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Abstract

Continual Named Entity Recognition (CNER)
is dedicated to sequentially learning new en-
tity types while mitigating catastrophic forget-
ting of old entity types. Traditional CNER ap-
proaches commonly employ knowledge distilla-
tion to retain old knowledge within the current
model. However, because only the represen-
tations of old and new models are constrained
to be consistent, the reliance solely on distil-
lation in existing methods still suffers from
catastrophic forgetting. To further alleviate the
forgetting issue of old entity types, this paper
introduces flexible Weight Tuning (WT) and
Weight Fusion (WF) strategies for CNER. The
WT strategy, applied at each training step, em-
ploys a learning rate schedule on the parameters
of the current model. After learning the current
task, the WF strategy dynamically integrates
knowledge from both the current and previous
models for inference. Notably, these two strate-
gies are model-agnostic and seamlessly inte-
grate with existing State-Of-The-Art (SOTA)
models. Extensive experiments demonstrate
that the WT and WF strategies consistently en-
hance the performance of previous SOTA meth-
ods across ten CNER settings in three datasets.1

1 Introduction

As a pivotal task in information extraction, Named
Entity Recognition (NER) plays a crucial role in
various applications, including question answer-
ing (Li et al., 2019; Longpre et al., 2021), web
search queries (Guo et al., 2009; Zhang et al., 2021).
Traditional fully-supervised NER endeavors to clas-
sify tokens in a sentence into fixed entity types (Ma
and Hovy, 2016). However, real-world entity types
typically emerge in a streaming manner, as seen in
voice assistants like Siri, which need to recognize
new entity types (e.g., Band, Song) to understand

*Corresponding author.
1Our code is available at https://github.com/ku-

nlp/CNER_WT-WF.

new user intents (e.g., GetMusic) (Zhang et al.,
2023c). One straightforward solution involves re-
training the model on the entire dataset by incorpo-
rating both old and new entity types. Nevertheless,
this strategy incurs substantial training costs. An-
other simplistic approach is to fine-tune the previ-
ously learned model exclusively on the newly intro-
duced entity types, a scenario known as Continual
NER (CNER) (Monaikul et al., 2021; Ma et al.,
2023). However, CNER commonly faces catas-
trophic forgetting, wherein the knowledge acquired
from previous entity types is lost after learning new
ones (McCloskey and Cohen, 1989; Robins, 1995;
Goodfellow et al., 2013; Kirkpatrick et al., 2017;
Dong et al., 2022, 2023, 2024; Zheng et al., 2023).

To address the issue of forgetting old entity types,
prior CNER methods often employ knowledge dis-
tillation to preserve previous knowledge in the cur-
rent model (Hinton et al., 2015; Zhang et al., 2023b;
Chen and He, 2023). These approaches maintain
output logits or intermediate features to prevent
substantial changes in the parameters of the current
model. Specifically, ExtendNER (Monaikul et al.,
2021) distills output logits from the old model to
the new model, encouraging the new model to gen-
erate logits closely resembling those produced by
the old model. L&R (Xia et al., 2022) utilizes a two-
stage learn-and-review framework. In the learning
stage, it adopts a similar approach to ExtendNER;
while during the reviewing stage, it integrates syn-
thesized samples of old entity types to enhance the
current dataset. Extending the ideas of ExtendNER,
CFNER (Zheng et al., 2022) introduces a causal
framework to distill causal effects from the non-
entity type. CPFD (Zhang et al., 2023a) presents
a feature distillation method to retain linguistic
knowledge in attention weights, achieving State-
Of-The-Art (SOTA) CNER performance. However,
since only the output or internal representations of
old and new models are constrained to be consis-
tent, relying on knowledge distillation alone pro-
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Figure 1: Our WT and WF strategies depict both the
training and inference processes. Training benefits from
a learning rate schedule, and fusion is employed at in-
ference to consolidate all acquired knowledge.

vides limited gains in CNER performance.
To address this limitation, we propose flexible

Weight Tuning (WT) and Weight Fusion (WF)
strategies for CNER. Shown in Figure 1, WT ap-
plied at training, utilizes a learning rate schedule for
the new model’s parameters. The initial learning
rate gradually decays with steps to effectively retain
knowledge of historical entity types. At inference,
WF incorporates knowledge from both the new and
old models in the form of parameter addition with
a dynamic factor. This process eventually yields a
fused model for inference, striking a new balance
between old and new knowledge without incurring
additional computation costs, thereby further miti-
gating the forgetting of old entity types. Crucially,
the WT and WF strategies are model-agnostic,
seamlessly integrating with existing SOTA meth-
ods in a plug-and-play fashion.

Our contributions can be summarized as follows:

• We present flexible WT and WF strategies
for CNER to further mitigate catastrophic for-
getting. The former incorporates a learning
rate decay schedule during training, while the
latter effectively establishes a new balance be-
tween old and new knowledge for inference.

• We perform comprehensive experiments
across ten CNER settings on three datasets.
The outcomes demonstrate the efficacy of the
WT and WF strategies, consistently enhancing
the performance of SOTA CNER methods.

2 Preliminary

CNER endeavors to learn a model over t = 1, ..., T
steps, progressively acquiring proficiency in an ex-
panding array of entity types. Each step involves
a distinctive training set Dt, consisting of multiple
pairs (Xt,Y t), where Xt denotes an input token
sequence with a length of |Xt| and Y t signifies
the corresponding ground truth label sequence en-
coded in a one-hot format. It is noteworthy that
Y t exclusively encompasses labels for the current
entity types E t, while all other labels are masked as
the non-entity type eo. At step t (t>1), taking into
account the old modelMt−1 with parameters θt−1

and the current training set Dt, we aim to train a
new modelMt with parameters θt capable of rec-
ognizing all entities types encountered thus far, as
denoted by

⋃t
i=1 E i.

Previous CNER methods (Monaikul et al., 2021;
Xia et al., 2022; Zheng et al., 2022; Zhang et al.,
2023a) commonly employ a Cross-Entropy (CE)
term for acquiring knowledge about new entity
types and a Knowledge Distillation (KD) term to
preserve the knowledge acquired from previous en-
tity types. This formulation is expressed as follows:

LCE(θt) = −Y t log Ŷ t

LKD(θt) =

{
−Ŷ t−1 log Ŷ t

||F t−1 − F t||2
, (1)

where Ŷ t−1 and Ŷ t denote the output distributions
of Xt generated by the old modelMt−1 and the
new modelMt, respectively. Moreover, F t−1 and
F t represent the intermediate features of the old
modelMt−1 and the new modelMt, respectively.

3 Method

To further alleviate the forgetting of old entity types,
we introduce model-agnostic WT and WF strate-
gies to augment existing CNER methods.

The WT strategy implements a learning rate
schedule for each continual training step t to adjust
the parameters θt of the current modelMt. Specif-
ically, during the initial step (t=1), the learning
rate is set to lr1. For subsequent steps (t>1), the
learning rate is gradually reduced to better retain
knowledge of historical entity types. Therefore, the
learning rate lrt at step t is expressed as:

lrt =

{
lr1 if t = 1

e−αt · lr1 if t > 1
, (2)
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Algorithm 1 Pseudo Code for WT and WF strate-
gies in continual steps (highlighted in red font)

Require: θ0, T,Dt, initial learning rate lr1, and
hyper-parameters α and β
t← 1 ▷ Continual training step
while t ≤ T do

θt ← θt−1

if t = 1 then
lrt← lr1

else
lrt← e−αt · lr1

end if
i← 1 ▷ Iteration step
while not converged do

Sample mini-batch {Xt
i ,Y

t
i } ∼ Dt

θti+1 ← θti− lrt∇LCE+LKD from Equation (1)
i← i+ 1

end while
Initialize Ct

new,C
t
old ▷ Number of new

and old entity types in the current step t

λt← ( Ct
new

Ct
new+Ct

old
)β

θfused← λtθt + (1− λt)θt−1

θt← θfused

t← t+ 1
end while

where e−t denotes the exponential decay of the
learning rate, and α is a hyper-parameter.

Following each training step t (t>1), the WF
strategy, instead of employing the new model di-
rectly, produces a fused model for inference. This
fused model integrates knowledge from both the
new and old models using a dynamic balance fac-
tor, establishing a refined equilibrium between old
and new knowledge without introducing additional
computation costs. The formulation is as follows:

θfused = λtθt + (1− λt)θt−1

λt =

(
Ct

new

Ct
new + Ct

old

)β , (3)

where Ct
new and Ct

old represent the number of new
and old entity types in the current step t, respec-
tively, and β is a hyper-parameter.

The pseudo code for our WT and WF strategies
is presented in Algorithm 1.

4 Experiments

4.1 Experimental Setup
To ensure a fair comparison, we adhere to the setup
of CPFD (Zhang et al., 2023a) method as below:

# Entity Type # Sample Entity Type Sequence (Alphabetical Order)

CoNLL2003 4 21k LOCATION, MISC, ORGANISATION, PERSON

I2B2 16 141k

AGE, CITY, COUNTRY, DATE, DOCTOR, HOSPITAL,
IDNUM, MEDICALRECORD, ORGANIZATION,
PATIENT, PHONE, PROFESSION, STATE, STREET,
USERNAME, ZIP

OntoNotes5 18 77k

CARDINAL, DATE, EVENT, FAC, GPE, LANGUAGE,
LAW, LOC, MONEY, NORP, ORDINAL, ORG,
PERCENT, PERSON, PRODUCT, QUANTITY, TIME,
WORK_OF_ART

Table 1: The statistics for each dataset.

Datasets We use three widely adopted NER
datasets to assess the impact of WT&WF strate-
gies, namely CoNLL2003 (Sang and De Meul-
der, 1837), I2B2 (Murphy et al., 2010), and
OntoNotes5 (Hovy et al., 2006). The statistics
for these datasets are shown in Table 1. We ap-
ply the greedy sampling algorithm, detailed in
CFNER (Zheng et al., 2022), to split the training
set into disjoint slices, each corresponding to dif-
ferent continual steps. Within each slice, we retain
only the labels belonging to the entity types under
learn, while masking others as the non-entity type.

CNER Settings During training, we sequen-
tially learn entity types in alphabetical order and
train models with corresponding slices. For
CoNLL2003, we employ two CNER settings: 1-1
and 2-1. Regarding I2B2 and OntoNotes5, we es-
tablish four CNER settings: 1-1, 2-2, 8-1, and 8-2.
The notation a-b indicates that we utilize a entity
types to learn a base model and every b entity type
to train in each continual step. During validation,
we retain only the labels of the current entity types
under learning, masking others as the non-entity
type within the validation set. At each step, we
select the model that achieves the best validation
performance for both testing and the subsequent
step. In the testing phase, we preserve labels for
all previously learned entity types, designating the
remainder as the non-entity type within the test set.

Evaluation Metrics Given the challenge of en-
tity type imbalance in NER, we employ Micro F1
(Mi-F1) and Macro F1 (Ma-F1) to assess the perfor-
mance. The reported result denotes the mean across
all steps, including the first one, serving as the final
performance. To assess the significance of the per-
formance improvement, we conduct a paired t-test
with a significance level of 0.05 (Koehn, 2004).

Baselines We consider the following base-
lines for evaluation, encompassing SOTA CNER
methods: ExtendNER (Monaikul et al., 2021),
CFNER (Zheng et al., 2022), and CPFD (Zhang
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1-1 2-2 8-1 8-2
Dataset Baseline

Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1

Fine-tuning 17.43±0.54 13.81±1.14 28.57±0.26 21.43±0.41 20.83±1.78 18.11±1.66 23.60±0.15 23.54±0.38
PODNet 12.31±0.35 17.14±1.03 34.67±2.65 24.62±1.76 39.26±1.38 27.23±0.93 36.22±12.90 26.08±7.42
LUCIR 43.86±2.43 31.31±1.62 64.32±0.76 43.53±0.59 57.86±0.87 33.04±0.39 68.54±0.27 46.94±0.63

Self-Training 31.98±2.12 14.76±1.31 55.44±4.78 33.38±3.13 49.51±1.35 23.77±1.01 48.94±6.78 29.00±3.04

ExtendNER 42.85±2.86 24.05±1.35 57.01±4.14 35.29±3.38 43.95±2.01 23.12±1.79 52.25±5.36 30.93±2.77
ExtendNER† 41.65±10.11 23.11±2.70 67.60±1.15 42.58±1.59 45.14±2.91 27.41±0.88 56.48±2.41 38.88±1.38

ExtendNER† + WT&WF 58.50±5.11 31.18±3.84 73.84±3.98 45.51±4.96 47.70±2.74 29.05±3.81 61.92±1.15 41.19±1.59I2B2
CFNER 62.73±3.62 36.26±2.24 71.98±0.50 49.09±1.38 59.79±1.70 37.30±1.15 69.07±0.89 51.09±1.05
CFNER† 64.79±0.26 37.79±0.65 72.58±0.59 51.71±0.84 56.66±3.22 36.84±1.35 69.12±0.94 51.61±0.87

CFNER† + WT&WF 67.80±0.99 39.77±0.38 74.17±0.58 53.25±1.23 61.58±4.03 40.72±2.67 71.73±0.10 53.02±0.46

CPFD 74.19±0.95 48.34±1.45 78.19±0.58 56.04±1.22 74.75±1.35 56.19±2.46 81.05±0.87 65.04±1.13
CPFD† 73.04±0.73 46.36±2.13 78.25±0.29 56.09±0.57 75.06±1.79 57.47±2.33 80.66±2.05 65.08±2.23

CPFD† + WT&WF 75.11±0.18 50.16±0.55 79.70±0.23 58.74±1.59 78.51±1.85 60.45±1.48 82.47±0.70 66.29±0.32

Fine-tuning 15.27±0.26 10.85±1.11 25.85±0.11 20.55±0.24 17.63±0.57 12.23±1.08 29.81±0.12 20.05±0.16
PODNet 9.06±0.56 8.36±0.57 34.67±1.08 24.62±0.85 29.00±0.86 20.54±0.91 37.38±0.26 25.85±0.29
LUCIR 28.18±1.15 21.11±0.84 64.32±1.79 43.53±1.11 66.46±0.46 46.29±0.38 76.17±0.09 55.58±0.55

Self-Training 50.71±0.79 33.24±1.06 68.93±1.67 50.63±1.66 73.59±0.66 49.41±0.77 77.07±0.62 53.32±0.63

ExtendNER 50.53±0.86 32.84±0.84 67.61±1.53 49.26±1.49 73.12±0.93 49.55±0.90 76.85±0.77 54.37±0.57
ExtendNER† 51.36±0.77 33.38±0.98 63.03±9.39 47.64±5.15 73.65±0.19 50.55±0.56 77.86±0.10 55.21±0.51

ExtendNER† + WT&WF 54.82±0.39 35.95±0.50 70.45±0.89 51.95±0.59 77.52±0.41 53.67±0.61 79.68±0.37 56.88±0.54OntoNotes5
CFNER 58.94±0.57 42.22±1.10 72.59±0.48 55.96±0.69 78.92±0.58 57.51±1.32 80.68±0.25 60.52±0.84
CFNER† 58.44±0.71 41.75±1.51 72.10±0.31 55.02±0.35 78.25±0.33 58.64±0.42 80.09±0.37 61.06±0.37

CFNER† + WT&WF 62.76±1.54 46.50±0.88 74.20±0.29 57.04±0.71 79.97±0.37 60.30±0.54 81.69±1.42 62.76±0.91

CPFD 66.73±0.70 54.12±0.30 74.33±0.30 57.75±0.35 81.87±0.47 65.52±1.05 83.38±0.18 66.27±0.75
CPFD† 65.73±0.56 53.83±1.12 74.36±0.33 57.75±0.49 82.07±0.30 65.79±0.36 83.49±0.18 66.66±0.69

CPFD† + WT&WF 68.16±0.78 55.46±0.80 76.47±0.30 59.97±0.28 83.51±0.25 67.03±0.26 84.52±0.21 68.90±1.10

Table 2: Comparisons with baselines on the I2B2 and OntoNotes5 datasets. † represents our reproduced results with
the open codebases. Other baseline results are directly cited from CPFD. Red and blue represent the maximum and
second maximum values in ExtendNER, CFNER, and CPFD. ExtendNER, CFNER, and CPFD with WT&WF
significantly outperform their corresponding vanilla methods (with p < 0.05).

et al., 2023a). Moreover, we include the lower
bound method, Fine-tuning, directly employing
new data for fine-tuning the model without us-
ing any anti-forgetting techniques. Furthermore,
we consider continual learning methods from
computer vision like PODNet (Douillard et al.,
2020), LUCIR (Hou et al., 2019), and Self-
Training (Lange et al., 2019). More details on these
baselines can be found in Appendix A.

Implementation Details We employ the “BIO"
labeling schema for all datasets. Our NER model
utilizes the bert-base-cased (Kenton and Toutanova,
2019) model as the encoder and employs a fully-
connected layer as the classifier. For each CNER
setting, if each continual training step (t>2) learns
an entity type, we train the model for 10 epochs;
otherwise, for 20 epochs. We set the batch size,
initial learning rate lr1, hyper-parameters α and β
to 8, 4e-4, 1e-2, and 0.5, respectively. All experi-
ments are conducted on an NVIDIA A6000 GPU
with 48GB of memory, and each experiment is run
5 times to ensure statistical significance.

4.2 Experimental Results
Main Results Tables 2 and 6 (Appendix B)
present the performance of our WT&WF and

Methods

8-1 8-2

Mi-F1 Ma-F1 Mi-F1 Ma-F1

CPFD 75.06±1.79 57.47±2.33 80.66±2.05 65.08±2.23
CPFD + WT 77.39±2.98 59.01±3.25 81.45±0.59 65.92±1.25
CPFD + WF 76.49±2.34 58.49±2.46 81.33±0.52 65.64±1.16

w/o DBF (λt=0.5) 75.19±1.90 58.17±2.61 80.77±0.46 65.35±0.61

CPFD + WT&WF 78.51±1.85 60.45±1.48 82.47±0.70 66.29±0.32

Table 3: The ablation study of our WT&WF strategies
on the I2B2 dataset under the 8-1 and 8-2 settings. w/o
DBF denotes removing Dynamic Balance Factor λt in
WF and fixing its value to 0.5.

baselines across 10 CNER settings on the I2B2,
OntoNotes5, and CoNLL2003 datasets. Our find-
ings show substantial improvements in both Mi-
and Ma-F1 scores for ExtendNER, CFNER, and
CPFD after applying WT&WF across nearly all
CNER settings. Moreover, CPFD + WT&WF
achieves new SOTA performance across all settings.
These outcomes highlight the broad applicability
and effectiveness of our WT&WF strategies.

Ablation Study Table 3 presents the results of
ablation study on our WT&WF strategies based
on the CPFD method. The best performance is
observed when both strategies are used simultane-
ously. While utilizing either strategy alone results
in some improvement compared to the original
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Methods Mi-F1 Ma-F1

CFNER + WT&WF (α = 1.0) 20.41±3.82 18.23±1.18
CFNER + WT&WF (α = 1e-1) 61.17±3.42 40.61±1.89
CFNER + WT&WF (α = 5e-2) 61.25±3.16 40.48±2.85
CFNER + WT&WF (α = 1e-2) 61.58±4.03 40.72±2.67
CFNER + WT&WF (α = 5e-3) 61.77±3.22 40.98±2.47
CFNER + WT&WF (α = 1e-3) 61.45±3.97 41.23±2.15
CFNER + WT&WF (α = 1e-9) 58.79±3.62 38.39±2.91

Table 4: The hyper-parameter analysis of α on I2B2
dataset under 8-1 setting (β is fixed to 0.5). Bold repre-
sents the results not significantly different (not satisfy
p < 0.05) from the results of α = 1e-2.

Methods Mi-F1 Ma-F1

CPFD + WT&WF (β = 0.0) 77.39±2.98 59.01±3.25
CPFD + WT&WF (β = 0.5) 78.51±1.85 60.45±1.48
CPFD + WT&WF (β = 1) 78.29±1.94 60.33±1.28
CPFD + WT&WF (β = 2) 78.03±1.38 60.18±1.62
CPFD + WT&WF (β = 10) 35.92±1.42 29.91±1.47

Table 5: The hyper-parameter analysis of β on I2B2
dataset under 8-1 setting (α is fixed to 1e-2). Bold
represents the results not significantly different (not
satisfy p < 0.05) from the results of β = 0.5.

method, fixing λt to 0.5 in WF does not result in a
discernible enhancement over the original method.

Sensitivity of Hyper-parameters Table 4 shows
the sensitivity analysis on α. We set 7 optional
values ranging from 1.0 to 1e-9. It demonstrates
that if we don’t choose values that are too ex-
treme (α = 1e-9 or 1.0), results won’t fluctuate
much. We also perform a significance test, which
shows the results of α = 1e-1 to α = 1e-3 don’t
have statistically significant difference (not satisfy
p < 0.05) compared with the results of α = 1e-2.
On the contrary, when α = 1.0, the decay is too
rapid, resulting in the learning rate for new tasks
approaching zero. And when α = 1e-9, the re-
sults have a significant decrease (satisfy p < 0.05)
compared with the results of α = 1e-2, because
α = 1e-9 is almost equivalent to a fixed learning
rate. Thus, our WT strategy is stable within a se-
lection range of α = 1e-1 to 1e-3, and there is no
need for intentional hyper-parameter adjustment.

Moreover, Table 5 shows the sensitivity analysis
on β. We set 5 optional values ranging from 0.0 to
10. We perform a significance test, which shows
the results of β = 1.0 and β = 2.0 don’t have
statistically significant differences (not satisfy p <
0.05) compared with the results of β = 0.5. On
the contrary, results of β = 0.0 (using the new
model directly for inference, as with the previous

method) and β = 10 (approaching the scenario of
using only the old model for inference) both have
a significant decrease (satisfy p < 0.05) compared
with the results of β = 0.5. Thus, our WF strategy
is also stable within a selection range from β = 0.5
to β = 2, and there is also no need for intentional
hyperparameter adjustment.

5 Conclusion

In this paper, we introduce model-agnostic WT and
WF strategies for CNER to mitigate catastrophic
forgetting. WT employs a learning rate schedule
within each training step to adjust the parameters
of the new model, while WF dynamically fuses the
new and old models to maintain a balance between
new and old knowledge. Extensive experiments
conducted on 10 CNER settings across 3 datasets
illustrate that our strategies further enhance the
previous SOTA methods.
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Existing CNER methods may suffer from instabil-
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optimal entity type order is unknown beforehand,
so an ideal CNER method should perform consis-
tently regardless of this order. Previous experi-
ments have maintained a constant entity type order
(e.g., alphabetical order). Future research should
explore the stability of CNER methods under vary-
ing entity type learning orders. Additionally, given
the model-agnostic nature of our approach, future
work can investigate combination with more CNER
methods and encoders, including larger language
models beyond BERT.
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A Baselines

The detailed introductions about the baselines in
our experiments are as follows.

PODNet (Douillard et al., 2020): PODNet is
employed to address the challenge of catastrophic
forgetting in continual learning for image classi-
fication, transferred to the CNER scenario. The
overall loss of the model encompasses both classi-
fication loss and distillation loss. In the realm of
classification, PODNet opts for the neighborhood
component analysis loss as a substitute for the con-
ventional cross-entropy loss. In the computation of
distillation loss, PODNet imposes constraints on
the output of each intermediate layer.

LUCIR (Hou et al., 2019): LUCIR establishes
a framework for incrementally learning in contin-
ual image classification tasks, transferred to the
CNER scenario, sharing a conceptual similarity
with PODNet in addressing catastrophic forgetting.
Its overall loss comprises three components: (1)
the cross-entropy loss on samples with new entity
types; (2) the distillation loss between features ex-
tracted by the old model and the new one; and (3)
the margin-ranking loss on reserved samples for
old entity types.

Self-Training (Rosenberg et al., 2005; Lange
et al., 2019): Self-Training initially employs the
pre-existing model to label the non-entity type to-
kens with their respective old entity types. Sub-
sequently, the novel model undergoes training on
fresh data, incorporating annotations for all entity
types. The ultimate objective is to minimize the
cross-entropy loss across all entity types, ensuring
comprehensive and effective model training.

ExtendNER (Monaikul et al., 2021): Extend-
NER explores the application of knowledge distil-
lation to CNER and shares similarities with Self-
Training, but it computes cross-entropy loss for
entity type tokens and KL divergence loss for non-
entity type tokens. During the training process,
ExtendNER minimizes the sum of cross-entropy
loss and KL divergence loss.

CFNER (Zheng et al., 2022): Based on Extend-
NER, CFNER proposes a causal framework for
CNER, enabling the extraction of causal effects
from the non-entity type. Specifically, it utilizes the
old model to recognize non-entity type tokens be-
longing to previous entity types, extracting causal
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effects. It also employs a curriculum learning strat-
egy to mitigate recognition errors.

CPFD (Zhang et al., 2023a): CPFD addresses
two challenges in CNER: catastrophic forgetting
and the semantic shift problem of the non-entity
type. To tackle catastrophic forgetting, CPFD intro-
duces a pooled feature distillation loss that balances
stability and plasticity. Simultaneously, CPFD pro-
poses a confidence-based pseudo-labeling strategy
to reduce the impact of label noise and address the
semantic shift problem.

B Supplementary Results

We also experiment with the effectiveness of our
WT&WF strategies on the CoNLL2003 dataset
and results are shown in Table 6. However, the im-
provement in results was not as substantial as in the
I2B2 and OntoNotes5. Further analysis suggests
that CoNLL2003 contains fewer (four) entity types,
resulting in less noticeable forgetting of previous
knowledge. CoNLL2003 is also less difficult com-
pared to the other datasets, so the previous baseline
can almost reach the performance upper-bound and
leaves less room for improvements, especially for
CPFD. Consequently, the enhancement on the pre-
vious SOTA methods is relatively minor.

Baseline
1-1 2-1

Mi-F1 Ma-F1 Mi-F1 Ma-F1

Fine-tuning 50.84±0.10 40.64±0.16 57.45±0.05 43.58±0.18
PODNet 36.74±0.52 29.43±0.28 59.12±0.54 58.39±0.99
LUCIR 74.15±0.43 70.48±0.66 80.53±0.31 77.33±0.31

Self-Training 76.17±0.91 72.88±1.12 76.65±0.24 66.72±0.11

ExtendNER 76.36±0.98 73.04±1.80 76.66±0.66 66.36±0.64
ExtendNER† 76.07±0.35 73.06±0.29 77.89±0.42 69.92±1.02

ExtendNER† + WT&WF 79.29±1.18 77.55±2.12 78.94±0.53 70.98±1.36

CFNER 80.91±0.29 79.11±0.50 80.83±0.36 75.20±0.32
CFNER† 80.29±0.21 78.44±0.24 81.52±0.43 77.20±0.82

CFNER† + WT&WF 82.37±0.61 80.59±0.63 82.58±0.61 78.37±0.88

CPFD 82.24±0.63 79.94±0.66 85.70±0.19 83.49±0.16
CPFD† 82.18±0.15 79.42±0.19 85.75±0.43 83.41±0.31

CPFD† + WT&WF 82.94±0.40 80.97±0.40 86.79±0.50 84.86±0.50

Table 6: Comparisons with baselines on CoNLL2003.
† represents our reproduced results with the open code-
bases. Other results are directly cited from CPFD. Red
and blue represent the maximum and second maximum
values in ExtendNER, CFNER, and CPFD. ExtendNER,
CFNER, and CPFD with WT&WF outperform their
corresponding vanilla methods (with p < 0.05).
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