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Abstract

This paper explores to construct a general text
evaluator based on open-source Large Lan-
guage Models (LLMs), a domain predomi-
nantly occupied by commercial counterparts
such as GPT-4. Recognizing the limitations
of open-source models like Llama in evalua-
tive tasks, we introduce InstructEval, a general
multi-aspect text evaluator developed through
instruction tuning of open-source LLMs. To
overcome the shortage of annotated resources
for multi-aspect evaluations, InstructEval com-
bines extensive open Human Preference Mod-
eling (HPM) datasets with a small set of multi-
aspect annotated data. This approach not only
enhances effectiveness in overall evaluation
tasks but also exhibits improved performance
in multi-aspect evaluation tasks. As demon-
strated by our extensive experiments, InstructE-
val achieves comparable or superior perfor-
mance to commercial LLMs like ChatGPT or
GPT-4 in terms of both overall and multi-aspect
evaluation.

1 Introduction

Recent advancements in LLMs, exemplified by
renowned models like ChatGPT, have showcased
their impressive zero-shot capabilities in a genera-
tive manner, empowering them to effectively han-
dle a wide range of arbitrary human instructions
(Brown et al., 2020; Wei et al., 2022). Nonethe-
less, assessing the text quality presents a significant
challenge due to the complexity of tasks and the
necessity for multi-aspect evaluation (Ethayarajh
and Jurafsky, 2021; Chang et al., 2023).

In recent research, leveraging the generalization
capabilities of Large Language Models (LLMs) as
evaluators for text generation tasks has gained pop-
ularity. For example, a popular method involves
using pairwise comparisons, with models like GPT-
4 serving as benchmarks for identifying superior
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##Instruction:
Are there precious gemstones on the moon, given its different
geological history?

xt

##Aspect Overall:
Evaluate the overall quality of
the ##Model Output.You
should consider factors such
as the helpfulness,
relevance, accuracy, depth,
creativity, and level of detail
of their responses.

a

##Model Output:
I imagine there's some, but not many.  Most diamonds form
through tectonic activity generating huge pressure and heat, but
the moon lacks tectonic activity. Meteorite strikes can also
generate diamonds. Popigai crater has a lot of diamonds say.
Ruby formation is linked to mountain formation.
##Score Output:

y

##Aspect Relevance:
The output should directly
address the topic or question
raised in the instruction or
input . Irrelevant output can
distract from the conversation
and are generally not
considered high-quality.

🤖
0.3

Figure 1: A sample of InstructEval evaluating a piece
of text y from task xt based on a specific aspect (left) or
an overall aspect (right).

samples (Zheng et al., 2023). However, the use of
commercial LLMs, such as GPT-4, poses limita-
tions due to their high cost and potentially slow and
inconsistent response times, which impede their
practical application in large-scale evaluations. In
contrast, while open-source LLMs present a more
accessible and efficient alternative, they tend to be
less effective as evaluators, especially for multi-
aspect evaluation. For instance, in Table 3, we
observed that without further training, Llama (Tou-
vron et al., 2023) based GPTScore fails in effec-
tively assessing dialog-level data.

In this paper, we aim at investigating the con-
struction of a general multi-aspect text evaluator
based on open-source LLMs. Constructing such
an evaluator is challenging mainly due to the fol-
lowing two reasons: (1) Limited resources: Train-
ing a text evaluator is hindered by the scarcity of
annotated samples. (2) Complexity of evaluation
instructions: An effective text evaluator is required
to comprehend intricate task instructions and as-
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sess text samples across multiple aspects. To ad-
dress these challenges, we propose to fine-tune
LLMs using publicly available Human Preference
Modeling (HPM) datasets. These datasets are de-
signed to capture human preferences regarding re-
sponses to various questions and instructions. De-
spite their human-assessed nature, HPM datasets
represent valuable labeled resources, offering a di-
verse and rich set of instructions, as outlined in
Table 1. These diverse and rich instructions em-
power language models not only to evaluate the
overall quality of the target task but also to extend
their capability for assessing various aspects and
instructions in a zero-shot manner (Chung et al.,
2022; Longpre et al., 2023).

To put this insight into practice, we propose
InstructEval, a multi-aspect text evaluator that
leverages instruction tuning on human preference
datasets. Initially, we establish a standardized
prompt format, termed “eval-instruct”, designed
to unify Human Preference Modeling (HPM) data
from diverse sources. This format is composed of
three integral parts: the task definition, the aspect
definition, and the target sample. Such a struc-
ture allows for the clear delineation and decom-
position of both explicit and implicit evaluation
criteria within the HPM data. Subsequently, we en-
gage in the fine-tuning of LLMs using the entirety
of available open-source HPM data structured in
the eval-instruct format. This process substantially
enhances the LLMs’ capabilities in assessing tex-
tual quality comprehensively. To further refine the
LLMs’ proficiency in complex multi-aspect evalua-
tions, we construct a small set of multi-aspect eval-
instruct for augmentation. This set is generated
through a methodical process of random sampling,
combining various task instructions and aspect def-
initions, and employing GPT-4 for the creation of
specific assessment preferences. Through joint fine-
tuning of LLMs using both the publicly available
HPM data and our constructed multi-aspect labeled
data, InstructEval not only demonstrates improved
efficacy in evaluating the overall quality of text
samples but also exhibits enhanced performance in
multi-aspect evaluation tasks.

Extensive experimentation in both overall help-
fulness and multi-aspect evaluation demonstrate
that our proposed method, InstructEval, achieves
comparable or even superior performance to Chat-
GPT or GPT-4, despite fine-tuning with only 7B
or 13B parameters of Llama. Furthermore, we con-

duct a thorough analysis to examine the contribu-
tions of each resource in enhancing the evaluation
capabilities of InstructEval. This analysis allows us
to gain valuable insights into the specific benefits
provided by each resource. Our contributions can
be summarized into three folds:

• We propose a novel instruction-tuning method
to make full use of human preference model-
ing datasets in text evaluation. The model and
dataset will be released to the community.

• A general and multi-aspect text evaluator In-
structEval is implemented and achieves com-
parable or superior performance to commer-
cial LLMs like ChatGPT or GPT-4.

• Our experiments reveal the relations between
overall human preference and multi-aspect
evaluations. Additionally, we provide a thor-
ough analysis on how current available HPM
resources benefit text evaluation.

2 Preliminaries and Related Works

Our work is closely related to the three domains
discussed below, and there are subtle connections
among these three domains as well.

Instruction tuning Instruction tuning is a tech-
nique employed to assist LLM in better compre-
hend and respond to a wide range of diverse in-
structions provided by humans (Brown et al., 2020).
Formally, with each task t ∈ T written in explicit
instruction (may also include a task input), instruc-
tion tuning trains a model by maximizing:

E
t∼T ,y∼t

[p(y|t)] , (1)

where y is either written by human, such as Flan
(Longpre et al., 2023), Supernatrual (Wang et al.,
2022), etc., or generated by other LLMs, such as
Alpaca (Taori et al., 2023).

Human Preference Modeling (HPM) HPM, of-
ten referred to as Reward Modeling (RM) in the lit-
erature on Reinforced Learning from Human Feed-
back (RLHF), leverages human preference samples
to train an evaluation model (Christiano et al., 2017;
Stiennon et al., 2020). The main goal of HPM is to
ensure that the evaluation model aligns with human
judgment and accurately assesses the quality or
performance of given samples. HPM is usually per-
formed in a pairwise manner: given a pair of output
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samples (yw,yl), where yw is the sample human
preferred over yl, HPM trains the evaluation model
by maximizing:

E
t∼T ,(yw,yl)∼t

[p(yw ≻ yl|t)] , (2)

where p(yw ≻ yl|t) denote the probability of eval-
uation model select yw over yl. Current HPM in
text usually involves finetuning multiple domains
and instructions (Ouyang et al., 2022).

Text Evaluation Models Previous text evalu-
ation mainly focus on assessing a single task
(Kryscinski et al., 2020) or a set of tasks in gener-
ation (Zhang et al., 2020; Wu et al., 2023). Bene-
fiting from the powerful generalization ability of
LLMs, current text evaluation models have the ca-
pacity to assess any given task. An evaluation
model M should evaluate the quality of sample
y based on task requirement t and the required
evaluation aspect ai by outputting a score sta =
M(y|t, ai). Recent works focus on how to prompt-
ing general LLMs for text evaluation. GPTScore
(Fu et al., 2023) and G-EVAL (Liu et al., 2023)
study how to better use GPTs for multi-aspect text
evaluation. Zheng et al. (2023) investigate the pos-
sibility of using GPT-4 as a replacement for human
experts as evaluators and discovered its positional
biases.

3 InstructEval

In our proposed InstructEval, our target is to con-
struct a LLM with the ability to evaluate not only
from overall quality but also based on specific as-
pects defined. LLMs should provide objective eval-
uations even in situation where a particular task
and aspect that never appeared in training set.

To achieve this objective, our initial step pro-
poses a standardized prompt format called "eval-
instruct", which explicitly defines evaluation task
and aspects. Subsequently, we finetune a base LLM
using HPM samples to equip the LLM with the ca-
pability to evaluate the overall aspect of the given
task. In order to further augment the LLM’s ca-
pacity for specific aspect assessments, we create
an additional set of samples evaluated in diverse
aspects. These additional samples are then added
to our training set, contributing to the training of
our final InstructEval. Intuitively, the design of an
InstructEval can be deconstructed into three funda-
mental components: input format, scoring format
and instruction tuning. In the subsequent section,
we will provide a detailed introduction to each part.

3.1 Input Format: Eval-Instruct

Previous approaches have employed either point-
wise evaluation prompts, which involves a single
target sample y in its input, or pairwise evalua-
tion prompts, which involves a pair of target sam-
ples. In InstructEval, we choose to employ a point-
wise prompt instead of a pairwise prompt, and this
choice is motivated by the following reasons: 1.
Flexibility in inference: Many application and eval-
uation scenarios require list-wise ranking, which
can be computationally expensive with pairwise es-
timation due to the O(n2) number of comparisons
involved. 2. Memory cost in training: When using
pairwise comparisons, including an additional vari-
able y in the prompts significantly increases their
length. This can present memory challenges during
the fine-tuning LLMs. For point-wise prompt, it is
essential to include three essential components:

1. Instruction xt: This defines the requirement
of task t in text.

2. Evaluation aspect a: This defines and explains
the required evaluation aspect in textual form.

3. Target sample y : This represents the textual
output that needs to be evaluated.

Based on the above three components, we propose
a standard point-wise input format, called "eval-
instruct", for our instruction tuning. This format
composes the required components by concatenat-
ing them as follows:

eta = xt ⊕ a⊕ y. (3)

In this format, the requirements for evaluation,
xt and a, are both defined in natural language.
The concatenations ⊕ are performed using a spe-
cific template. As illustrated in Figure 1, the eval-
instruct includes special tokens: "##Instruction"
placed before xt to indicate the start of the in-
struction. "##Aspect {aspect name}:{aspect def-
inition}" is used to format a and its definition.
"##Model Output" and "##Score Output" respec-
tively indicate start of y and score output.

3.2 Scoring Format

Given an eval-instruct as input, the evaluation
model first generates its last hidden state h ∈ Rn.
We employ and compare two different methods of
scoring based on h, namely regression score and
expected Likert score.
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Regression Score applies a newly initialized lin-
ear head W ∈ Rn on the top of pre-trained LLM
and output the final logits score by s = W Th,
This scoring format has been widely used in the
reward models of recent works in RLHF (Ouyang
et al., 2022; Touvron et al., 2023). However, this
format shifts the model from generating tokens to
classifying representations, which introduce incon-
sistencies between the pre-training and finetuning.

Expected Likert Score (ELS) Instead introduc-
ing new parameters, ELS generates number tokens
(0-9) from the word list. To ensure efficient gradi-
ent back-propagation during training, we use the
expected score of generating numbers:

sta =
∑

w∈Vn

w ∗ p(w|eta)/
∑

w∈Vn

p(w|eta), (4)

where Vn = {0, . . . , 9} is the list of number tokens
in the word list, p(w|eta) denotes the likelihood
of generating token w. The denominator of this
equation normalizes the probability distribution
over w ∼ Vn. The benefit of using ELS is that
it maintains the same generation paradigm as in the
pre-training phase. However, it is also important
to consider that ELS constrains the score within
the range of [0, 9]. This limitation may restrict the
expressive range of the scores, potentially limiting
the evaluator’s ability to provide nuanced assess-
ments. We further compare with these two scoring
formats through experiments.

3.3 Instruction Tuning With Aspects

We now delve into explaining the training process
of the evaluator. Following HPM, given a pair
of eval-instruct (ewta, e

l
ta) for task t, where ewta is

preferred by human than elta under the aspect a,
we first calculate their evaluated score by model as
(swta, s

l
ta) and train the model by:

L = −
∑

t∼T ,a∈A
log σ(swta − slta), (5)

where T and A are the set of ranking tasks and
aspects, σ is the sigmoid function.

The remaining challenge lies in collecting a suffi-
cient number of eval-instructs that are evaluated un-
der diverse aspects. We apply two types of data to
reach this goal: HPM datasets and our constructed
Multi-aspect eval-instruct data.

HPM Data with Overall Aspect Reported in
first block in Table 1, publicly available HPM
datasets offer a substantial number of samples on
overall aspects evaluation. As a result, fine-tuning
with these datasets leads to an evaluation model that
closely aligns with human preferences, enabling
comprehensive evaluations of the samples. In prac-
tice, as illustrated on the right side of Figure 1, we
set the aspect name of these samples to "Overall"
and provide a comprehensive aspect definition.

Multi-aspect Eval-instruct Construction We
construct an addition multi-aspect eval-instruct to
ensure the ability of multi-aspect evaluation. Al-
though the possibilities for task instructions are
infinite, commonly used evaluation aspects are
often limited and shared across different tasks.
For instance, summary evaluation commonly in-
volves 4 aspects (Fabbri et al., 2021; Zhang et al.,
2019), while dialogue evaluation employs 7 as-
pects (Mehri and Eskenazi, 2020), with coherence,
consistency, and relevance being shared aspects
between them.

Leveraging this characteristic, we first list out
a full aspect list involving all the commonly used
evaluation aspects and their corresponding defini-
tions. For convenience and flexibility, we prompt
ChatGPT to generate this full aspect list, as it
has demonstrated great proficiency in generating a
wide array of aspects and their definitions. Next,
for a given HPM dataset (first block of Table 1)
with a task type t, we carefully select a candidate
aspect set At from the previously generated full
aspect list. This selection process ensures that
the chosen aspects are relevant and appropriate for
evaluating the task t defined in the dataset. Subse-
quently, we randomly sample several data points
from task t and assign them with an aspect ran-
domly selected from the aspect set At. In the final
step, we utilize GPT-4 (OpenAI, 2023) to relabel
these samples with various assigned aspect.

We select 500 samples from each dataset, exclud-
ing Harmful-HH, and filter out some samples to
ensure label balance. Additionally, we incorporate
human-annotated, multi-aspect data from OpenAI-
Sum, referred to as “OpenAI-Sum aspect”. The
detailed statistics of this multi-aspect eval-instruct
data are presented in the second block of Table 1.
We combine these data with HPM dataset, reformu-
lating them into eval-instruct format for fine-tuning.
For further details on this process, please refer to
Appendix 7.1.
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Datasets Labeler Task Types Aspect Comparisons

SHP Human Dialogue Overall Helpfulness 348,718
WebGPT Human QA Overall helpfulness 19,578
OpenAI-Sum Human Summary Overall quality of summary 92,858
Helpful-HH Human Dialogue Overall Helpfulness 118,266
Harmful-HH Human Dialogue Overall Saftyness 42,538
Instruct-GPTJ Human QA Overall helpfulness 33,143

Openai-Sum aspect Human Summary Specific Aspects 68,469
Multi-aspect instruction GPT-4 Mixture above Specific Aspects 3,500

Table 1: Public HPM datasets and multi-aspect labeled dataset used to train InstructEval.

4 Training and Experiment Setup

4.1 Training Settings

Training Datasets The overall statistics of pre-
processed training datasets are listed in Table 1.
The open-sourced HPM datasets are Stanford Hu-
man Preference (SHP), WebGPT, OpenAI-Sum,
Helpful-HH and Harmful-HH, Instruct-GPTJ, and
an additional Openai-Sum aspect. More details of
our training data is provided in Appendix 7.2.

Model Settings We select Llama v2, current
state-of-the-art open-source pretrained language
model, as the base model for fine-tuning. Two
versions of the model are trained, one with 7 B
parameters and a larger variant with 13 B parame-
ters. Detailed hyperparameters for finetuning are
provided in Appendix 7.3.

4.2 Experiment Settings

We conducted validation experiments on two main
categories of evaluation tasks. Notice: We have con-
ducted a careful examination to ensure that there
are no instances of overlapping samples between
our training data and the testing benchmark.1

Multi-aspect evaluation This evaluation cate-
gory focuses on assessing generated samples from
various specific aspects. Each task within this cat-
egory typically focuses on a single type of evalua-
tion. For this evaluation, we selected three tasks:
SummEval (Fabbri et al., 2021) for text summariza-
tion, FED (Mehri and Eskenazi, 2020) for dialog-
level and turn-level dialogue evaluation, we denote
them as FED-D and FED-T, respectively. These
tasks require ranking multiple samples based on
their evaluation scores and measure the correlation

1For instance, the articles in OpenAI-Sum aspect are
sourced from Reddit posts, whereas the articles in SumEval
are derived from CNN/DM news sources.

between these scores and human judgments using
metrics like Spearman, Pearson, and Kendall.

Overall aspect evaluation This evaluation cate-
gory involves assessing the overall quality of gen-
erated samples for arbitrary instructions. We chose
MT-benchmark (Zheng et al., 2023) for validation,
which includes up to 7 types of instructions and
model-generated samples, covering areas such as
writing, mathematical reasoning, and code gener-
ation. In this benchmark, pairs of samples with
human expert preferences are provided, and the
evaluation model is tasked with determining which
sample is better from the aspect of overall help-
fulness. Accuracy is used as the metric to judge
the agreement between model judgments and the
majority of human expert votes. MT-benchmark
includes two stages of evaluation: Stage-1, which
consists of a one-turn dialogue, and Stage-2, which
involves a second-turn dialogue for evaluation.

Baselines For the detailed introduction to the
baseline methods, please refer to Appendix 7.4

5 Results

5.1 Multi-aspect Evaluation

Overall Performance From results from Table 2,
3, and 4, it is clear that InstructEval, with both 7B
and 13B parameters, exhibits competitive perfor-
mance and often surpasses other commercial LLMs
(GPTs) across a range of datasets on average. In the
case of SummEval, the best-performing InstructE-
val surpasses ChaGPT-based G-EVAL by 14% and
12% in terms of Spearman and Kendall correlations,
respectively. It also performs on par with GPT-4
based G-EVAL-4. On FED-D and FED-T, the best
InstructEval outperforms the highest-performing
GPTScore by 2.7% and 2.8%, respectively. Increas-
ing the model’s parameter size from 7B to 13B
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Model
Coherence Consistency Relevance Fluency AVG

ρ τ ρ τ ρ τ ρ τ ρ τ

ROUGE-1 0.167 0.126 0.160 0.130 0.115 0.094 0.326 0.252 0.192 0.150
ROUGE-2 0.184 0.139 0.187 0.155 0.159 0.128 0.290 0.219 0.205 0.161
ROUGE-L 0.128 0.099 0.115 0.092 0.105 0.084 0.311 0.237 0.165 0.128

UniEval 0.575 0.442 0.446 0.371 0.449 0.371 0.426 0.325 0.474 0.377
BARTScore 0.448 0.342 0.382 0.315 0.356 0.292 0.356 0.273 0.385 0.305

G-EVAL† 0.440 0.335 0.386 0.318 0.385 0.293 0.385 0.293 0.399 0.310
G-EVAL-4† 0.582 0.457 0.507 0.425 0.547 0.433 0.455 0.378 0.523 0.423
GPTScore(davinci-003) 0.434 – 0.449 – 0.403 – 0.381 – 0.417 –

GPTScore (Llama 7B) 0.287 0.222 0.464 0.385 0.269 0.209 0.361 0.295 0.320 0.277
GPTScore (Llama-Chat, 7B) 0.303 0.234 0.473 0.392 0.298 0.222 0.371 0.303 0.361 0.288
Llama-Chat-ELS (7B) 0.182 0.137 0.261 0.215 0.138 0.105 0.301 0.254 0.220 0.178
InstructEval-ELS(7B) 0.639 0.507 0.527 0.441 0.427 0.326 0.302 0.247 0.474 0.380

w/o aspect 0.487 0.380 0.420 0.349 0.579 0.465 0.335 0.276 0.455 0.368
InstructEval-reg(7B) 0.572 0.452 0.506 0.422 0.519 0.412 0.386 0.318 0.496 0.401

w/o aspect 0.492 0.382 0.440 0.366 0.543 0.430 0.352 0.289 0.457 0.367
InstructEval-reg(13B) 0.626 0.498 0.531 0.444 0.557 0.442 0.384 0.319 0.525 0.426

w/o aspect 0.505 0.397 0.445 0.369 0.577 0.457 0.360 0.298 0.472 0.380

Table 2: Sample-level Spearman (ρ) Kendall (τ ) correlations with human ratings on SummEval. Best results in
each column are denoted in Bold. "-reg" and "-ELS" indicate using regression score and expected Likert score
separately.† denotes results reported in the original paper. We highlight the columns of zero-shot aspects in gray.

yields a significant improvement in average perfor-
mance. Specifically, there is a 1.9% and 2.5% in-
crease in Spearman and Kendall on the SummEval,
and a 2.5% and 1.7% increase in Spearman on the
FED-D and FED-T respectively.

Regression Score vs Expected Likert Score De-
spite the continued training with the pretrained
language model head, the expected Likert score
(InstructEval-ELS) consistently exhibits inferior
performance compared to the regression score
(InstructEval-reg). We believe the reason behind
this is that the limitations imposed by restricting the
output spaces outweigh the benefits gained from
reusing the language model head.

Finetuning with Overall vs Multi-aspects It is
interesting to observe that w/o aspects (InstructE-
vals only trained with HPM data ) are able to gen-
eralize to specific aspect definitions. Additionally,
we discovered w/o aspects perform well on some
aspects that correlates with informativeness. For
instance, the performance of InstructEval-reg (13B,
w/o aspects) on the relevance of the summary sur-
passes that of GPT-4. However, it is important
to note that the improvements achieved in multi-
aspect evaluation are limited. By incorporating

annotated multi-aspect data, InstructEval improves
by 5.3%, 1.6%, 2.6% in terms of Spearman on
SummEval, FED-D and FED-T, respectively.

Zero-shot Ability on Aspects and Tasks In our
research, while certain tasks and aspects, such as
coherence and relevance in summarization, are di-
rectly annotated in the training set (e.g., OpenAI-
sum aspect), most task and aspect combinations in
the benchmarks are predicted in a near zero-shot
manner. Specifically, for the finetuned aspects in
SummEval, we noted average improvements of
4.1% and 6.2% in Spearman scores for the 7B and
13B versions of InstructEval-reg, respectively. It’s
important to note that while training samples from
Helpful-HH also involve dialogue, their task for-
mats differ from our evaluation methods in FED-D
and FED-T. As indicated in Table 3 and 4, the
annotated aspects show average improvements of
3.0% and 3.1% for the 13B model, respectively.
Improvements for zero-shot aspects were observed
at 0.1% and 2.2%, respectively. Overall, our find-
ings suggest that multi-aspect eval-instruct not only
significantly enhances directly annotated aspects
but also improves zero-shot capabilities for unseen
aspect definitions.
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Model COH ERR CON DIV DEP LIK UND FLE INF INQ AVG

GPTScore(davinci-001)† 0.569 0.457 0.329 0.628 0.669 0.634 0.524 0.515 0.602 0.503 0.543
GPTScore(davinci-003)† 0.134 0.094 0.181 -0.066 0.341 0.184 0.196 0.072 0.317 -0.101 0.135

GPTScore (Llama, 7B) 0.107 0.01 0.166 -0.215 -0.189 -0.051 0.130 -0.076 -0.084 0.077 -0.132
GPTScore (Llama-Chat, 7B) 0.146 0.035 0.152 -0.173 -0.112 0.035 0.187 -0.025 -0.005 0.157 0.031
Llama-Chat-ELS (7B) 0.301 0.117 0.114 0.161 0.210 0.121 0.198 0.257 0.223 0.200 0.190
InstructEval-ELS (7B) 0.613 0.485 0.419 0.439 0.490 0.579 0.504 0.607 0.504 0.465 0.511
InstructEval-reg (7B) 0.683 0.530 0.489 0.415 0.503 0.589 0.628 0.622 0.520 0.491 0.547

w/o aspect 0.649 0.514 0.465 0.446 0.485 0.585 0.577 0.611 0.480 0.475 0.529
InstructEval-reg (13B) 0.660 0.462 0.497 0.517 0.572 0.620 0.599 0.648 0.584 0.541 0.570

w/o aspect 0.643 0.501 0.470 0.472 0.552 0.634 0.563 0.618 0.535 0.555 0.554

Table 3: Spearman correlations with human ratings on dialog-level FED (FED-D). Best results in each column are
denoted in Bold. We highlight the column of zero-shot aspects in gray.

Model INT ENG SPE REL COR SEM UND FLU AVG

GPTScore(davinci-001)† 0.501 0.496 0.214 0.452 0.434 0.444 0.365 0.160 0.383
GPTScore(davinci-003)† 0.224 0.355 0.151 0.380 0.428 0.405 0.311 0.367 0.328

GPTScore (Llama 7B) 0.141 0.153 0.131 0.29 0.237 0.253 0.239 0.311 0.219
GPTScore (Llama-chat 7B) 0.132 0.151 0.079 0.276 0.227 0.251 0.233 0.257 0.201
Llama-Chat-ELS (7B) 0.266 0.157 0.180 0.097 0.091 0.125 0.057 0.123 0.137
InstructEval-ELS(7B) 0.325 0.329 0.326 0.474 0.449 0.405 0.399 0.202 0.363
InstructEval-reg(7B) 0.323 0.365 0.259 0.477 0.536 0.428 0.374 0.215 0.372

w/o aspect 0.339 0.388 0.268 0.451 0.512 0.451 0.370 0.167 0.368
InstructEval-reg(13B) 0.421 0.430 0.296 0.503 0.557 0.443 0.399 0.237 0.411

w/o aspect 0.384 0.427 0.317 0.477 0.521 0.381 0.379 0.193 0.385

Table 4: Spearman correlations with human ratings on turn-level FED (FED-T). Best results in each column are
denoted in Bold. We highlight the column of zero-shot aspects in gray.

5.2 Overall Aspect Evaluation

The main focus of this evaluation is the generaliza-
tion ability of diverse instructions, and we select
the strong ChatGPT as our primary baseline. To
utilize ChatGPT as an evaluator, we implement
four different approaches: 1. ChatGPT-point: This
approach applies a point-wise scoring method sim-
ilar to InstructEval. We ask ChatGPT to predict a
Likert score between 1 and 10. 2. Chat-pair: This
approach employs a pairwise comparison method.
We present ChatGPT with two options (sample
A and sample B) and ask it to choose the better
option. 3. ChatGPT-reverse: In this approach,
we reverse the order of the options presented in
Chat-pair. ChatGPT is asked to predict the pre-
ferred option between sample B and sample A. 4.
ChatGPT-jointly combines both ChatGPT-pair and
ChatGPT-reverse to eliminate position bias, similar
to the approach used by Zheng et al. (2023).

Based on the results presented in Table 5, it is

evident that InstructEval consistently demonstrates
its superiority over ChatGPT-point in all settings
using the same point-wise scoring approach. When
comparing with the pairwise methods, InstructEval
initially underperforms compared to ChatGPTs in
Stage-1 but surpasses them in Stage-2. Increasing
the parameter size only improves the performance
in Stage-2 while being detrimental to Stage-1. We
speculate that this is because the main training dia-
logue samples, Helpful-HH and Harmful-HH, pri-
marily consist of multi-turn dialogues. Increas-
ing the parameter size causes the model to focus
more on capturing multi-turn features while po-
tentially neglecting single-turn interactions. Af-
ter adding multi-aspect eval-instruct, we observe
that they are beneficial to the Stage 1 of overall
aspects. Additionally, by only using the best con-
tributing Helpful-HH dataset (according to Table
6), InstructEval-HH gains an further improvements
in Stage-1. This highlights the untapped potential
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Model
Stage-1 Stage-2

tie w/o tie tie w/o tie

ChatGPT-point 0.47 0.51 0.50 0.51
ChatGPT-pair 0.59 0.70 0.58 0.72
ChatGPT-pair(reverse) 0.59 0.71 0.59 0.72
ChatGPT-pair(joint) 0.55 0.59 0.56 0.61

GPTScore(Llama 7B) 0.40 0.50 0.33 0.41
GPTScore(Llama-chat 7B) 0.38 0.48 0.38 0.47
Llama-Chat-ELS (7B) 0.46 0.58 0.44 0.55
InstructEval (7B) 0.50 0.64 0.56 0.70

w/o aspect 0.51 0.65 0.55 0.69
InstructEval (13B) 0.44 0.52 0.59 0.74

w/o aspect 0.48 0.60 0.59 0.74
InstructEval-HH (7B) 0.58 0.73 0.57 0.71

Table 5: Agreement with human expert on MT-
benchmark. tie and w/o tie indicate whether using tie
labels. We apply regression score as our default settings.

Model Sum FED-T FED-D MT AVE

SHP -0.210 0.179 0.290 0.345 0.151
Helpful-HH 0.310 0.354 0.556 0.720 0.485
Harmful-HH -0.126 0.142 -0.230 0.311 0.024
Instruct-GPTJ 0.479 0.541 0.318 0.375 0.428
OpenAI-Sum 0.461 0.533 0.322 0.645 0.490
WebGPT 0.060 0.148 0.317 0.705 0.308

All 0.457 0.368 0.529 0.630 0.496
All+Sum-asp 0.514 0.328 0.516 0.685 0.511
All+ALL-asp 0.496 0.372 0.547 0.670 0.521

Table 6: Spearman of InstructEval independently fine-
tuned on various datasets.

in optimizing the data distribution of HPM, which
we will leave for future work.

5.3 Ablation Study on Training Data

To gain a comprehensive understanding of how dif-
ferent types of data impact the performance, we
conducted a comprehensive ablation study on the
composition of the training set. The first block
of Table 6 presents the independent performance
of training Llama using each HPM dataset indi-
vidually. In the second block, "ALL" represents
the utilization of a mixture of all the datasets in
the first block. "+Sum-asp" further incorporate
"OpenAI-sum asp" alongside the "ALL" dataset,
and "+ALL-asp" adds both "OpenAI-sum asp" and
our constructed "Multi-aspect eval-instruct". The
results of SumEval(Sum), FED-T, and FED-D are
average Spearman of different aspects. MT reports
the average performance of stage-1 and stage-2

without "tie" labels.

Ablation on HPM Data Results in Table 6 re-
veals significant variations across datasets in per-
formance, despite all samples being labeled under
the general aspect of "overall helpfulness." Merely
having a large amount of data, "SHP" for example,
does not guarantee superior performance. Surpris-
ingly, OpenAI-Sums, trained exclusively on sum-
marization data, exhibits strong performance across
multiple tasks, including summarization, turn-level
dialogue, and overall aspect evaluation. However,
its performance in dialog-level evaluation is com-
paratively weaker due to the absence of multi-turn
dialogue in training. On the other hand, training
with "All" datasets achieves a well-balanced per-
formance across all evaluation criteria, indicating
its effectiveness in handling diverse tasks. In real-
world scenarios, where testing samples often ex-
hibit greater diversity than the benchmarks, train-
ing with a comprehensive datasets encompassing
all relevant aspects is likely to lead to improved
performance and significance.

Multi-Aspect Data The incorporation of specific
aspect datasets consistently enhances performance
in both overall and specific aspects evaluation (sec-
ond block vs first block in Table 6 ). Notably, the in-
clusion of constructed "Multi-aspect instruct" data
demonstrates a stable improvement in all multi-
aspect evaluation ("+All-asp" vs "+Sum-asp").

6 Conclusion and Future Research

This paper has addressed the challenges of text eval-
uation with LLMs. The major insight of this study
lies in leveraging HPM resources for text evalu-
ation. By utilizing the abundant HPM datasets,
the study demonstrates the potential of fine-tuning
LLMs to evaluate specific aspects and overall qual-
ity in a zero-shot manner. Additionally, this pa-
per propose to use a multi-aspect instruct set con-
structed by GPT-4, to enhance the performance of
multi-aspect evaluation.

The insights gained from the analysis of resource
contributions in this paper can guide future research
in designing more effective evaluation methodolo-
gies. Understanding the specific benefits provided
by different resources can inform the selection and
utilization of appropriate datasets for evaluation
tasks.
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Limitations

The evaluation of LLMs heavily relies on the avail-
ability of labeled samples for fine-tuning. In this
study, we focus on leveraging human preference
modeling (HPM) resources for evaluation. How-
ever, the HPM datasets used may not cover the full
range of evaluation aspects required for compre-
hensive text evaluation. The reliance on specific
HPM datasets limits the generalizability of the pro-
posed approach to evaluate a broader range of tasks
and aspects. Future research should explore strate-
gies to incorporate more diverse and representative
labeled samples to enhance the evaluation capabili-
ties.
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7 Appendix

7.1 Multi-aspect Data Construction
Table 8 lists all the aspects and their definitions
along with their appeared datasets. These aspect

definitions were initially generated by ChatGPT, as
described in Table 7, and subsequently revised and
curated by human experts.

7.2 Training Data Details

The overall statistics of preprocessed training
datasets are listed in Table 1. The open-sourced
HPM datasets are Stanford Human Preference
(SHP)2, WebGPT3, OpenAI-Sum4, Helpful-HH
and Harmful-HH5, Instruct-GPTJ 6, and an addi-
tional Openai-Sum aspect. More details of our
training data is provided in Appendix 7.2.

For SHP, which additionally provide confidence
annotations, we apply a filtering criterion where
we exclude samples with confidence ratios smaller
than 5 to ensure data quality. For our constructed
Multi-aspect instruction samples, the instructions
are randomly selected from SHP, WebGPT and
Helpuful-HH and. For OpenAI-sum, since it pro-
vide additional labeled specific aspect preferences
as a validation split, we directly incorporate it
in training set. Overall, the training set contains
727,070 eval-instruct, 655,101 of them are over-
all aspect, only 3,500 of them are specific aspects
annotated by GPT-4.

7.3 Model Training Details

We fixed the hyper-parameters for all models with a
learning rate of 1e−5 with no weight decay and lin-
ear warmup for 3% of the total training steps. We
use a batch size of 256, and a maximum sequence
length of 1024 and truncate exceeded tokens. The
overall dataset is trained for only one epoch on 8
NVIDIA A800 gpus with 80GB of VRAM.

7.4 Baseline Methods

Our primary baselines consist of evaluation mod-
els built on large language models (LLMs), with
a particular focus on GPTs. For instance, GPT-
score (Fu et al., 2023) is used as a baseline for text
generation evaluations, while G-EVAL (Liu et al.,
2023) serves as a baseline for text summarization.
Also, we apply our base model, Llama, as baseline.

2https://huggingface.co/datasets/stanfordnlp/
SHP

3https://huggingface.co/datasets/openai/
webgpt_comparisons

4https://huggingface.co/datasets/openai/
summarize_from_feedback

5https://huggingface.co/datasets/Anthropic/
hh-rlhf

6https://huggingface.co/datasets/Dahoas/
synthetic-instruct-gptj-pairwise
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My Prompt: list some aspect when we need to evaluate the response to a post is good
enough.

ChatGPT Response: Evaluating the quality of a response to a post can be subjective, but here
are some generally accepted aspects to consider:
Relevance: The response should directly address the topic or question raised in the original
post. Irrelevant responses can distract from the conversation and are generally not considered
high-quality.
Accuracy: If the response includes factual information, it should be correct. Misinformation
can mislead readers and degrade the quality of the conversation.
Completeness: A good response should fully address the question or topic at hand. It’s not
necessary to write a book, but the response should be detailed enough to provide a satisfactory
answer or contribution.
Clarity: The response should be easy to understand. This involves good grammar, clear
sentence structure, and the appropriate use of terminology.
Respectfulness: Even in disagreements, a quality response will respect other participants in
the conversation. This means avoiding personal attacks, offensive language, and other types of
disrespectful behavior.
Substantiated Arguments: If the response is presenting an opinion or argument, it should
be backed by relevant evidence or reasoning. Unsupported claims can reduce the quality of a
response.
Originality: Responses that bring new ideas, perspectives, or information to the conversation
are often considered higher quality. This doesn’t mean every response needs to be groundbreak-
ing, but merely parroting what others have already said may not add much value.
Engagement: The response should invite further conversation. This could be through asking
follow-up questions, suggesting new lines of inquiry, or otherwise indicating a willingness to
continue the dialogue.
Timeliness: A response is more valuable if it’s given when the conversation is still active.
While some topics are evergreen, others may lose relevance over time.
Conciseness: While completeness is important, so is brevity. A good response communicates
its points efficiently without unnecessary filler.

Table 7: A example of using ChatGPT to list out evaluation asepcts and their definitions.

13472



Because Llama without instruction tuning cannot
follow instructions to evaluate, we adopt the scor-
ing approach of GPT-score, i.e. scoring the target
output by its perplexity. We also test Llama-Chat,
the version of Llama trained with RLHF, in both
GPTScore and ELS way of scoring.
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Aspect Datasets Definition

Relevance SHP, Helpful-HH,
Instruct-GPTJ, We-
bGPT

The output should directly address the topic or question raised in
the instruction or input. Irrelevant output can distract from the
conversation and are generally not considered high-quality.

Relevance OpenAI-Sum asp Consider whether all and only the important aspects are contained
in the summary.

Accuracy SHP,Helpful-HH,
Instruct-GPTJ, We-
bGPT

If the output includes factual information, it should be correct.
Misinformation can mislead readers and degrade the quality of the
conversation.

Consitentcy OpenAI-Sum asp Consider whether the summary does reproduce all facts accurately
and does not make up untrue information.

Coherence Helpful-HH,
OpenAI-SUM
asp

Does the answer demonstrate logical and smooth progression of
ideas? Are the statements and arguments connected in a cohesive
and meaningful way?

Completeness SHP,Helpful-HH,
Instruct-GPTJ, We-
bGPT

A good output should fully address the question or topic at hand.
It’s not necessary to write a book, but the output should be detailed
enough to provide a satisfactory answer or contribution.

Interesting Helpful-HH The ouput should be interesting enough for the reader to read.

Depth Helpful-HH,
Instruct-GPTJ,
WebGPT

Does the answer offer a thoughtful and insightful analysis of the
question or topic? Does it go beyond superficial or obvious infor-
mation to provide deeper understanding or valuable insights?

Clarity Instruct-GPTJ, We-
bGPT

Is the answer clear, understandable, and well-organized? Is it
presented in a coherent manner that is easy to follow?

Fluency Helpful-HH,
Instruct-GPTJ,
WebGPT

Fluency measures the quality of individual sentences, are they well-
written and grammatically correct.

Informative Helpful-HH Is the system informative throughout the conversation?

Understandable Helpful-HH The response should be easy to understand. This involves good
grammar, clear sentence structure, and the appropriate use of ter-
minology

Table 8: Aspects and their definitions used for constructing multi-aspect instruction data.
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