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Abstract

Do current large language models (LLMs) bet-
ter solve graph reasoning and generation tasks
with parameter updates? In this paper, we pro-
pose InstructGraph, a framework that empow-
ers LLMs with the abilities of graph reasoning
and generation by instruction tuning and prefer-
ence alignment. Specifically, we first propose a
structured format verbalizer to unify all graph
data into a universal code-like format, which
can simply represent the graph without any ex-
ternal graph-specific encoders. Furthermore,
a graph instruction tuning stage is introduced
to guide LLMs in solving graph reasoning and
generation tasks. Finally, we identify potential
hallucination problems in graph tasks and sam-
ple negative instances for preference alignment,
the target of which is to enhance the output’s
reliability of the model. Extensive experiments
across multiple graph-centric tasks exhibit that
InstructGraph can achieve the best performance
and outperform GPT-4 and LLaMA?2 by more
than 13% and 38%, respectively. .

1 Introduction

Currently, large language models (LLMs) have
succeeded in reasoning on textual data (Brown
et al., 2020; Zhao et al., 2023c). However, there
also exists rich information in graph data, that is
difficult to represent using plain text (Jin et al.,
2023), such as knowledge graphs (Schneider et al.,
2022), symbolic graphs (Saba, 2023), and social
networks (Wang et al., 2023d), etc.

To endow LLMs with the ability to solve graph
tasks, a series of works focus on designing the inter-
face (e.g., prompt engineering) of LLMs on graph
data to make them understand the semantics with-
out parameter optimization (Ye et al., 2023; Han
etal., 2023; Zhang et al., 2023b; Zhang, 2023; Kim

* Work done during visiting at UC San Diego.
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'We have released the resource code in https://
github.com/wjnl996/InstructGraph.

et al., 2023; Jiang et al., 2023; Wang et al., 2023b;
Luo et al., 2023), or injecting the graph embed-
dings into the partial parameters of LLMs through
graph neural networks (GNNs) (Zhang et al., 2022;
Chai et al., 2023; Tang et al., 2023; Perozzi et al.,
2024). Despite significant progress, we explore
these two challenges: 1) There still exists a seman-
tic gap between graph and text, which may impede
the LLM in graph reasoning and generation. 2)
LLMs tend to generate hallucinations which may
be caused by fabricated erroneous inputs or lack of
pertinent knowledge. It can be viewed as the graph
hallucination problem.

To overcome these challenges, we present a
framework named InstructGraph that boosts
LLMs by instruction tuning and preference align-
ment. A straightforward approach to solve the first
challenge is to use a graph description (Ye et al.,
2023) or graph embeddings (Chai et al., 2023),
However, these methods require a large number
of manual templates to describe the graph. Repre-
senting a large or complex graph via embeddings
may cause information loss. In addition, the re-
sponses generated by the LLM with these methods
are difficult to parse into actual graphs (Jin et al.,
2023; Zhao et al., 2023c). Current investigations
have demonstrated that LLMs have a great ability
for code understanding and generation (Gao et al.,
2023; Ma et al., 2023; Wong et al., 2023; Yang
et al., 2024). Inspired by them, we can unify graph
data into a code-like universal format to enhance
the LLM’s understanding and generation perfor-
mance on graph tasks. As shown in Figure 1, each
graph can be converted into a code with basic vari-
ables, such as node_list (orentity_list),
edge_list (or triple_1list) and optional
properties. To this end, a graph instruction tun-
ing stage is introduced to train the LLM on these
formulated data.

In addition, previous works have found that
LLMs generate responses with hallucination when
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Connectivity Detection
Q: Given a graph G1,
deter-mine if there is a

Cycle Detection
Q: Given a graph G1,
deter-mine if there is a

Graph [name="61"1{
node_list=[0, 1, 2, 3, 4, 5];

path between node 2 and  graph cycle. edge_list=[
3. (0 <-> 1) [weight=1],
A: The answer is yes. (0 <-> 2) [weight=3],

A: No cycle in the graph.

Hamilton Path

Q: Given a graph G2, is
there a path visits every
node exactly once.

Bipartite Matching
Q: Given a graph G2,
whether node 1 is
connective to node 4.

G2 5) | |Graphiname="62"1{
A: No. A: Yes. node_list=(0, 1, 2, 3, 4, 5;
1 7 edge_list=(
Shortest Path Degree Computing E? :/ ;:' :? \: 2:'
Q: Given a graph G1, Q: Given a graph G1, 3 1; ’ '
find the shortest path compute the degree of 0 \ b
between node 2 and 3. node 4. 2

A: The path is 2,0,4,3. A: The degree is 3.

~

Definition: Given a graph, understand the
structure and answer the question about
connectivity, cycle, hamilton path, bipartite
\malching, shortest path and degree.

Graph Structure Modeling
(Graph Reasoning)

Definition: Given a passage, understand
the instruction and question, and then
generate a graph to satisfy the semantics
or structures.

Knowledge Graph Generation

Q: Given the following passage, generate a
knowledge graph to express the semantics:

"James Cameron is a Canadian filmmaker born in
Ontario in 1954. He directed popular movies such as
Titanic and Avatar."

Structure Graph Generation

Q: Given the follow description, generate a graph to
release the structure. "In an undirected graph, the
nodes are from 0 to 6, (i, w, j) means an edge with a
weight w. All edges are: (3, 5, 5), (0, 2, 1), (0, 1, 6),
(2,3,4),(51,6),(2,33),(1,1,6)and (1, 4, 6)."

A: The graph is shown in the follow: A: The graph is shown in the follow:

Graph [name="Knowledge-Graph"] {
entity_list = ["James Cameron”, "Ontario", ... ],
triple_list = [("James Cameron” -> "Ontario") [
relation="born in"], ... 1, ©

Graph [name="Structure-Graph"1{
node_list = [0, 1, 2, 3, 4, 5, 6],
edge_list = [

> 1) [weight=2], (0 -> 6) [weight=1], ... ],

Link Prediction

Q: Given a graph G3, predict
the relation between "James
Cameron" and "Canada’.

A: place_of _birth.

Question Answering

Q: Given a graph G3, answer
the question: what's the
birthday of the film TITANIC's
director?

A: 1954. I

Node ClI ificati C Filtering
Q: Given a graph G3, ~ Q: Given a graph G4,
classify the node what's the user3's review
"Canada". preference towards
item1?.

A:lt's

Relevance Inspection Caption
Q: Given a graph G3, whether Q: Given a graph G3,
the following passage is generate a caption to
relevant to the graph. "James  describe the graph.

A: Yes, it's relevant. A: James Cameron ... = A:country_name.

Definition: Given a graph, understand the
graph semantic and answer the question
about caption, QA, node classification, link
prediction, relevance and collaboration. )

Graph Language Modeling
(Graph Reasoning)

Definition: Given a reasoning question, think ™
step by step: 1) find a topic entity, 2) then
generate a graph that express the thinking
process, 3) finally output the answer.

Graph Thought Modeling
(Graph Reasoning and Generation)

C & Factual
Q: What's the birth country of Avatar's director?
A: To answer this question, we first find the topic
entity is "Avatar". Then, we construct a knowledge
subgraph of the topic entity, the graph is:
Graph [name="Thought-Graph"]{

3

Arithmetical & Logical Reasoning
Q: Roger had 16 dollars. For his birthday he got 28
more dollars but spent 25 on a new game. How much
money does he have now?
A: To answer this question, we first find the topic
entity is "Roger". Then, we construct a graph:
entity_li "James Cameron", “Avatar”, ... 1, [Graph[name="Thought-Graph"]{
triple_list = [("Avatar" -> "James Cameron") entity_list = ["Roger", "16 dollars", ... ],
relation="director"], ... ], triple_list = [("Rogar" -> "16 dollars")[
r relation="first has"], ... ]

Roger

6 dollars
% -
- 8 dollars
B olars o dolrs

Based on the graph, we can find a reasoning path
that (Rogar, first has, 16 dollars, add, 28 dollars,
minus, 25 dollars). So the answer is 19 dollars.

Based on the graph, we can find a reasoning path
that (Avatar, director, James Cameron, born in,
Ontario, country, Canada). So the answer is Canada.

S VAN

Figure 1: Four groups of graph-centric reasoning and generation tasks.

following the instructions, typically referring to fab-
ricated erroneous inputs or lack of intrinsic knowl-
edge (Zhang et al., 2023a; Ji et al., 2023). For
example, the LLM may derive a wrong answer
when being questioned on a graph that lacks key
information, or the LLM may generate a graph
with incorrect facts, conflicting, or missing infor-
mation. However, how to reduce this effect in graph
reasoning and generation is still under-explored.
Hence, we introduce the graph preference align-
ment to alleviate the hallucination problem in the
LLM’s reasoning and generation. Specifically, we
follow the direct preference optimization (DPO)
algorithm (Rafailov et al., 2023) to optimize the
LLM to make better preferences. To automatically
sample the negative instances in DPO, we explore
various scenarios, such as unfactual graph, conflict
graph and missing graph. , to simulate the graph
hallucination problem.

To evaluate the effectiveness of our framework,
we perform extensive experiments on multiple
graph reasoning and generation tasks. Results re-
veal that the proposed InstructGraph achieves the
best performance on both graph-centric instruc-
tion and preference tasks and outperforms the GPT-
4 (OpenAl, 2023) and LLaMA?2 (Touvron et al.,
2023b) by more than 13% and 38%, respectively.

2 Methodology

The skeleton is shown in Figure 2, which can be
decomposed into three modules, i.e., graph input
engineering, graph instruction tuning, and graph
preference aligning.

2.1 Notation

Suppose that there are M graph tasks D =
{D1,---Dy}, and the corresponding dataset
of each task can be denoted as D; =
{(Z;, G, P, Ay) i\f:jl’ where N; denotes the num-
ber of examples of Dj, Z; is the corresponding in-
struction 2, G; = (&, Ry, Ti, S;) is the graph with
one node (entity) set &, one optional relation set
R;, one edge (triple) set 7;, and one optional tex-
tual property set S;, P; is the optional passage , and

A; is the final answer 3.

2.2 Graph Input Engineering

The first challenge is how to align the graph to
the text to meet the sequence interface of LLMs,
previous works solved this issue by using graph
description (Ye et al., 2023) or embedding fusion
method (Chai et al., 2023), which may make the

2We manually design the instruction for each dataset.
*Especially, the answer .A; can be not only an independent
text but also one of G; and P;, depending on the task paradigm.
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Graph Instruction Tuning

Graph-centric Corpus (about 1.6M)

3 amazon.

WIKIDATA

and answer the question.

PRI

A 8

WiKIPEDIA } Publ\med‘ o) CiteSeer® e qu )

FIFA axiv |ogt.fi N | Graph[name="wiki-knowledge-graph"){ ... }
ost.fm "

@ﬁ@ WL !ﬁ;

O G—, B /P\C)/()Conceptl\iﬂeﬁ: '7..‘\'

InstructionUIE

Input graph from multiple tasks

¥ i _Q: ______________
N ) '_'James' and 'Canada'? y
Graph Input Engineering ' |\ Tttt

Instruction & Definition

You are a good graph reasoner / generator, ...

You are a good graph reasoner, you need to
unders-tand the graph and the task definition,

N
What's the relation between 1

N
¥ *.' Q: What's the degree of the -

LLaMA2
WizardLM
Vicuna

\
You are a good graph generator, you 1 ?\'
need to understand the task definition, 15 K8y
14
[l

‘(o

and generate a graph to answer the

Reasoning ~ Generation ' question. l
——————————— A
A: James A:The graphis | ! Q: Generate a <+ ’
Francis ... \ _knowledge graph. | \‘

A: Birth @ y A: The graph is
| =

v

A: 5. So, the answer
is..

place. a graph express

'
I

— the rethink
1 process, then 1
! output the anwser. 1

Graph Passage Graph Preference Aligning
Instruct
located in
Ontario Canada L You are a good graph reasoner, you need to understand the o . Graph,
bom n James Francis graph and the task definition, and answer the question. Optimization Algorithm (DPO)
born in James ) job = Cameron CC A Graph[name="wiki-knowledge-graph"} ... }
1054 Cameron diroctor (born August easomng/ X; = You are a great reasoner, ...
pots RS 16, 1954) is a (TSRS > 2> \nGraph[name="..."] {..}\nQ: ... Preference
Canadian film- © Q:What X >
Avatar Titanic maker ... ' isthe 1| desx @/ fom B i Aligning
ucay © LLM O WLLM O LM O .
| ofthe film | gy WEMOuput o utput ~ utput =
S"“C[Lfmd Format ' TITANIC's 1 1988 X 1988 X 1988 X —>
Verbalizer ' director? '
« OIreclors ', Gorrect graph but  Unfactual graph Conflict graph but ~ Missing graph but
wrong answer wrong answer wrong answer wrong r
Graph [name="wiki-knowledge-graph"]{
=1 James Cameron was |  [James Cameron was |  [James Gameron was|  [James Cameron was
2 lborn in August bomin August | dbominAugust | AbominAugust
16, 1956 < X| i, 1050 - (2] T L7 o5 o L) ;= You are a great generator, ...
. " WLLM Output W LLMOutput | - WLLM Output| - + LLM Output \nGraph[name="..."] {..}\nQ: ...
“Avatar”, "Titanic" ™ - )y
. Baskalpal =0
triple_list = [ o o & o 7 —_
(“James Cameron® 10%) [relation="born in"], a b [ames . ]
director") [relation="job"], —
Wrong input but Correct input but Correct input but | Correct input but missing
wm?\g gpraph umalthm\pg[aph Unfactual graph | or redundant info. in graph 9/ ?\4 LLaMA2
WizardLM
You are a good graph generator, you need to understand the task _ i‘ Vicuna
1, definition, and generate a graph to answer the question. y]' J\, LoRA

Generation

Figure 2: The InstructGraph framework. 1) We first collect multiple graph tasks, and unify them into a code-like
format, along with task-specific textual data to form a graph instruction corpus. 2) Then, we perform graph
instruction tuning to improve the ability of an LLM to solve graph reasoning and generation tasks. 3) Finally, we
investigate multiple graph hallucination scenarios and optimize the LLM by preference alignment.

responses difficult to parse into actual graphs.
Inspired by current LLMs that can simultane-
ously understand and generate code, we introduce
a structured format verbalizing strategy to trans-
form the graph into a simple code-like format. For-
mally, given one task graph G; € D;, we denote
M (-) as the structured format verbalizer, and the
original graph can be mapped into a sequence as
Ci = M(G;). For the fundamental format, all
nodes (or entities) are listed as a sequence with
variable node_1list (orentity_list), while
all edges (or triples) are listed as a sequence with
variable edge_1list (or triple_list). For
graphs that contain side information, we can sim-
ulate the object-oriented language to express the
node (or entity) *. Thus, we can unify all graphs
into a unified format to align with textual data.

2.3 Graph Instruction Tuning

As shown in Figure 1, we first define four different
groups of graph-centric instruction tasks to bol-

“Take the graph in Figure 1 as an example, the review
text “The film is nice.” of the node “User1” can be expressed
by “Userl.review=The film is nice.”, where “.review” can be
replaced as the property name in the graph.

ster the ability of LLMs on the graph, including
graph structure modeling, graph language model-
ing, graph generation modeling, and graph thought
modeling. The first two groups are focused on
graph reasoning, the third group is typical graph
generation, and the last group aims at both graph
reasoning and generation 3. After graph input engi-
neering, we can directly reuse the standard causal
language modeling (CLM) objective to continually
tune the LLM on such groups. Formally, given one
task dataset D; = {(Z;, G;, Pi, Ai)}lj-vzjl, the LLM
can be optimized by maximum likelihood with:

Nj
L(Dj) == logmg(Vi = AilXi), (D)
=1

where my denotes the LLLM with trainable param-
eters 6, ); is the model output, X; and A; respec-
tively represent the input sequence and reference
label, which depends on the specific task definition.
Table 1 lists all groups of tasks and corresponding
clusters to show the task definition, model input,

>We only choose the first three groups of tasks for instruc-

tion tuning. The tasks from graph thought modeling are only
used for the evaluation.

13494



Task Groups Task Clusters Task Definition ‘ Task Input ‘ Task Output
Connection Detection,
Cycle Detection, The tasks in this group aim to make LLMs better
Graph . .
Hamilton Path, understand some basic graph structures. The
Structure o . . . . . X; = |Z;,Ci] Vi=A;
. Bipartite Matching, input only contains nodes, directed or un-directed
Modeling . .
Shortest Path, edges, and optional weights.
Degree Computing
Graph Caption The taslf aims to generate a caption passage P; X, = [Z,,C V= P,
Generation to describe the graph G;.
Graph Question The task aims to reason on the whole graph G; X, = [T,,Ci, P Vi = A,
Answering and find an entity as the final answer A; € &;. tT e T cTT
Graph Node The task aims to classify the target node into pre- S 4
Graph Classification defined classes based on G;. X = 1, G, Pi) Yi=Ai
Lang 5age Grapl} L.ink The task aims to predict the relation between two X, = [T,,Ci, P V= A
. Prediction given nodes based on G;.
Modeling : -
The task aims to detect whether the graph G; is
Graph Relevance
. relevant to the passage P;, we have X; = |Z;,Ci, Pi] Vi=A;
Inspection .
A; € {relevant, irrelevant}.
. The task aims to predict whether the target user
Graph COH:flboratlon prefers the target item based on the whole graph X; = |Z;,Ci, Pi] V= A;
Filtering
G;, the answer A; can be set as a score.
The task aims to given a passage P; that describes
Knowledge Graph a piece of factual or commonsense information, . D o
Grapl.l Generation the task aims to extract entities and relations from X = [, P} Vi=Ci
Generation
. P; to generate a graph G;.
Modeling -
Structure Graph The task aims to generate a graph to meet the X, = [T, P Y =cC
Generation structure information described in the passage P;. v e
. . The task aims to solve the general reasoning task
Arithmetic . . .
Graph Symbolic in three think steps: 1) first find the question
Thought ymbo’ subject, 2) then generate a thought graph G; to X, =17; Vi = [Ci, Aj
. Robotic .
Modeling Logic express the rationale and 3) finally output the result
& A; based on the graph.

Table 1: The overview of all groups of tasks.

and output. Therefore, we can obtain an instruction-
based graph LLM and named InstructGraph-INS.

2.4 Graph Preference Alignment

Recently, the NLP community has witnessed a
significant decrease in hallucination through pref-
erence optimization (Ouyang et al., 2022; Zhao
et al., 2023e; Rafailov et al., 2023; MacGlashan
et al., 2017). Following this, we propose graph
preference alignment to alleviate the hallucination
of LLMs on the graph. As depicted in Figure 2,
we intuitively design four typical hallucination cir-
cumstances for graph reasoning and generation and
perform negative sampling for each graph task.

Hallucinations in Graph Reasoning Typically,
the instruction-version LLM may be a strong in-
struction follower, yet, sometimes fall into hallu-
cinations because of the erroneous input or lack
of knowledge: 1) correct graph but wrong answer
means the LLM makes a wrong prediction even
though the input is legal, 2) unfactual graph but
wrong answer means the wrong answer caused by a

graph with unfaithful semantics to external knowl-
edge, 3) conflict graph but wrong answer means
there exists conflict information in the input graph,
and 4) missing graph but wrong answer means that
the input graph is missing some crucial information
related to the answer.

To simulate the first circumstance, we can ran-
domly choose a result from other examples to form
a negative output )V, . For the rest, we can ran-
domly replace, add, or remove some nodes (enti-
ties) or edges (triples) in the graph and construct a
new input with the original instruction and passage.
Therefore, the original answer can be viewed as the
negative )V, and the positive yj defined as “Sorry,
the input graph contains wrong information, so the
question is unanswerable directly.”.

Hallucination in Graph Generation Graph gen-
eration is harder than reasoning because the LLM
needs to output a complete and accurate code-like
format sequence. The following are three kinds of
wrong-generated graphs: unfactual graph, conflict
graph and missing graph. We can directly construct
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Clusters Tasks Metrics | GPT-3.5 GPT-4 | LLaMA2 Vicuna | InstructGraph-INS
Conn. Dect. ACC 81.45 80.47 54.01 54.85 83.54
Cycle Dect. ACC 59.02 61.44 50.79 52.88 91.10
Structure Hami. Path ACC 21.03 29.10 1.23 1.23 34.80
Bipt. Match ACC 50.23 66.11 0.00 0.00 76.36
Shrt. Path ACC 38.99 49.03 0.00 0.00 66.29
Degree Comp. ACC 41.18 70.59 18.13 19.57 65.65
Wikipedia BLEU 91.99 93.85 77.15 82.94 95.81
WebNLG BLEU 99.51 99.29 88.67 89.33 97.35
Caption GenWiki BLEU 98.60 98.65 79.72 87.67 97.71
EventNA BLEU 62.66 61.75 53.39 75.52 81.64
Xalign BLEU 86.77 88.59 84.05 86.05 93.08
PathQSP EM 52.54 68.64 42.70 31.90 86.40
Graph QA GrailQA EM 43.92 60.17 15.83 17.95 81.30
P WebQSP EM 53.73 61.57 40.07 26.42 73.30
WikiTQ EM 49.02 60.78 29.94 35.76 47.82
Cora EM 74.51 64.17 83.04 84.08 89.33
Citeseer EM 70.39 74.94 68.24 67.94 71.65
Node CLS Pubmed EM 74.63 77.16 79.78 80.18 81.09
Arxiv EM 70.59 74.51 45.50 57.75 81.50
Products EM 68.82 84.16 29.34 79.50 95.20
Wikidata Hits@1 43.73 62.94 10.75 10.38 96.52
Link Pred. FB15K-237 Hits@1 60.34 66.88 0.00 0.00 98.91
ConceptNet Hits@1 31.33 38.30 8.30 8.19 59.86
Relevance | Wikipedia ACC | 9440 100 | 6927 68.12 | 100
RecSys | Amazon Hits@1 | 27.09 59.77 | 4440 16.40 | 78.80
Wikipedia Fl1 50.97 46.89 40.76 38.84 83.56
IE UIE F1 24.41 26.22 20.21 26.11 76.82
InstructKGC Fl1 21.44 21.86 19.26 16.6 38.98
Graph Gen. |  NLGraph F1 | 80.86 88.17 | 3.64 4221 | 91.05
Avg. \ 59.45 66.76 \ 41.65 46.06 \ 79.84

Table 2: Main results (%) over multiple graph instruction tuning tasks under zero-shot settings. The number

highlighted in bold denotes the best performance.

a wrong graph as the final output V;” by perform-
ing replace, add, and remove operators, which are
similar to the graph reasoning. The original graph
is denoted as positive yj . Additionally, in cases
where an incorrect answer is due to a faulty input,
we may substitute the original input with an unre-
lated one from the dataset that doesn’t affect the
answer graph. The original answer graph is then
considered as the negative output ;" .

We next use the DPO algorithm to reduce halluci-
nation. Specifically, given one instruction example
(X;,Y;") and a corresponding negative (X;, ), ),
we can define the preference model under the
Bradley-Terry (Bradley and Terry, 1952) as:

1
+ 1) =
p9(y1 >yl | l) 1+exp{7'(yi+,y;a‘)(i)}7
+
= g TR
r(Vi Vi, &) ﬁogﬂ'ref(y;r“)(i) @
mo (Y, | Xs)

+ Blog ——=——=,
Tref (Vi |45)

where (3 is the balance factor, py denotes the pref-

erence model, my and 7, respectively denotes the
policy and reference model, which can be initial-
ized from instruction-version LLM. Thus, we can
optimize the LLM by maximum likelihood with:

._7(767 ﬂ'ref) = _E(Xi,yiﬂy;)ND

o (V5| X:) mo(V |%) | 3)
Tres (V7| X0) T V7 1X0) ]

We denote the policy 7y as InstructGraph-PRE.

log o (B log — Blog

3 Experiments

In this section, we perform extensive experiments
to evaluate the effectiveness of InstructGraph over
graph tasks and general NLP tasks.

3.1 Implementation Settings

We construct about 1.6M examples for graph in-
struction tuning and 100K examples for graph pref-
erence alignment. In default, we choose LLaMA2-
7B-HF (Touvron et al., 2023b) from HuggingFace®

®https://huggingface.co/meta—1lama.
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Overall (7B-scale, 0-shot)

NER (7B-scale, 0-shot)

RE (7B-scale, 0-shot)

100 [ LLaMA2 B InstructGraph 100 100 [ LLaMA2 B InstructGraph
Vicuna 80 80 Vicuna
~ 80 — —
S & o0 & o0
z a0 z o -0 z o
20 201 =3 LLaMAZ I InstructGraph 20
Vicuna
o Wikidata UIE NLGraph 0 Wikidata NLGraph 0 Wikidata UIE NLGraph
100 Overall (7B-scale, 2-shot) 100 NER (7B-scale, 2-shot) 100 RE (7B-scale, 2-shot)
[ LLaMA2  m InstructGraph
80 80 804 E# Vicuna
& 60 X 60 R 60
=« NEN z N z
20 50 LLaMA2 B InstructGraph 201 =3 LLaMA2 I InstructGraph 20
A Vicuna Vicuna
0 Wikidata NLGraph 0 Wikidata NLGraph 0 Wikidata UIE NLGraph
100 Overall ( = 7B-scale, 0-shot) 100 NER (= 7B-scale, 0-shot) 100 RE ( = 7B-scale, 0-shot)
[ GPT-3.5 M InstructGraph
80 80 80 = GPT-4
8 60 X 60 R 60
=« RE z 7 z
20 50 GPT-3.5 W InstructGraph 20 50 GPT-3.5 m InstructGraph 20
GPT-4 GPT-4
O,

Wikidata Wikidata

NLGraph

NLGraph Wikidata UIE NLGraph

Figure 3: Performance (%) comparison with LLaMA?2, Vicuna, GPT-3.5, and GPT-4 towards the overall graph,
named entity recognition (NER), and relation extraction (RE) on graph generation tasks.

as the backbone. The maximum length is set as
2048. The optimizer is AdamW. The learning rate
is set to be — 5 with a decay rate of 0.1 in the
graph instruction tuning stage and will be changed
to e — 7 in the graph preference alignment stage.
To accelerate the training’, we utilize FSDP (Zhao
et al., 2023d) with CPU Offloading (Tsog et al.,
2021), FlashAttention (Dao et al., 2022), and
BFloat16 techniques, and utilize LoRA (Hu et al.,
2022) to perform parameter-efficient learning with
rank = 32 and lora_a = 128.

3.2 Main Results on Graph Instruction Tasks

In this section, we exhaustively evaluate the
InstructGraph-INS on multiple graph reasoning
and generation tasks in zero-shot settings. We use
a code-like format to unify all graphs and construct
an instruction tuning test set. Data statistics are
shown in Table 8, and the details are shown in Ap-
pendix A.1. To make a comparison with a similar
scale LLM, we choose the widely-used LLaMA2-
7B and Vicuna-7B as the open-source baseline. In
pursuit of investigating the performance level of
InstructGraph in the era of AGI, we also choose
GPT-3.5 (turbo) (Ouyang et al., 2022) and GPT-

"The implementation is referred to https: //github.
com/facebookresearch/llama-recipes.

4 (OpenAl, 2023) as strong baselines

Table 2 showcases the main results of graph rea-
soning and generation, we thus draw the following
conclusions: 1) InstructGraph-INS achieves the
best overall results 79.84% and outperforms GPT-
4 by 13.08%. 2) Compared with the same scale
LLMs, our framework performs the best on all
graph tasks, which shows that further instruction
tuning over well-designed graph tasks can better
improve the reasoning and generation ability. 3)
For the tasks Degree Computing, WebNLG, Gen-
Wiki, WikiTQ, and Citseer, InstructGraph-INS un-
derperforms GPT-3.5 and GPT-4. Since the LLMs
with large-scale parameters have stored more simi-
lar knowledge. Despite this, InstructGraph-INS
still exhibits approximately 10% better perfor-
mance on other reasoning tasks.

3.3 Effectiveness of Graph Generation

Additionally, we also expect to delve into whether
InstructGraph-INS achieves the improvement on
graph generation tasks, We choose two external
manners to evaluate the results: 1) NER denotes
named entity recognition, and 2) RE denotes rela-
tion extraction. As shown in Figure 3, we visualize
the comparison performances on three graph gen-

Shttps://platform.openai.com/.
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Methods (7B) | Is Align | Structure Caption Graph QA  Nodel CLS IE | Avg
LLaMA2 X 38.64 57.96 70.70 74.68 37.40 | 55.88
Vicuna X 39.12 62.37 64.38 77.63 40.8 | 56.86
InstructGraph-INS X 50.32 81.15 77.85 83.16 69.14 | 72.32
InstructGraph-PRE v 57.80 87.44 84.44 88.98 91.44 | 82.02

Table 3: Main results (%) over multiple graph preference tasks under zero-shot settings.

Arithmetic Symbolic Robotic Logic

Methods (7B) GSMSK SVAMP AQuA | Letter Coin Termes Floortile | ProofWriter FOLIO

(4-shot)  (4-shot) (4-shot) | (4-shot) (4-shot) | (4-shot)  (4-shot) (4-shot) (4-shot)
LLaMA2 w/. CoT 11.89 23.30 18.60 0.00 0.00 0.00 0.00 30.64 32.40
Vicuna w/. CoT 14.33 24.19 17.80 1.50 0.00 0.00 0.00 28.77 33.15
InstructGraph-INS w/. CoT 17.52 28.80 22.33 8.70 6.20 30.00 50.00 55.80 41.68
LLaMA2 w/. GTM 14.38 23.10 20.13 2.00 0.00 0.00 0.00 33.19 34.80
Vicuna w/. GTM 15.10 24.84 19.60 1.50 0.00 0.00 0.00 31.50 36.19
InstructGraph-INS w/. GTM 19.46 27.10 23.80 7.40 9.40 30.00 50.00 52.77 43.06

Table 4: Results (%) on thought planning tasks in few-shot scenarios.

Baselines \ Graph QA Node CLS IE

InstructGraph-INS 72.21 83.75 66.45
w/. only GSM 71.89 83.04 63.77
w/. only GLM 69.32 78.40 66.13
w/. only GGM 72.09 83.66 39.10
w/. only GTM 69.30 81.90 66.33
InstructGraph-PRE 84.44 88.98 91.44
w/o. only unfactual 82.10 84.52 84.33
w/o. only conflict 83.70 85.17 81.11
w/o. only missing 79.35 83.55 78.40
w/o. ALL 77.85 83.16 69.14

Table 5: Average performance (%) of all tasks in each
cluster when comparing different ablation versions.
GSM, GLM, GGM, and GTM denote graph structure
modeling, graph language modeling, graph generation
modeling, and graph thought modeling, respectively.
w/o. ALL equals to InstructGraph-INS.

eration tasks, where Wikidata and UIE belong to
knowledge graph construction and NLGraph focus
on structure graph generation. We observe that: 1)
InstructGraph-INS can bring significant improve-
ment for LLaMA?2 and Vicuna, indicating the graph
generation ability encompasses NER and RE. 2)
We also integrate all baselines with the 2-shot ex-
emplars, the results illustrate that the performance
of InstructGraph-INS is consistently the highest.
3) RE is more challenging to NER because it in-
volves understanding the semantics of generated
nodes (entities) and making decisions on their re-
lation or weight. Despite this, the improvement of
RE is larger than NER, which signifies that graph-
specific optimization can better empower the LLM
in constructing triples.

34

We next explore whether InstructGraph can reduce
the graph hallucination problem. We sample a few
tasks from the corresponding cluster to build a hal-
lucination testing set, including structure, caption,
graph question answering, and node classification.
The data statistics are shown in Table 8, and the
details are shown in Appendix A.2. Specifically,
each example consists of a correct answer and a
wrong answer, we calculate the LLM’s perplex-
ity (PPL) on these answers and choose the option
with the lowest PPL score as the preference results.
Therefore, the accuracy metric can reflect the per-
formance of hallucination mitigation.

As shown in Table 3, we choose LLaMA?2, Vi-
cuna, and two variants of InstructGraph to make
a comparison. InstructGraph-INS outperforms
LLaMA?2 and Vicuna by 16.44% and 15.46%, re-
spectively, demonstrating that our framework with
only graph instruction tuning can solve the pref-
erence tasks better. This indicates that injecting
task-related knowledge into the LLM’s intrinsic pa-
rameter can be one of the significant factors for hal-
lucination reduction. Furthermore, InstructGraph-
PRE significantly enhances the instruction version
model by about 10%, demonstrating that well-
designed preference optimization can hit the upper
boundary and endow the LLM with the ability to
alleviate the pitfalls of hallucination.

Main Results on Graph Preference Tasks

3.5 Effectiveness of Thought Planning

Recall the graph instruction tuning, we are eager
for the LLLM to solve the thought planning tasks,

13498



. HaluEval Anthropic-HH
Methods Is Align Dialogue General QA  Abstract | Harmless Helpful TruthfulQA | Ave.
GPT-3.5 v 72.40 79.44  62.59  58.53 - - 47.50 -
GPT-4 v - - - - - 59.80 -
LLaMA2-7B X 43.99 2046  49.60  49.55 54.28 60.49 33.29 44.52
Vicuna-7B X 46.35 1948 6034  45.62 55.70 58.71 30.10 45.19
InstructGraph-INS X 44.88 21.35 5290 51.10 56.33 59.10 35.35 45.86
InstructGraph-PRE v 47.03 21.61 52.88 51.39 58.40 60.12 35.77 46.74

Table 6: Main results (%) over multiple general NLP preference tasks under zero-shot settings.

including arithmetic, symbolic, robotic, and logic.
We design two few-shot scenarios: 1) Chain-of-
Thought (CoT) directly sampling few-shot exem-
plars with manually annotated sequence rationales
to form a prompt. 2) Graph Thought Modeling
(GTM) decomposes the sequence rationale into
three stages, i.e., finding topic entities or keywords,
building a graph to express the thought, and out-
putting the final answer. The comparison results
are depicted in Table 4, and we can observe that
InstructGraph-INS achieves the best performance
when elicited by CoT and GTM prompts. In addi-
tion, GTM sometimes performs below expectations
in the tasks of SVAMP, Letter, and ProofWriter. We
believe that these tasks are difficult to express using
an explicit graph to convey the thinking process.

3.6 Ablation Study

In this section, we focus on the ablation study to
show how much each component contributes to
performance. We choose three clusters for the test,
i.e., Graph QA, Node CLS, and IE. As shown in
Table 5, the results illustrate that the performance
drops when removing one of these components.
For the instruction tuning testing, we can observe
that graph language modeling plays a significant
role in Graph QA and Node CLS clusters, while
graph generation modeling is beneficial to the per-
formance of IE. For the preference testing, we can
see that the performance of w/o. missing graph
drops significantly, indicating that the major factor
of hallucination is the lack of key information in
the input graph or generated graph.

4 Further Analysis

4.1 Effectiveness on General Preference Tasks

We also delve into whether the preference optimiza-
tion on the graph data hinders the effectiveness in
the general domains. To reach this goal, we choose
three external preference and hallucination tasks. 1)

BBH MMLU
e (3-shot)  (5-shot)
GPT-35 - 70.00
GPT-4 ) 86.40
MPT-7B 3100 26.80
Falcon-7B 2800 2620
LLaMA-7B 3030 35.10
LLaMA2-7B 3058 4565
Vicuna-7B 31.54 5034
InstructGraph-INS 33.06 51.62

Table 7: Results (%) over multiple general NLP tasks
under few-shot in-context learning settings.

HaluEval (Li et al., 2023a) ? focuses on hallucina-
tion evaluation in dialogue, general understanding,
question answering, and text summarization (ab-
stract). 2) TruthfulQA (Lin et al., 2022) ' aims to
test the factuality of LLMs on knowledge-intensive
tasks. We choose MCI1 as the test. 3) Anthropic-
HH (Bai et al., 2022) ! has released the evalua-
tion set for both harmless and helpful perspective.
For these tasks, we do not perform task-specific
fine-tuning to show the zero-shot performance. Re-
sults in Table 6 showcase that our framework occa-
sionally outperforms the sample scale baselines on
some tasks, which meets our desiderata.

4.2 Performance on General NLP Tasks

We next evaluate the performance of Instruct-
Graph on the general NLP tasks. We choose
Big-Bench-Hard (BBH) (Suzgun et al., 2023)
and Massive Multitask Language Understanding
(MMLU) (Hendrycks et al., 2021) benchmarks
with few-shot exemplars to perform reasoning. As
shown in Table 7, even though these tasks do not
belong to graph domains, we can still obtain com-
petitive results compared with other same-scale
open-source LLMs.

‘https://github.com/RUCAIBox/HaluEval.
Yhttps://github.com/sylinrl/TruthfulQA.
"https://github.com/anthropics/hh-rlhf.
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5 Related Work
5.1 LLMs for Graph Learning

A series of works have studied how to leverage
LLM:s to solve graph-centric tasks (Jin et al., 2023),
which can be decomposed into the following cate-
gories: 1) Prompt engineering. A series of works
aims to design the interface to elicit the LLM to
better understand and reason on the graph (Ye et al.,
2023; Han et al., 2023; Zhang et al., 2023b; Zhang,
2023; Kim et al., 2023; Wang et al., 2023b; Luo
et al., 2023; Wang et al., 2023a; Guo et al., 2023;
Zhao et al., 2023b). 2) Boosting LLMs with train-
able GNNs. This kind of method focuses on en-
hancing the LLMs with trainable GNNs which can
capture the arbitrary scale of the graph (Zhang et al.,
2022; Chai et al., 2023; Tang et al., 2023; Zhao
et al., 2023a; Tian et al., 2023; Qin et al., 2023). 3)
Instruction tuning over graph data. Similar to ours,
Xu et al. (2023); Jiang et al. (2023); Fang et al.
(2023); Zeng et al. (2023) directly collect some
graph or symbol data to form an instruction corpus,
and then continually pre-train the LLM. Different
from them, our InstructGraph further empowers the
LLM by graph instruction tuning with the code-like
universal format and well-designed hallucination
alleviation strategy by preference alignment.

5.2 Hallucination in LLMs

LLMs usually generate seemingly plausible an-
swers, which is called hallucination (Ji et al., 2023;
Zhang et al., 2023a). The phenomenon of hallucina-
tion encompasses fabricating erroneous user input,
unfaithful for previously generated context, and un-
factual for external knowledge and commonsense.
To estimate hallucination, Kryscinski et al. (2020);
Li et al. (2023a); Tam et al. (2023); Min et al.
(2023) leverage external tools or neural networks
(e.g., BERT-NLI, GPT-4) to score the faithful-
ness and factuality of the model output. Recently,
many works focus on suppressing this problem
by retrieval-augmented generation (RAG) (Lewis
et al., 2020), contrastive learning (Sun et al., 2023),
contradictory evaluation (Miindler et al., 2023), and
decoding strategies (Lee et al., 2022; Shi et al.,
2023; Li et al., 2023b). Different from them, we
aim to solve the hallucination problem on graph
tasks with preference alignment.

5.3 Parameter-Efficient Learning Study

To accelerate the training speed and reduce mem-
ory usage under the limitation of sources, we lever-
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Figure 4: Results (%) of balance between trainable
parameters and performances over graph tasks.

age parameter-efficient learning (PEL) techniques
to equip the original LLM with only a few train-
able parameters. To study the choice of differ-
ent PEL methods, we compare LoRA with other
PEL methods, such as Prefix-tuning (Li and Liang,
2021) '2, and Adapter (Houlsby et al., 2019). For
each method, we choose six different scales and
perform graph instruction tuning over 10% training
data. The balance between trainable parameters
and averaged results is visualized in Figure 4. We
can see that LoRA can achieve the best perfor-
mance and is similar to full fine-tuning regardless
of the scale of trainable parameters.

6 Conclusion

This paper proposes a novel InstructGraph frame-
work that empowers the LLM with the capacity
to solve graph reasoning and generation tasks. To
bridge the gap between graph data and textual lan-
guage models, we introduce a structured format
verbalizer to transform each graph into a code-like
format and continually tune the LLM based on
the instruction dataset, which is collected from 29
graph tasks. In addition, we also introduce a graph
preference alignment stage to further mitigate the
hallucination problem when reasoning on or gen-
erating a graph. Extensive experiments illustrate
that InstructGraph substantially achieves the best
performance. In our future work, we will further
improve the performance on graph-centric and gen-
eral NLP tasks and scale it to other LLMs.

2prefix-Embedd: only tune the input embeddings layer;
Prefix-Layer: tune each transformer layer.
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Limitations

Our work is based on continual optimization for
large language models and achieves outstanding
performance across several benchmarks. However,
it still carries the following limitations: (1) Due
to resource limitations, we only conduct full ex-
periments and analysis on a 7B scale. For 13B
scales, we use 10% of the original training set for
the model training. We plan to perform full param-
eter optimization on other backbones beyond 13B
in the future. (2) The proposed structured format
verbalizer aims to create a code sequence that de-
scribes a graph, but the input length may be limited
when dealing with complex graphs or in a few-shot
in-context learning setting.

Social Impact and Ethics

In terms of social impact, the graph data we uti-
lize are all from publicly available data sources.
Infusing this graph information into the model’s
reasoning process will not introduce additional bias.
However, the open-source backbones we used may
have some negative impacts, such as gender and
social bias. Our work would unavoidably suffer
from these issues. We suggest that users should
carefully address potential risks when the proposed
method is deployed online.
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A Details of the InstructGraph Corpus

In this section, we provide some details of the
corpus construction including both instruction and
preference perspective.
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Instruction Dataset Preference Dataset

Clusters Tasks Source Sampling #Train #Test  #Train #Test
Conn. Dect. (Wang et al., 2023a) Up 3,737 237 2,227 463
Cycle Dect. (Wang et al., 2023a) Up 2,877 191 863 191
Structure Hami. Path (Wang et al., 2023a) Up 1,315 55 - -
Bipt. Match (Wang et al., 2023a) Up 1,755 71 - -
Shrt. Path (Wang et al., 2023a) Up 1,580 64 948 128
Degree Comp. (Wang et al., 2023a) Up 2,435 230 1,429 445
Wikipedia (Wang et al., 2022) Down 516,585 1,979 15,208 4,785
Caption WebNLG (Gardent et al., 2017) 100% 12,237 2,000 6,040 2,616
GenWiki (Jin et al., 2020) 100% 99,997 1,000 - -
EventNA (Colas et al., 2021) 100% 58,733 1,952 - -
Xalign (Abhishek et al., 2022) 100% 30,000 470 - -
PathQSP (Zhou et al., 2018) Down 30,530 1,000 27477 3,000
GrailQA (Gu et al., 2021) Down 13,797 1,421 - -
Graph QA \eposp (Berant et al., 2013) Down 13,152 1,465 - -
WikiTQ (Pasupat and Liang, 2015) Down 2,780 688 - -
Cora (McCallum et al., 2000) Down 548 961 166 965
Citeseer (Giles et al., 1998) Down 943 995 284 990
Node CLS Pubmed (Sen et al., 2008) Down 9,736 1,756 2,988 1,789
Arxiv (Hu et al., 2020) Down 9,710 400 2,705 325
Products (Hu et al., 2020) Down 19,975 1,688 5,995 1,719
Wikidata (Wang et al., 2022) Down 49,320 3,190 - -
Link Pred. FB15K-237 (Bollacker et al., 2008) Down 2,988 92 - -
ConceptNet (Speer et al., 2017) Down 21,240 598 - -
Relevance Wikipedia (Wang et al., 2022) Down 39,672 1,991 - -
RecSys Amazon (He and McAuley, 2016) Down 2,424 250 - -
Wikipedia (Wang et al., 2022) Down 73,101 1,814 19,490 1,589
1IE UIE (Wang et al., 2023c) 100% 285,877 3,000 - -
InstructKGC (Gui et al., 2023) Down 31,605 994 - -
Graph Gen. NLGraph (Wang et al., 2023a) Down 3,056 407 - -
The total number of the corpus 1,341,885 30,959 85,820 19,005

Table 8: The data statistics of each graph task for graph instruction tuning and preference alignment.

A.1 Instruction Tuning Dataset

To merge all graph-oriented reasoning and gener-
ation tasks, we collect and construct 29 tasks to
form instruction data. We do not construct training
sets for graph thought modeling.

Graph Structure Modeling Graph structure
modeling aims to urge the LLM to understand the
structure of a graph along with the correspond-
ing task-specific instruction. To reach this aim,
we collect structure dataset NLGraph (Wang et al.,
2023a). The original dataset consists of 8 different
tasks, such as Connectivity Detection, Cycle Detec-
tion, Topological Sorting, Shortest Path Comput-
ing, Maximum Flow Computing, Bipartite Graph
Matching, Hamilton Path Detection and GNN Em-
bedding. Yet, the authors Wang et al. (2023a) men-
tioned that the current LLMs are hard to perform
on more complex graph reasoning, such as Topo-
logical Sorting, Maximum Flow Computing, and

GNN Embedding, so we remove them. In addition,
we also random sample some graphs of NLGraph,
and construct a Degree Computing task.

* Connectivity Detection: detect whether there
exists a path between two nodes in the graph.
This task is a binary classification and the
answer should be "The answer is yes’ or *The
answer is no’.

* Cycle Detection: determine if there is a cycle
in this graph. This task is a binary classifica-
tion and the answer should be *Yes’ or No’.

* Topological Sorting: determine if there is a
path that visits every node exactly once in this
graph. This task is a binary classification and
the answer should be *Yes’ or "No’.

* Bipartite Graph Matching: detect whether
there exists an edge between two given nodes
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Task Name | Hallucination Type Positive Answer Negative Answer
Correct graph but wrong answer <The original answer> <Randomly sampled from other examples>
Sorry, the graph contains some wrong knowledge in the follow:
Unfactual graph but wrong answer | <list all unfactual triples>. So the question is unanswerable, <The original answer>
Conn. Dect. you had better provide a correct graph.
Cycle Detect. Sorry, the graph contains some conflict edges in the follow:
Shrt. Path Conflict graph but wrong answer <list all conflict triples>. So the question is unanswerable, <The original answer>

Degree Comp.

you had better provide a correct graph.

Missing graph but wrong answer

Sorry, the graph does not exist node node name.
So the question is unanswerable, you had better provide a
correct graph.

<The original answer>

Correct graph but wrong answer

<The original answer>

<Randomly sampled from other examples>

Unfactual graph but wrong answer

Sorry, the graph contains some wrong knowledge in the follow:

<list all unfactual triples>. based on the corrected graph,
the answer can be <The original answer>.

<The original answer>

Caption Sorry, the graph contains some conflict edges in the follow:
Conflict graph but wrong answer <list all conflict triples>. So the question is unanswerable, <The original answer>
you had better provide a correct graph.
Correct graph but wrong answer <The original answer> <Randomly sampled from other examples>
Sorry, the graph contains some wrong knowledge in the follow:
Unfactual graph but wrong answer | <list all unfactual triples>. based on the corrected graph, <The original answer>
the answer can be <The original answer>.
Graph QA Sorry, the graph contains some conflict edges in the follow:
Conflict graph but wrong answer <list all conflict triples>. So the question is unanswerable, <The original answer>
you had better provide a correct graph.
Based on the world knowledge, the correct answer to the
Missing graph but wrong answer question is <The original answer>, but the answer does not <The original answer>
exist in the graph.
Node CLS Correct graph but wrong answer <The original answer> <Randomly sampled from other examples>
Wrong input but wrong graph <The original graph> <Randomly sampled from other examples>
Correct input but unfaithful graph | <The original graph> <Randomly edit entities in the original graph>
1IE Correct input but unfactual graph | <Randomly edit edges in the original graph> <The original graph>

Correct input but missing or
redundant information in graph

<Randomly remove or add edges in the original graph>

<The original graph>

Table 9: The positive and negative answer of each example for preference alignment.

in a bipartite graph. This task is a binary clas-
sification and the answer should be ’Yes’ or
’No’.

 Shortest Path Computing: find the shortest
path between two nodes in the graph, and cal-
culate the sum of the weights in the shortest
path. The answer is a sequence of the path
with a value.

* Graph Degree Computing: calculate the de-
gree of the target node in the graph. The an-
swer is an integer value.

representing factual and commonsense knowl-
edge. We directly choose the datasets from
WebNLG (Gardent et al., 2017), GenWiki (Jin
et al., 2020), EventNarrative (Colas et al.,
2021), XAlign (Abhishek et al., 2022). In ad-
dition, we also follow (Wang et al., 2022) to
collect the Wikipedia corpus and correspond-
ing wikidata knowledge graph to build the
caption task. Specifically, we use the AC au-
tomatic machine algorithm to recognize all
entities in the passage and construct a 2-hop
sub-graph based on the topic entity.

Graph question answering: find an entity
and a reasoning path in the graph to answer

Graph Language Modeling Graph language
modeling aims to teach the LLM to understand
both the structure and semantics knowledge of the
graph and answer the question. We decompose this
group into 6 kinds of tasks, including graph cap-
tion generation, graph question answering, graph
node classification, graph link prediction, graph
relevance inspection, and graph collaboration fil-

tering.

the question.

We directly collect the cor-

pus from PathQuestions (Zhou et al., 2018),
GrailQA (Gu et al., 2021), WebQuestions (Be-
rant et al., 2013), WikiTableQuestions (Pasu-
pat and Liang, 2015). Especially, the Wik-
iTableQuestions is a table understanding task
that answers a question based on the table.

To make our framework support this kind

» Graph caption generation: generate an ency-
clopedia passage when given a knowledge
graph with all entities and structure triples
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* Graph node classification: classify the tar-
get node based on the corresponding graph.
We directly choose from Cora (McCallum
et al., 2000), Citeseer (Giles et al., 1998),
Pubmed (Sen et al., 2008), OGBN-ArXiv, and
OGBN-Products (Hu et al., 2020). Because
the graph in these tasks is too big, we only
sample a 2-hop sub-graph of centering each
target node. We also perform down-sampling
for each task.

Graph link prediction: classify the edge (rela-
tion) between two given nodes (entities) based
on the graph. We choose three main knowl-
edge graph, such as Wikidata (Wang et al.,
2021), Freebase (Bollacker et al., 2008), Con-
ceptNet (Speer et al., 2017). Specifically, we
random sample a subset of triples, and then
extract and merge two 2-hop sub-graphs that
center with two entities, respectively.

Graph relevance inspection: inspect whether
the caption is relevant to the graph. The task
is a binary classification with two categories,
i.e., "relevant”" and "irrelevant". We directly
use the same corpus from wikipedia (Wang
et al., 2022) in graph caption generation task.
For the negative sampling of each graph, we
directly choose other captions.

Graph Collaboration Filtering: predict the
score that the user node prefers to the target
item node based on the collaboration graph.
We choose the widely used Amazon (He and
McAuley, 2016) as the corpus. Because the
Amazon dataset does not provide any graph
data, we thus perform a preprocessing stage
to construct a collaboration graph. Specifi-
cally, we calculate the Jaccard similarity be-
tween each pair of users based on their prefer-
ence items and then recall the top-10 similarity
users for each user to form a graph. Hence,
we can inject this graph into the LLM to let
it know how to recommend some items based
on all potential users.

Graph Generation Modeling This group aims
to guide the LLLM to generate a graph in a code-
like format. We consider two challenging graph
generation domains, including, knowledge graph
generation and structure graph generation.

* Knowledge graph generation: similar to in-
formation extraction which aims to extract

Methods | PathQSP  WebNLG CoRA UIE
GPTA4

Template 58.20 96.13 58.58 0.00
Code Format 68.64 99.29 64.17 26.22
LLaMA?2

Template 20.36 59.15 27.44 0.00
Code Format 42.70 88.67 83.04 20.21

Table 10: Results (%) comparison with different prompt
engineering during the inference.

entities and relations when given one passage.
We directly choose the corpus from unified
information extraction (UIE) (Wang et al.,
2023c; Gui et al., 2023), which consists of 21
used named entity recognition (NER) tasks,
10 used relation extraction (RE), and 4 used
event extraction (EE).

Structure graph generation: generate a
structure graph based on the description.
For example, when given a graph descrip-
tion is “Please generate a full-connection
un-directed graph with four nodes rang-
ing from O to 3., the expected code-
like format graph is “Graph[name="structure-
graph’]node_list=[0, 1, 2, 3]; edge_list=[(0
<>1),0<>2),0<>3),(1<>2),((1<>
3), (2 <> 3)];”. We can directly reuse the
corpus from NLGraph (Wang et al., 2023a)
and sample a subset to build this task.

A.2 Preference Alignment Dataset

We have selected a partial dataset from the graph
instruction tuning dataset for preference alignment.
This dataset includes Connection Detection, Cy-
cle Detection, Shortest Path Computing, Degree
Computing, Graph Caption with Wikipedia and
WebNLG, Graph QA with PathQSP, Node CLS
with Cora, Citeseer, Pubmed, Arxiv, and Products,
and IE with Wikipedia.

For each task, we design positive and negative
answers to support preference alignment. Details
are shown in Table 9.

B Further Analysis
B.1 Effectiveness of Code Format Graph

In this part, we evaluate the use of the structured
format verbalizer when aligning the graph struc-
ture to the textual LLM. We choose four classic
graph reasoning and generation tasks, i.e., PathQSP,
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Instruction (Graph Caption)

LLaMAZ2 Output

| InstructGraph Output

Reference

You are a good graph reasoner. Give you a graph language that
describes a graph structure and node information. You need
to understand the graph and the task definition and answer the
question. \n“‘\nGraph[name="wikipedia-knowledge-graph’]
\n entity_list = [’clown beetle’, "euspilotus cribrum’, *america’,
“the family’, “species’, "histeridae’];\n triple_list = [("euspilotus
cribrum’ -> ’species’)[relation="taxon rank’], ("the family’ ->
*america’)[relation="country’]];\n\n*‘\n Task definition: given
a knowledge graph with all entities and structure triples repre-
senting factual and commonsense knowledge. Please leverage
this graph to generate an encyclopedia passage. Note that do not
list all knowledge in a running account.\n Q: Please generate an
encyclopedia passage for the knowledge graph.\n A:

The relation between Euspi-
lotus cribrum and species
is ’taxon rank’, and the
family country is America.
[Human Evaluation]: This
answer directly states each
fact triple from the given
graph separately. It is ac-
curate but not natural and
satisfied as a whole.

Euspilotus cribrum is a
species of clown beetle in
the family Histeridae which
is found in North Amer-
ica. [Human Evaluation]:
This answer naturally de-
scribes the factual knowl-
edge. Overall, it is very simi-
lar to an encyclopedia docu-
ment and makes the reading
experience better.

Euspilotus cribrum is a
species of clown beetle in
the family Histeridae. It is
found in North America.

Instruction (Graph Generation)

LLaMAZ2 Output

InstructGraph Output

Reference

You are a good graph generator. You need to understand the
task definition and generate a graph language to answer the
question. \n Task definition: given a passage, extract some cor-
responding structure factual triples from the passage to form a
knowledge graph, and generate a graph language to describe
the graph. Note that: 1) the graph is a directed graph and the
name is "knowledge-graph’. 2) The entities must be mentioned
in the passage. 3) The candidate relation type must be one of
"publication date’, *country of origin’, *publisher’, ’performer’.
4) The generated graph language should be a code-like structure,
and the skeleton format can be expressed as the following:\n
““\n Graph[name="knowledge-graph’] {\n entity_list = [’xxx’,
-+« T;\n triple_list = [Cxxx” -> "xxx")[relation="xxx"], - - - |;\n
}\n““\n Passage: ""Bluesman’ is the 12th original album of Tak
Matsumoto, the guitarist of the Japanese music group B’z. It
was released by VERMILLION RECORDS on September 2,
2020.".\n Q: Given you a passage, please generate a correspond-
ing knowledge graph.\n A:

Graph[name="knowledge-

Graph[name:ﬁnowledge—

Graph[name:knowledge—

graph’]  {\n entity_list | graphj {\n entity_list = | graph] {\n entity_list
= ['Bluesman’, Tak | [Bluesman; Tak Matsumoto; | = [Country of origing
Matsumoto’, 'B’Z’];\n Bz VERMILLION | Performers publication dates
trip{e_list = [('Bluesman’ RECORDS;  September Bluesman;  publisherf;\n
-> "Tak Matsumoto) [re- 1 . . triple_list = [(Bluesman=>
lation="performer’],  \n | 2. 2020]:\n triple_list = | * e L

(Bluesman’ -> ’B’z’) | [(Bluesman=> September 2, Japan) [relation=Country (,)f
[relation="performer’], \n | 2020f [relation=publication :)'/rlliglgl]\}l’lLLIOlleluesman»
(Tak Matsumoto’ -> B’z | date], (Bluesman=> RECORDS) [re-
[relation="performer’],\n Tak ~ Matsumoto)  [re- lation=publisher]

("Tak Matsumoto’ -> VER- | lation=performer], Jon=p e

MILLION RECORDS’) | (Bluesmans> (Bluesman=> September 2,
[relation="publisher’]];} VERMILLIQN ZOZQ) [re]athﬂ:Publlcatlon
[Human Evaluation]: This | RECORDS) [re- | date], (Bluesman=>

answer sometimes contains
wrong triples or missing
some entities.

lation=publisher],
(Bluesman+> japanj ,[relaf
tion=Country of origin]];\n}

Tak Matsumg)toj
tion=performer]];\n}

[rela-

[Human Evaluation]: This
answer looks satisfying.

Table 11: Human evaluation for the generation of LLaMA?2 and InstructGraph.

WebNLG, CoRA, and UIE. To compare with the
structured format verbalizer, we directly choose the
heuristic template introduced by InstructGLM (Ye
et al., 2023) to describe each path in the graph. For
example, the path “(e1, r1, e32), (e2, 12, €3)” can
be formulated as “ey is connected with eg within
tow hops through e, and featured relations r; and
ro”. We use this template to prompt GPT-4 and
LLaMA?2 to show the performance. The results
in Table 10 demonstrate that our structured format
verbalizer outperforms traditional templates in all
tasks. Especially, the LLM with traditional tem-
plates cannot support graph generation, while the
structured format verbalizer can reach this goal.

B.2 Effectiveness of Different Backbones

To investigate whether the proposed InstructGraph
can consistently improve the graph reasoning and
generation ability with different LLMs, we se-
lect LLaMA2-7B, LLaMA2-13B, Vicuna-7B, and
Vicuna-13B as the start checkpoints. To make
the experiment efficient, we randomly choose 10%
training data to perform graph instruction tuning
and make a comparison with the corresponding
vanilla LLMs. Results in Figure 5 show that In-
structGraph can consistently achieve substantial
improvement for arbitrary backbones and scales.
Additionally, we observe that Vicuna has better
performance than LLaMA?2 initially. However,
after graph instruction tuning, this trend is re-
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versed. Upon further analysis, we find that both
LLaMA?2 and Vicuna were re-optimized based on
LLaMA (Touvron et al., 2023a). Vicuna’s optimiza-
tion involves using supervised fine-tuning (SFT)
to inject domain knowledge with massive conver-
sation data into LLaMA. Meanwhile, LLaMA2
focuses on refactoring the model architecture and
pre-training strategy to improve the model’s ver-
satility. Thus, Vicuna may have a better ability
to understand instructions than LLaMA?2. Despite
this, LLaMAZ2 can be the better starting checkpoint
for boosting LLLMs on graph reasoning and genera-
tion tasks with parameter updates.

B.3 Human Evaluation

We end this section with a case study to demon-
strate the performance of LLMs when solving
graph reasoning and generation tasks. We choose
LLaMAZ2 (7B) to make a comparison and respec-
tively choose one example from graph caption gen-
eration and knowledge graph generation. For the
answer, we perform a human evaluation to esti-
mate the effectiveness of InstructGraph. As shown
in Table 11, InstructGraph can outperform all the
baselines. Specifically, compared with LLaMA?2,
InstructGraph can generate more natural and read-
able captions to describe factual information. For
the graph generation, InstructGraph can provide
accurate entities and triples.
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