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Abstract

Despite the success of data augmentation in
improving Contrastive Language-Image Pre-
training (CLIP) model, existing methods that
utilize large language model (LLM) or Seg-
ment Anything Model (SAM) to enrich the in-
formation in captions still suffer from several
limitations, including insufficient detail and ex-
cessive hallucinations, ultimately resulting in
compromised alignment and masking the true
potential of dense information. This can lead to
erroneous conclusions about CLIP’s ability to
handle rich data, impeding the development of
more effective models. To address the limita-
tions of existing methods, we introduce a novel
pipeline that generates highly detailed, factu-
ally accurate captions for images, which facili-
tates in-depth analysis of the potential for dense
information in multimodal alignment. Contrary
to previous findings, our investigation revealed
that lengthening captions boosts performance
across diverse benchmarks, even surpassing
the effectiveness of meticulously crafted hard
negative samples. Building on these insights,
DELIP is introduced, demonstrably enhancing
both foundational multimodal alignment and
compositional reasoning abilities. Finally, we
explore strategies to expand the context window
of the text encoder, unlocking the potential of
richer data for CLIP and paving the way for
advancements in leveraging dense information
for multimodal alignment.

1 Introduction

CLIP (Radford et al., 2021) learns alignment be-
tween text and visual modalities through con-
trastive learning on a massive dataset of image-text
pairs. Its vision encoder has been widely applied to
various downstream tasks, such as image caption-
ing (Mokady et al., 2021; Cho et al., 2023; Hessel
et al., 2022), visual grounding (Xiao et al., 2024),
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and visual question answering (Eslami et al., 2021;
Song et al., 2022). However, recent studies (Zhao
et al., 2023b; Yuksekgonul et al., 2023a; Thrush
et al., 2022; Lewis et al., 2023) have shown that
CLIP’s compositional reasoning ability is weak due
to the use of noisy and simple text-image pair in the
pre-training stage. This may lead to hallucinations
when applying the vision encoder to downstream
multimodal large language models (MLLMs). Hal-
lucinations (Liu et al., 2024; Li et al., 2023c) refer
to the model generating descriptions that are incon-
sistent with the input image. Since the architecture
of MLLMs (Peng et al., 2023; Zhu et al., 2023;
Li et al., 2023a; Liu et al., 2023b), is generally vi-
sion encoder, alignment module and large language
model, if the representation obtained by the vision
encoder is inaccurate or misleading, this error will
be propagated.

Some studies have attempted to enhance the com-
positional reasoning ability of CLIP by improv-
ing the quality of captions (Doveh et al., 2023a),
or constructing negative examples (Yuksekgonul
et al., 2023b; Doveh et al., 2023a,b) related to
objects, relationships, and attributes. One repre-
sentative approach is Dense and Aligned Captions
(DAC) (Doveh et al., 2023a), which enhances both
the quality and density of captions and negative
examples. However, the captions obtained by this
method are shorter, lack details, and are more prone
to hallucinations. Specifically, when using LLMs
to enhance captions, they use the prompt "What can
I see in a scene of {caption}?" to generate richer
caption data. Obviously, this strategy of expanding
captions from simple scenes will lead to the gener-
ation of details that do not exist in the image, i.e.,
hallucinations. They also proposed a method using
Multiple Instance Learning (MIL) to alleviate this
problem. Moreover, they only consider enhancing
the density of text.

DCI (Urbanek et al., 2023) proposed a new
benchmark to test the fine-grained understanding
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Figure 1: Data generation pipeline. After obtaining a coarse-grained global description, we crop the image into four
parts to improve the relative resolution. We then request GPT-4V to generate descriptions for each part and fill the
detailed information into the coarse-grained global description. Finally, we rewrite the resulting description, which
contains rich details, to generate descriptions of different lengths and styles.

ability of the Vision Language Models (VLMs).
They manually constructed detailed captions of
each sub-crop of an image and the entire image,
and tested the accuracy of the model matching each
caption and subcrop. They also tested the neg-
atives discrimination task and found that simply
enhancing with hard negatives leads to a loss in the
subcrop-caption matching task, demonstrating the
limitations of previous work that enhanced perfor-
mance just through negative examples.

In this paper, we propose DELIP, Density
Enhanced Language Image Continual Pretraining,
to analyze the impact of dense information on mul-
timodal alignment. Specifically, we first propose a
Crop-then-Merge data generation pipeline to gen-
erate detailed descriptions with fewer hallucina-
tions, which is the basis for subsequent experi-
ments. Then, we enhance the density of text in-
formation and image information respectively to
study the impact on performance. We find that
without using any tricks, we can outperform those
methods that use hard negative examples on both
the subcrop-caption matching task and the nega-
tives discrimination task, which demonstrates the
great potential of dense information in multimodal
alignment. We then explore the strategy of expand-
ing context windows and find that it can further
improve the representation ability of the model.
We also obtain some conclusions that are opposite
to previous studies. Through analysis, we find that
this is because the dense captions used in previous
studies is either shorter or more hallucinatory. We
hope that our research can help to recognize the
potential of dense information and inspire future
work to scale it up to a larger scale, which we call
Information Density Scaling Law. Summarizing,

our key contributions are:
1.We propose a pipeline named Crop-then-

Merge for generating dense information alignment
data with minimal hallucinations..

2.We conduct a detailed analysis of the impact of
dense information on multimodal alignment from
multiple perspectives.

3.We propose a novel multimodal alignment
model, DELIP, which is based on our analysis of
the impact of dense information. DELIP achieves
state-of-the-art results on DCI, and also demon-
strates significant improvements on zero-shot clas-
sification, text-image retrieval tasks, and composi-
tional reasoning ability benchmarks.

2 Related Work

2.1 Multimodal Alignment

This paper delves into the alignment of text and
image modalities. Established approaches like
CLIP (Radford et al., 2021) and ALIGN (Jia et al.,
2021) utilize contrastive learning from scratch,
bringing together related image-text pairs in terms
of their global embeddings while pushing apart
unrelated ones. Filip (Yao et al., 2021) and
SPARC (Bica et al., 2024) refine this strategy by
performing contrastive learning at the token level,
enabling more granular alignment of representa-
tions. Flamingo (Alayrac et al., 2022) leverages
cross-attention to establish connections between
the modalities, followed by next-token prediction
training to achieve alignment. BLIP2 (Li et al.,
2023a) merges three distinct loss functions – image-
text matching, image-text contrastive learning, and
image-grounded text generation – for comprehen-
sive training.

Recently, numerous studies have employed align-
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ment modules like linear projection layer (Zhu
et al., 2023; Chen et al., 2023a), MLP (Liu et al.,
2023b,a) or Qformer (Li et al., 2023a; Dai et al.,
2023) to connect pre-trained vision encoders and
large language models. Fine-tuning with visual
instruction tuning data (Liu et al., 2023b; Zhao
et al., 2023a; Gong et al., 2023) allows these mul-
timodal large language model to process visual in-
puts. Notably, many utilize CLIP to generate visual
representations or combine them with other visual
models’ outputs. Given the extensive use of CLIP
in MLLMs and the prominent role of contrastive
learning in multimodal alignment, this paper inves-
tigates the influence of dense information on such
methods.

2.2 Density of Alignment Dataset
CLIP models are trained on a massive amount of
image-text pairs collected from the internet. How-
ever, some works (Thrush et al., 2022; Yuksek-
gonul et al., 2023a) have shown that such loose and
short text-image pairs contain a lot of noise, which
leads to poor compositional reasoning ability of the
model.

LaCLIP (Fan et al., 2023) improves the diversity
of text information by rewriting the style of the
original caption, but this may introduce additional
hallucinations. MLLM-augmented CLIP (Liu et al.,
2023c) uses multiple MLLMs to generate caption
data, which improves the diversity of expression
and reduces hallucinations, but still covers little vi-
sual information. DAC (Doveh et al., 2023a) uses
a two-stage approach to augment the data: first
using MLLM to generate the base caption, and
then using Segment Anything Model (SAM) (Kir-
illov et al., 2023) and LLM to augment the caption
respectively, to obtain dense data. However, this
approach introduces a lot of hallucinations, and
in order to mitigate the impact of hallucinations,
they propose to use the Multiple Instance Learn-
ing to mitigate this noise. FLIP (Li et al., 2023b)
borrows the idea of MAE (He et al., 2021), due to
the sparsity of image information, masks 75% of
the patches of the input image, and accelerates the
training process without sacrificing performance,
which inspires us to explore the impact of enhanc-
ing the information density of images. All of these
methods use text data lengths that are much less
than 77, and FLIP even sets the max token of the
text encoder to 32.

In this paper, we explore the impact of continual
training of CLIP models with dense text informa-

tion and image information. In terms of text infor-
mation, we analyze the impact of length, style, and
negative samples. In terms of image information,
we analyze the impact of the visual richness.

3 Approach

3.1 Dataset Generation Pipeline

We found that directly using MLLMs to generate
image descriptions will miss some details, and if
the model is forced to continue to output more
details, the model is prone to hallucination. We
think this is because of the resolution of the input
image to the MLLM, which is 224*224 or 336*336,
the model cannot see the specific details of the
image and can only guess based on the high-level
concept of the image.

We propose a Crop-then-Merge pipeline to gen-
erate detail-rich, low-hallucination data, as shown
in Figure 1. Specifically, first, we generate a gen-
eral but detail-poor description of the input image
at low resolution. Then, we divide the input im-
age into four parts and send each part to the GPT-
4V (OpenAI et al., 2024) to generate a description
of each sub-image, which gives each sub-image a
larger relative resolution and can capture richer and
more accurate details. Next, we use the sub-image
generated descriptions to enhance the general de-
scription, resulting in a description that contains
richer details.

Additionally, in order to study the impact of
training data with different styles, lengths, and neg-
ative samples on model performance, we perform
different degrees of summary on the obtained detail
enhanced global description to obtain long, mid-
dle, and short descriptions, and then rewrite the
descriptions to generate different styles. Finally,
multiple hard-negative samples are generated for
each description.

Different from the previous method of simply re-
placing objects, attributes, and relationships in the
description, we use LLM combined with carefully
designed prompts to generate each negative sample,
which is more natural and coherent, conforms to
normal world commonsense, and is more difficult
for the text encoder to discriminate.

3.2 Loss Function

We employed the InfoNCE (van den Oord et al.,
2019) loss function during our analysis of the influ-
ence of various factors on model performance. The
fundamental contrastive loss function used is given
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Dataset Mean Std
Laion Original Caption 11.39 11.64

General Description 180.91 46.77
Merged Description 579.63 67.08

Short Version Rewrite 97.09 26.21
Middle Version Rewrite 253.64 29.83

Table 1: Mean and Standard Deviation for Different
Datasets Lengths.

by:

L = − log

(
sim(Ii, Ti)

sim(Ii, Ti) +
∑N

j=1 sim(Ii, Tj)

)

where Ii denotes the ith image, Ti denotes the text
matching, Tj denotes all negative text samples,
sim(I, T ) denotes the similarity between image
I and text T .

Within each epoch of the final training phase, we
randomly select one positive sample from a pool
encompassing diverse lengths and styles, while in-
corporating all negative samples.

4 Experiment

4.1 Experimental Setup

In order to accommodate the amount of trainable
model parameters and training data, we adopted
different training configurations. In the process of
searching for training hyperparameters and select-
ing prompts, we utilized training and evaluation
sets of sizes 9500 and 500, respectively. The ex-
periments were conducted on 8 * V100 GPUs with
a per device batch size of 16, in order to keep a
consistence with DCI.

We first hand-wrote a set of prompts as the sam-
pling pool, and then used a progressive optimiza-
tion approach to find the optimal prompt for each
description generation stage. Our evaluation set
was the aggregation of data generated by these
prompts, while the training set was just the result of
a single prompt. Ultimately, we selected the hyper-
parameters and prompts with the lowest loss on the
sum eval dataset. In the first stage, we used GPT-
4V to generate descriptions for each sub-image. In
the second stage, we used GPT-4-32k to aggregate
the generated descriptions based on the global de-
scription. Since the third stage of data generation
was mainly text rewriting (length, style), we found
that GPT-turbo-3.5 could complete this task very

well. In order to save costs, we did not use the GPT-
4 interface. Since GPT-4 and GPT-3.5-turbo have
been used as the target of open source models for
a long time, and it is difficult to determine which
open source model is the best, we used the OpenAI
interface instead of deploying open source models
locally.

The training process employed 8 * A100 80G
servers, with a per-device batch size of 128. To mit-
igate catastrophic forgetting, two training method-
ologies were utilized: LoRA (Hu et al., 2021)
and fully fine-tuning. In the LoRA training, an
r value of 32, alpha of 32, and dropout rate of
0.1 were applied, specifically targeting the Q, K,
and V modules. The corresponding learning rate
was set to 5e-4. For full fine-tuning, a signifi-
cantly lower learning rate of 5e-6 was chosen. An
AdamW (Loshchilov and Hutter, 2019) optimizer
with a learning rate warm-up to 3e-4 and a linear
decay rate of 0.9 governed the optimization process.
Training continued for 10 epochs.

During our experiments, we observed that in
terms of speed, training conducted in a distributed
manner showed no significant increase in speed
when using LoRA compared to fully finetuning.
In terms of performance, although LoRA reduced
memory usage and allowed for an increased batch
size, the loss associated with LoRA was signif-
icantly higher than that of fully finetuning. As
a result, the test results on benchmarks were no-
tably lower for LoRA compared to fully finetuning.
Therefore, we ultimately chose to use fully finetun-
ing for subsequent experimental analysis.

4.2 Evaluation

4.2.1 DCI
DCI (Urbanek et al., 2023) contains precise and
reliable captions associated with specific parts of
an image, which averages more than 1000 words.
It evaluates the fine-grained understanding ability
of VLMs through the task of matching each cap-
tion with its corresponding subcrop. To facilitate
the evaluation of existing VLM models, they also
released a version of sDCI that summarizes these
detailed annotations to 77 tokens due to context
limit.

4.2.2 ARO & VL-CheckList
Multiple benchmarks (Thrush et al., 2022; Zhao
et al., 2023b; Yuksekgonul et al., 2023b) are pro-
posed to evaluate the compositional reasoning abil-
ity of VLMs. In our work, to ensure consistency
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All All Pick5 Base All
Model SCM Neg SCM Neg Neg Hard Neg

CLIP Baseline 40.12% 60.63% 11.28% 24.03% 67.66% 41.29%
NegCLIP 43.35% 56.00% 13.22% 4.82% 76.69% 50.84%

BLIP 39.13% 54.02% 10.73% 5.51% 63.41% 53.23%
Flava 38.08% 47.99% 8.01% 9.82% 11.6% 45.59%

X-VLM 38.45% 53.46% 10.96% 5.10% 44.29% 52.42%
DACLLM 37.48% 81.75% 8.27% 37.96% 90.54% 71.29%
DACSAM 37.90% 84.22% 6.78% 39.91% 89.68% 73.68%
DELIPpos 41.79% 63.54% 10.46% 19.97% 67.85% 59.23%

DELIPpos−mix 39.28% 61.75% 10.21% 18.52% 65.43% 55.88%
DELIPpos−inter 39.19% 60.39% 8.41% 21.81% 71.42% 57.13%

DELIPbert 39.81% 69.56% 11.49% 28.72% 79.46% 63.13%
DELIPbert−mix 39.60% 64.50% 11.96% 23.80% 79.46% 56.22%

DELIP10k 43.91% 64.98% 13.41% 22.44% 78.57% 54.17%
DELIPvision−rich 44.01% 64.72% 14.14% 22.13% 77.26% 54.73%

DELIPall 44.93% 65.71% 15.59% 23.96% 83.93% 55.88%
DELIPneg 44.17% 80.73% 14.98% 35.17% 89.77% 69.36%

Table 2: Test Results on the sDCI Dataset. Here, SCM refers to the subcrop-caption matching task, which measures
the model’s ability to understand images and text at a fine-grained level. Neg measures the model’s ability to
discriminate negatives, and pick 5 refers to using 5 negative examples. Our model significantly outperforms others
in the SCM task and exhibits superior performance in the Neg task without the need for hard negative samples.
Variants using a pretrained text encoder show considerable improvements in discriminating negative examples.

with previous research, we adopted the widely
used ARO (Yuksekgonul et al., 2023b) and VL-
CheckList (Zhao et al., 2023b). These benchmarks
specifically target the assessment of models’ com-
positional reasoning ability of objects, relation-
ships, attributes and order information.

4.2.3 CLIP-Benchmark

Prior work predominantly focused on improving
the compositional reasoning ability of models
and solely reported results on related benchmarks.
However, we discovered that these methods can
potentially affect the foundational multimodal ca-
pabilities of the model. To address this, we eval-
uate the model’s basic multimodal abilities using
the CLIP-Benchmark. Specifically, text-image re-
trieval is employed to assess the model’s cross-
modal alignment capacity, while zero-shot image
classification serves to evaluate its generalization
and semantic comprehension abilities.

Given the widespread application of CLIP’s vi-
sion encoder directly in MLLMs or in conjunction
with DINO (Caron et al., 2021; Oquab et al., 2024)
to provide hybrid representations (Lin et al., 2023;
Jiang et al., 2024), independent evaluation of the
vision encoder’s visual representation capability is
of paramount importance. In image-text retrieval

and zero-shot retrieval, performance is influenced
by both the vision encoder and the text encoder,
making it challenging to attribute performance im-
provements solely to the vision encoder. In Sec-
tion 4.5, we compare the results of training both
the vision and text encoders with those of training
only the text or vision encoder. We also evaluate
the visual representation capability of the vision
encoder through linear probing.

4.3 Text-rich Information

We used the data generation pipeline in Section 3.1
to generate data on the Laion (Schuhmann et al.,
2021) dataset to analyze the impact of dense text
information on model performance. We gradually
increased the size of the dataset and trained the
model while observing various metrics. When we
found that the model’s performance was saturated,
we stopped generating new data to save costs. Fi-
nally, the size of the dataset we obtained was 493k.

Our study reveals that, limited by a context
window of 77, dense textual information signif-
icantly boosts the model’s performance on DCI
benchmark, as shown in Table 2. This contradicts
the DCI finding that improved performance via
negatives-based training comes at the cost of de-
creased performance on subcrop-caption match-
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VL-Checklist ARO
Model Object Attribute Relation VG-R VG-A COCO FLICKR
CLIP 81.58 67.60 63.05 59.98 63.18 47.90 60.20
BLIP2 84.14 80.12 70.72 41.16 71.25 13.57 13.72

NegCLIP 81.35 72.24 63.53 81.00 71.00 86.00 91.00
DACLLM 87.30 77.27 86.41 81.28 73.91 94.47 95.68
DACSAM 88.50 75.83 89.75 77.16 70.50 91.22 93.88
DELIP10k 82.17 71.16 66.08 64.27 67.39 74.30 75.21
DELIPall 84.49 74.43 68.81 66.32 69.74 79.08 79.39
DELIPneg 87.90 78.01 87.23 80.91 74.32 93.35 94.74

Table 3: Test results for Compositional Reasoning Ability. We compared using only 10k data, using all data, and
using all data with additional hard negative samples with other methods. Note that the DAC series all used Multiple
Instance Learning and hard negative samples.

ing. Notably, we demonstrate that dense informa-
tion simultaneously enhances both subcrop-caption
matching task and negatives discrimination task
without resorting to extra hard-negative samples.
This achievement surpasses the performance of
NegCLIP (Yuksekgonul et al., 2023b) and other
models. We speculate that this is because dense
information contains more fine-grained alignment
and more complex grammatical structures.

Similarly, our experimental results on various
benchmarks also contradict Liu et al.’s (2023c)
claims that using long descriptions will reduce
model performance. We analyzed the differences
between the data generated by simply using open
source MLLMs and the data generated by our
pipeline. We found that the data generated by the
single MLLM has more hallucinations (Liu et al.,
2024; Zhou et al., 2023; Liu et al., 2023c). Al-
though the length is long, there are a lot of halluci-
nations in the latter half of the description, which
may damages the potential of dense information.

Furthermore, we investigated the impact of scal-
ing up the amount of dense text information on
performance. Our findings demonstrate that us-
ing only 10k data points can significantly improve
the model’s performance on the DCI, ARO, VL-
Checklist and CLIP-Benchmark, highlighting the
efficiency of dense information.

While our study utilized dense descriptions, their
length distribution diverged from shorter captions.
Despite this, the DELIP model achieved enhanced
performance in text-image retrieval, as shown in
Table 4. We posit that this improvement stems
from the inherent complexity and diversity of sen-
tence structures within dense descriptions, coupled
with their fine-grained detail. These characteristics
align well with the simpler caption pattern typically

employed in text-image retrieval tasks.
Table 5 reveals mixed results for the DELIP

model across various datasets on zero shot clas-
sification task, exhibiting both improvements and
declines. This inconsistency might be attributed
to a mismatch between the prompt template for
zero shot classification and the stylistic character-
istics of our training data. In order to investigate
the impact of different data generation styles on
the model, we compared the effects of using data
generated with a single prompt and data generated
with a mixture of different prompts during the train-
ing phase. To improve computational efficiency,
when using mixed data, a positive sample was ran-
domly selected in each epoch, and the rest were
used as in-batch negative samples. We found that
using data with different styles leads to different im-
provements on different tasks, which is consistent
with previous studies on the impact of training data
distribution bias on model performance (Li et al.,
2023b). However, despite the slight differences,
the overall trend is upward, which demonstrates
the robustness of dense information.

Although using dense information already out-
performs methods that use hard-negative samples,
we still investigated whether using negative sam-
ples can further improve the model’s performance.
We found that using hard negative samples can sig-
nificantly enhance the model’s compositional rea-
soning ability, but it has a certain degradation on
zero-shot classification, which is consistent with
the previous conclusions on using hard negative
samples.

4.4 Vision-rich Information

We observed that the images in the Laion dataset
are relatively simple and contain less visual infor-
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MSCOCO Flickr30k Flickr8k
Model I2T R@5 T2I R@5 I2T R@5 T2I R@5 I2T R@5 T2I R@5

CLIP Baseline 56.00 74.96 83.24 94.9 80.46 91.40
DELIPpos 21.69 41.17 46.97 70.89 41.47 62.80

DELIPpos−mix 47.38 61.08 75.27 87.5 69.37 81.69
DELIPbert 22.11 33.89 41.53 56.90 39.71 54.90

DELIPt 46.00 71.89 36.68 58.20 16.73 30.68
DELIPv 56.93 72.18 84.25 93.30 82.02 90.49

DELIP10k 56.55 72.93 81.49 93.50 81.49 91.50
DELIPall 58.33 74.65 84.96 93.80 82.36 92.59

Table 4: Test results for Text-Image Retrieval.

mation. FLIP even masked out 75% of the patches
to increase the batch size and accelerate training.
Based on this observation, we explored the impact
of using images with richer visual information on
performance.

To maintain consistency, we used the same
prompt and data generation pipeline to generate
text descriptions. The only difference was that we
used images from the SAM dataset. Due to the cost
of the GPT-4V API, which is related to the pixel
size of the input image, and the high resolution of
the images in the SAM dataset, we only generated
10k training data based on SAM to save costs. In
this paper, we mainly analyze the impact of dense
visual information on performance under the same
amount of data, and leave the work of scaling up
data to future work.

4.5 Text-only v.s. Vision-only Tuning

Our findings suggest that fine-tuning either the text
encoder or the vision encoder in isolation is insuf-
ficient for optimal performance. This limitation
might stem from the inability of the text encoder to
effectively represent dense text information during
vision-only fine-tuning. The model, trained primar-
ily on short and sparse caption data, might struggle
with the richer and more complex nature of dense
text, leading to degradation of the vision encoder’s
performance as measured by linear probing. Addi-
tionally, fine-tuning the text encoder alone exhibits
performance losses, implying that dense text goes
beyond simply increasing length and sentence com-
plexity. It introduces fine-grained alignment be-
tween the description and the image, necessitating
joint training of both encoders for optimal learning.

Based on the linear probing results presented
in Table ??, there appears to be minimal perfor-
mance difference between our model and other

approaches. We think the reason may be 1. the
capacity limitation of the vision encoder model;
2. DELIP has enhanced the ability to understand
images at a fine-grained level, but the linear probe
tests the model’s understanding of global informa-
tion.

4.6 Scale up the Model Size

We found that increasing the capacity of the model
can improve the performance of the model on
DCI. We hope that our work can inspire future
research to use dense information to scale up the
model to billions or even larger scale, while cur-
rent works (Dehghani et al., 2023; Sun et al., 2024;
Chen et al., 2024) only scales up the size of the
model, still using short text descriptions and sparse
images.

5 Expand the Context Length

Previous works were hindered by a context window
size of 77, preventing the model from effectively
utilizing the information contained in longer cap-
tions. To address this limitation and harness the
potential of denser text information, we explore
increasing the context window to 512 tokens and
analyze its impact on model performance.

5.1 Strategies

We use the following strategies to expand the con-
text windows:

Train Position Embedding from Scratch: The
length of the position embedding is the primary fac-
tor limiting the context window. Based on this, we
reinitialize the position embedding with a length of
512 and then retrain the entire model. To investi-
gate the impact of the length distribution of the text
data, we compared two strategies: training only
with long descriptions and training with a mixture
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FER2013 ImageNet-1k ImageNet-v2 MNIST VOC2007 CIFAR-100
Model Acc1 Acc5 Acc1 Acc5 Acc1 Acc5 Acc1 Acc5 Acc1 Acc5 Acc1 Acc5
CLIP 41.43 94.75 63.35 88.82 55.75 83.41 48.86 85.17 76.47 95.94 64.24 88.76

DELIPposition 40.59 88.56 17.63 37.36 15.29 34.13 36.68 77.53 40.82 80.22 25.20 51.44
DELIPmix 42.89 92.78 29.22 55.59 25.1 50.21 30.48 82.3 51.94 81.25 35.87 65.09

DELIPt 28.79 80.11 23.74 40.56 20.32 37.2 25.62 62.85 4.98 27.6 51.41 78.05
DELIPv 48.76 92.74 55.04 82.59 47.93 76.23 51.16 83.45 67.50 91.15 54.02 81.86

DELIP10k 51.28 94.78 53.64 81.61 46.61 75.14 48.34 88.03 68.97 92.01 50.48 79.29
DELIPall 53.57 95.31 54.01 82.79 47.27 75.05 48.34 86.49 63.13 90.16 51.79 78.23

Table 5: Zero-Shot Classification Test Results. We did not find the best results by carefully designing prompt
templates. We used the default ones in CLIP-Benchmark.

of long descriptions and original captions.
Position Interpolation: We use interpola-

tion (Chen et al., 2023b) to expand the position
embedding; specifically, the position embedding is
interpolated to a length of 512 as the initial embed-
ding, and then we continue to train the model with
the same data settings.

Pretrained Text Encoder: Besides expanding
the position embedding based on the text encoder
of CLIP, another approach is to use a pretrained
language model with a longer context window as
the text encoder. AltClip (Chen et al., 2023c) and
NLLB-Clip (Visheratin, 2023) used a pretrained
multilingual text encoder for replacement, which fa-
cilitates the performance of CLIP on low-resource
languages. Different from previous work, we ex-
plore the impact of using pretrained language mod-
els on processing longer text descriptions.

5.2 Analysis

We found that if we only use long descriptions to
train position embeddings from scratch, the model
can perform well on DCI, but the performance loss
is very serious on clip-benchmark; after mixing the
original caption data for training, the model’s per-
formance on zero shot classification and retrieval
tasks is restored, but still lower than CLIP-base.
We think this is due to the insufficient training data,
we only used 493k data for training, which is lower
than the data required for pre-training. Due to the
limitations of API cost and computing resources
(the time and memory required to train the model
with a context window of 512 is much higher than
77), and the main purpose of this paper is to ex-
plore the potential of dense information rather than
pre-training, we leave using dense information to
train the clip model from scratch as future work.

The effect of position interpolation is not very
good. We think it is because CLIP’s position em-
bedding is obtained through training rather than ro-
tary position embeddings (Su et al., 2023; Touvron
et al., 2023). The gap between these two methods

of injecting position information leads to position
interpolation not being very suitable for CLIP-style
models. A potential high-efficiency solution is to
use a text encoder with rotary position embedding
to pre-train on short text, and then extend it to long
text through position interpolation combined with
fine-tuning.

While incorporating longer context via
BERT (Devlin et al., 2019) and RoBERTa (Liu
et al., 2019) models did improve overall results,
the difference between their impacts was marginal.
Interestingly, training solely on dense descriptions
led to more strong performance in negative dis-
crimination, even without hard negative samples.
However, combining dense descriptions with
original captions caused a performance drop in
negative discrimination, while subcrop-caption
matching remained unaffected. This suggests that
dense descriptions have potential to enhance the
model’s ability to differentiate hard negatives, a
crucial aspect of its representation ability.

6 Future Work

Firstly, in this paper, we use GPT-4V to generate
descriptions for each image or subcrop and then
use GPT-4 to merge these generated descriptions
into a global description with detailed details while
minimizing hallucinations. However, calling the
GPT-4 API is expensive. Therefore, it is neces-
sary to explore how to use open-source MLLMs to
generate high-quality descriptions and how to use
open-source LLMs to merge different descriptions
together.

Secondly, we have only divided a single image
into four parts, which still may overlook some de-
tails if the original image’s input resolution is high
and contains many details. A potential direction
worth exploring is to divide the image into more
parts to generate descriptions separately, which
would improve the overall richness of details. How-
ever, it is essential to note how to effectively merge
these individual parts without introducing addi-
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tional hallucinations (e.g., if an object is incorrectly
divided into multiple parts), which is a problem
worth studying.

Thirdly, when merging the descriptions of each
part, we explicitly marked the relative position of
each part in the original image (e.g., top left, bot-
tom left, top right, bottom right) in the prompt.
However, if the image is divided into more parts,
marking the position information of each part be-
comes difficult. A straightforward idea is to use
a coordinate system for annotation. We leave this
part of the exploration work for the future.

7 Conclusion

We conducted a systematic analysis of the im-
pact of dense information on multimodal align-
ment. Analyzing the impact of increasing the den-
sity of text information and vision information
on model performance, we found that data rich
in detail and with less hallucination improved the
model’s fine-grained alignment and enhanced its
ability to distinguish negatives. Interestingly, sim-
ply using density-enhanced training data already
outperformed using carefully designed hard neg-
ative samples. We also tried various strategies to
further increase context windows, finding that it
further improved the model’s representation ability,
showcasing the great potential of dense information
for enhancing multimodal alignment.

Limitations

In this paper, we utilized continual training to ex-
plore the impact of dense information on multi-
modal alignment. Due to the analysis of multiple
variables, the total experimental time reached 21
days on 8 * A100 80G servers, despite employing
base-sized models.

1. No Pretraining for Dense Information Im-
pact Observation: While the configuration and
time were sufficient for pre-training CLIP-base, our
employed description length significantly exceeded
the original captions in the Laion400m dataset.
This resulted in limitations in batch size and train-
ing speed. 2. Data Saturation via GPT-4v Only:
To optimize cost, we used GPT-4v to generate data
sufficient for model saturation, without creating
further variations. Scaling up the dataset alongside
the model size, though not implemented due to cost
constraints, was expected to improve performance.
3. English-Only Experiments: While a body of
work exists on multilingual CLIP, our data con-

struction and experiments exclusively utilized the
English language. Investigating how to construct
dense image-text pairs in low-resource languages
presents a valuable avenue for future exploration.

Ethics Statement

By enhancing information density, we have im-
proved multimodal alignment. However, halluci-
nation remains unavoidable, which may produce
outputs that do not align with facts and could mis-
lead users. Therefore, it is necessary to manually
review the model’s outputs to ensure safe use in
downstream applications.
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Filip Pavetić, Dustin Tran, Thomas Kipf, Mario
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