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Abstract

Contemporary translation engines based on the
encoder-decoder framework have made signif-
icant strides in development. However, the
emergence of Large Language Models (LLMs)
has disrupted their position by presenting the
potential for achieving superior translation
quality. To uncover the circumstances in which
LLMs excel and explore how their strengths can
be harnessed to enhance translation quality, we
first conduct a comprehensive analysis to assess
the strengths and limitations of various com-
mercial NMT systems and MT-oriented LLMs.
Our findings indicate that neither NMT nor MT-
oriented LLMs alone can effectively address all
the translation issues, but MT-oriented LLMs
show promise as a complementary solution to
NMT systems. Building upon these insights,
we propose Cooperative Decoding (CoDec),
which treats NMT systems as a pretranslation
model and MT-oriented LLMs as a supplemen-
tal solution to handle complex scenarios be-
yond the capability of NMT alone. Experimen-
tal results on the WMT?22 test sets and a newly
collected test set WebCrawl demonstrate the ef-
fectiveness and efficiency of CoDec, highlight-
ing its potential as a robust solution for com-
bining NMT systems with MT-oriented LLMs
in the field of machine translation.

1 Introduction

Over the years, the encoder-decoder framework
has established Neural Machine Translation (NMT)
models as the prevailing standard, achieving im-
pressive translation quality through extensive train-
ing on large-scale and high-quality parallel data
(Vaswani et al., 2017; Freitag and Firat, 2020; Fan
et al., 2021). Commercial machine translation en-
gines, e.g., Google Translate, are proficient in ad-
dressing the majority of translation requirements.
More recently, with the emergence of generative
large language models (LLMs), the position of tra-
ditional NMT models has been challenged (Brown
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Figure 1: Comparison between the Hybrid Threshold
and CoDec frameworks. CoDec is more efficient than
Hybrid Threshold as it eliminates the need for an extra
quality evaluation module and autoregressive generation
of the whole translation using MT-oriented LLM.

et al., 2020; OpenAl, 2023). While commercial
LLMs like OpenAI’s GPT-4 currently perform well
in translation (Hendy et al., 2023; Zhu et al., 2023;
Lin et al., 2022; Agrawal et al., 2022), they are
constrained by their interface nature, thereby limit-
ing further customization and improvement due to
privacy concerns in industrial applications. A more
promising approach involves fine-tuning relatively
smaller LLMs (i.e., fewer than 13B parameters)
to create LLMs specifically tailored for MT (Zeng
et al., 2023; Zhang et al., 2023; Jiao et al., 2023).

In this context, this study aims to investigate the
following research questions: In which scenarios
do MT-oriented LLMs demonstrate superior per-
formance to conventional NMT models, and how
can we leverage the strengths of the two paradigms
to enhance translation quality?

To begin, we conduct a comprehensive analysis
into the characteristics of translations generated
by commercial NMT systems and MT-oriented
LLMs. Our findings reveal that commercial NMT
systems excel at producing adequate translations
in specific domains or languages. Conversely, M T-
oriented LLMs demonstrate proficiency in gener-
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ating authentic-sounding translations and handling
infrequent words that are not effectively processed
by NMT systems. In summary, MT-oriented LLMs
can serve as valuable fallback systems in cases
where the output of commercial NMT systems is
unsatisfactory.

To complement NMT with MT-oriented LLMs,
Hendy et al. (2023) introduced the Hybrid Thresh-
old approach (Figure 1(a)), which employs the
NMT system as the primary translation system.
When the translation fails to meet the quality thresh-
old determined by the quality estimation (QE) mod-
ule, an alternative translation is generated using a
GPT-like model. However, this approach faces two
primary challenges. First, existing reference-free
metrics struggle to align with human judgment, re-
sulting in inaccuracies being propagated (Freitag
etal., 2021, 2020; Maetal., 2019; Rei et al., 2022a).
Second, the integration of neural quality estimation
modules and the sequential execution by LLMs
leads to increased decoding time (Tay et al., 2023;
Xu et al., 2021), which poses concerns for efficient
translation in practical applications.

To address the above issues, we propose an effi-
cient implementation approach for system ensem-
bles called Cooperative Decoding (CoDec). As
illustrated in Figure 1(b), the NMT system func-
tions as the front-end module, generating an initial
translation draft for a given input sentence. Subse-
quently, the MT-oriented LLM serves as both an
evaluator and a refiner, which firstly evaluates the
draft from a language modeling perspective, and
then the LLM refines the partial translation starting
from a specific position where the token in the draft
is not among the top-k token candidates suggested
by the LLM. Since the evaluation process takes
advantage of parallel computation and the front-
end module can handle most situations effectively,
CoDec is more efficient compared to using LLMs
for complete decoding.

The contributions of this paper are three-fold:

* We conduct in-depth analyses on the WMT22
test sets and a newly collected test set, We-
bCrawl, to identify the strengths and weak-
nesses of traditional NMT systems and MT-
oriented LLMs, finding that MT-oriented
LLMs can complement NMT systems.

* We present CoDec, a novel hybrid framework
that synergizes the strengths of NMT systems
and MT-oriented LLMs. By harnessing the
complementary capabilities of MT-oriented

LLMs, CoDec effectively overcomes the limi-
tations of traditional NMT systems'.

* We evaluate the performance of CoDec on var-
ious test sets. Our CoDec, without the need
for an additional quality estimation module,
achieves competitive or even better perfor-
mance than Hybrid Threshold. Furthermore,
CoDec offers a significant acceleration advan-
tage, achieving an acceleration ratio of approx-
imately 2x compared to directly using LLM
for generation.

2 Related Work

2.1 Large Language Models on Machine
Translation

Research on Large Language Models (LLMs) for
machine translation can be broadly divided into
two categories: utilizing LLMs as an interface and
optimizing them for specific translation tasks. For
the former, Hendy et al. (2023) evaluate ChatGPT,
GPT3.5, and text-adavinci-002 in eighteen trans-
lation directions, while Zhu et al. (2023) assess
XGLM, BLOOMZ, OPT, and ChatGPT across 202
directions and 102 languages. Other researchers
explore strategies for selecting translation exem-
plars (Lin et al., 2022; Agrawal et al., 2022) and
incorporating external knowledge (Lu et al., 2023)
to enhance GPT translation. Fine-tuning smaller
models (e.g., 7B) specifically for translation tasks
has attracted increasing attention (Zeng et al., 2023;
Zhang et al., 2023; Jiao et al., 2023). Diverging
from existing approaches, our research focuses on
examining the capabilities and limitations of com-
mercial NMT systems and MT-oriented LLMs and
developing efficient hybrid frameworks that lever-
age their respective strengths.

2.2 Accelerate Generation for Large
Language Models

Efforts to improve the inference efficiency of LLMs
have been ongoing for several years (Tay et al.,
2023; Xu et al., 2021), leveraging techniques such
as knowledge distillation (Hinton et al., 2015; Jiao
et al., 2020; Wang et al., 2020), quantization (Shen
et al., 2020; Sun et al., 2020), pruning(Fan et al.,
2020), and others (Kim and Cho, 2021; Lei, 2021).
The most related work is to leverage speculative
execution (Burton, 1985; Hennessy and Patterson,

'We release code and the translations of different systems
at https://github.com/lemon0830/CoDec
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System COMET COMETk. COMET COMETk. COMET COMETk. COMET COMETk.
DE=EN EN=DE ZH=EN EN=ZH
WMT-Best 85.0 81.4 87.2 83.6 81.0 1.7 86.7 82.0
GoogleMT 85.8 81.8 88.1 84.1 82.7 79.3 88.2 82.7
MicroMT 85.1 81.4 87.4 83.7 80.3 71.5 86.0 81.3
BayLing-7B 83.2 80.1 82.1 79.2 77.5 75.1 84.4 79.6
TIM-13B 84.4 81.0 86.4 83.1 80.8 71.8 87.6 82.3
RU=EN EN=RU JA=EN EN=-JA
WMT-Best 86.0 81.7 89.5 84.4 81.6 80.3 89.3 85.8
GoogleMT 86.6 82.0 89.5 84.2 84.0 81.7 90.2 86.5
MicroMT 85.5 81.1 88.7 83.6 81.5 80.1 88.0 85.3
BayLing-7B 82.5 79.3 74.7 70.6 72.2 72.5 71.2 73.5
TIM-13B 84.2 80.8 86.7 82.5 80.8 79.8 87.5 84.5
Table 1: Experimental results on the WMT22 test sets. MT-oriented LLMs have the potential to achieve

comparable performance to commercial NMT systems, eliminating the need for rule-based engineering techniques.

2012) for the speedup of autoregressive models.
Stern et al. (2018) propose to decode several to-
kens in parallel to accelerate greedy decoding. For
LLMs, speculative decoding (Chen et al., 2023a;
Leviathan et al., 2023) uses an additional draft
model and generates sequences with sampling.
Yang et al. (2023) copy some tokens from retrieved
reference text to the decoder, which are validated
with output probabilities. Santilli et al. (2023) re-
frame MT’s standard greedy autoregressive decod-
ing procedure with a parallel formulation. We are
pioneers in using speculative execution as a fu-
sion approach for commercial NMT systems and
MT-oriented LLMs, without requiring an auxiliary
quality estimation module or modifications to the
target LLMs’ parameters.

3 Preliminary Experiments

In this section, we conduct a series of analyses
to quantitatively investigate the characteristics of
translations from different systems.

3.1 Setup

Commercial NMT Systems & MT-oriented
LLMs. Our focus is the use of MT-oriented
LLMs in industrial settings, and the chosen com-
mercial NMT systems consist of Google Translate
(GoogleMT for brevity)2 and Microsoft Translate
(MicroMT for brevity)® due to their strong perfor-
mance and high reproducibility.

Regarding MT-oriented LLMs, we utilize
BayLing-7B (Zhang et al., 2023). We directly use
the translations released on GitHub*. Additionally,

Zhttps://translate.google.com/
3https://www.bing.com/translator

“https://github.com/ictnlp/BayLing/tree/main/exp/translation

_benchmark/bayling-7b

we develop an in-house MT-oriented LLM, trained
on human-written validation data from previous
WMT competitions®, such as the newstest2017-
2021 of German<English, Chinese<English,
Russian<English, and Jappanese<English. In
addition, we have incorporated high-quality
bilingual sentence pairs in Chinese<English,
German<English, and Russian<English, result-
ing in a total of two million sentences in our train-
ing data. According to the data license of WMT22,
the data released for the General MT task can be
freely used for research purposes. We fine-tune the
‘[igerbot-13b—base6 with TIM (Zeng et al., 2023) as
the final MT-oriented LLM’.

Automated MT Metrics. We follow previous
studies (Hendy et al., 2023; Zhu et al., 2023; Zeng
et al., 2023; Zhang et al., 2023) to utilize COMET-
22 (wmt22-COMET-da) (Rei et al., 2021), and
COMETkiwi (wmt22-COMET-kiwi-da) (Rei et al.,
2022b) for reference-free quality estimation. We
also report ChrF (Popovic, 2015) and SacreBLEU
(Papineni et al., 2002) in Table 7 in Appendix.

3.2 Analyses on WMT?22 test sets

To prevent data leakage (Garcia et al., 2023), we
analyze the WMT?22 test sets. Detailed statistics
are reported in Appendix A.

Main Results. The experimental results are il-
lustrated in Table 1. We have made the following
observations: 1) GoogleMT and MicroMT show-
case excellent performance. They consistently out-
perform the WMT winner in most of the language
pairs, highlighting the robust capabilities of these
Shttps://www.statmt.org/wmt22/translation-task html

®https://huggingface.co/TigerResearch/tigerbot-13b-base
https://huggingface.co/Lemoooon/TIM_13B_forCoDec
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Figure 2: Off-target rates (%) of translations. MT-oriented LLMs (i.e., BayLing and TIM) exhibit a higher

prevalence of off-target translations than NMT systems.
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Figure 3: Comparison of unaligned source words, unaligned target words, and the length of translations. MT-
oriented LLMs consistently generate translations that are noticeably shorter in length and have a higher occurrence
of unaligned source words across the test sets when compared to NMT models.

well-established translation engines. 2) Despite the
existing performance gap, MT-oriented LLMs still
have untapped potential for further improvement.
Notably, TIM outperforms BayLing by a significant
margin across all language pairs. Moreover, TIM
exhibits slightly inferior performance compared to
MicroMT on most test sets. This suggests that em-
ploying more effective fine-tuning methods with
large amounts of high-quality parallel data can en-
hance the translation capabilities of MT-oriented
LLMs, making them close to commercial NMT
systems.

Off-target Rates. Off-target indicates transla-
tions generated by machines involve segments of
wrong languages or code-mixing, presenting a sig-
nificant challenge in multilingual neural machine
translation (Chen et al., 2023b; Zhang et al., 2020).
Here, we use langdetect® to identify the language
of each translation. The off-target rate of a trans-
lation is the subtraction of the probability of the
target language prediction from 1. For a test set,
we compute the average off-target rate across all
the sentences.

As depicted in Figure 2°, the MT-oriented

8https://github.com/Mimino666/langdetect
*Due to limited space, we only present the results for

LLMs tend to produce translations with higher off-
target rates compared to NMT systems. Specifi-
cally, BayLing exhibits off-target rates of 21% and
53.83% for EN=RU and EN=-JA translations, re-
spectively, which falls outside the language scope
covered by the training data. This highlights a
more pronounced off-target issue in LLMs, es-
pecially in zero-shot scenarios. In contrast, TIM
achieves notably lower off-target rates in EN=RU
and EN=-JA compared to BayLing. We speculate
that this can be attributed to TIM’s incorporation
of corresponding training data, which enhances its
ability to handle language switching and produce
more accurate translations.

Unaligned Source/Target Words. To assess the
literalness of the translation, we follow Raunak
et al. (2023); Hendy et al. (2023) to calculate the
number of source and target words that do not align
on a word-to-word basis. More details can be found
in Appendix B. The left portion of Figure 3 illus-
trates that the MT-oriented LLMs incur a notably
larger number of unaligned source words across
the test sets than the NMT counterpart.

We examine the top six part-of-speech (POS)

English-to-Many translations here. The results for Many-to-
English can be found in Figure 7 in Appendix.
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Figure 4: POS tags of unaligned source words. We show the top-6 POS tags of USW on the WMT22 EN=-ZH
test set, and the incremental USW of MT-oriented LLMs mainly lies in nouns (NN) and adjectives (JJ).

Eample System  Translation USW Reference

Were you able to try purchasingon MicroMT &2 INZX AEM 35 _E AT EA EM%? - S4B {55 FA B R M T3 7
the computer on the website? TIM REETER 3G b 2534 g STNG ? computer xng?

After much frustrationshouting  MicroMT ZEFTBIERNNEFRABAMZE, HEFEH - £ 7L BN BENTEIAY
at my watch during phone calls so T, XA IR R/ SRR SUTERAAT AT
I could be heard and / or TIM EREEMEROFRABMAN, XHRAME  frustration IR REFRARA
understood. T E R/ IR R, Mz fE.

What kind of message does that MictoMT XK —MNEFRERME, BREXHAR - HE—EZAEE.
send into the receptive , super- RIETAFNER? BEEREANET R
alert brain of a tiny child ? TIM REBYNGBT BT ARNESR? brain, receptive, |1 AFFHIERIE?

super-alert

Figure 5: Examples of free translation generated by MT-oriented LLM. MT-oriented LLMs often produce
shorter translations with significant paraphrasing, maintaining the original meaning while using different words and

sentence structures.

tags by NLTK toolkit (Bird et al., 2009) of the un-
aligned source words (in Figure 4). The difference
mainly lies in nouns (NN) and adjectives (JJ), indi-
cating the possibility of increased paraphrasing or
a higher degree of inadequacy, such as omitted or
inserted content. However, back to the middle part
of Figure 3, the number of unaligned target words
of the MT-oriented LLLMs does not significantly
differ from those of NMT systems, suggesting that
the adequacy of translations produced by LLMs is
comparable to NMT.

Additionally, we calculate the average word
count in the generated translations. As depicted
in Figure 3, MT-oriented LLMs tend to produce
shorter sentences, utilizing concise and precise lan-
guage. Humans often use concise language, espe-
cially in conversations, which is abundant in the
training corpus of LLMs. This influence may result
in LLMs generating shorter translations.

Figure 5 presents several examples that highlight
translation differences. For instance, the phrase
“frustration shouting” should be translated as “K
W K MY (scream in frustration)”. While MicroMT
aims for fidelity by using translation augmenta-
tion segments like “FIEH JH T (I feel extremely

frustrated)”, TIM demonstrates a better understand-
ing of the entire sentence and provides more accu-
rate translations. However, in the third example,
TIM overlooks the inclusion of the expression “the
receptive, super-alert brain of a tiny child” from
the source text, resulting in a certain degree of
translation oversight. In summary, MT-oriented
LLMs tend to generate shorter translations with
substantial paraphrasing, where the original text
is rephrased using different words and sentence
structures while preserving the same meaning.

3.3 Analyses on Web Crawl test sets

The WMT?22 test set is meticulously screened and
annotated, with source sentences free of errors and
from common domains. While the sentences have
strong syntactic structures and grammatical cor-
rectness, real-world translation scenarios may not
always have these ideal conditions. To reflect prac-
tical challenges, we collected a challenging test set
from the open domain through web crawling. Here,
we focus on Chinese<English directions. To ac-
quire the data, we follow the process outlined in
Appendix C.
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System  Translation

Terminology/abbreviations

WL v e 25 TN, L RENE B 5,

Source

GoogleMT I was just about to go to Xiamen for a trip, and I could also run the Xiamen Horse Racing.

TIM Just ready to go to Xiamen for a trip, and can also run the Xiamen Marathon,
1ll-informed text
Source Use a no. 6 fi Ibert to create the illusion of the rungs and the back of the chair on the left.

GoogleMT T - 6 BEF OIS NMBRFIREEHIZ] N -

TIM R 6 SEZELNNEF L OBERIAR S RS -
Complex, Repetition-containing
Source  TRELRITE\ (e axia) Mo Moo Wy e g G i 2 4% L

GoogleMT Save the drama)“Total Eclipse of Love” Ahhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh being to To to to toto to Eclips e Love! !

TIM

Save the drama drought \ “Total Eclipse of Love” ah ah ah ah ah two kissing monsters!!

Table 2: Case Study. We present examples of several translation challenges that pose difficulties for NMT systems

but are effectively mitigated by MT-oriented LLMs.

System GoogleMT MicroMT TIM
ZH=EN
COMETY 64.4 59.2 65.1
COMETk.1 59.1 574 61.9
#Length 56.81 51.38 52.09
Off-Target| 1.08% 1.04% 1.82%
uSw 13.87% 13.70% 16.52%
UTWwW 31.29% 25.08% 27.91%
EN=ZH
COMET? 71.2 68.9 74.6
COMETk.1 60.5 62.9 64.9
#Length 48.51 47.99 46.57
Off-Target]. 15.55% 14.08% 22.41%
USw 21.76% 20.23% 25.70%
UTW 16.55% 13.64% 16.39%

Table 3: Experimental results on WebCrawl test sets.
LLMs hold promise as potential fallback systems when
NMT systems fail to meet quality expectations.

Main Results. Similarly, we compute various
evaluation metrics for NMT systems and TIM on
the WebCrawl test sets. As shown in Table 3, it
is noteworthy that 7/M demonstrates significant
improvements in both ZH=EN and EN=-ZH di-
rections. This surprising finding suggests that M'T-
oriented LLMs can serve as valuable fallback sys-
tems in cases where the quality of commercial
NMT systems is unsatisfactory.

To further support our hypothesis, we calculate
the COMETkiwi scores of the translations gener-
ated by GoogleMT and TIM against the source text,
selecting a group of sentences where GoogleMT
has higher scores than 7IM by more than 3 points,
and another group where 7IM has higher scores
than GoogleMT. To mitigate the impact of sentence
lengths, we retain only those sentences containing

fewer than 60 tokens. Next, we use gpt2-large'’
to calculate the perplexity for the two groups. The
perplexity for sentences in which GoogleMT ex-
cels is 38.61, whereas for sentences in which TIM
performs better, it is 45.51. The MT-oriented LLM
showcases superior proficiency in handling com-
plex source language sentences, as reflected by
higher perplexity scores.

Case Study. In Table 2, we provide several ex-
amples that are hard for GoogleMT to handle but
are solved well by TIM. It shows that the NMT sys-
tem struggles to understand the meaning of some
professional terms and fails to produce suitable
translations for ill-informed text. In contrast, MT-
oriented LLM demonstrates its superiority in han-
dling such issues, which can be attributed to its
enhanced ability to comprehend rare, specialized
words, and informal texts.

3.4 Discussion

The analysis in Section 3.2 demonstrates the accu-
racy of commercial NMT systems, likely due to
their extensive training and cross-attention capabil-
ity. MT-oriented LLMs, known for their paraphras-
tic nature, can further enhance NMT’s ability to
handle figurative text translations. Moreover, M'T-
oriented LLMs excel on WebCrawl test sets (Sec-
tion 3.3), particularly with specialized terminology
and ill-formed sentences. This suggests that an
effective hybrid framework combining NMT and
LLMs can handle challenging input domains and
figurative text. Based on these insights, we pro-
pose to investigate an effective hybrid framework

https://huggingface.co/gpt2-large
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input:iL®3F NIEZINTT 5 5 A D FERERIF-HER

NMT System

Jiangxi will train 10,000 rural primary school phonetic and physical beauty teachers within 3 years-Xinhuanet

Stepl: Draft

Step2: Verify

Write a response that appropriately completes the request. \n\n ### Request: \n Translate from Chinese to English \n :L 834 R 3§3& 9 7 & % b FH4k
#£$U% \n\n ### Response: Jiangxi will train 10,000 rural primary school phonetic and physical beauty teachers within 3 years-Xinhuanet

MT-oriented LLM VvV VNV X

Step3: Re-decoding

Write a response that appropriately completes the request. \n\n ### Request: \n Translate from Chinese to English \n iT &34 3§33 7 & % & FH4k
##J7 \n\n ### Response: Jiangxi will train 10,000 rural primary school

MT-oriented LLM ]——>| teachers in music, physical education and art in three years - Xinhuanet

|

Output: Jiangxi will train 10,000 rural primary school teachers in music, physical education and art in three years - Xinhuanet

Figure 6: Cooperative Decoding. The NMT model generates the initial translation (referred to as draft), and the
MT-oriented LLM assesses the quality of the draft and takes over from the error position, performing verification

and re-decoding steps (Verify and Re-decoding).

to answer the second question: How can we effec-
tively harness the capabilities of LLMs to enhance
translation quality?

Hybrid Threshold (Hendy et al., 2023) em-
ploys the NMT model as the primary translation
system, with a quality estimation module (e.g.,
COMETkiwi) to assess the translation. If the qual-
ity falls below a certain threshold, the GPT-like
model is used as an alternative translation engine.
However, it faces two main challenges: autoregres-
sive decoding latency and reliable quality estima-
tion. The practical implementation of the hybrid
approaches must ensure efficient decoding and high
translation quality.

4 Cooperative Decoding

We propose an innovative cooperative decoding ap-
proach. This approach leverages an NMT model
as a pretranslation model and incorporates an MT-
oriented LLLM as a quality assessment module and
fallback model if needed. The overview of coopera-
tive decoding is shown in Figure 6 and we will give
a detailed description of each step in the following.

Stepl: Draft Generation. Given an input source
sentence x, the NMT system generates the trans-
lation o using an autoregressive decoding strategy
like beam search. The difference is that the transla-

tion o is considered as a draft and requires further
confirmation or modification before being used as
the final output.

Step2: Verification. We feed o into the MT-
oriented LLM in a forward process, which fully
utilizes parallel computing. The procedure is the
same as training LLMs, and we can obtain a prob-
ability distribution v; at each position, which is
modeled as P(o¢|o<¢, x). The distribution can be
regarded as the confidence of the LLM given the
specific prefix of the draft o, and we use it to verify
the prediction of the NMT model. One straightfor-
ward approach for verification is to check whether
the token with the highest probability matches the
prediction of NMT. If o is fortunately exactly the
same with {argmax(v1), ..., argmax(vy,)}, the in-
ference will finish with o as the final translation.
However, high-quality generation does not follow
a distribution of the highest probability of the next
tokens, and the tokens in o that can be regarded as
accurate may appear outside of the top-1 selection,
like in beam search. To address this issue, we relax
the matching constraint using the top-k candidates
of the LLM and define the verification criterion as

ot € top—k(uvy). D
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ZH=EN EN=ZH

Method COMET COMETK. Token/s Speedup Ratio COMET COMETk. Token/s Speedup Ratio
GoogleMT 76.8 72.8 - - - 81.9 74.5 - - -

TIM 75.6 72.3 21.8 1.0x - 83.0 76.0 20.7 1.0x -

CoDec-4 76.7 73.0 28.5 1.3x 24.44 83.3 76.1 24.1 1.2x 21.64
CoDec-8 77.1 73.2 32.0 1.5% 38.83 834 76.1 25.8 1.3x 32.69
CoDec-16 771 73.3 38.7 1.8x 55.11 83.1 76.0 29.7 1.4x 46.06
CoDec-32 77.1 73.2 47.9 22X 67.36 83.0 75.8 33.6 1.6% 57.06
CoDec-64 77.0 73.1 57.7 2.7x 76.23 82.7 75.6 38.7 1.9%x 66.25
CoDec-128 77.0 73.0 73.5 3.4x 84.29 82.6 75.4 45.5 2.2% 74.35

Table 4: Effect of different values of £ (Eq. 1) for CoDec. We present the results on ZH=EN and EN=ZH
including COMET-22, COMETkiwi, decoding speed measured by tokens per second, decoding speedup, and the
ratio of the number of tokens accepted at the verification stage to the total tokens of the draft. The choice of &
should be considered to strike a balance between performance and efficiency.

Step3: Re-decoding. The verification is per-
formed from left to right, and we end the verifi-
cation once there is a situation that does not meet
the verification criteria, i.e., oy ¢ top—k(vy).
Then, we feed the verified prefix oy_; into the
MT-oriented LLM and use it to re-decode the sub-
sequent sequence. Compared to totally replacing
NMT models with MT-oriented LL.Ms, our coop-
erative decoding can speed up the whole inference
process due to the expensive cost of autoregressive
decoding. The speedup is more significant when
the longer draft is accepted. Moreover, the cooper-
ative mechanism alleviates the issue of inaccuracy
of LLMs by exploiting the output of NMT models.

S Experiments

5.1 Main Results

We merge the WMT22 and WebCrawl test sets
to simulate the distribution of translation requests
in real-world scenarios. For CoDec, we use
GoogleMT as the NMT system, and TIM as the
MT-oriented LLM. In particular, we set the thresh-
old as the 50th percentile of COMETkiwi scores
of GoogleMT (Hendy et al., 2023). We use the
MT-oriented LLLM to generate the translation only
when the COMETkiwi score of the NMT transla-
tion is under the threshold. We use beam search
with a beam size of 4 for TIM during inference.
The decoding and speed measurement processes
are performed on a single A100 GPU.

Effect of different values of k. Intuitively, as k
increases, cooperative decoding can accept a wider
range of tokens in NMT translations during the ver-
ification stage. As a result, less content needs to be
re-decoded by LLMs, leading to a reduction in pro-
cessing time. Here, we examine the performance

of CoDec under various values of k.

As shown in Table 4, with the increase of k, the
ratio of tokens accepted on average and the decod-
ing speed increase consistently. With a larger k,
CoDeC-128 achieves a 3.4x and 2.2x speedup over
TIM in ZH<EN. This signifies that CoDec effec-
tively reduces decoding latency while maintaining
translation quality. Besides, our CoDec-(*) mod-
els exhibit superior performance compared to both
GoogleMT and TIM. This highlights the potential of
cooperative decoding in improving translation ac-
curacy and overall system performance. Moreover,
models with lower values of k, such as CoDec-8,
achieve better translation quality, suggesting that
the choice of k£ should be considered to strike a
balance between performance and efficiency.

CoDec vs. Hybrid Threshold. In our com-
parison between CoDec and Hybrid Threshold,
we utilize different Quality Estimation (QE)
methods, including HT(Random), where 50%
of GoogleMT’s translations are randomly re-
placed with TIM’s translations, HT(BLEURT-12),
which uses BLEURT-20-D12!! as the QE method;
HT(BLEURT-20), which employs BLEURT-20'?
as the QE method; and HT(COMETk.). Addition-
ally, CoDec is integrated into the Hybrid Thresh-
old pipeline as a comparative system, referred to
as HT(COMETk.) w/ CoDec. Furthermore, we
follow Hendy et al. (2023) to use Hybrid Max-
Routing to establish an upper bound by selecting
the best translation from either system based on the
COMETkiwi.

The performance comparison in Table 5 reveals a
notable performance disparity between GoogleMT

"https://huggingface.co/lucadiliello/BLEURT-20-D12
Phttps://huggingface.co/lucadiliello/BLEURT-20
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Model ZH=EN EN=ZH Model DE=EN ZH=EN
COMET/COMETk. COMET/COMETKk. COMET/ChrF Suc. COMET/ChrF Suc.

GoogleMT 76.8/72.8 81.9/74.5 Lingua Custodia  73.5/61.8 62.2  60.9/32.6 74.7
TIM 75.6/72.3 83.0/76.0 UEDINLLM 81.3/60.0 58.8 75.7/41.2 75.3
HT(Random) 76.2/72.5 82.4/75.2 GoogleMT 80.3/54.3 550 75.3/41.0 67.1
HT(BLEURT-12) 76.3/72.8 82.6/75.1 TIM w/o term 79.6/54.0 54.1 73.8/38.5 58.6
HT(BLEURT-20) 76.3/72.8 82.7/75.2 TIM w/ term 82.3/65.2 82.5 73.4/39.4 85.0
HT(COMETKk.) 76.5/73.1 83.3/76.2

w/ CoDec 771/73.3 83.4/76.2 CoDec-8 80.7/56.1 59.0 75.3/41.0 764
CoDec-8 7717732 83.4/76.1 Table 6: Performance on WMT23 terminology trans-
Max-Routing 77.4/74.3 84.0/76.5 lation. “Suc.” denotes Terminology Success Rate.

Table 5: Comparison among CoDec-8 and Hybrid
Threshold with different QE methods. Different QE
methods in Hybrid Threshold (HT) show varying per-
formances, whereas CoDec surpasses most HT models.
Our CoDec achieves a better balance between efficiency
and effectiveness.

and Max-Routing. This result supports our asser-
tion that MT-oriented LLMs can play a crucial
role as reliable fallback systems for NMT systems.
Moreover, the different QE modules employed
in Hybrid Threshold yield varying performances,
highlighting the dependence of Hybrid Threshold’s
performance on the precision of the QE modules
and the quality of LLM translations used as replace-
ments. In contrast, CoDec-8 surpasses most of the
Hybrid Threshold models and achieves competitive
results with HT(COMETk.) w/ CoDec, suggesting
that the QE modules may not be necessary. The
findings validate that our approach achieves a bet-
ter balance between efficiency and effectiveness,
resulting in enhanced translation quality without
compromising system efficiency.

5.2 Human Evaluation

In addition, we carry out a human evaluation on
the WebCrawl EN=ZH dataset. A total of 300
sentences are randomly selected from the test set,
and two individuals are asked to evaluate the trans-
lations produced by GoogleMT, HT(COMETKk.),
and our CoDec-8. We use the commonly used pair-
wise comparison method to count the number of
better, similar, and worse translations from Sys-
tem 1 rather than System 2. The result of CoDec
vs. GoogleMT is 144:115:41, while the result of
CoDec vs. HT(COMETK.) is 106:130:64. It shows
that our CoDec significantly outperforms the com-
mercial NMT system and performs better than the
Hybrid Threshold without an additional quality
evaluation module.

Our CoDec combines NMT’s superior translation qual-
ity with the constrained translation capabilities of MT-
oriented LLMs.

5.3 Terminology Translation

Unlike conventional NMT models, MT-oriented
LLMs enable them to exploit instructions to han-
dle various translation scenarios. Here, we apply
CoDec to assess the effectiveness of incorporating
instructions in a dedicated terminology translation
test set obtained from WMT23!3. The result is
shown in Table 6, evaluated by COMET, ChrF, and
Terminology Success Rate. The data statistics and
details of baselines can be found in Appendix D.

The results indicate that the use of terminology
information in instructions, as demonstrated by
TIM w/ term, enables MT-oriented LLMs to achieve
constrained machine translation, resulting in more
accurate domain-specific terminology in the trans-
lated output. When compared to Lingua Custodia
and UEDINy ;v (Semenov et al., 2023), CoDec-8
combines the advantages of higher translation qual-
ity offered by NMT and the constrained translation
capabilities of MT-oriented LLMs. This combi-
nation leads to higher-quality translations while
maintaining a higher Terminology Success Rate.

6 Conclusion

We explore the strengths of both NMT and LLM
and propose CoDec that integrates the two to
achieve superior performance compared to existing
hybrid frameworks. Notably, our CoDec offers re-
duced decoding latency compared to relying solely
on LLMs for inference, and it does not require
any modifications to the target LLMs. We believe
that exploring more effective utilization of LLMs
while considering practicality in both industry and
academia is a valuable direction.

Bhttps://wmt-terminology-task.github.io/
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7 Limitations

This paper primarily concentrates on enhancing
translation performance for medium and high-
resource language pairs. Further investigation is
required to analyze the translation characteristics of
different systems in low-resource languages, which
we defer to future research.

Additionally, the draft translations were vali-
dated by directly utilizing the top-%k candidates
predicted by the target MT-oriented LLM. We ac-
knowledge that the implementation of more metic-
ulously designed token-level validation methods
has the potential to further enhance CoDec, and we
consider it as an avenue for future exploration.
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A  WMT?22 test sets

To prevent data leakage (Garcia et al., 2023), we
analyze the WMT?22 test sets, consisting of recent
content from diverse domains including news, so-
cial media, e-commerce, and conversation. The
test sets consist of the following number of sam-
ples for each language pair: German-to-English
(DE=-DE) - 1984 samples, English-to-German
(EN=DE) - 2037 samples, Chinese-to-English
(ZH=EN) - 1875 samples, English-to-Chinese
(EN=ZH) - 2037 samples, Russian-to-English
(RU=EN) - 2016 samples, English-to-Russian
(EN=RU) - 2037 samples, Japanese-to-English
(JA=EN) - 2008 samples, English-to-Japanese
(EN=JA) - 2037 samples.

B Unaligned Source/Target Words.

For English and German, we utilize the Moses
tokenizer'*. We use jieba!> and MeCab'® for Chi-
nese and Japanese, respectively. We use awesome-
align'” (Dou and Neubig, 2021) to obtain the word
alignments. Unaligned source words (USW) indi-
cate the number of words in the source text that
have no corresponding translation in the target sen-
tence. Unaligned target words (UTW) assess the
degree to which words are potentially added or
inserted into the translation without any basis or
support from the source sentence.

C WebCrawl test sets

To acquire the data, we follow the process outlined
below:

* We extract snippets from web pages and use
an in-house sentence segmentation tool to split
them into individual sentences.

“https://github.com/moses-
smt/mosesdecoder/tree/master/scripts/tokenizer
Bhttps://github.com/fxsjy/jieba
"®https://github.com/SamuraiT/mecab-python3
7https://github.com/neulab/awesome-align
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* We employ sensitive word filters, language
identification tools, length ratio checks, and
perplexity scores to filter out sentences of
lower quality.

* We utilize Google Translator to obtain trans-
lations of the sentences, with a primary focus
on the Chinese<English directions.

¢ We calculate COMETkiwi scores and retain
sentences with scores below 65.

In this way, we collected a total of 889 Chinese
sentences and 1195 English sentences as our final
test set, named WebCrawl test sets. We hire 2
annotators who have degrees in English Linguistics
to annotate translations. Before formal annotation,
annotators were asked to annotate 100 samples
randomly extracted from the dataset, and based on
average annotation time we set a fair salary (i.e.,
30 dollars per hour) for them.

D Terminology Translation

Terminology translation is an extensively encoun-
tered application scenario, where the NMT (Neural
Machine Translation) model is expected to pre-
cisely handle the provided domain-specific termi-
nology. In this experiment, we use the prompt
“{srcWord} means {tgtWord}. Translate
the following sentences from {src} to
{tgt}, and muse use the given word
translations.{line}” for inference of TIM.
The numbers of sentences on Zh=-En and De=-En
are 2640 and 2963, respectively. The average num-
bers of terms per segment on Zh=-En and De=-En
are 3.8 and 1.1, respectively. We only highlight a
few systems that achieved the best performance
on specific metrics in the competition findings
(Semenov et al., 2023). Lingua Custodia, which
utilizes a specialized Transformer architecture to
ensure the inclusion of given terminology in the
translation. Additionally, the UEDINy 1 employs
ChatGPT with prompts specifically designed for
terminology translation.

E Different from traditional NMT with
additional language models

Traditional language models, such as causal lan-
guage models are usually used as decoder initial-
ization or reranking to improve fluency. We do not
consider the prediction probabilities of LLMs dur-
ing the decoding process of NMT. Instead, we treat

LLMs as independent translation systems and intro-
duce speculative execution as a fusion approach for
NMT systems and MT-oriented LLMs. Notably,
we do not introduce additional monolingual train-
ing data and our research does not encompass back-
translation. Building upon this insight, we propose
a hybrid framework that combines the strengths of
both NMT systems and MT-oriented LLMs and
alleviates the limitations of individual systems.

F About speedup

The time consumption of the Hybrid Threshold is
the sum of the inference time for both the NMT
systems and the MT-oriented LLM, whereas the
CoDec requires only the inference time of the
NMT systems and a small amount of calculation
of the LLM. Considering the relatively negligible
time consumption of Google Translate, we did not
specifically factor in its inference time in our anal-
ysis, as it does not significantly impact the overall
performance comparison.
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System ChrF SacreBLEU ChrF SacreBLEU ChrF SacreBLEU ChrF SacreBLEU

DE=EN EN=DE ZH=EN EN=ZH
WMT-Best 58.5 334 64.6 38.4 61.1 33.5 41.1 44.8
GoogleMT 59.1 34.1 64.7 37.5 60.0 29.4 45.8 50.5
MicroMT 58.8 339 64.7 37.5 60.0 294 45.8 50.5
BayLing-7B | 53.6 28.2 53.6 25.7 49.9 20.3 345 382
TIM-13B 56.9 31.7 60.8 332 56.8 26.9 42.4 46.9

RU=EN EN=RU JA=EN EN=JA
WMT-Best 68.9 45.1 58.3 324 49.8 24.8 36.8 27.6
GoogleMT 69.1 45.7 59.5 343 51.8 26.2 37.6 28.2
MicroMT 69.1 45.7 59.6 34.9 49.5 24.6 34.8 25.1
BayLing-7B | 60.4 34.7 355 14.8 34.7 11.6 9.6 45
TIM-13B 65.7 40.4 54.6 28.5 46.3 21.6 29.6 19.7

100

95

90

97.53

75

100 100 100
2.! 241 2.53
58 2.98 3.67 511 434 3.21 2.81 3.23 2.83
7.97 7.85
8.98
95 95 95 T
90 0 90
97.42 97.59 97.47 97.02 96.79 97.19 96.77 97.17
85 9633 94.89 95.66 85 85
92.03 92.15 91.02
88.74
80 0 80
75 75 75
M

GoogleMT MicroMT  BayLing TIM GoogleMT  MicroMT  BayLing TIM GoogleMT  MicroMT  BayLing TI

Table 7: Experimental results on the WMT?22 test sets.

- Probability of Target Language - Probability of Other Languages

©

®

GoogleMT MicroMT  BayLing TIM
DE-EN ZH-EN RU-EN JA-EN

Figure 7: Off-target rates (%) of translations. MT-oriented LLMs exhibit a higher prevalence of off-target
translations than NMT systems.

System Translation
Terminology/abbreviations
Source Art. 18 GDPR: Right to restriction of data processing if the requirements Art. 18 para 1 lit. a to d are fulfilled.
GoogleMT ~ ZK. GDPR 5 18 5% WA F 18 FRAVESK, MIANIRHLIRLH . 18 B 15 aF|dIHE -
TIM CRABIRRITSFE) 55 18 %4 WS 18 &5 1 i a £ d WMESK, NI PRHIEGE B -
1ll-informed text
Source It CEBMLBNE AT B = mAE) +, (L
GoogleMT In the batch of "Announcement of Road Motor Vehicle Manufacturers and Products", JAC
TIM In the "Road Motor Vehicle Manufacturers and Products Announcement”, Jianghuai
Complex, Repetition-containing
Source let mut v = vec![10, 20, 30]; let handle = thread::spawn(ll v.push(10); );
GoogleMT il mut v = vec![10, 20, 30]; 1L AJ# = thread::spawn(ll v.push(10); );
TIM let mut v = vec! [10,20,30]; let handle = thread::spawn (Il v.push (10); );

Table 8: Case Study. We present examples of several translation challenges that pose difficulties for NMT systems
but are effectively mitigated by MT-oriented LLMs.
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