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Abstract

Instruction Tuning involves finetuning a lan-
guage model on a collection of instruction-
formatted datasets in order to enhance the gen-
eralizability of the model to unseen tasks. Stud-
ies have shown the importance of balancing
different task proportions during finetuning,
but finding the right balance remains challeng-
ing. Unfortunately, there’s currently no sys-
tematic method beyond manual tuning or re-
lying on practitioners’ intuition. In this pa-
per, we introduce SMART (Submodular data
Mixture strAtegy for instRuction Tuning) —
a novel data mixture strategy which makes
use of a submodular function to assign im-
portance scores to tasks which are then used
to determine the mixture weights. Given a
fine-tuning budget, SMART redistributes the
budget among tasks and selects non-redundant
samples from each task. Experimental results
demonstrate that SMART significantly outper-
forms traditional methods such as examples
proportional mixing and equal mixing. Fur-
thermore, SMART facilitates the creation of
data mixtures based on a few representative
subsets of tasks alone and through task pruning
analysis, we reveal that in a limited budget set-
ting, allocating budget among a subset of rep-
resentative tasks yields superior performance
compared to distributing the budget among all
tasks. The code for reproducing our results is
open-sourced at https://github.com/kowndinya-
renduchintala/SMART.

1 Introduction

“Your ability to juggle many tasks will take you far.”

One of the main goals of artificial intelligence
(AI) research is to build machines that can com-
municate (Turing, 1950), and an essential part of
communication is to understand and follow instruc-
tions. Large Language Models (LLMs), which are
pre-trained over massive text corpora on next-token-
prediction objective, can perform a wide range of

NLP tasks via “prompting” (Brown et al., 2020;
Kojima et al., 2022; Almazrouei et al., 2023; Liu
et al., 2023; Touvron et al., 2023).

Instruction Tuning (Wei et al., 2021; Sanh et al.,
2021; Chung et al., 2022) is an approach that fur-
ther enhances the instruction-following ability and
generalizability of pre-trained LLMs to unseen
tasks. It involves fine-tuning an LLM on a col-
lection of instruction-formatted instances (encom-
passing multiple tasks) - each consisting of an in-
struction (or task description), an optional input,
the corresponding output (the ground truth) and
optionally a few demonstrations/examples. It is a
special case of multitask learning where the LLM
is finetuned on a collection of instruction-formatted
multitask datasets (Chung et al., 2022). Finetuning
on multiple tasks simultaneously, allows the model
to share and transfer information across tasks, re-
sulting in a better common internal representation
that is preferred by all tasks while suppressing task-
dependent noise (Caruana, 1997). Consequently,
the model learns to generalize to unseen tasks by
discerning helpful cues from both implicitly and
explicitly related tasks that it has previously seen.

The performance enhancement from instruction
tuning is heavily contingent on data quality, data
quantity, and task composition (Wang et al., 2023b).
Studies by Iyer et al. (2022) and Longpre et al.
(2023) have shown that while scaling the number
of tasks is important, the relative proportion of
various tasks (mixture weighting) merits as much
attention for optimal instruction tuning. Intuitively,
we want the model to see enough data for a given
task that it can perform well on it, but not to see so
much data that it memorizes the training set (Raffel
et al., 2020). Iyer et al. (2022) performed man-
ual tuning of various benchmark proportions and
decided on a final mixture, whereas Longpre et al.
(2023) studied the impact of removing each bench-
mark from the finetuning mixture and relied on
their practioners’ intuition from there on, to decide
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on the exact proportions of benchmarks. In this
work, we would like to explore a more systematic
approach to mixture weighting. Specifically, we
are motivated by the fact that in a large multitask
dataset like FLAN 2022 (Longpre et al., 2023),
which has 1840 tasks, there will likely be many
similar tasks leading to redundancies and not all of
them may require sampling in equal proportions.
For instance, there might be many tasks of the type
Natural Language Inference (NLI), and it might be
enough to sample relatively more instances from
a few representative NLI tasks and less from the
others. Furthermore, which samples we select from
each task is also crucial because the samples should
faithfully represent the task at hand. A random sub-
set may fail to do this as it can miss out on essential
corner cases.

With this context, we focus on the following two
fundamental research questions (RQs) that form
the basis for our subsequent inquiry:

• (RQ1) Given a huge multitask instruction-
tuning dataset and a limited fine-tuning bud-
get which is defined by the total number
of (prompt, response) instances that can be
used for fine-tuning, how do we divide this
budget among thousands of tasks present in
the dataset? i.e., how many instances to sam-
ple from each task? and which instances to
sample from each task?

• (RQ2) Can we go a step further and strate-
gically prune some tasks altogether and only
fine-tune on a small subset of representative
tasks without hurting the performance? If yes,
what is the nature of this subset?

To the best of our knowledge, there’s currently
no principled approach to determining task com-
positions for instruction tuning, other than manual
tuning and/or practioners’ intuition.

As a first step towards addressing both of the
above RQs, we first define a common subset selec-
tion problem (more formally stated in Section 3) as
follows - Given a huge collection of M instruction-
formatted task datasets, a task budget M ′ ≤M and
a total budget (N ′) of (prompt, response) pairs,
which M ′ tasks to select? and how many instances
to select from each of these M ′ tasks and which
instances to select? Note that RQ1 is an instance
of this problem where M ′ = M .

Constrained Submodular Maximization (Sec-
tion 2) proves to be a good model for discover-
ing representative subsets (or coresets) of a mas-
sive training dataset (or ground set) that acts as

surrogate (i.e., achieves similar performance) and
are much better than uniformly-at-random subsets.
Intuitively, this is because submodular functions
model information in subsets, and hence maximiz-
ing a submodular function subject to a constraint
yields non-redundant subsets of the ground set. An
essential feature of this model is that it returns
weighted subsets, i.e., each sample in the coreset
comes with an associated score, which indicates
how important the sample is.

Inspired by submodular functions, we propose
our solution (Section 3) to the above subset selec-
tion problem for instruction tuning that works in
two stages. In the first stage, we select a weighted
subset of tasks from the full dataset where the
weights will determine how many samples to select
from each task. In the next stage, we select samples
from each task based on the assigned task budgets.
Note that the submodular functions used in each
stage are not necessarily identical (Section 4.8).

The main contributions of our work can be sum-
marized as follows:

• We introduce SMART — a novel data mix-
ture strategy for instruction tuning that mod-
els the data mixture problem (Section 3) as a
sequence of two cardinality-constrained sub-
modular maximization problems and offer em-
pirical evidence that it outperforms both exam-
ples proportional and equal mixing baselines
(Section 4) as well as the mixture weights pro-
posed by Longpre et al. (2023).

• Existing works like Longpre et al. (2023) have
reported a continuous increase in performance
upon increasing the number of tasks (though
the gains themselves may be diminishing).
However, we posit that this depends on the
order in which new tasks are incorporated and
show empirically that in the case of SMART
mixtures, a performance peak is observed with
an initial addition of few representative tasks
and upon adding more and more tasks, the
performance is not sustained (Section 4.6).

• We find that the nature of instances that should
be selected in each task (i.e, whether a repre-
sentative or diverse subset) also depends on
the total task budget, M ′ (Section 4.8). For
higher M ′s, each task on average gets the rela-
tively low budget and selecting representative
samples is more important; however for lower
M ′s, when there is sufficient enough budget
for each task, the need for diversity dominates
that of representation.
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2 Background: Submodularity

Notations. Let f : 2V → R be a set function
that assigns a value to every subset of the ground
set V . We use the notation f(v|X) as a shorthand
for f(X ∪ {v})− f(X) i.e., the incremental value
gain of v in the context of X .

Definition 1. (Submodular Function) A given set
function f : 2V → R is submodular if for all
X,Y ⊆ V , where X ⊆ Y and for all v /∈ Y , the
following inequality holds true:

f(v|X) ≥ f(v|Y ) (diminishing gains property)

Intuitively, the definition states that — Adding
an element to a smaller set X yields more value
gain than adding the same element to a superset
Y of X . Table 1 contains examples of three sub-
modular functions — Facility Location (models
representation), Log Determinant (models diver-
sity), and Graph Cut (models a trade-off between
representation and diversity controlled by the pa-
rameter λ).

Submodular Function f(X)

Facility Location
∑
i∈V

max
j∈X

sij

Graph Cut
∑

i∈V,j∈X
sij − λ

∑
i,j∈X

sij

Log Determinant log det(SX)

Table 1: Examples of Submodular Functions. V is the
ground set and X ⊆ V . sij is the similarity between two
elements i and j of the ground set. SX is the similarity
matrix between the items in X . Facility Location mod-
els representation; Log Determinant models diversity
and Graph Cut models a trade-off between representa-
tion and diversity (governed by the parameter λ).

Definition 2. (Cardinality Constrained Submod-
ular Maximization) Given a submodular function
f : 2V → R defined over the subsets of the ground
set V , the constrained submodular maximization
problem involves finding S∗ such that

S∗ = argmax
X⊆V

|X|≤N ′

f(X)

The above cardinality-constrained submodular
maximization problem is NP-complete (Feige,
1998). However, if f is monotone submodular (i.e.,
f(X) ≤ f(Y ) whenever X ⊆ Y ), Nemhauser
et al., 1978; Fisher et al., 1978 show that a simple
greedy algorithm described in Algorithm 1 can be

used to find an approximate solution Sgreedy, with
a guarantee that f(Sgreedy) ≥ (1− 1/e)f(S∗).1

Algorithm 1 The Naïve Greedy

Input: Ground Set (V), Budget (N ′)
X0 ← ∅;
S ← [ ];
Gains← [ ];
for i = 0 to (N ′ − 1) do
e∗ = argmax

v∈V\Xi

f(v|Xi);

gi+1 = f(e∗|Xi);
Xi+1 = Xi ∪ {e∗};
S.append(e∗);
Gains.append(gi+1);

end for
return S, Gains;

Remark. The algorithm produces a weighted
subset where the value gains themselves are the
weights (i.e., max

v∈V\Xi

f(v|Xi) is the weight of

argmax
v∈V\Xi

f(v|Xi)).

Algorithm 1 (also known as Naïve Greedy) re-
quires O(N ′.|V|) function evaluations which is
costly in practice. Accelerated Greedy (Minoux,
2005), also known as Lazy Greedy, can be used
instead, which leverages submodularity and offers
a more efficient heap-based implementation of the
same algorithm.

3 Approach

Inspired by submodularity (Section 2), in this sec-
tion, we introduce a novel data mixture strategy,
SMART, as a technique to solve the following
subset selection problem introduced in Section 1:

Consider a collection D = {T1, . . . , TM} of
M instruction-formatted task datasets where each
Ti = {(promptij , responseij)}

NTi
j=1 consists of

NTi (prompt, response) pairs. Let
∑M

i=1NTi =
N . Given an M ′ ≤M and an N ′ ≤ N , how do we
select a subset of tasksD′ = {T ′

1 , . . . , T ′
M ′}(where

D′ ⊆ D), and subsequently S = {S1, . . . ,SM ′}
(where Sj ⊆ T ′

j ) and
∑M ′

j=1 |Sj | = N ′) such
that efficiently fine-tuning on the subset S alone
is (nearly) as effective as fine-tuning on the entire
collection D?

SMART models the above problem as a se-
quence of two cardinality-constrained submodular

1Assuming P ̸= NP , this is the best approximation ratio
that can be achieved by any polynomial time algorithm.
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maximization problems. The first one is to select
a weighted subset of M ′ tasks and the second one
is to select instances - a total of N ′ instances from
these tasks. The weights obtained in the first stage
will be used to determine how many instances we
sample from each task.

3.1 The Algorithm

We now give a detailed description of the two
stages of SMART (summarized in Algorithm 2):

3.1.1 Stage-1: Weighted Task Subset Selection

In this first stage, given the instruction-tuning
dataset D = {T1, . . . , TM}, our goal is to find
D′ = {T ′

1 , . . . , T ′
M ′} where D′ ⊆ D, along with

the instance budgets, {N ′
1, . . . , N

′
M ′}, such that∑M ′

j=1 |N ′
j | = N ′.

If f1 is the submodular function that we use in
this stage, D′ is given by:

D′ = argmax
X⊆D

|X|≤M ′

f1(X)

To find the instance budgets (N ′
js), we use the

second-order Taylor-softmax operation (De Bre-
bisson and Vincent, 2015) on the value gains ob-
tained from the greedy algorithm, to compute a
probability distribution which determines the prob-
ability with which instances will be sampled from
a given task i.e., if {g1, . . . gM ′} are the value gains
returned by the greedy algorithm, corresponding to
the tasks {T ′

1 , . . . , T ′
M ′}, the instance budgets are

given by

N ′
j =

(1 + gj + 0.5g2j )∑M ′
k=1(1 + gk + 0.5g2k)

×N ′

3.1.2 Stage-2: Instance Subset Selection

In this stage, given the subset of tasks,
{T ′

1 , . . . , T ′
M ′}, and the instance budgets

{N ′
1, . . . N

′
M ′} from the first stage, the goal is to

actually select those many samples from each task.
If f2 is the submodular function used, the final
subset S is given by

S =

M ′⋃

j=1

argmax
Xj⊆T ′

j

|Xj |≤N
′
j

f2(Xj)

Algorithm 2 The SMART Data Mixture Strategy

Input: Task datasets D = {T1, . . . , TM}, Task
Budget (M ′), Instance Budget (N ′), f1, f2
# Each Ti = {(promptij , responseij)}

NTi
j=1

encoder ← SentenceEncoder()
prompt_embeddings← dict()
task_embeddings← dict()
for i = 1 to M do
V← [ ]
for j = 1 to NTi do
v← encoder.encode(promptij)
V.append(v)

end for
prompt_embeddings[Ti] = V

task_embeddings[Ti] =
1

NTi

NTi−1∑
j=0

V[j]

end for
Ktask = cos_sim(task_embeddings)
D′, gains = Greedy(f1,D,Ktask,M

′)
# D′ = {T ′

1 , . . . T ′
M ′}

probs← Taylor_Softmax(gains)
S ′ ← [ ]
for j = 1 to M ′ do
N ′

j = probs[j]×N ′

KT ′
j
= cos_sim(prompt_embeddings[T ′

j ])

ST ′
j
, gains = Greedy(f2, T ′

j ,KT ′
j
, N ′

j)

S ′.append(ST ′
j
)

end for

S =
M ′⋃
j=1
S ′[j]

return S

3.2 Obtaining Similarity Measures

The three submodular functions listed in Table 1
require computation of similarity measures (sij)
between items in the ground set. So, all prompts
in the dataset are first encoded using a sentence en-
coder. For instance subset selection (i.e., Stage-2),
cosine similarity between prompt embeddings is
used as the similarity measure and for weighted
task subset selection (i.e., Stage-1), cosine similar-
ity between task embeddings is computed, where
the task embeddings are computed as the average
prompt embeddings, following Vu et al. (2020).
Although there are other sophisticated methods
(Achille et al., 2019; Zhou et al., 2022; Xi et al.,
2023; Vu et al., 2021) for obtaining task embed-
dings, most of them depend on the LLM at hand.
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3.3 Choosing f1 and f2

Each submodular function in Table 1 captures a dif-
ferent property: facility-location emphasizes rep-
resentation, graph-cut balances representation and
diversity, and log-determinant prioritizes diversity.
We treat f1 and f2 as hyperparameters in our grid
search in Section 4.8, exploring three options for
each function. Determining the optimal f1 and f2
is part of our research question (RQ2). We discuss
the findings of grid search and their qualitative im-
plications for instruction tuning in Section 4.10.

4 Experiments

4.1 Finetuning Data

In all the experiments, the underlying ground set
(D) is FLAN 2022 (Longpre et al., 2023; Chung
et al., 2022). The collection consists of the fol-
lowing five sub mixtures adding up to a total of
1840 tasks and 17,591,640 (∼17.5M) instruction-
formatted (prompt, response) pairs:

• FLAN 2021 (Wei et al., 2021)
• T0 (Sanh et al., 2021)
• NIV2 (Wang et al., 2022)
• CoT (several chain-of-thought datasets)
• Dialog (a few dialog datasets)

Each of the tasks comes in a variety of templates -
zeroshot with and without answer options, fewshot
with and without answer options.

SMART Data Mixture Creation We encode
prompts in the collection with GTE-large (Li et al.,
2023b), a light-weight (340M parameters) BERT-
based effective (Muennighoff et al., 2022) sen-
tence encoder for semantic textual similarity. Task
embeddings are obtained by averaging the corre-
sponding prompt embeddings (Section 3.2). We
use SUBMODLIB (Kaushal et al., 2022), which
has the necessary algorithms implemented, to ob-
tain the weighted task subsets (Section 3.1.1) and
the instances (Section 3.1.2). We distribute the in-
stance budgets equally among task templates based
on findings by Longpre et al. (2023) which showed
that an equal number of zero-shot and few-shot
templates yield the best performance on held-out
tasks.

4.2 Finetuning Procedure

We evaluate SMART on three 7B parameter
LLMs: Llama-2 (Touvron et al., 2023), Falcon (Al-
mazrouei et al., 2023), and Mistral (Jiang et al.,
2023). We fine-tune each model for 1 epoch on a

given data mixture with a learning rate of 2e − 5
for Llama-2 and Falcon, and 5e − 6 for Mistral.
A batch size of 64, weight decay of 0.1, and co-
sine learning rate decay with a linear warmup for
the initial 1% training steps are employed. The
experiments all ran on 8 NVIDIA A100-SXM4-
80GB GPUs, utilizing Flash Attention (Dao, 2023)
for memory efficiency and speeding up finetuning.
Our code is open-sourced here.

4.3 Baselines

We mainly compare SMART with two baseline
mixture strategies: Examples Proportional Mixture,
Equal Mixture (Raffel et al., 2020).

Examples Proportional Mixture (Baseline-1)
Instances are sampled in proportion to the size of
each task’s dataset. This is equivalent to randomly
sampling from the combined datasets.

Equal Mixture (Baseline-2) Instances are sam-
pled from each task with equal probability i.e., by
dividing the total budget equally among tasks, and
then uniformly sampling from each task.

We also compare SMART with mixture weights
used by Longpre et al. (2023) but since their mix-
ture weights apply to the five sub mixtures listed in
Section 4.1 rather than individual tasks, we analyse
this separately in Section 4.7.

4.4 Evaluation Protocol

We evaluate the fine-tuned models on two bench-
mark datasets: MMLU (Hendrycks et al., 2020)
with 57 tasks assessing world knowledge and
problem-solving, and BBH (Suzgun et al., 2022)
with 23 challenging tasks from Big-Bench (Srivas-
tava et al., 2022). MMLU covers STEM, Humani-
ties, Social Sciences, and Other (business, medical,
and misc.) categories, while BBH includes both
NLP and Algorithmic tasks2. Evaluation involves
prompting the LLM directly and using Exact Match
as the scoring metric. Responses are generated us-
ing the greedy decoding approach and they undergo
basic post-processing steps (removing punctuation
and lower-casing) before calculating exact match.
For baseline data mixtures, 3 mixtures with differ-
ent random seeds are created and the mean exact
match of the 3 fine-tuning runs is reported.

2The Algorithmic subcategory is so named because these
tasks (e.g., 2-digit arithmetic) do not require an LLM to be
solved.
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N ′ Data Mix.

MMLU-ZeroShot (Exact Match) BBH-Zeroshot (Exact Match) MMLU + BBH

STEM Humanities
Social

Sciences
Other

MMLU
FULL

NLP Algorithmic
BBH
FULL

(Weighted Avg.)

25000
EPM (Baseline-1) 30.82 46 46.71 43.05 40.63 40.59 25.55 31.67 38.05
EM (Baseline-2) 30.33 45.01 43.81 40.55 39.03 40.08 20.29 29.46 36.27
SMART (Ours) 32.22 50.41 50.14 46.85 43.73 38.85 24.16 30.05 39.8

50000
EPM (Baseline-1) 31.59 47.68 47.18 44.68 41.76 41.25 26.49 32.64 39.14
EM (Baseline-2) 35.22 49.58 51.01 48.13 44.99 41.96 22.83 31.24 41.04
SMART (Ours) 36.51 53.06 54.49 50.79 47.58 46.73 20.1 31.75 43.03

100000
EPM (Baseline-1) 32.66 50.6 51.37 47.18 44.25 43.38 26.36 33.48 41.16
EM (Baseline-2) 36.03 50.7 52.53 47.1 45.57 44.4 25.18 33.55 42.11
SMART (Ours) 37.36 55.38 55.47 52.95 49.11 47.26 24.22 34.66 44.96

200000
EPM (Baseline-1) 35.19 54.64 54.75 50.58 47.53 45.25 26.57 34.52 43.79
EM (Baseline-2) 38.6 54.05 54.72 51.47 48.68 41.36 24.75 32.28 43.96
SMART (Ours) 39.2 57.29 58.71 55.01 51.32 47.99 24.47 35.27 46.7

400000
EPM (Baseline-1) 38.16 56.53 56.99 52.56 49.85 48.72 26.04 36.49 46.01
EM (Baseline-2) 39.43 55.97 57.59 53.65 50.52 47.37 26.08 35.8 46.29
SMART (Ours) 39.77 57.39 60.17 54.79 51.77 49.25 26.35 37.43 47.65

17,591,640 Full FLAN 2022 42.44 59.1 61.82 55.1 53.43 50.7 27.6 38.11 49.03

Table 2: Comparison of SMART with baselines on MMLU-zeroshot and BBH-zeroshot for Llama-2-7b. EPM
(Baseline-1) denotes Examples Proportional Mixture and EM (Baseline-2) denotes Equal Mixture. All the scores
are Exact Matches. Weighted average on 57 MMLU tasks and 23 BBH tasks is reported in the last column. For
baselines, exact matches are obtained by averaging across 3 fine-tuning runs.

4.5 Addressing RQ1 (M ′ = M )
RQ1 is an instance of the subset selection prob-
lem defined in Section 3, where M ′ = M ,
allowing all tasks for finetuning; however we
still have a constraint (N ′) on total number of
(prompt, response) pairs. We use Graph-Cut and
Facility Location functions (Table 1) in Stage-
1 (Section 3.1.1) and Stage-2 (Section 3.1.2) of
SMART respectively. This choice of f1 and f2
is determined via grid search discussed in Sec-
tion 4.8. Table 2 contains comparison of SMART
mixtures with baseline mixtures, on MMLU and
BBH benchmarks, upon instruction fine-tuning
Llama-2-7b on data mixtures generated by varying
N ′ in {25000, 50000, 100000, 200000, 400000}.
SMART data mixtures consistently perform bet-
ter than both examples proportional mixtures and
equal mixtures baseline.

4.6 Addressing RQ2 (M ′ < M )
RQ2 is an instance of the subset selection problem
defined in Section 3, where M ′ < M i.e., studying
the effect of pruning some tasks altogether, on both
SMART and the baseline data mixtures. We fine-
tune Llama-2-7b on both the baseline and SMART
data mixtures by varying the number of tasks
(M ′) in {8, 16, 32, 64, 128, 256, 512, 1024, 1840}
and the total number of instances (N ′) in
{25000, 50000, 100000, 200000, 400000}. Fig-
ure 1 depicts the task-scaling plots for each N ′.
Baseline data mixtures’ performance steadily im-
proves upon increasing the number of tasks, even

though the gains are diminishing after a point. In
contrast, SMART data mixtures yield optimal per-
formance at an in-between point and this perfor-
mance does not seem to sustain upon adding more
and more tasks, suggesting that rather than increas-
ing the tasks, focusing on representative tasks and
sampling more instances from these might be more
beneficial in low-budget scenarios. Even with an
ample budget, scaling tasks should be done judi-
ciously, as close to 97% of performance achievable
by using the entire FLAN collection can be attained
with just a subset of 16 representative tasks alone
with N ′ = 200000.

4.7 Comparison with FLANv2 Mix

We now compare SMART with FLANv2-mix i.e.,
by using the mixture weights suggested by Long-
pre et al. (2023) where the weights 40%, 32%,
20%, 5% and 3% are assigned to the 5 sub mix-
tures of FLAN 2022 — FLANv1, T0, NIV2, CoT

N ′ FLANv2 Mix SMART

25000 40.05 39.8
50000 41.49 43.03
100000 43.18 44.96
200000 44.73 46.7
400000 46.26 47.65

Table 3: Comparison of SMART with mixture weights
of Longpre et al. (2023) for Llama-2-7b. The scores are
weighted average of exact match on MMLU and BBH.
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Figure 1: Task-Scaling Curves in the case of Llama-2-7b for different N ′s, where X-axis is the number of tasks
(M ′) and Y-axis is the weighted average of Exact Matches on MMLU and BBH.

and Dialog respectively and instances are ran-
domly sampled from each sub mixture. Since
this method only prescribes weights on sub mix-
tures and not on individual tasks, we only con-
sider the case where M ′ = M . Table 3 con-
tains comparison of SMART vs FLANv2-mix for
Llama-2-7b. FLANv2-mix seems to perform bet-
ter than EPM (Baseline-1) and EM (Baseline-2)
in some cases although SMART almost always
outperforms FLANv2-mix.

4.8 Ablation Study: Submodular Function

Both Stage-1 and Stage-2 of SMART require us
to choose submodular functions f1 and f2 - which
are best treated as hyperparameters because of un-
certainty with respect to which functions are best
suited for instruction tuning (Section 3.3). We con-
duct a grid search on f1 and f2 using three func-
tions from Table 1, by setting M ′ = M and varying

N ′ = 25000 N ′ = 50000

f1

f2 FL GC LOGDET

FL 28.81 27.02 28.05
GC 39.8 40.84 40.61

LOGDET 38.83 35.52 41.38

f1

f2 FL GC LOGDET

FL 25.31 25.95 28.35
GC 43.03 40.98 42.28

LOGDET 41.97 40.67 41.84

N ′ = 10000 N ′ = 200000

f1

f2 FL GC LOGDET

FL 25.42 25.2 26.89
GC 44.96 43.92 43.61

LOGDET 43.63 42.25 42.81

f1

f2 FL GC LOGDET

FL 43.58 41.67 42.72
GC 46.7 45.91 46.21

LOGDET 43.75 43.86 43.82

Table 4: Grid Search on submodular functions f1 and f2
for Llama-2-7b where weighted average of exact match
on MMLU and BBH are compared for different choices
of f1 and f2. FL denotes Facility Location, GC denotes
Graph Cut and LOGDET denotes Log-Determinant.
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Figure 2: Varying f2 when f1 is Graph Cut

N ′ in {25000, 50000, 100000, 200000}. In this
work, we use λ = 0.4 for Graph-Cut. The grid
search (summarized in Table 4) suggests that Graph
Cut is optimal for task subset selection, while Fa-
cility Location is best for instance selection when
M ′ = M . The task scaling curves for each combi-
nation of f1 and f2 (for different N ′s) are present
in Appendix B. However, in this section, we high-
light the case where f1 is Graph Cut and f2 is
varied. We find that optimal f2 in this case also
depends on M ′. For instance, in Figure 2 where
N ′ = 200000, Facility Location performs the best
at higher M ′, highlighting the importance of repre-
sentation, while Graph Cut and Log Determinant
show better performance at lower M ′, highlight-
ing the importance of diversity. We hypothesize
this is because — for higher M ′s, each task on
average gets a relatively low budget and the need
for representation dominates the need for diversity;
however when there is sufficient enough budget for
each task, i.e., for lower M ′s, the need for diversity
takes over.
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4.9 Ablation Study: LLM
We also test the effectiveness of SMART strat-
egy on two other LLMs - Falcon-7B and Mistral-
7B. Table 5 presents a comparison of SMART
mixture with the baseline mixtures for Falcon and
Mistral when M ′ = M . For Falcon, we only re-
port MMLU-zero-shot since Falcon gets an exact
match of 0.0 for BBH-zero-shot even after fine-
tuning. The task-scaling curves for these models
are present in Appendix C.

N ′ Data Mix. Mistral Falcon∗

25000

EPM(Baseline-1) 52.69 23.09
EM(Baseline-2) 51.65 21.1
FLANv2-mix 53.24 26.16

SMART 53.33 22.73

50000

EPM(Baseline-1) 53.75 19.86
EM(Baseline-2) 53.16 22.96
FLANv2-mix 54.15 25.66

SMART 53.8 26.31

100000

EPM(Baseline-1) 54.24 20.88
EM(Baseline-2) 54.57 24.85
FLANv2-mix 54.14 27.47

SMART 53.75 27.22

200000

EPM(Baseline-1) 55.25 24.7
EM(Baseline-2) 54.71 24.39
FLANv2-mix 55.27 27.63

SMART 55.4 30.96

Table 5: Comparison of SMART with baselines for
Mistral and Falcon. The scores correspond to weighted
averages of exact match on MMLU and BBH.

4.10 Discussion
In Section 4.8, we saw that Graph Cut proves to be
the most effective for selecting the weighted task
subsets. Figures 6, 7, 8 of Appendix D contain
t-SNE visualizations for task subsets selected by
the three submodular functions listed in Table 1.
Facility Location being a sum-max formulation, a
single point is sufficient to represent a cluster and
hence it gives more weightage to cluster centers
and very less weightage to others. As a result, the
submodular gains for first few selected points are
very high and then the gains quickly become very
small for other points in case of facility location.
Log Determinant on the other hand predominantly
selects diverse points not taking representation into
account. Graph Cut, which models both, hence
performs better than both Facility Location and
Log Determinant for selecting tasks.

Further, in Figure 1 of Section 4.6 we saw that,
at around 16 tasks, there is a peak in performance,

after which there is a slight decline. To facilitate
more investigation into what tasks are assigned
more weightage, Table 6 and Table 7 list down
the top-128 and last-128 tasks in the submodular
ordering obtained using graph cut. While the for-
mer set contains more traditional NLP tasks like
Natural Language Inference, Next Sentence Pre-
diction, Question Answering, Summarization, etc .,
the latter set mostly consists of tasks like Program
Execution.

5 Related Work

5.1 Data for Instruction Tuning

Following Wang et al. (2023b), we summarize the
related work in three categories — data quality,
data quantity, and task composition.

Data Quantity Research diverges on scaling in-
struction data quantity, with some advocating for
limited data (Zhou et al., 2023; Chen et al., 2023a)
to expose pretraining knowledge, while others ar-
gue for scaling up (Wei et al., 2021; Sanh et al.,
2021). According to Ji et al. (2023); Dong et al.
(2023); Yuan et al. (2023); Song et al. (2023), the
impact of scaling varies across tasks and model
abilities. AlShikh et al. (2023) also introduce a met-
ric for instruction following ability, and suggest an
early stopping criterion for instruction-tuning.

Data Quality High-quality data is crucial in in-
struction tuning (Chia et al., 2023; Ding et al., 2023;
Zhou et al., 2023). Wang et al. (2023a) use perplex-
ity to select suitable instructions generated by mod-
els, while Li et al. (2023a) employ the language
model itself to augment and curate high-quality
training examples to improve its own performance.
Cao et al. (2023) propose InstructionMining, utiliz-
ing natural language indicators to predict inference
loss as a proxy for data quality without human in-
tervention and select the best subset based on this.
Chen et al. (2023b) introduce AlpaGasus, which
uses a strong LLM to select high-quality subsets.
Lu et al. (2023) and Madaan et al. (2024) also lever-
age the power of fine-tuned LLM itself to evaluate
the quality of instructions. Attendu and Corbeil
(2023) employs dynamic data subset selection by
filtering out unimportant samples during finetun-
ing, based on an extended EL2N metric (Paul et al.,
2021; Fayyaz et al., 2022). Taori et al. (2023) pro-
pose #InsTag to assess instruction diversity in SFT
datasets using ChatGPT. Additionally, Wan et al.
(2023) propose Explore-Instruct, utilizing LLMs to
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actively explore domain-specific spaces and gather
diverse instruction-tuning data. Wu et al. (2023) se-
lect new data points that are distinct from existing
ones in the model embedding space, augmenting
the training dataset iteratively to enhance diversity
within subsets.

Task Composition Many previous works show
the benefit of scaling the number of tasks (Wei
et al., 2021; Chung et al., 2022; Wang et al., 2022;
Sanh et al., 2021). However, works like Iyer et al.
(2022); Longpre et al. (2023) have also acknowl-
edged that task balancing is also very important
for effective instruction tuning. Dong et al. (2023)
explore data composition across GSM8k, Code Al-
paca, and ShareGPT datasets, finding differential
impacts of data scaling on performance across abil-
ities and propose a Dual-stage mixed fine-tuning
strategy as a promising solution to activate multiple
abilities efficiently. Ivison et al. (2022) identifies
relevant multitask subsets based on the similarity
between the pre-trained model’s representations,
using a small amount of target task data. Yin et al.
(2023) uses instruction representations for task se-
lection, acting as a replay strategy to mitigate catas-
trophic forgetting and improve generalization in
continual learning. Yue et al. (2023) construct math
generalist models via instruction tuning on hybrid
of chain-of-thought and program-of-thought ratio-
nales in math. Lou et al. (2023); Zhang et al. (2023)
provide a survey of instruction tuning in general
and Wang et al. (2023b) provide a detailed survey
of data management for instruction tuning.

5.2 Submodularity for Subset Selection
Submodularity (Fujishige, 2005) has a long his-
tory in combinatorial optimization, game theory,
economics etc (Edmonds, 1970; Lovász, 1983;
Carter, 2001; Topkis, 1998). It has recently
gained traction in machine learning where it has
been used for data subset selection for machine
translation (Kirchhoff and Bilmes, 2014), speech
recognition (Wei et al., 2014; Mittal et al., 2022;
Kothawade et al., 2023), efficient pre-training of
language models (Renduchintala et al., 2023), ac-
tive learning (Wei et al., 2015; Kothawade et al.,
2021), hyperparameter tuning (Killamsetty et al.,
2022), domain adaptation (Karanam et al., 2022),
computer vision (Kaushal et al., 2019), continual
learning (Tiwari et al., 2022) etc. For a more de-
tailed review of submodularity and its applications,
please refer to the survey by Bilmes (2022).

6 Conclusion & Future Work

In this paper, we introduced SMART — a novel
data mixture strategy for instruction tuning that uti-
lizes a submodular function to assign importance
scores to tasks, determine the mixture weights, and
also select non-redundant samples from each task.
Further, we also reveal that in a low-budget setting,
splitting the budget among a small subset of repre-
sentative tasks yields superior performance when
compared to dividing it among all tasks, which
suggests that task scaling should be done more ju-
diciously. Future work could explore making this
method more model-specific (e.g., modify task em-
bedding computation) and also possibly modify the
approach for targeted instruction-data selection for
creating expert LLMs that specialize in specific
skills such as math, code etc.

7 Limitations

While the approach has its own advantages of com-
puting the data mixture only once for a given
dataset and using it for as many LLMs as one
may wish, the approach might benefit from taking
inputs from the language model as well and per-
form model specific instruction tuning. Secondly,
SMART shows that there is an optimal number
of tasks at which there is peak in performance ob-
served. However, it doesn’t say anything on how to
find the optimal point as it may depend on language
model, the total budget and most importantly the
underlying dataset.

8 Ethical Considerations

While instruction tuning leverages pretrained lan-
guage models and encompasses similar consider-
ations, we anticipate that this approach will pre-
dominantly yield positive outcomes. It offers an
enhanced methodology for task balancing, poten-
tially allowing for more cost-effective fine-tuning
of large language models compared to conventional
data mixture strategies.

Acknowledgements

The authors acknowledge the use of ChatGPT3 for
solely paraphrasing and summarizing some parts
of the paper and declare that none of the generated
content is presented in the paper without rigorous
manual checking.

3https://chat.openai.com/

12924



References
Alessandro Achille, Michael Lam, Rahul Tewari,

Avinash Ravichandran, Subhransu Maji, Charless C
Fowlkes, Stefano Soatto, and Pietro Perona. 2019.
Task2vec: Task embedding for meta-learning. In
Proceedings of the IEEE/CVF international confer-
ence on computer vision, pages 6430–6439.

Ebtesam Almazrouei, Hamza Alobeidli, Abdulaziz Al-
shamsi, Alessandro Cappelli, Ruxandra Cojocaru,
Mérouane Debbah, Étienne Goffinet, Daniel Hess-
low, Julien Launay, Quentin Malartic, et al. 2023.
The falcon series of open language models. arXiv
preprint arXiv:2311.16867.

Waseem AlShikh, Manhal Daaboul, Kirk Goddard,
Brock Imel, Kiran Kamble, Parikshith Kulkarni, and
Melisa Russak. 2023. Becoming self-instruct: intro-
ducing early stopping criteria for minimal instruct
tuning. arXiv preprint arXiv:2307.03692.

Jean-Michel Attendu and Jean-Philippe Corbeil. 2023.
Nlu on data diets: Dynamic data subset selec-
tion for nlp classification tasks. arXiv preprint
arXiv:2306.03208.

Jeff Bilmes. 2022. Submodularity in machine learn-
ing and artificial intelligence. arXiv preprint
arXiv:2202.00132.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Yihan Cao, Yanbin Kang, and Lichao Sun. 2023. In-
struction mining: High-quality instruction data se-
lection for large language models. arXiv preprint
arXiv:2307.06290.

Michael Carter. 2001. Foundations of mathematical
economics. MIT press.

Rich Caruana. 1997. Multitask learning. Machine
learning, 28:41–75.

Hao Chen, Yiming Zhang, Qi Zhang, Hantao Yang, Xi-
aomeng Hu, Xuetao Ma, Yifan Yanggong, and Junbo
Zhao. 2023a. Maybe only 0.5% data is needed: A
preliminary exploration of low training data instruc-
tion tuning. arXiv preprint arXiv:2305.09246.

Lichang Chen, Shiyang Li, Jun Yan, Hai Wang, Kalpa
Gunaratna, Vikas Yadav, Zheng Tang, Vijay Srini-
vasan, Tianyi Zhou, Heng Huang, et al. 2023b. Al-
pagasus: Training a better alpaca with fewer data.
arXiv preprint arXiv:2307.08701.

Yew Ken Chia, Pengfei Hong, Lidong Bing, and Sou-
janya Poria. 2023. Instructeval: Towards holistic
evaluation of instruction-tuned large language mod-
els. arXiv preprint arXiv:2306.04757.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, et al.
2022. Scaling instruction-finetuned language models.
arXiv preprint arXiv:2210.11416.

Tri Dao. 2023. FlashAttention-2: Faster attention with
better parallelism and work partitioning.

Alexandre De Brebisson and Pascal Vincent. 2015.
An exploration of softmax alternatives belong-
ing to the spherical loss family. arXiv preprint
arXiv:1511.05042.

Ning Ding, Yulin Chen, Bokai Xu, Yujia Qin, Zhi
Zheng, Shengding Hu, Zhiyuan Liu, Maosong Sun,
and Bowen Zhou. 2023. Enhancing chat language
models by scaling high-quality instructional conver-
sations. arXiv preprint arXiv:2305.14233.

Guanting Dong, Hongyi Yuan, Keming Lu, Cheng-
peng Li, Mingfeng Xue, Dayiheng Liu, Wei Wang,
Zheng Yuan, Chang Zhou, and Jingren Zhou. 2023.
How abilities in large language models are affected
by supervised fine-tuning data composition. arXiv
preprint arXiv:2310.05492.

Jack Edmonds. 1970. Matroids, submodular functions
and certain polyhedra. Combinatorial Structures and
Their Applications, pages 69–87.

Mohsen Fayyaz, Ehsan Aghazadeh, Ali Modarressi, Mo-
hammad Taher Pilehvar, Yadollah Yaghoobzadeh,
and Samira Ebrahimi Kahou. 2022. Bert on a data
diet: Finding important examples by gradient-based
pruning. arXiv preprint arXiv:2211.05610.

Uriel Feige. 1998. A threshold of ln n for approximating
set cover. Journal of the ACM (JACM), 45(4):634–
652.

Marshall L Fisher, George L Nemhauser, and Lau-
rence A Wolsey. 1978. An analysis of approxima-
tions for maximizing submodular set functions—II.
Springer.

Satoru Fujishige. 2005. Submodular functions and opti-
mization. Elsevier.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2020. Measuring massive multitask language under-
standing. arXiv preprint arXiv:2009.03300.

Hamish Ivison, Noah A Smith, Hannaneh Hajishirzi,
and Pradeep Dasigi. 2022. Data-efficient finetuning
using cross-task nearest neighbors. arXiv preprint
arXiv:2212.00196.

Srinivasan Iyer, Xi Victoria Lin, Ramakanth Pasunuru,
Todor Mihaylov, Daniel Simig, Ping Yu, Kurt Shus-
ter, Tianlu Wang, Qing Liu, Punit Singh Koura, et al.
2022. Opt-iml: Scaling language model instruc-
tion meta learning through the lens of generalization.
arXiv preprint arXiv:2212.12017.

12925



Yunjie Ji, Yong Deng, Yan Gong, Yiping Peng, Qiang
Niu, Lei Zhang, Baochang Ma, and Xiangang Li.
2023. Exploring the impact of instruction data
scaling on large language models: An empirical
study on real-world use cases. arXiv preprint
arXiv:2303.14742.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023. Mistral
7b. arXiv preprint arXiv:2310.06825.

Athresh Karanam, Krishnateja Killamsetty, Harsha
Kokel, and Rishabh Iyer. 2022. Orient: Submod-
ular mutual information measures for data subset
selection under distribution shift. Advances in neural
information processing systems, 35:31796–31808.

Vishal Kaushal, Rishabh Iyer, Suraj Kothawade, Rohan
Mahadev, Khoshrav Doctor, and Ganesh Ramakrish-
nan. 2019. Learning from less data: A unified data
subset selection and active learning framework for
computer vision. In 2019 IEEE Winter Conference
on Applications of Computer Vision (WACV), pages
1289–1299. IEEE.

Vishal Kaushal, Ganesh Ramakrishnan, and Rishabh
Iyer. 2022. Submodlib: A submodular optimization
library. arXiv preprint arXiv:2202.10680.

Krishnateja Killamsetty, Guttu Sai Abhishek, Aakriti
Lnu, Ganesh Ramakrishnan, Alexandre Evfimievski,
Lucian Popa, and Rishabh Iyer. 2022. Automata:
Gradient based data subset selection for compute-
efficient hyper-parameter tuning. Advances in Neural
Information Processing Systems, 35:28721–28733.

Katrin Kirchhoff and Jeff Bilmes. 2014. Submodularity
for data selection in machine translation. In Proceed-
ings of the 2014 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
131–141.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. Advances in
neural information processing systems, 35:22199–
22213.

Suraj Kothawade, Nathan Beck, Krishnateja Killam-
setty, and Rishabh Iyer. 2021. Similar: Submodular
information measures based active learning in re-
alistic scenarios. Advances in Neural Information
Processing Systems, 34:18685–18697.

Suraj Kothawade, Anmol Mekala, D Chandra
Sekhara Hetha Havya, Mayank Kothyari, Rishabh
Iyer, Ganesh Ramakrishnan, and Preethi Jyothi. 2023.
Ditto: Data-efficient and fair targeted subset selec-
tion for asr accent adaptation. In Proceedings of the
61st Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
5810–5822.

Xian Li, Ping Yu, Chunting Zhou, Timo Schick, Luke
Zettlemoyer, Omer Levy, Jason Weston, and Mike
Lewis. 2023a. Self-alignment with instruction back-
translation. arXiv preprint arXiv:2308.06259.

Zehan Li, Xin Zhang, Yanzhao Zhang, Dingkun Long,
Pengjun Xie, and Meishan Zhang. 2023b. Towards
general text embeddings with multi-stage contrastive
learning. arXiv preprint arXiv:2308.03281.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang,
Hiroaki Hayashi, and Graham Neubig. 2023. Pre-
train, prompt, and predict: A systematic survey of
prompting methods in natural language processing.
ACM Computing Surveys, 55(9):1–35.

Shayne Longpre, Le Hou, Tu Vu, Albert Webson,
Hyung Won Chung, Yi Tay, Denny Zhou, Quoc V
Le, Barret Zoph, Jason Wei, et al. 2023. The flan
collection: Designing data and methods for effective
instruction tuning. arXiv preprint arXiv:2301.13688.

Renze Lou, Kai Zhang, and Wenpeng Yin. 2023. Is
prompt all you need? no. a comprehensive and
broader view of instruction learning. arXiv preprint
arXiv:2303.10475.

László Lovász. 1983. Submodular functions and con-
vexity. Mathematical Programming The State of the
Art: Bonn 1982, pages 235–257.

Jianqiao Lu, Wanjun Zhong, Wenyong Huang, Yufei
Wang, Fei Mi, Baojun Wang, Weichao Wang, Lifeng
Shang, and Qun Liu. 2023. Self: Language-driven
self-evolution for large language model. arXiv
preprint arXiv:2310.00533.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
et al. 2024. Self-refine: Iterative refinement with
self-feedback. Advances in Neural Information Pro-
cessing Systems, 36.

Michel Minoux. 2005. Accelerated greedy algorithms
for maximizing submodular set functions. In Opti-
mization Techniques: Proceedings of the 8th IFIP
Conference on Optimization Techniques Würzburg,
September 5–9, 1977, pages 234–243. Springer.

Ashish Mittal, Durga Sivasubramanian, Rishabh Iyer,
Preethi Jyothi, and Ganesh Ramakrishnan. 2022. Par-
titioned gradient matching-based data subset selec-
tion for compute-efficient robust asr training. arXiv
preprint arXiv:2210.16892.

Niklas Muennighoff, Nouamane Tazi, Loïc Magne, and
Nils Reimers. 2022. Mteb: Massive text embedding
benchmark. arXiv preprint arXiv:2210.07316.

George L Nemhauser, Laurence A Wolsey, and Mar-
shall L Fisher. 1978. An analysis of approximations
for maximizing submodular set functions—i. Mathe-
matical programming, 14:265–294.

12926

https://doi.org/10.48550/ARXIV.2210.07316
https://doi.org/10.48550/ARXIV.2210.07316


Mansheej Paul, Surya Ganguli, and Gintare Karolina
Dziugaite. 2021. Deep learning on a data diet: Find-
ing important examples early in training. Advances
in Neural Information Processing Systems, 34:20596–
20607.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. The Journal of Machine Learning Research,
21(1):5485–5551.

H. S. V. N. S. Kowndinya Renduchintala, Krishnateja
Killamsetty, Sumit Bhatia, Milan Aggarwal, Ganesh
Ramakrishnan, Rishabh K. Iyer, and Balaji Krishna-
murthy. 2023. INGENIOUS: using informative data
subsets for efficient pre-training of language models.
In Findings of the Association for Computational Lin-
guistics: EMNLP 2023, Singapore, December 6-10,
2023, pages 6690–6705. Association for Computa-
tional Linguistics.

Victor Sanh, Albert Webson, Colin Raffel, Stephen H
Bach, Lintang Sutawika, Zaid Alyafeai, Antoine
Chaffin, Arnaud Stiegler, Teven Le Scao, Arun
Raja, et al. 2021. Multitask prompted training en-
ables zero-shot task generalization. arXiv preprint
arXiv:2110.08207.

Chiyu Song, Zhanchao Zhou, Jianhao Yan, Yuejiao Fei,
Zhenzhong Lan, and Yue Zhang. 2023. Dynamics of
instruction tuning: Each ability of large language
models has its own growth pace. arXiv preprint
arXiv:2310.19651.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao,
Abu Awal Md Shoeb, Abubakar Abid, Adam Fisch,
Adam R Brown, Adam Santoro, Aditya Gupta,
Adrià Garriga-Alonso, et al. 2022. Beyond the
imitation game: Quantifying and extrapolating the
capabilities of language models. arXiv preprint
arXiv:2206.04615.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Se-
bastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny
Zhou, et al. 2022. Challenging big-bench tasks and
whether chain-of-thought can solve them. arXiv
preprint arXiv:2210.09261.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model.

Rishabh Tiwari, Krishnateja Killamsetty, Rishabh Iyer,
and Pradeep Shenoy. 2022. Gcr: Gradient coreset
based replay buffer selection for continual learning.
In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 99–108.

Donald M Topkis. 1998. Supermodularity and comple-
mentarity. Princeton university press.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Alan M. Turing. 1950. Computing Machinery and In-
telligence. Mind, 59(October):433–60. Publisher:
Oxford University Press.

Tu Vu, Brian Lester, Noah Constant, Rami Al-Rfou, and
Daniel Cer. 2021. Spot: Better frozen model adap-
tation through soft prompt transfer. arXiv preprint
arXiv:2110.07904.

Tu Vu, Tong Wang, Tsendsuren Munkhdalai, Alessan-
dro Sordoni, Adam Trischler, Andrew Mattarella-
Micke, Subhransu Maji, and Mohit Iyyer. 2020. Ex-
ploring and predicting transferability across nlp tasks.
arXiv preprint arXiv:2005.00770.

Fanqi Wan, Xinting Huang, Tao Yang, Xiaojun
Quan, Wei Bi, and Shuming Shi. 2023. Explore-
instruct: Enhancing domain-specific instruction cov-
erage through active exploration. arXiv preprint
arXiv:2310.09168.

Yizhong Wang, Swaroop Mishra, Pegah Alipoor-
molabashi, Yeganeh Kordi, Amirreza Mirzaei,
Anjana Arunkumar, Arjun Ashok, Arut Selvan
Dhanasekaran, Atharva Naik, David Stap, et al. 2022.
Super-naturalinstructions: Generalization via declar-
ative instructions on 1600+ nlp tasks. arXiv preprint
arXiv:2204.07705.

Yue Wang, Xinrui Wang, Juntao Li, Jinxiong Chang,
Qishen Zhang, Zhongyi Liu, Guannan Zhang, and
Min Zhang. 2023a. Harnessing the power of david
against goliath: Exploring instruction data generation
without using closed-source models. arXiv preprint
arXiv:2308.12711.

Zige Wang, Wanjun Zhong, Yufei Wang, Qi Zhu, Fei
Mi, Baojun Wang, Lifeng Shang, Xin Jiang, and Qun
Liu. 2023b. Data management for large language
models: A survey. arXiv preprint arXiv:2312.01700.

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M Dai, and Quoc V Le. 2021. Finetuned lan-
guage models are zero-shot learners. arXiv preprint
arXiv:2109.01652.

Kai Wei, Rishabh Iyer, and Jeff Bilmes. 2015. Submod-
ularity in data subset selection and active learning. In
International conference on machine learning, pages
1954–1963. PMLR.

Kai Wei, Yuzong Liu, Katrin Kirchhoff, and Jeff Bilmes.
2014. Unsupervised submodular subset selection
for speech data. In 2014 IEEE International Con-
ference on Acoustics, Speech and Signal Processing
(ICASSP), pages 4107–4111. IEEE.

12927

https://aclanthology.org/2023.findings-emnlp.445
https://aclanthology.org/2023.findings-emnlp.445
https://doi.org/10.1093/mind/LIX.236.433
https://doi.org/10.1093/mind/LIX.236.433


Shengguang Wu, Keming Lu, Benfeng Xu, Junyang Lin,
Qi Su, and Chang Zhou. 2023. Self-evolved diverse
data sampling for efficient instruction tuning. arXiv
preprint arXiv:2311.08182.

Zhiheng Xi, Rui Zheng, Yuansen Zhang, Xuan-Jing
Huang, Zhongyu Wei, Minlong Peng, Mingming Sun,
Qi Zhang, and Tao Gui. 2023. Connectivity patterns
are task embeddings. In Findings of the Association
for Computational Linguistics: ACL 2023, pages
11993–12013.

Da Yin, Xiao Liu, Fan Yin, Ming Zhong, Hritik Bansal,
Jiawei Han, and Kai-Wei Chang. 2023. Dynosaur: A
dynamic growth paradigm for instruction-tuning data
curation. arXiv preprint arXiv:2305.14327.

Zheng Yuan, Hongyi Yuan, Chengpeng Li, Guanting
Dong, Chuanqi Tan, and Chang Zhou. 2023. Scal-
ing relationship on learning mathematical reason-
ing with large language models. arXiv preprint
arXiv:2308.01825.

Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wen-
hao Huang, Huan Sun, Yu Su, and Wenhu Chen.
2023. Mammoth: Building math generalist models
through hybrid instruction tuning. arXiv preprint
arXiv:2309.05653.

Shengyu Zhang, Linfeng Dong, Xiaoya Li, Sen Zhang,
Xiaofei Sun, Shuhe Wang, Jiwei Li, Runyi Hu, Tian-
wei Zhang, Fei Wu, et al. 2023. Instruction tuning
for large language models: A survey. arXiv preprint
arXiv:2308.10792.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srini Iyer, Jiao
Sun, Yuning Mao, Xuezhe Ma, Avia Efrat, Ping Yu,
Lili Yu, et al. 2023. Lima: Less is more for alignment.
arXiv preprint arXiv:2305.11206.

Wangchunshu Zhou, Canwen Xu, and Julian McAuley.
2022. Efficiently tuned parameters are task embed-
dings. arXiv preprint arXiv:2210.11705.

APPENDIX

A Code and Data

Our code we used for instruction tuning
and for creating data mixtures is open-
sourced at https://github.com/kowndinya-
renduchintala/SMART. The code development
utilized open-source tools, primarily relying on
the HuggingFace library for model training with
PyTorch as the underlying framework. Both
PyTorch and HuggingFace are licensed under
permissive licenses, with PyTorch under the BSD
license and HuggingFace under the Apache 2.0
license. Additionally, submodular optimization
was performed using SUBMODLIB, which is an
openly accessible library on GitHub at https:
//github.com/decile-team/submodlib under
the MIT license.

B Task Scaling Curves: Varying f1 and f2

Figure 3 consists of task scaling curves for the 9
possible combinations (Section 4.8) of f1 and f2.

C Task Scaling Curves: Mistral, Falcon

Figure 4 and Figure 5 consist of task scaling curves
for Mistral-7B and Falcon-7B respectively (Sec-
tion 4.9).
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Figure 3: Task Scaling Curves for various f1 and f2
combinations for Llama-2-7b
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Figure 4: Task Scaling Curves for Mistral-7B

D Visualization of Task Subsets

As pointed out in Section 2, the three submodular
functions in Table 1 are different. Facility Loca-
tion predominantly models representation; Graph
Cut models a trade-off between representation and
diversity; Log Determinant predominantly mod-
els diversity. To better visualize this, we present

8 16 32 64 128 256 512 1024 1840
Number of tasks

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

Ex
ac

t M
at

ch

N ′ = 25000

Examples Proportional Mixture
Equal Mixture
GC-FL

8 16 32 64 128 256 512 1024 1840
Number of tasks

12.5

15.0

17.5

20.0

22.5

25.0

27.5

Ex
ac

t M
at

ch

N ′ = 50000

Examples Proportional Mixture
Equal Mixture
GC-FL

8 16 32 64 128 256 512 1024 1840
Number of tasks

0

5

10

15

20

25

30

Ex
ac

t M
at

ch

N ′ = 100000

Examples Proportional Mixture
Equal Mixture
GC-FL

8 16 32 64 128 256 512 1024 1840
Number of tasks

0

5

10

15

20

25

30

35

Ex
ac

t M
at

ch

N ′ = 200000

Examples Proportional Mixture
Equal Mixture
GC-FL

Figure 5: Task Scaling Curves for falcon-7B

t-SNE plots of 1840 tasks present in the FLAN
2022 collection (Longpre et al., 2023) and high-
light the tasks selected by these functions for differ-
ent values of M ′. Figure 6, Figure 7 and Figure 8
respectively contains the visualizations for Facility
Location, Graph Cut and Log Determinant.

12929



Rank Task
1 anli/r3:0.1.0
2 hellaswag:1.1.0
3 task1392_superglue_multirc_answer_verification
4 task955_wiki_auto_style_transfer
5 task381_boolq_question_generation
6 task1291_multi_news_summarization
7 task1295_adversarial_qa_question_answering
8 task519_aquamuse_question_generation
9 anli/r2:0.1.0
10 anli/r1:0.1.0
11 race_high_Select_the_best_answer_no_instructions_
12 cot_ecqa_ii
13 super_glue/rte:1.0.2
14 task1660_super_glue_question_generation
15 task339_record_answer_generation
16 task302_record_classification
17 stream_qed_ii
18 task870_msmarco_answer_generation
19 paws_wiki:1.1.0
20 super_glue/multirc:1.0.2
21 task603_wikitext-103_fill_in_the_blank
22 task887_quail_answer_generation
23 stream_qed
24 task380_boolq_yes_no_question
25 coqa:1.0.0
26 task1412_web_questions_question_answering
27 super_glue/cb:1.0.2
28 task1293_kilt_tasks_hotpotqa_question_answering
29 quail_context_question_description_answer_text
30 fix_punct
31 true_case
32 winogrande:1.1.0
33 glue/wnli:2.0.0
34 super_glue/record:1.0.2
35 cot_ecqa
36 quail_context_question_description_answer_id
37 task919_coqa_incorrect_answer_generation
38 task520_aquamuse_answer_given_in_passage
39 task1290_xsum_summarization
40 task1609_xquad_en_question_generation
41 squad/v1.1:3.0.0
42 task231_iirc_link_classification
43 task349_squad2.0_answerable_unanswerable_question_classification
44 wiki_dialog_ii
45 task1661_super_glue_classification
46 quail_context_description_question_text
47 adversarial_qa_droberta_answer_the_following_q
48 task644_refresd_translation
49 bool_q:1.0.0
50 task470_mrqa_question_generation
51 race_middle_Select_the_best_answer_no_instructions_
52 task770_pawsx_english_text_modification
53 adversarial_qa_dbidaf_answer_the_following_q
54 glue/qnli:2.0.0
55 task1558_jfleg_incorrect_answer_generation
56 task344_hybridqa_answer_generation
57 quoref_Guess_Title_For_Context
58 super_glue/copa:1.0.2
59 word_segment
60 task1340_msr_text_compression_compression
61 wiki_dialog
62 squad/v2.0:3.0.0
63 task1530_scitail1.1_sentence_generation
64 task225_english_language_answer_generation

Rank Task
65 task303_record_incorrect_answer_generation
66 gem/web_nlg_en:1.1.0
67 task768_qed_text_span_selection
68 adversarial_qa_dbert_answer_the_following_q
69 task1389_hellaswag_completion
70 task1294_wiki_qa_answer_verification
71 wiki_qa_Topic_Prediction_Answer_Only
72 task596_mocha_question_generation
73 task871_msmarco_question_generation
74 task1564_triviaqa_answer_generation
75 task1344_glue_entailment_classification
76 cosmos_qa:1.0.0
77 task1555_scitail_answer_generation
78 task1557_jfleg_answer_generation
79 gem/common_gen:1.1.0
80 task238_iirc_answer_from_passage_answer_generation
81 task233_iirc_link_exists_classification
82 super_glue/wic:1.0.2
83 task1345_glue_qqp_question_paraprashing
84 glue/qqp:2.0.0
85 glue/stsb:2.0.0
86 task595_mocha_answer_generation
87 task460_qasper_answer_generation
88 glue/mnli:2.0.0
89 task051_multirc_correct_answer_single_sentence
90 adversarial_qa_droberta_tell_what_it_is
91 task547_alt_translation_entk_en
92 quail_no_prompt_id
93 task311_race_question_generation
94 cot_sensemaking_ii
95 gem/dart:1.1.0
96 wiki_qa_Jeopardy_style
97 adversarial_qa_dbidaf_tell_what_it_is
98 task1593_yahoo_answers_topics_classification
99 quail_context_question_answer_description_text
100 cot_creak_ii
101 definite_pronoun_resolution:1.1.0
102 gigaword:1.2.0
103 super_glue/wsc.fixed:1.0.2
104 task234_iirc_passage_line_answer_generation
105 task556_alt_translation_en_ja
106 task604_flores_translation_entosn
107 adversarial_qa_dbert_tell_what_it_is
108 task310_race_classification
109 task1594_yahoo_answers_topics_question_generation
110 story_cloze/2016:1.0.0
111 task933_wiki_auto_style_transfer
112 gem/wiki_lingua_english_en:1.1.0
113 task1382_quarel_write_correct_answer
114 task1296_wiki_hop_question_answering
115 quail_context_description_question_answer_text
116 glue/cola:2.0.0
117 cot_strategyqa_ii
118 task1553_cnn_dailymail_summarization
119 openbookqa:0.1.0
120 task054_multirc_write_correct_answer
121 task1218_ted_translation_en_ja
122 quail_no_prompt_text
123 quail_context_question_description_text
124 task550_discofuse_sentence_generation
125 quail_context_question_answer_description_id
126 task1608_xquad_en_answer_generation
127 task1520_qa_srl_answer_generation
128 cos_e_v1.11_generate_explanation_given_text

Table 6: List of 128 most representative tasks in FLAN-2022 collection as ordered by the Graph Cut
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Rank Task
1713 task261_spl_translation_es_en
1714 task1384_deal_or_no_dialog_classification
1715 task854_hippocorpus_classification
1716 task110_logic2text_sentence_generation
1717 task360_spolin_yesand_response_generation
1718 task148_afs_argument_quality_gay_marriage
1719 task499_extract_and_add_all_numbers_from_list
1720 task176_break_decompose_questions
1721 task085_unnatural_addsub_arithmetic
1722 task108_contextualabusedetection_classification
1723 task472_haspart_classification
1724 task856_conv_ai_2_classification
1725 task600_find_the_longest_common_substring_in_two_strings
1726 task150_afs_argument_quality_gun_control
1727 task1508_wordnet_antonyms
1728 task183_rhyme_generation
1729 task488_extract_all_alphabetical_elements_from_list_in_order
1730 task682_online_privacy_policy_text_classification
1731 task1425_country_iso_numeric
1732 task756_find_longert_substring_and_return_all_unique_alphabets_in_it
1733 task1585_root09_hypernym_generation
1734 task958_e2e_nlg_text_generation_parse
1735 task584_udeps_eng_fine_pos_tagging
1736 task1319_country_by_barcode_prefix
1737 task1507_boolean_temporal_reasoning
1738 task509_collate_of_all_alphabetical_and_numerical_elements_in_list_separately
1739 task064_all_elements_except_first_i
1740 task130_scan_structured_text_generation_command_action_long
1741 task365_synthetic_remove_vowels
1742 task149_afs_argument_quality_death_penalty
1743 task210_logic2text_structured_text_generation
1744 task1495_adverse_drug_event_classification
1745 task684_online_privacy_policy_text_information_type_generation
1746 task1426_country_independence_year
1747 task126_scan_structured_text_generation_command_action_all
1748 task605_find_the_longest_common_subsequence_in_two_lists
1749 task128_scan_structured_text_generation_command_action_short
1750 task960_ancora-ca-ner_named_entity_recognition
1751 task078_all_elements_except_last_i
1752 task1427_country_region_in_world
1753 task063_first_i_elements
1754 task956_leetcode_420_strong_password_check
1755 task683_online_privacy_policy_text_purpose_answer_generation
1756 task091_all_elements_from_index_i_to_j
1757 task1542_every_ith_element_from_starting
1758 task1506_celebrity_minimal_dob_span
1759 task245_check_presence_in_set_intersection
1760 task497_extract_all_numbers_from_list_in_order
1761 task1428_country_surface_area
1762 task092_check_prime_classification
1763 task1088_array_of_products
1764 task1332_check_leap_year
1765 task127_scan_long_text_generation_action_command_all
1766 task129_scan_long_text_generation_action_command_short
1767 task1322_country_government_type
1768 task1331_reverse_array
1769 task131_scan_long_text_generation_action_command_long
1770 task371_synthetic_product_of_list
1771 task1189_check_char_in_string
1772 task208_combinations_of_list
1773 task211_logic2text_classification
1774 task1551_every_ith_element_from_kth_element
1775 task1194_kth_largest_element
1776 task101_reverse_and_concatenate_all_elements_from_index_i_to_j

Rank Task
1777 task1404_date_conversion
1778 task504_count_all_alphabetical_elements_in_list
1779 task087_new_operator_addsub_arithmetic
1780 task850_synthetic_longest_palindrome
1781 task099_reverse_elements_between_index_i_and_j
1782 task206_collatz_conjecture
1783 task505_count_all_numerical_elements_in_list
1784 task1405_find_median
1785 task267_concatenate_and_reverse_all_elements_from_index_i_to_j
1786 task207_max_element_lists
1787 task1443_string_to_number
1788 task1188_count_max_freq_char
1789 task212_logic2text_classification
1790 task374_synthetic_pos_or_neg_calculation
1791 task1190_add_integer_to_list
1792 task243_count_elements_in_set_intersection
1793 task636_extract_and_sort_unique_alphabets_in_a_list
1794 task124_conala_pair_averages
1795 task1150_delete_max_min
1796 task755_find_longest_substring_and_replace_its_sorted_lowercase_version_in_both_lists
1797 task100_concatenate_all_elements_from_index_i_to_j
1798 task372_synthetic_palindrome_numbers
1799 task1148_maximum_ascii_value
1800 task506_position_of_all_alphabetical_elements_in_list
1801 task373_synthetic_round_tens_place
1802 task367_synthetic_remove_floats
1803 task1406_kth_smallest_element
1804 task1333_check_validity_date_ddmmyyyy
1805 task244_count_elements_in_set_union
1806 task205_remove_even_elements
1807 task1320_country_domain_tld
1808 task123_conala_sort_dictionary
1809 task122_conala_list_index_addition
1810 task076_splash_correcting_sql_mistake
1811 task094_conala_calculate_mean
1812 task507_position_of_all_numerical_elements_in_list
1813 task1403_check_validity_date_mmddyyyy
1814 task1315_find_range_array
1815 task098_conala_list_intersection
1816 task1087_two_number_sum
1817 task095_conala_max_absolute_value
1818 task1089_check_monotonic_array
1819 task077_splash_explanation_to_sql
1820 task097_conala_remove_duplicates
1821 task125_conala_pair_differences
1822 task368_synthetic_even_or_odd_calculation
1823 task1151_swap_max_min
1824 task852_synthetic_multiply_odds
1825 task606_sum_of_all_numbers_in_list_between_positions_i_and_j
1826 task090_equation_learner_algebra
1827 task1446_farthest_integers
1828 task096_conala_list_index_subtraction
1829 task868_cfq_mcd1_explanation_to_sql
1830 task369_synthetic_remove_odds
1831 task093_conala_normalize_lists
1832 task370_synthetic_remove_divisible_by_3
1833 task851_synthetic_multiply_evens
1834 task637_extract_and_sort_unique_digits_in_a_list
1835 task1498_24hour_to_12hour_clock
1836 task869_cfq_mcd1_sql_to_explanation
1837 task1445_closest_integers
1838 task1444_round_power_of_two
1839 task366_synthetic_return_primes
1840 task107_splash_question_to_sql

Table 7: List of 128 least representative tasks in FLAN-2022 collection as ordered by the Graph Cut
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M ′ = 8, FacilityLocation M ′ = 16, FacilityLocation

M ′ = 32, FacilityLocation M ′ = 64, FacilityLocation

M ′ = 128, FacilityLocation M ′ = 256, FacilityLocation

M ′ = 512, FacilityLocation M ′ = 1024, FacilityLocation

Figure 6: t-SNE visualizations for task subsets of various sizes (M ′) selected by Facility Location
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M ′ = 8, GraphCut M ′ = 16, GraphCut

M ′ = 32, GraphCut M ′ = 64, GraphCut

M ′ = 128, GraphCut M ′ = 256, GraphCut

M ′ = 512, GraphCut M ′ = 1024, GraphCut

Figure 7: t-SNE visualizations for task subsets of various sizes (M ′) selected by Graph Cut
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M ′ = 8, LogDeterminant M ′ = 16, LogDeterminant

M ′ = 32, LogDeterminant M ′ = 64, LogDeterminant

M ′ = 128, LogDeterminant M ′ = 256, LogDeterminant

M ′ = 512, LogDeterminant M ′ = 1024, LogDeterminant

Figure 8: t-SNE visualizations for task subsets of various sizes (M ′) selected by Log Determinant
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