaD), formalized as follows.
We define a plan I'7 as a collection of subtasks,
generated by a decompositional planner wp, as:

FT: {717"'7771}(_7TD(‘|P71'D7T) (5)

Importantly, the planner’s focus is on decomposi-
tion, and I'7 can be ordered or unordered. To con-
struct the decomposition prompt Py, we utilize
a basic instructional prompt P7{D2 in conjunction
with contextualization using retrieved exemplars,
as:

PTFD = [P7{D?¢(T7E)]- (6)

This process leverages the exemplars retrieved us-
ing the overall task 7' as the search query, which
facilitates the refinement the planner’s subtask gen-
eration on grounded knowledge of the task.

Subtask Completion Verification Once the de-
composed subtask set I is generated, we leverage a
subtask completion verifier to track the progression
of the subtasks towards completion, maintaining a
set C' of completed subtasks. The verifier is imple-
mented using an instruction-prompted LLM, which
takes the observation and actions of the last & steps,
plus the remaining subtasks I' — C' as input, and
outputs the completed subtasks, if any have been
completed by the latest action. If a subtask is com-
pleted, v is added to C.

3.2.3 RaA: Retrieval-augmented Action
Generation

Following the subtask decomposition by RaD, the
grounded action generation step, RaA, proceeds to

2See Appendix A.2 for the full prompts.

adaptively generate the grounded action sequence,
based on the current stage of the overall plan.

Our subtask-level formulation makes this pro-
cess intuitive, through the definition of a subtask
function mg,., as an LLM whose intended function-
ality is 1) represented by the subtask-compositional
query)T, and is 2) implemented by the exemplars
retrieved via ¢(Qr, E).

Formally, RaA defines 7., which generates the
grounded action sequence as follows?:

{alv"'vatQT} (_WQT('|¢(QT>E)) (7

3.24 RaDA

We demonstrate the full step-by-step operation of
RaDA in Alg.1. Given a task 7', RaDA first pro-
ceeds with RaD, decomposing the task into the set
of subtasks I'r (line 7). Next, RaDA iteratively per-
forms subtask-level action generation through RaA,
operating over the subtask set. At each iteration, the
subtask-compositional query Q7 is reformulated,
via the verifier my, which verifies the completion
of subtasks ~y (line 15), before generating Q7 (line
9). Qr can range from a single task, to encompass-
ing all remaining subtasks. RaDA iterates over the
subtasks, until all subtasks are completed (line 8).

4 Experiments

4.1 Benchmarks

To validate the effectiveness of RaDA, we target
two web task automation environments with vary-
ing compositional characteristics. First, we evalu-
ate on CompWoB, where tasks are compositions
of other web tasks, and thus task decomposition is
likely to lead to a set of clear subtasks. Second, to
further test the generality of our approach, we also
evaluate on Mind2Web, a challenging dataset of
human-written tasks on real websites, where tasks
are not explicitly compositional, making decompo-
sition into subtasks more complex.

CompWoB CompWoB (Furuta et al., 2023) is an
interactive environment which modifies the widely-
studied MiniWoB (Shi et al., 2017) benchmark for
web and computer task automation, to test the com-
positional generalization capability of agents. The
tasks involve elemental computer interactions such
as clicking, typing, form-filling, handling popup

3An instructional prompt is also used as in Eq.6, which
we omit for notational clarity. See Appendix A.2 for the full
prompts.

13515

messages, and login. Furuta et al. (2023) catego-
rizes 65 base tasks from the original MiniWoB (Shi
etal., 2017) by task complexity, based on the perfor-
mance of existing LLM agents, into easy, medium,
and hard categories.

The 50 compositional tasks in CompWoB are
created by systematically combining 2 to 8 base
tasks from the easy category, with different lev-
els of overall task complexity, divided into five
categories: two-way tasks (20), three-way tasks
(10), n-way tasks (5), transition tasks (5), and easy-
medium two-way tasks (10). In n-way tasks, 4 to
8 tasks are combined, and in transition tasks, an
explicit page transition is implemented, e.g. transi-
tioning from login form to the email browser. The
easy-medium two-way tasks incorporate base tasks
from the medium category.

In CompWoB, the model input is the state s; € S
is the raw HTML, and the output actions a; are gen-
erated for a programmatic action space A consist-
ing of the form, action_type(ID, text), where
action_type is one of several possible function
types, and ID indicates a unique identifier of an
HTML element, where function types are click,
move, and type. The additional text input is uti-
lized when the action is type. We report the stan-
dard metric of the success rate of the agent in ac-
complishing tasks.

Mind2Web Mind2Web (Deng et al., 2023) is a
dataset of crowdsourced human interaction demon-
strations on a diverse set of real websites which
are dynamic and complex. Mind2Web targets re-
alistic tasks that require sophisticated interactions
with websites, often requiring a large number of
steps to complete. The tasks cover diver domains
in Travel, Shopping, Service, Entertainment, and
Information.

Similar to CompWoB, the model input is the
state s; € S consisting of the raw HTML from
the dataset, but necessarily reduced using a re-
trieval model, into a smaller set of top-ranked candi-
date HTML elements, to handle the massive scale
of real-world webpages. The output actions use
the same programmatic action space of the form,
action_type(ID, text), where action_typein
Mind2Web, are click, select, and type.

To focus on the evaluation of RaDA on compo-
sitional consistency, we select a subset of the chal-
lenging Cross-Domain split of Mind2Web, ranked
based on compositional task complexity. Task com-
plexity is measured by the number of gold action

steps in the solution. We report the following stan-
dard metrics used for this task: element accuracy,
measuring the correctness of the selected ID, oper-
ation F1, predicting the correctness of the chosen
action_type, and the success rate for each step in
a task, where success indicates both the element
and operation selection are correct. For each task,
metrics are averaged over the steps of a task, and
the macro average across all tasks is reported.

4.2 Baselines

RCI Recursive Criticism and Improvement (Kim
et al., 2023) first samples an initial plan consisting
of low-level actions, which is refined once using
LLM self-criticism to enhance grounding, Next, be-
fore the agent executes each action in the plan, mul-
tiple iterations of self-refinement is utilized to im-
prove the grounding of the action. RCI is the SOTA
LLM method reported in (Furuta et al., 2023).

Synapse Synapse combines a trajectory-level for-
mulation of planning with retrieved trajectory ex-
emplars, to enhance grounding of the overall plan,
based on similar experiences stored in an exemplar
memory. For the retrieval memory, exemplars from
the 48 base tasks of MiniWoB are used, and in
Mind2Web, the same training set trajectories are
used as the exemplar memory for retrieval, both as
in RaDA.

AdaPlanner We additionally compare with ap-
proaches which focus on post-hoc error repair. Ada-
Planner (Sun et al., 2023) is a few-shot prompting
method which leverages a post-hoc form of plan
grounding, by re-planning in response to encoun-
tered failures from the environment.

MindAct As the original RCI and AdaPlanner
are not designed to be evaluated on Mind2Web, and
cannot be easily applied without annotating new
few-shot exemplars for the dataset, we compare
with the closest equivalent few-shot prompted ap-
proach from Deng et al. (2023), as well as Synapse,
which is evaluated on Mind2Web. MindAct, the
baseline agent from Mind2Web, utilizes a multiple-
choice formulation of action generation, perform-
ing fine-grained reasoning for grounded action gen-
eration using few-shot prompts.

4.3 Models

RaDA Our full model, RaDA, uses both retrieval-
augmented plan generation (RaD) and retrieval-
augmented subtask grounding (RaA), to enable

13516

CompWoB Setting Original Reverse

GPT-3.5 Turbo

RCI (Kim et al., 2023) 28.7 19.2
AdaPlanner (Sun et al., 2023) 20.6 18.9
Synapse (Zheng et al., 2024b) | 25.4 16.0

RaA (ours-ablate RaD) 38.0 23.8
RaD (ours-ablate RaA) 50.0 37.8
RaDA (ours) *63.6 *49.0
GPT-4

RCI (Kim et al., 2023) 56.0 43.5
AdaPlanner (Sun et al., 2023) 29.5 -
Synapse (Zheng et al., 2024b) | 41.4 -
RaDA (ours) *68.6 *57.8

Table 2: Results on the CompWoB environment. The
baseline results are from the original CompWoB paper.
4 Note that the GPT-4 results for the reverse task are re-
ported only for RCI in Furuta et al. (2023). Best results
are denoted in bold. Asterisk (*) denotes statistically
significant (P<.001) improvement over all baselines us-
ing a paired t-test.

compositional generalization without manual few-
shot exemplars. All LLM modules are imple-
mented using instructional prompts, shown in Ap-
pendix A.2, and all subtask functions are defined us-
ing retrieved exemplars. In implementation, RaDA
utilizes a decomposition trigger to initiate decom-
position. In CompWoB, decomposition behavior
is always triggered, and in Mind2Web, decomposi-
tion behavior is triggered if the task length exceeds
the minimum length exemplar by 50%. Finally, in
CompWoB, the subtask-compositional query Qr
is directly outputted by 7y as a single subtask, and
in Mind2Web, Q1 encompasses all remaining sub-
tasks after verification.

RaA (RaD ablation) On CompWoB, we further
evaluate variants of RaDA, to understand the effec-
tiveness of each proposed component. First, we test
RaA, which partially ablates RaD, and does not use
a subtask-decompositional planner to disentangle
subtask-level planning from grounded action gen-
eration. In this variant, subtask decomposition is
utilized only to generate the fine-grained retrieval
queries for exemplars. For a fair comparison, we
design RaA such that the overall set of exemplars
consumed by RaA and RaDA are identical. The re-
trieved exemplars are simultaneously concatenated

“For each of the WoB tasks we perform multiple runs with
different seeds, for a total of 10 runs per task.

Element Acc. Operation F1 Step SR
MindAct 21.6 52.8 18.6
Synapse 32.8 46.59 29.33
RaDA *33.39 *48.83 *29.92
Table 3: Results on the cross-domain generaliza-

tion setting of Mind2Web datasets (GPT-3.5 Turbo)
are reported from Deng et al. (2023); Zheng et al.
(2024b).> Best results are denoted in bold. Asterisk (*)
denotes statistically significant (P<.001) improvement
over MindAct and Synapse using a paired t-test.

Element Acc. Operation F1 Step SR
GPT-3.5 Turbo
MindAct 9.76 5543 8.46
Synapse 24.73 37.78 21.34
RaDA *30.13 *58.18 *26.71
GPT-4
RaDA *47.97 *59.00 *41.24

Table 4: We show SOTA methods suffer performance
degradation in complex subset of the cross-domain split
of Mind2Web, selected by the rank of task complexity.
Best results are denoted in bold. Asterisk (*) denotes
statistically significant (P<.001) improvement over Min-
dAct and Synapse using a paired t-test.

into the input context, such that action grounding
can leverage retrieved exemplars, albeit without a
disentangled notion of subtask progress.

RaD (RaA ablation) We further evaluate RaD,
which ablates RaA, thereby removing the ability to
retrieve exemplars based on a dynamically gener-
ated query. In this variant, we utilize a static set
of few-shot exemplars which replace the dynami-
cally retrieved exemplars from RaDA. We choose
5 exemplars consisting of three easy (click-button,
click-link, click-dialog), 1 medium (search-engine),
and 1 hard (choose-date) tasks according to the task
classification of CompWoB.

5 Results

5.1 Results on CompWoB

In Table 2, we report the results on the CompWoB
original and reverse tasks. The latter provides up-
side down instructions (e.g. do A,B,C — do B and

>Due to high API costs, we compute the performance on
the full set (912 examples), using the official logs released by
(Zheng et al., 2024b), using an oracle decomposition trigger.

13517

C, after doing A), reflecting the inherent ambigu-
ity in real-world web instructions. Experimental
results from Furuta et al. (2023) show that these
simple permutations significantly degrade the per-
formance of LLM agents.

Compared to strong baselines on CompWoB,
RaDA outperforms all compared models signifi-
cantly, in both the original and reverse settings. We
also report the results of the two ablations, RaA,
which utilizes subtask-level exemplar retrieval for
action generation, but grounds all steps of the task
plan simultaneously, and RaD, which utilizes a
decompositional planner, but with a fixed set of ex-
emplars. Compared to the 63.6%/49.0% accuracy
of RaDA, both RaA and RaD show much lower
accuracies, of 38.0%/23.8% and 50.0%/37.8% re-
spectively, indicating that subtask decomposition
and dynamic exemplar retrieval are complemen-
tary. Collectively, these findings substantiate our
hypothesis that RaDA’s fusion of high-level plan-
ning with retrieval-augmented grounding enhances
compositional generalization. While baseline mod-
els falter when confronted with the compositional
task of CompWoB, particularly evident in the re-
verse setting, and with GPT-3.5, ours consistently
demonstrates robust performance across all scenar-
ios, irrespective of model scale.

Furthermore, we evaluate RaDA using the more
powerful GPT-4, and observe that performance
scales with more performant LLLMs, achieving a
new state-of-the-art result for LLMs on CompWoB.

5.2 Results on Mind2Web

In Tables 3 and 4, we report the results on the
Mind2Web dataset. Our results on the complex
subset of Mind2Web reveal that this subset of
Mind2Web poses a challenge for the original
Synapse method, as shown by the drop in perfor-
mance (32.8% — 24.73% for element accuracy,
29.33% — 21.34% for step success rate). This
indicates that even for state-of-the-art models, com-
positional generalization remains challenging.

In contrast, RaDA shows strong performance on
both the full and the complex subset, outperform-
ing Synapse significantly on all metrics. We further
report the results on GPT-4, and the results are con-
sistent with CompWoB, indicating that our method
scales well with more performant LLMs in diverse
scenarios.

RaDA
RCI Synapse RaA RaD RaDA
(GPT-4)

CompWoB Original

Two-way 469 469 465 69.0 86.0 87.0
Three-way 297 256 200 57.0 61.0 57.0
N-way 222 7.4 340 160 32.0 38.0
Transition 0.0 0.0 40.0 39.6 36.0 68.0
Easy-medium | 8.8 3.8 39.0 244 510 59.0

Total 28.7 254 38.0 50.0 63.6 68.6
CompWoB Reverse

Two-way 33.6 38.5 31.0 60.5 78.5 88.5
Three-way 16.3 0.0 15.0 17.0 21.0 32.0
N-way 12.6 0.0 20 300 10.0 18.0
Transition 2.0 0.0 240 34.0 30.0 36.0

Easy-medium | 5.4 0.3 29.0 19.0 47.0 53.0

Total 192 160 238 378 490 | 578

Table 5: Analysis of success rate on each compositional
task type in original and reverse settings of CompWoB.
The columns on the left consist of results with GPT-3.5-
turbo, and the best results among these are bolded.

6 Analysis

6.1 CompWob Success Rate by Compositional
Task Type

To provide a better understanding of the perfor-
mance gains of RaDA on CompWoB, we present
a breakdown of CompWoB results by the type of
compositional task in Table 5. We first observe
that on compositional tasks such as n-way, transi-
tion, and easy-medium, existing approaches per-
form extremely poorly, showing the challenge of
compositional generalization. In the case of vanilla
Synapse, the reverse setting of CompWoB signifi-
cantly effects performance further, indicating that
exemplar retrieval alone does not solve composi-
tional generalization.

In contrast, RaDA achieves a consistent and
large improvement over baselines on all compo-
sitional task types, indicating that its disentangled
structure enables better compositional generaliza-
tion. Next, compared to the RaA variant, which has
the advantage of a longer context length, but ablates
the disentangled structure, RaDA performs better
on 8 of the 10 tasks across the original and reverse
orders, while being comparable on the remaining
two. Similarly, compared to RaD, which ablates
the dynamic retrieval of exemplars, it performs bet-
ter on 7 of the 10 tasks. Finally, the GPT-4 results
show that RaDA’s performance scales consistently
with more performant LLMs.

13518

| RaDA RaA

Avg. tokens | (Exemplars) | 1259.8 3483.5
Avg. tokens | (Total) 1969.4 4110.1
Max tokens | (Exemplars) | 1891.1 8465.8
Max tokens | (Total) 27224 9761.3
Accuracy 1 (Original) 63.6 38.0
Accuracy 1 (Reverse) 49.0 23.8

Table 6: Token efficiency per LLM inference call, and
model accuracy. For each model, the average and max-
imum number of tokens, both for the exemplars only
and for the entire LLM input, are reported. Arrows in-
dicate optimal directions: fewer tokens (|) and higher
accuracy (1).

6.2 Context-token Efficiency

To validate the efficiency of RaDA’s exemplar re-
trieval, we measure the context-token efficiency
per LLM inference call, as a main driver of LLM
inference cost is the quadratic scaling of compu-
tation with respect to input context length. We
compare token efficiency of RaA and RaDA, mea-
suring the per-call average and maximum numbers
of: tokens comprising 1) the exemplars and 2) the
entire prompt.

As Table 6 shows, an LLM inference call in
RaDA requires on average less than half the amount
of tokens, which translates to a 4x computational
efficiency. Furthermore, the lengthy input context
of RaA due to the concatenation of exemplars re-
sults in cases that exceed the 4096 context token
limit of the baseline turbo model, thus requiring the
usage of gpt-3.5-turbo-16k-0613 (16385 token
limit) to accommodate the longer context.

Additionally, since RaDA performs LLM infer-
ence call for each subtask, we also compute the
average total number of tokens consumed per task.
These are 4582.31 / 7285.76, for RaA and RaDA,
respectively. While the overall tokens seen is about
2x%, due to the quadratic scaling of transformer
computations, RADA is still more computation-
ally efficient due to shorter exemplars in each in-
ference call, while achieving significantly higher
performance. These observations lend further sup-
port to our claim, that decomposing tasks leads to
more efficient and performant in-context learning
for LLMs.

®Note that both RaA and RaDA are given access to the
same overall set of exemplars. The 2x difference arises from a
further processing for RaA which removes redundant exem-
plars, as RaA concatenates all exemplars together.

Distribution of Solution Step Lengths

147

160 o

100 o

50 -

Number of Examples

6
4 323234 14

2 3 456 7 8 9 1011 1213 14 15 16 17 18 19 20 21 22 23 24 25 26

Number of Steps in Solution

Figure 2: Distribution of action steps required to solve
Mind2Web tasks. Higher number of steps indicate
higher task complexity, and the gold portion indicates
the tasks covered by the complex subset.

6.3 Complexity of Tasks in Mind2Web

In Fig. 2, we show that the distribution of the
number of action steps required in the solution,
which directly correlate to the complexity of the
task (Deng et al., 2023), is skewed towards simpler
tasks. For example, the longest task in the cross-
domain split requires 26 separate actions to solve
correctly, whereas the majority of tasks actually
require less than 10 steps, making it likely that a
single retrieved exemplar can sufficiently demon-
strate a solution. The complex subset in Table.4
corresponds to the gold columns of the figure. Our
results demonstrate that state-of-the-art models do
not yet generalize well in compositional scenarios,
and that RaDA’s retrieval-augmented task decom-
position and action generation makes meaningful
progress towards compositional generalization.

7 Conclusion

We propose RaDA, a planning method which en-
hances the compositional generalization of LLM
agents for Web tasks. RaDA disentangles plan-
ning into two components, Retrieval-augmented
Task Decomposition (RaD) which decomposes
tasks into high-level subtasks, and Retrieval-
augmented Action Generation (RaA) which en-
ables the grounded execution of subtasks without
the need for manually authored few-shot prompts.
We show through experiments on the CompWoB
and Mind2Web tasks that RaDA enhances the com-
positional generalization of LLM agents, signifi-
cantly outperforming competitive baselines.

13519

Limitations

A limitation of our method is that we rely on a suf-
ficiently good off-the-shelf retrieval model, and our
work does not focus on exploring possibilities for
using other various types of pre-trained retrievers,
of which there are many.

While we did not consider retriever finetuning in
this work, future research could consider an overall
framework which finetunes the exemplar retriever
in tandem with LLM agents.

Another limitation of our method is that we lever-
age existing trajectories provided by the environ-
ments studied, as the corpora for exemplar retrieval.
While the cost of collecting trajectories, as opposed
to annotating prompt exemplars, is generally much
lower, in some tasks human exemplars may be ef-
fective in bootstrapping the trajectory collection
process. Finally, while leveraging existing exem-
plars for retrieval is a promising approach, a frame-
work which not only utilizes existing exemplars but
collects new ones would improve the applicability
of retrieval-based prompting approaches, to more
diverse settings.

Acknowledgements

This work was partly supported by Institute of In-
formation & communications Technology Planning
& Evaluation (IITP) grant funded by the Korean
government (MSIT) [NO. 2021-0-01343, Artificial
Intelligence Graduate School Program (Seoul Na-
tional University)] and Institute of Information &
Communications Technology Planning & Evalua-
tion (IITP) grant funded by the Korean government
(MSIT) [NO. 2022-0-00077, Al Technology Devel-
opment for Commonsense Extraction, Reasoning,
and Inference from Heterogeneous Data].

References

Michael Ahn, Anthony Brohan, Noah Brown, Yev-
gen Chebotar, Omar Cortes, Byron David, Chelsea
Finn, Chuyuan Fu, Keerthana Gopalakrishnan, Karol
Hausman, Alex Herzog, Daniel Ho, Jasmine Hsu,
Julian Ibarz, Brian Ichter, Alex Irpan, Eric Jang,
Rosario Jauregui Ruano, Kyle Jeffrey, Sally Jes-
month, Nikhil Joshi, Ryan Julian, Dmitry Kalash-
nikov, Yuheng Kuang, Kuang-Huei Lee, Sergey
Levine, Yao Lu, Linda Luu, Carolina Parada, Pe-
ter Pastor, Jornell Quiambao, Kanishka Rao, Jarek
Rettinghouse, Diego Reyes, Pierre Sermanet, Nico-
las Sievers, Clayton Tan, Alexander Toshev, Vincent
Vanhoucke, Fei Xia, Ted Xiao, Peng Xu, Sichun Xu,
Mengyuan Yan, and Andy Zeng. 2022. Do as i can

and not as i say: Grounding language in robotic af-
fordances. In arXiv preprint arXiv:2204.01691.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In
Proceedings of the 34th International Conference on
Neural Information Processing Systems, NIPS’20,
Red Hook, NY, USA. Curran Associates Inc.

Thomas Carta, Clément Romac, Thomas Wolf, Sylvain
Lamprier, Olivier Sigaud, and Pierre-Yves Oudeyer.
2023. Grounding large language models in interac-
tive environments with online reinforcement learning.
In Proceedings of the 40th International Conference
on Machine Learning, ICML’23. JMLR.org.

Angelica Chen, Jason Phang, Alicia Parrish, Vishakh
Padmakumar, Chen Zhao, Samuel R. Bowman,
and Kyunghyun Cho. 2024. Two failures of self-
consistency in the multi-step reasoning of LLMs.
Transactions on Machine Learning Research.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. CoRR, abs/2110.14168.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen,
Samuel Stevens, Boshi Wang, Huan Sun, and Yu Su.
2023. Mind2web: Towards a generalist agent for
the web. In Thirty-seventh Conference on Neural
Information Processing Systems Datasets and Bench-
marks Track.

Andrew Drozdov, Nathanael Scharli, Ekin Akyiirek,
Nathan Scales, Xinying Song, Xinyun Chen, Olivier
Bousquet, and Denny Zhou. 2022. Compositional
semantic parsing with large language models.

Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine
Li, Liwei Jiang, Bill Yuchen Lin, Sean Welleck, Peter
West, Chandra Bhagavatula, Ronan Le Bras, Jena D.
Hwang, Soumya Sanyal, Xiang Ren, Allyson Et-
tinger, Zaid Harchaoui, and Yejin Choi. 2023. Faith
and fate: Limits of transformers on compositionality.
In Thirty-seventh Conference on Neural Information
Processing Systems.

Hiroki Furuta, Yutaka Matsuo, Aleksandra Faust, and
Izzeddin Gur. 2023. Language model agents suffer
from compositional generalization in web automa-
tion.

Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky
Liang, Pete Florence, Andy Zeng, Jonathan Tompson,

13520

https://openreview.net/forum?id=5nBqY1y96B
https://openreview.net/forum?id=5nBqY1y96B
http://arxiv.org/abs/2110.14168
http://arxiv.org/abs/2110.14168
https://openreview.net/forum?id=kiYqbO3wqw
https://openreview.net/forum?id=kiYqbO3wqw
http://arxiv.org/abs/2209.15003
http://arxiv.org/abs/2209.15003
https://openreview.net/forum?id=Fkckkr3ya8
https://openreview.net/forum?id=Fkckkr3ya8
http://arxiv.org/abs/2311.18751
http://arxiv.org/abs/2311.18751
http://arxiv.org/abs/2311.18751

Igor Mordatch, Yevgen Chebotar, Pierre Sermanet,
Noah Brown, Tomas Jackson, Linda Luu, Sergey
Levine, Karol Hausman, and Brian Ichter. 2022. In-
ner monologue: Embodied reasoning through plan-
ning with language models. In arXiv preprint
arXiv:2207.05608.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Dangi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for open-
domain question answering. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 6769—6781,
Online. Association for Computational Linguistics.

Daniel Keysers, Nathanael Schirli, Nathan Scales,
Hylke Buisman, Daniel Furrer, Sergii Kashubin,
Nikola Momchev, Danila Sinopalnikov, Lukasz
Stafiniak, Tibor Tihon, Dmitry Tsarkov, Xiao Wang,
Marc van Zee, and Olivier Bousquet. 2020. Measur-
ing compositional generalization: A comprehensive
method on realistic data. In International Conference
on Learning Representations.

Omar Khattab, Keshav Santhanam, Xiang Lisa
Li, David Hall, Percy Liang, Christopher Potts,
and Matei Zaharia. 2022. Demonstrate-search-
predict: Composing retrieval and language mod-
els for knowledge-intensive NLP. arXiv preprint
arXiv:2212.14024.

Tushar Khot, Harsh Trivedi, Matthew Finlayson, Yao
Fu, Kyle Richardson, Peter Clark, and Ashish Sab-
harwal. 2023. Decomposed prompting: A modular
approach for solving complex tasks. In The Eleventh
International Conference on Learning Representa-
tions.

Geunwoo Kim, Pierre Baldi, and Stephen Marcus
McAleer. 2023. Language models can solve com-
puter tasks. In Thirty-seventh Conference on Neural
Information Processing Systems.

Takeshi Kojima, Shixiang (Shane) Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. In Advances in
Neural Information Processing Systems, volume 35,
pages 22199-22213. Curran Associates, Inc.

Royi Lachmy, Valentina Pyatkin, Avshalom Manevich,
and Reut Tsarfaty. 2022. Draw Me a Flower: Process-
ing and Grounding Abstraction in Natural Language.
Transactions of the Association for Computational
Linguistics, 10:1341-1356.

Xiaonan Li, Kai Lv, Hang Yan, Tianyang Lin, Wei Zhu,
Yuan Ni, Guotong Xie, Xiaoling Wang, and Xipeng
Qiu. 2023. Unified demonstration retriever for in-
context learning. In Proceedings of the 61st Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 4644—-4668,
Toronto, Canada. Association for Computational Lin-
guistics.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang,
Hiroaki Hayashi, and Graham Neubig. 2023. Pre-
train, prompt, and predict: A systematic survey of
prompting methods in natural language processing.
ACM Comput. Surv., 55(9).

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel,
and Pontus Stenetorp. 2022. Fantastically ordered
prompts and where to find them: Overcoming few-
shot prompt order sensitivity. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
8086-8098, Dublin, Ireland. Association for Compu-
tational Linguistics.

Man Luo, Xin Xu, Zhuyun Dai, Panupong Pasupat,
Mehran Kazemi, Chitta Baral, Vaiva Imbrasaite,
and Vincent Y Zhao. 2023. Dr.icl: Demonstration-
retrieved in-context learning.

Aman Madaan and Amir Yazdanbakhsh. 2022. Text
and patterns: For effective chain of thought, it takes
two to tango.

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe,
Mike Lewis, Hannaneh Hajishirzi, and Luke Zettle-
moyer. 2022. Rethinking the role of demonstrations:
What makes in-context learning work? In Proceed-
ings of the 2022 Conference on Empirical Methods in
Natural Language Processing, pages 11048-11064,
Abu Dhabi, United Arab Emirates. Association for
Computational Linguistics.

Tianlin Shi, Andrej Karpathy, Linxi Fan, Jonathan Her-
nandez, and Percy Liang. 2017. World of bits: An
open-domain platform for web-based agents. In Pro-
ceedings of the 34th International Conference on
Machine Learning, volume 70 of Proceedings of Ma-
chine Learning Research, pages 3135-3144. PMLR.

Noah Shinn, Federico Cassano, Ashwin Gopinath,
Karthik R Narasimhan, and Shunyu Yao. 2023. Re-
flexion: language agents with verbal reinforcement
learning. In Thirty-seventh Conference on Neural
Information Processing Systems.

Theodore Sumers, Shunyu Yao, Karthik Narasimhan,
and Thomas L. Griffiths. 2023. Cognitive architec-
tures for language agents.

Haotian Sun, Yuchen Zhuang, Lingkai Kong, Bo Dai,
and Chao Zhang. 2023. Adaplanner: Adaptive plan-
ning from feedback with language models.

Lei Wang, Wanyu Xu, Yihuai Lan, Zhigiang Hu, Yunshi
Lan, Roy Ka-Wei Lee, and Ee-Peng Lim. 2023. Plan-
and-solve prompting: Improving zero-shot chain-of-
thought reasoning by large language models. In Pro-
ceedings of the 61st Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 2609-2634, Toronto, Canada. Associ-
ation for Computational Linguistics.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V Le,

13521

https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://openreview.net/forum?id=SygcCnNKwr
https://openreview.net/forum?id=SygcCnNKwr
https://openreview.net/forum?id=SygcCnNKwr
https://openreview.net/forum?id=_nGgzQjzaRy
https://openreview.net/forum?id=_nGgzQjzaRy
https://openreview.net/forum?id=M6OmjAZ4CX
https://openreview.net/forum?id=M6OmjAZ4CX
https://proceedings.neurips.cc/paper_files/paper/2022/file/8bb0d291acd4acf06ef112099c16f326-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/8bb0d291acd4acf06ef112099c16f326-Paper-Conference.pdf
https://doi.org/10.1162/tacl_a_00522
https://doi.org/10.1162/tacl_a_00522
https://doi.org/10.18653/v1/2023.acl-long.256
https://doi.org/10.18653/v1/2023.acl-long.256
https://doi.org/10.1145/3560815
https://doi.org/10.1145/3560815
https://doi.org/10.1145/3560815
https://doi.org/10.18653/v1/2022.acl-long.556
https://doi.org/10.18653/v1/2022.acl-long.556
https://doi.org/10.18653/v1/2022.acl-long.556
http://arxiv.org/abs/2305.14128
http://arxiv.org/abs/2305.14128
http://arxiv.org/abs/2209.07686
http://arxiv.org/abs/2209.07686
http://arxiv.org/abs/2209.07686
https://doi.org/10.18653/v1/2022.emnlp-main.759
https://doi.org/10.18653/v1/2022.emnlp-main.759
https://proceedings.mlr.press/v70/shi17a.html
https://proceedings.mlr.press/v70/shi17a.html
https://openreview.net/forum?id=vAElhFcKW6
https://openreview.net/forum?id=vAElhFcKW6
https://openreview.net/forum?id=vAElhFcKW6
http://arxiv.org/abs/2309.02427
http://arxiv.org/abs/2309.02427
http://arxiv.org/abs/2305.16653
http://arxiv.org/abs/2305.16653
https://doi.org/10.18653/v1/2023.acl-long.147
https://doi.org/10.18653/v1/2023.acl-long.147
https://doi.org/10.18653/v1/2023.acl-long.147

and Denny Zhou. 2022. Chain-of-thought prompt-
ing elicits reasoning in large language models. In
Advances in Neural Information Processing Systems,
volume 35, pages 24824-24837. Curran Associates,
Inc.

Jerry Wei, Jason Wei, Yi Tay, Dustin Tran, Albert
Webson, Yifeng Lu, Xinyun Chen, Hanxiao Liu,
Da Huang, Denny Zhou, and Tengyu Ma. 2023.
Larger language models do in-context learning dif-
ferently.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao
Liu, Quoc V. Le, Denny Zhou, and Xinyun Chen.
2024. Large language models as optimizers. In
The Twelfth International Conference on Learning
Representations.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik R Narasimhan, and Yuan Cao. 2023.
React: Synergizing reasoning and acting in language
models. In The Eleventh International Conference
on Learning Representations.

Wenjia Joyce Zhao, Russell Richie, and Sudeep Bhatia.
2022. Process and content in decisions from memory.
Psychological Review, 129(1):73.

Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and
Sameer Singh. 2021. Calibrate before use: Improv-
ing few-shot performance of language models. In
Proceedings of the 38th International Conference
on Machine Learning, volume 139 of Proceedings
of Machine Learning Research, pages 12697-12706.
PMLR.

Huaixiu Steven Zheng, Swaroop Mishra, Xinyun Chen,
Heng-Tze Cheng, Ed H. Chi, Quoc V Le, and Denny
Zhou. 2024a. Step-back prompting enables reason-
ing via abstraction in large language models. In The
Twelfth International Conference on Learning Repre-
sentations.

Longtao Zheng, Rundong Wang, Xinrun Wang, and
Bo An. 2024b. Synapse: Trajectory-as-exemplar
prompting with memory for computer control. In
The Twelfth International Conference on Learning
Representations.

Denny Zhou, Nathanael Schirli, Le Hou, Jason Wei,
Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Claire Cui, Olivier Bousquet, Quoc V Le, and Ed H.
Chi. 2023. Least-to-most prompting enables com-
plex reasoning in large language models. In The
Eleventh International Conference on Learning Rep-
resentations.

A Appendix

A.1 Experiment details

For LLM models, gpt-3.5-turbo-0613
and gpt-4-0613 are used through the Ope-
nAl API. For the ablated RaA model,
gpt-3.5-turbo-16k-0613 1is used, since it

requires a larger input context to concatenate
all subtask exemplars. For Mind2Web, we use
gpt-3.5-turbo-16k-0613, following Zheng et al.
(2024b). For all ¢ retrieval models, we use seman-
tic similarity using text-embedding-ada-002
embeddings, over a retrieval corpus of task
descriptions and metadata, following Zheng et al.
(2024b).

13522

https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
http://arxiv.org/abs/2303.03846
http://arxiv.org/abs/2303.03846
https://openreview.net/forum?id=Bb4VGOWELI
https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=WE_vluYUL-X
https://proceedings.mlr.press/v139/zhao21c.html
https://proceedings.mlr.press/v139/zhao21c.html
https://openreview.net/forum?id=3bq3jsvcQ1
https://openreview.net/forum?id=3bq3jsvcQ1
https://openreview.net/forum?id=Pc8AU1aF5e
https://openreview.net/forum?id=Pc8AU1aF5e
https://openreview.net/forum?id=WZH7099tgfM
https://openreview.net/forum?id=WZH7099tgfM

A.2 Prompts
A.2.1 CompWoB

CompWoB System Prompt

You are a large language model trained to navigate the web. To accomplish the task, use methods
in the following Agent class to generate actions until you need the new state to proceed.

class Agent:
def __init__(self, args):

Action: type a string via the keyboard
def type(self, characters: str) —> None:

Action: click an HIML element with a valid xpath
def click_xpath(self, xpath: str):

Actions: press a key on the keyboard, including:
enter , space, arrowleft, arrowright,

backspace, arrowup, arrowdown, command+a,

command+c, command+v

def press(self, key_type: str) —> None:

Action: click an option HIML element in a list with a
valid xpath
def click_option(self, xpath: str):

Action: move mouse cursor on an HIML element with a
valid xpath
def movemouse(self , xpath: str):

13523

RaD Subtask Decomposition

System:
{system prompt}

Input:

Here is a demonstration of interactions in
the web environment, so you can get a
sense of the environment:

{retrieved exemplars for task}

Here is the task:
{task}

Your goal is to decompose the task
into a set of high-level subtasks. For now,
do not consider their order, simply list them
in the order that they are presented in the
task. Start each subtask with [Subtask] and
end each subtask with newline. End your
generation with EOS.

\. J/

RaD Subtask Planning

System:
{system prompt}

Input:

Here is a demonstration of interactions in
the web environment, so you can get a
sense of the environment:

{retrieved exemplars for task}

Here are the subtasks, in no particu-
lar order:
{subtasks}

Here is the precise task instruction:
{task}

Now, generate the sequence of sub-
tasks in the order that they should be
executed to complete the task in the
exact specification. Follow the format, 1.
[Subtask]. 2. [Subtask]. 3. [Subtask]...
End your generation with EOS.

Subtask Verification and Next Subtask

System:
{system prompt}

Input:
Here is the list of subtasks:
{subtasks}

Here are the subtasks that have been
completed so far:
{completed subtasks}

Here are the actions that have been
executed so far:
{action history}

Write the next subtask that should be
executed, in the format, [ID: n] where n is
the id of the next subtask.

End your generation with EOS.

\

RaA Action Generation

System:
{system prompt}

Input:
Subtask demonstration:
{retrieved exemplars for subtask}

Now, here is the current task and
state:
{trajectory}

Here are the actions that have been
executed so far:
{action history}

Generate the action(s) for the follow-
ing subtask:
{subtask description }

13524

A.2.2 Mind2Web

Mind2Web System Prompt

You are a large language model trained to
navigate the web. Output the next action
and wait for the next observation. Here is
the action space:

1. ‘CLICK [id]‘: Click on an HTML ele-
ment with its id. 2. ‘TYPE [id] [value]‘:
Type a string into the element with the id. 3.
‘SELECT [id] [value]‘: Select a value for
an HTML element by its id.

RaD Subtask Decomposition

System:
{system prompt}

Input:

Now, you will be presented with a few
trajectories of similar tasks. You can refer
to them to understand what structure similar
websites have, and what action trajectories
are likely to be executable and successful.
{retrieved exemplars for task}

Here is the task:
{task}

Your goal is to decompose the task
into a set of high-level subtasks. For now,
do not consider their order, simply list them
in the order that they are presented in the
task. Start each subtask with [Subtask] and
end each subtask with newline. Decompose
into at most three subtasks. End your
generation with EOS.

RaD Subtask Verification

System:
{system prompt}

Input:

Here are the subtasks that have not been
completed yet:

{remaining subtasks}

Trajectory:
{trajectory}

Assuming that the previous action
was executed successfully, write the subtask
that was completed by the action. If no
subtask was completed, write NONE. End
your generation with EOS.

\.

RaA Action Generation

System:
{system prompt}

Input:

Subtask demonstration:

{retrieved exemplars for remaining
subtasks}

Subtasks that have not been completed yet
are:
{remaining subtasks}

Trajectory:
{trajectory}

13525

