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Abstract

In order to enable extraction of structured
clinical data from unstructured radiology re-
ports, we introduce RadGraph-XL, a large-
scale, expert-annotated dataset for clinical en-
tity and relation extraction. RadGraph-XL con-
sists of 2,300 radiology reports, which are an-
notated with over 410,000 entities and rela-
tions by board-certified radiologists. Whereas
previous approaches focus solely on chest
X-rays, RadGraph-XL includes data from
four anatomy-modality pairs - chest CT, ab-
domen/pelvis CT, brain MR, and chest X-rays.
Then, in order to automate structured informa-
tion extraction, we use RadGraph-XL to train
transformer-based models for clinical entity
and relation extraction. Our evaluations include
comprehensive ablation studies as well as an
expert reader study that evaluates trained mod-
els on out-of-domain data. Results demonstrate
that our model surpasses the performance of
previous methods by up to 52% and notably
outperforms GPT-4 in this domain. We re-
lease RadGraph-XL data as well as our trained
model to foster further innovation and research
in structured clinical information extraction 1.

1 Introduction

Radiology reports, which are critical for patient
care, present a challenge for clinical research and
applications due to their unstructured format and
complex language. To address this, various meth-
ods have been developed to automatically extract
important information from these reports (Langlotz

* Equal contribution
1https://github.com/Stanford-AIMI/radgraph-XL

(a) Anatomy and Modality

RadGraph-1.0 Chest X-ray
Chest CT, Abdomen/Pelvis CT,

RadGraph-XL Brain MR, Chest X-ray

(b) Annotation Complexity

Sample Length Expert Knowledge

CoNLL04 29.0 ✗

RadGraph-1.0 111.3 ✓

RadGraph-XL 409.8 ✓

(c) Dataset Scale

# Sentences # Annotations

CoNLL04 1.4k 5.9k
RadGraph-1.0 3.7k 30.2k
RadGraph-XL 68.7k 409.0k

(d) Comparison w/ GPT-4 (Why so “old-school”?)

Entity F1 Relation F1

GPT-4 (0-shot) 0.172 0.012
GPT-4 (10-shot) 0.206 0.024
BERT (RadGraph-1.0) 0.744 0.453
BERT (RadGraph-XL) 0.863 0.691

Table 1: Illustrations of our motivation and contribu-
tion: (a) RadGraph-XL extends RadGraph-1.0 to other
anatomies and modalities; (b) The long radiology re-
ports and the requirements of expert knowledge pose
a significant challenge to the annotation; (c) The scale
of RadGraph-XL is much larger than existing general-
domain and medical-domain datasets; (d) We show the
performance comparisons with GPT-4 to demonstrate
why we are so “old-school” and why we need RadGraph-
XL in the large language model (LLM) era.

and Meininger, 2000; Savova et al., 2010; Sugi-
moto et al., 2021). This is essential for tasks like
training medical imaging models and monitoring
diseases (Johnson et al., 2019; Irvin et al., 2019;
Reis et al., 2022). However, the effectiveness of
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these methods is often limited by the specific types
of information they are designed to extract and the
scarcity of densely annotated datasets, which are
costly to produce due to the need for expert input.

Recent initiatives have been directed towards
addressing the complexities of deriving structured
clinical data from the unstructured text of radiol-
ogy reports. One such approach is RadGraph2 (Jain
et al., 2021), which comprises a dataset and schema
that aim to capture a wide array of clinically rele-
vant information, such as observation and anatomi-
cal details. This schema is designed to streamline
and standardize the annotation process, thereby
facilitating the extraction of meaningful insights
from radiology narratives. However, its applica-
tion has been primarily confined to chest X-ray
reports, which limits its utility across the diverse
spectrum of radiology documentation (as shown
in Table 1(a)). In parallel, there is a burgeoning
interest within the medical AI community to extend
beyond chest X-rays, exploring a wider variety of
imaging modalities and anatomical regions. This
expansion is evident in recent advancements in re-
port summarization (Chen et al., 2023; Delbrouck
et al., 2023), report generation (Li et al., 2022;
Zhang et al., 2023a), and the development of foun-
dation models (Wu et al., 2023b; Tu et al., 2023).
These advancements underscore the necessity for
innovative methodologies capable of interpreting a
broader range of radiology reports.

Additionally, Large Language Models (LLMs)
have also been explored to extract information with
various prompting strategies (Liu et al., 2023a), be-
ginning with a single example and expanding up to
200-shot examples to maximize the GPT-4 model’s
context window. In addition to the impracticalities
of the approach, including issues with access, costs,
and inference time. Moreover, there is no certainty
that LLMs will perform equally well across dif-
ferent modalities and anatomical studies, and this
hypothesis remains untestable due to the lack of
annotated data in these areas.

Motivated by these limitations, we introduce
RadGraph-XL, a large-scale dataset featuring 2,300
radiology reports with approximately 410,000 ex-
pert annotations by radiologists (as shown in Ta-
ble 1(b)(c)). These annotations cover a range of
entities, relationships, and measurements across
four different modality-anatomy pairs, aimed at sig-
nificantly enhancing the precision and richness of

2We denote it as RadGraph-1.0 in our paper.

data extracted from radiology texts. Leveraging our
annotations, we train a transformer-based model
tailored for the automatic annotation of radiology
reports using proven frameworks for entity and re-
lation extraction. Our evaluation encompasses a
series of ablation studies and a reader study fo-
cused on out-of-domain data, providing a thorough
assessment of the model’s capabilities. Our model
not only surpasses the performance benchmarks set
by previous methodologies (up to 52%) but also
demonstrates a significant edge over GPT-4’s capa-
bilities in this domain (as shown in Table 1(d)).

The structure of the paper is organized as fol-
lows. First, we introduce the RadGraph-XL dataset
in Section 3.1 and discuss its differences from
RadGraph-1.0. Next, we outline the process of
annotating the dataset and the challenges encoun-
tered in Section 3.2, and present some key statistics
in 3.3. Our focus then shifts to experiments in Sec-
tion 4, where we elaborate on our model’s training
process (Section 4.1), our methodology for select-
ing the best-performing model (Section 4.2), and
its comparison with a solution that employs a Large
Language Model (LLM) as the transformer back-
bone (Section 4.3). Importantly, we highlight our
model’s performance on entities defined as mea-
surements (Section 4.4)—a novel aspect of our an-
notations—and compare our model’s performance
with that of models from previous studies (Sec-
tion 4.5). The experiments section concludes with
a brief evaluation of GPT-4 against our reference
test set (Section 4.6). Following this, Section 5
presents the outcomes of our reader study, and the
paper concludes with Section 6.

2 Related work

2.1 Extracting Information from Radiology
Reports

In the field of chest x-rays, traditional automated
radiology report labelers, used in datasets like
MIMIC-CXR (Johnson et al., 2019) and CheX-
pert (Irvin et al., 2019), categorize reports for
common medical conditions but miss finer de-
tails like specific entities and their relationships.
More detailed approaches use entity extraction
schemas (Bustos et al., 2020) and focus on facts and
spatial relations (Datta et al., 2020a,b), but these
require dense annotation by experts. The most
advanced work intended to cover most clinically
relevant information within the report on chest x-
ray is RadGraph-1.0 as discussed in Section 1. New
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Report Level Annotation Level
Dataset Anatomy and Modality MIMIC Stanford w̄ Σa ā

Chest X-ray 550 50 111.3 30.2k 50.5
Radgraph-1.0

Total 550 50 - 30.2k -

Chest CT 100 500 502.1 115.7k 192.9
Abdomen/Pelvis CT 100 500 576.8 169.8k 283.1
Brain MR 100 500 352.3 95.2k 158.7
Chest X-ray - 500 167.7 28.5k 57.0

Radgraph-XL (Ours)

Total 300 2000 - 409.0k -

Table 2: We provide an overview of the RadGraph-XL annotations, encompassing 2,300 reports, in comparison
to RadGraph-1.0 (Jain et al., 2021). Additionally, we highlight the total number of annotations Σa, as well as the
average number of words w̄ and annotations ā per report, underscoring the significant expansion our annotations
contribute to the existing RadGraph-1.0 dataset. This involves adding annotations to reports from both new types of
imaging and body regions, as well as those originating from a different institution.

annotations or information extraction approaches
are proposed on modalities and anatomies beyond
chest x-rays, such as head CT (Jantscher et al.,
2023) or chest CT (Lau et al., 2023), but remain
coarse and scarce.

2.2 Downstream Tasks

Downstream tasks often leverage structured clini-
cal data to enhance model performance. RadGraph-
1.0 (Jain et al., 2021) annotations, for example,
have been utilized to boost the quality of radiology
report generation by using annotations as a form of
reward (Delbrouck et al., 2022), as an indicator of
style (Yan et al., 2023), or to eliminate hallucinated
references (Ramesh et al., 2022). They are also
used in pretraining (Zhang et al., 2023b; Wu et al.,
2023a), to augment the performance of fine-grained
image-text self-supervised models (Varma et al.,
2023), and to assess the capabilities of Large Lan-
guage Models (Liu et al., 2023a; Tu et al., 2023).

3 RadGraph-XL

3.1 Overview

RadGraph-XL aims to enhance the capabilities of
RadGraph-1.0 (Jain et al., 2021) by expanding
its application across different medical imaging
modalities, anatomical regions, and healthcare in-
stitutions. The proposed extensions include:
• New Modality: Annotating Computed Tomog-

raphy (CT) reports for the chest, moving beyond
the initial focus on Chest X-ray reports.

• New Anatomy: Expanding the scope to include
CT reports for the abdomen and pelvis, based on
the experience with Chest CT reports.

• New Modality and Anatomy: To evaluate the
model’s performance on data that is significantly
different from the training set, the proposal in-
cludes annotating Brain Magnetic Resonance
(MR) imaging reports, which represents a new
imaging modality and anatomical region.

• New Institution: Broadening the data source to
include reports from a new institution from Stan-
ford in addition to the previously used MIMIC-
CXR reports from RadGraph-1.0.
We select reports based on the following criteria

in an effort to curate a diverse dataset, prioritized
as follows: (i) We select reports with annotated
disease labels and aim for a balanced selection to
ensure an even distribution across different condi-
tions, (ii) We employ unsupervised semantic clus-
tering (Universal Sentence Encoder (USE) (Cer
et al., 2018)) to group the reports and then select
samples from each cluster, and (iii) we cluster the
remaining reports by their length and sample from
each cluster. A semantic projection of the USE
embeddings using t-SNE is proposed in Figure 3.

3.2 Annotations

Each report is annotated by two board-certified ra-
diologists. To ensure that there is a baseline level of
concordance in the clinical judgments made by the
two radioligists, we require the average agreement
to be equal to or exceed a threshold of 50%. The
average agreement rates for different imaging stud-
ies are 53.58% for Chest X-ray, 59.26% for Chest
CT, 59.44% for Abdomen Pelvis CT, and 55.55%
for Brain MR. If there is no consensus between the
two radiologists, one judge is called upon to make
a decision. In total, 406,141 annotations have been
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Anatomy and Modality
Type Label Chest CT Abdomen/Pelvis CT Brain MR Chest X-ray Total

Anatomy 33,976 46,326 25,104 7,715 113,121
Observation definitely present 22,425 35,595 18,033 6,469 82,522
Observation: Definitely Absent 5,705 8,975 7,215 987 22,882
Observation: Uncertain 2,104 2,867 2,121 946 8,038

Entity

Total 64,210 93,763 52,473 16,117 226,563

Modify 29,892 46,708 29,608 7,471 113,679
Located at 18,313 25,333 11,345 4,163 59,154
Suggestive of 2,081 2,443 1,504 717 6,745Relation

Total 50,286 74,484 42,457 12,351 179,578

Table 3: Overview of the 406,141 RadGraph-XL annotations categorized by entity and relations across various
modalities and anatomies, detailing the different distributions per labels. Additionally, a subset of 3,297 measure-
ments have been identified. We provide more details about measurements in Section 4.4.

validated.
We use the same schema as RadGraph-1.0 to

extract entities and relations from radiology re-
ports: entities can be labeled as ‘Observation def-
initely present’, ‘Observation definitely absent’,
‘Observation uncertain’, ‘Anatomy definitely ab-
sent’, ‘Anatomy definitely present’ or ‘Anatomy
uncertain’ and relations between entities can be
labeled as ‘Located At’, ‘Modify’, ‘Suggestive Of’.
For a detailed explanation of what we consider
to be an entity or a relation, please refer to Ap-
pendix A. In addition to the established schema,
we’ve introduced a post-processing step that identi-
fies entities related to measurements. This effort
is geared towards encouraging future research to
create new models designed for dealing with or
forecasting measurements, an area within radiol-
ogy AI that, based on our informed understanding,
presents unique challenges and has not been exten-
sively addressed. This additional step, detailed in
Section 4.4, allowed us to annotate and evaluate a
subset of 3,297 entities in RadGraph-XL and 65 in
RadGraph-1.0.

Finally, the task of annotating new modality-
anatomy pairs presented significant challenges that
are quite distinct from those encountered with chest
X-rays, which were the focus of RadGraph-1.0.
These complexities are detailed in Appendix B.
In particular, we note that chest X-ray reports
are considerably shorter than the reports for other
modality-anatomy pairs, as shown in Figure 1.

3.3 Statistics

Table 3 provides a detailed breakdown of the an-
notations collected, organized by type of imaging

Figure 1: Statistics of RadGraph-XL on the Stanford
(Top) and MIMIC-CXR (Bottom), where the distribu-
tions of the number of sentences per report, per imaging
studies, and per institution are shown.

study and annotation categories. It is important to
highlight that the dataset is evenly balanced, with
anatomical annotations comprising 49.92% and ob-
servations making up 50.08%. The abdomen/pelvis
CT reports, which are the longest reports in our col-
lection as depicted in Figure 1, account for 41.38%
of all annotations. This is followed by chest CTs
at 28.34%, brain MRs at 23.16%, and chest x-rays
at 7.11%. Regarding the types of relations anno-

12905



Entity Relations
Approach Micro F1 Macro F1 Micro F1 Macro F1

SpERT
BERT 0.844±0.001 0.707±0.033 0.638±0.016 0.513±0.023

BiomedBERT 0.741±0.002 0.646±0.020 0.535±0.007 0.463±0.018

BiomedVLP-CXR-BERT 0.743±0.003 0.642±0.033 0.538±0.007 0.431±0.025

DYGIE++
BERT 0.877±0.002 0.758±0.005 0.729±0.016 0.664±0.018

BiomedBERT 0.880±0.000 0.785±0.002 0.725±0.014 0.671±0.017

BiomedVLP-CXR-BERT 0.889±0.000 0.796±0.001 0.737±0.015 0.689±0.023

BiomedVLP-CXR-BERT(b) 0.889 0.797 0.739 0.691

Table 4: Aggregated results from the 10-folds for the DYGIE++ and SpERT framework. In this context, a true
positive is defined as an instance where the prediction of an entity or relation is completely accurate. This accuracy
encompasses correctly identifying the span and label of an entity. For relations, it involves correctly determining the
spans of both the source and target entities involved in the relation, as well as accurately identifying the label of the
relation.

tated, 63.30% are classified as ‘modify’, 32.94%
as ‘located at’, and 3.75% ‘suggestive of’. For
entities, we identify 19,772 unique (entity, label)
pairs; for relations, we find 67,323 (source entity,
target entity, label) unique triplets. The 10 most
common unique entity pairs and relation triplets
are presented in Table 13.

4 Experiments

4.1 Baseline training

In this section, we aim to develop a predictive
model using both the newly annotated dataset
and the data from RadGraph-1.0. To achieve
this, we evaluate two transformer-based libraries
under MIT License for Entity and Relation Ex-
traction: DyGIE++ (Wadden et al., 2019) and
SpERT (Eberts and Ulges, 2020) with three proven
transformer architectures, namely BERT (Kenton
and Toutanova, 2019), BiomedBERT (Gu et al.,
2020) and BiomedVLP-CXR-BERT (Boecking
et al., 2022). We assess the effectiveness of our
training through a 10-fold cross-validation process.
Considering that the majority of the models dis-
cussed in this paper handle sequences of no more
than 512 tokens, we ensure that both the reports
and annotations are divided appropriately.
The summarized results are presented in Table 4,
where we demonstrate that the DYGIE++ frame-
work delivers the best performance overall. In
terms of comparing various transformer architec-
tures, the differences observed between them are
minimal. The highest-scoring transformer model

is BiomedVLP-CXR-BERT.

4.2 Selecting the Best Model

From the 10-fold cross-validation process, we iden-
tified the training, validation, and testing splits
based on the fold where BiomedVLP-CXR-BERT
achieved its highest performance, recording scores
of 0.889 and 0.797 for Entity F1 Micro and F1
Macro, and 0.739 and 0.691 for Relations F1 Micro
and F1 Macro, respectively. This top-performing
model is now referred as to BiomedVLP-CXR-
BERT(b). These splits will be used as the standard
for our subsequent ablation studies; for context, the
selected splits for the training, validation, and test
sets include 2320, 290, and 290 reports, respec-
tively. The results of BiomedVLP-CXR-BERT(b)
for entities and relationships in this specific split
are detailed in the following Table 5:

Official test split F1 Score Precision Recall

NER Label Metrics

Anatomy definitely present 0.93 0.92 0.93
Observation definitely absent 0.90 0.90 0.91
Observation definitely present 0.85 0.85 0.85
Observation uncertain 0.77 0.78 0.77
Anatomy definitely absent 0.53 0.57 0.50

Relations Label Metrics

modify - 0.74 0.74 0.74
located at - 0.75 0.74 0.76
suggestive of - 0.58 0.60 0.55

Table 5: Results of BiomedVLP-CXR-BERT(b) on the
RadGraph-XL official test-split.

12906



4.3 Scaling with LLMs

The baseline architectures we selected are relatively
small by current standards, each having a total of
0.11 billion parameters. In addition, we investi-
gated transformer models with varying numbers of
parameters, specifically XLM-Roberta (Conneau
et al., 2019), which has 0.5 billion parameters and
was trained on 2.5TB of filtered CommonCrawl
data. We also looked at Pythia (Biderman et al.,
2023), with 1 billion parameters trained on the Pile,
and StableLM2 (StabilityAI, 2024), which has 1.6
billion parameters and was trained on a dataset of
2 trillion tokens.

Approach Entity Relations

Macro F1 Macro F1

BiomedVLP-CXR-BERT 0.796 0.689
XLM-Roberta 0.702 0.650
Pythia 1B 0.650 0.632
StableLM2 2.7B 0.789 0.656

Table 6: Comparison of BiomedVLP-CXR-BERT back-
bone against larger models on a 10-fold cross validation
experiment.

XLM-Roberta, Pythia, and StableLM2 reports
micro F1 scores that are closely matched with those
of BiomedVLP-CXR-BERT, with values for enti-
ties between 0.87 and 0.88 and for relations be-
tween 0.71 and 0.73. However, they fall short in
performance for certain under-represented labels,
as indicated by the macro F1 scores presented in
Table 6. Particularly, XLM-Roberta reports an F1
score of 0 for ‘Anatomy definitely absent’, 0.68 for
‘Observation uncertain’, and 0.47 for the relation
‘suggestive of’.

4.4 Performance on Measurements

The following heuristic was used to annotate mea-
surements in the reports.

Algorithm 1 Check measurement in an entity

1 # e n t i t y i s a l i s t o f words
2 # e . g . [ " 5 " , " x " , " 5 " , "mm" ]
3 i f "mm" i n e n t i t y o r "cm" i n e n t i t y o r \
4 "MM" i n e n t i t y o r "CM" i n e n t i t y o r \
5 ( " x " i n e n t i t y and any (w. i s d i g i t ( )

f o r w i n e n t i t y ) ) :
6 # e n t i t y i s c o n s i d e r e d a measure

The captured measurements are highly diverse,
such as ’approximately a 4.6 cm’, ’advanced by

at least 11 cm’, ’measuring slightly less than 6
mm’ or ’smaller in size compared to the prior study
measuring 1.5 cm in the largest dimension’. Mea-
surements are distributed across labels and imaging
studies as follows:

Category Count

Observation definitely present 3212
Anatomy definitely present 125
Observation definitely absent 11
Observation uncertain 7
Anatomy definitely absent 4
Anatomy uncertain 3
Imaging Study Count

Stanford Abdomen/Pelvis CT 1421
Stanford Chest CT 1035
Stanford Brain MR 241
MIMIC Chest CT 225
MIMIC Abdomen/Pelvis CT 199
Stanford Chest X-ray 96
MIMIC Brain MR 80
MIMIC Chest X-ray 65

Table 7: Distribution of measurements per label and
imaging study

Table 8 presents the performance metrics for
these measurements as evaluated by our top-
performing model, BiomedVLP-CXR-BERT(b) on
the official test-set.

Measurements Entity

F1 Score Precision Recall

Obs. definitely present 0.820 0.860 0.780
Anat. definitely present 0.630 0.580 0.700
Obs. definitely absent 0.660 1.000 0.500
Obs. uncertain 0.660 1.000 0.500

Table 8: Performance on measurements entities by our
best model BiomedVLP-CXR-BERT (b) on the test-set
of our official split.

4.5 Comparison to RadGraph-1.0

To assess the value of our new annotations, we
conducted two experiments.

The first experiment involves testing the model
trained on RadGraph-1.0 (chest X-rays only) on our
official test split, ensuring we excluded annotations
labeled as ‘Anatomy Uncertain’ and ‘Anatomy
definitely absent’ since they do not exist in the
RadGraph-1.0 schema.
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Approach Entity Relation

Macro F1 Macro F1

BiomedVLP-CXR-BERT(b) 0.863 0.691
RadGraph-1.0 0.744 0.453

Table 9: Comparison of the model provided by
RadGraph-1.0 with our top-performing model on our
official test-set. The presented results were obtained
by excluding the categories ‘Anatomy Uncertain’ and
‘Anatomy definitely absent’, since these are not included
in RadGraph-1.0.

As seen in Table 9, the BiomedVLP-CXR-
BERT(b) model significantly outperforms
RadGraph-1.0 in both categories. Specifically, in
the Entity category, our model achieves a Macro
F1 score of 0.863, which is approximately 16.0%
higher than RadGraph-1.0’s score of 0.744. In
the Relations category, the improvement is even
more pronounced, with our model attaining a score
of 0.691, which surpasses RadGraph-1.0’s score
of 0.453 by 52.5%. These results suggest that
BiomedVLP-CXR-BERT(b) provides a significantly
more effective approach for recognizing entities
and their relations on reports from various imaging
studies. The detailed results of RadGraph-1.0 on
our test-set are presented in Table 10. A significant
discrepancy is observed in the category ‘Observa-
tion definitely present’, where the performance
of RadGraph-1.0’s model is 20 f1-score points
inferior compared to BiomedVLP-CXR-BERT(b).

Category F1 Score Precision Recall

Anatomy definitely present 0.83 0.80 0.86
Observation definitely absent 0.71 0.65 0.77
Observation definitely present 0.61 0.67 0.56
Observation uncertain 0.81 0.80 0.83

Relations Label Metrics

modify - 0.48 0.44 0.52
located at - 0.52 0.54 0.50
suggestive of - 0.35 0.45 0.29

Table 10: Detailed results of the RadGraph-1.0 model
tested on our RadGraph-XL official test-split. These
results can be directly compared to Table 5 as they are
computed on the same test-set.

In the second experiment, we trained the
BiomedVLP-CXR-BERT backbone using all avail-
able data except for the official test set from
RadGraph-1.0, which includes only annotations
for chest X-rays. The outcomes of this experi-
ment are detailed in Table 11. We observe that

our BiomedVLP-CXR-BERT model, despite being
trained on a large, diverse dataset, can match the
performance of the RadGraph-1.0 model on the
RadGraph-1.0 test-set. It’s also worth mentioning
that the test set is relatively small, consisting of 100
reports focused on chest X-rays. These reports are
typically brief and offer limited semantic variety
compared to other types of imaging studies found
in our RadGraph-XL dataset.

Approach Entity Relation

Macro F1 Macro F1

BiomedVLP-CXR-BERT 0.862 0.694
RadGraph-1.0 0.862 0.692

Table 11: Comparison of the model provided by
RadGraph-1.0 with our top-performing model on
RadGraph-1.0 test-set.

4.6 Comparisons with GPT-4
Recent work has demonstrated the utility of GPT-
4, a task-agnostic foundation model, in effec-
tively performing a variety of natural language
tasks (Achiam et al., 2023; Liu et al., 2023b). In or-
der to compare state-of-the-art task-agnostic mod-
els with our task-specific approach, we benchmark
performance of GPT-4 on the RadGraph-XL test
set. Given an input radiology report, we use GPT-4
to extract entities and relations. We evaluate per-
formance of zero-shot GPT-4, where no in-context
examples are provided, and few-shot GPT-4, where
between one and ten in-context examples are in-
cluded in the prompt. In-context examples are sam-
pled randomly from the RadGraph-XL training set.
Our results are summarized in Table 12.

Approach Entity Relation

Macro F1 Macro F1

GPT4 (0-shot) 0.172 0.012
GPT4 (1-shot) 0.182 0.010
GPT4 (5-shot) 0.211 0.020
GPT4 (10-shot) 0.206 0.024

BiomedVLP-CXR-BERT(b) 0.797 0.691

Table 12: We compare our top-performing model with
GPT-4 on the official RadGraph-XL test set.

We find that performing entity and relation
extraction on the RadGraph-XL dataset is challeng-
ing for GPT-4, with macro-F1 scores observed to
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be significantly lower (0.594 F1-points on entity ex-
traction and 0.667 F1-points on relation extraction)
than our task-specific approach. Few-shot GPT-4
with in-context examples exhibit slight improve-
ments in performance over zero-shot GPT-4 (0.045
F1 points on entity extraction and 0.012 F1 points
on relation extraction). In line with prior work
(Liu et al., 2023a), we find that the key source of
GPT-4 errors comes from incorrect understanding
of the annotation schema, even in few-shot settings.

Overall, our experiments show that GPT-4 re-
quires substantial manual prompt tuning, gener-
ates outputs that do not adequately align with the
annotation schema, and requires significant post-
processing of generated outputs. Additionally, eval-
uations with GPT-4 are expensive, which is a par-
ticular concern on the RadGraph-XL dataset where
reports are lengthy with a large number of entities
and relations. Our results demonstrate (i) the need
for task-specific models like our BiomedVLP-CXR-
BERT(b) model, which are capable of performing
specialized tasks with high accuracy, and (ii) that
RadGraph-XL can serve as a useful and challeng-
ing test-bed for future foundation models.

5 Reader Study

We conduct a reader study on out-of-domain data,
namely Deep Vein Thrombosis (DVT) ultrasound
reports, in order to evaluate the ability of our model
to generalize to new radiological text. We chose
20 reports with semantic diversity, extracted the
impressions section, and ran our top-performing
model BiomedVLP-CXR-BERT(b) to predict enti-
ties and relations. Our model generated 265 enti-
ties (13.25 per report) and 207 relations (10.35 per
report). A board-certified radiologist was tasked
to detect critical errors, imprecise or ambiguous
classifications and unclear labels, and provide a
subjective overview summary.

Critical errors Three critical errors were de-
tected. First, ‘deep’ in ‘deep veins’ was twice
labeled as an observation, though it should be
anatomy. This is a surprising edge case because i)
our RadGraph-XL training set contains 51 ‘deep’
annotations, 40 of which are labeled as Anatomy:
definitely present ii) the other ‘deep’ words were
labeled correctly. Secondly, in one case, ‘some
areas’ was labeled as an observation instead of
anatomy (referring to some areas of the blood ves-
sel). Finally, in one impression, ‘loss of phasicity’

and ‘loss of normal response’ were labeled as ‘def-
initely present’, but should have been labeled as
‘definitely absent’.

Imprecise or ambiguous classifications A few
awkward labels have been predicted: ‘Thrombosis’
incorrectly modified ‘venous’ instead of indicat-
ing location. The entities ‘baker cyst’ and ‘color
flow’ were wrongly marked as ‘present’ instead of
‘uncertain’, while ‘infection’ and ‘focal’ were mis-
takenly labeled as ‘uncertain’ rather than ‘definitely
present’.

Overview summary RadGraph-XL can effec-
tively generalize to an unknown modality and
anatomic terms. For example, it was able to show
that ‘spectral doppler imaging’ modifies ‘flow’, a
combination of entities that is non-existent in our
training dataset. Although the overwhelming ma-
jority of anatomic terms were classified correctly,
there is opportunity for improvement in classifying
anatomic terms, in this case “deep” as an anatomic
modifier of deep vein thrombosis, that were fre-
quently misclassified.

In summary, 5 entities out of 265 were criti-
cal errors (1.8%) and 4 entities were subjectively
flagged as imprecise (1.5%). Only one relation
was subjectively flagged as imprecise. Despite this
study being carried on a small sample focused on
ultrasound done for deep venous thrombosis, the
results are encouraging for the broader use of our
RadGraph-XL model for radiological information
extraction.

6 Conclusion

We introduced RadGraph-XL, an expansive dataset
comprising 2,300 radiology reports enriched with
over 410,000 expert annotations from radiologists
(Section 3). This dataset spans a variety of en-
tities, relations, and measurements across multi-
ple modality-anatomy pairs, enriching the data ex-
tracted from radiological texts with unprecedented
precision and depth. We have conducted experi-
ments (Section 4) using transformer-based models
trained for automatic annotation of radiology re-
ports, employing state-of-the-art frameworks for
entity and relation extraction. Through compre-
hensive ablation studies (Section 4.2, 4.3, and 4.4)
and a reader study (Section 5) that extends to out-
of-domain data, we meticulously evaluated our
model’s performance. The results reveal that our
model not only sets a new benchmark, but also
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outperforms previous methods by as much as 52%
(Section 4.5) and notably outperforms GPT-4 (Sec-
tion 4.6) in this specific field. To encourage further
innovation and research, we release the reports, the
annotations, and our trained model.

7 Limitations

We denote three limitations to our work. First and
foremost, the experiments have been conducted on
the raw annotations without further post-processing.
The annotations could be refined by implementing
various heuristics to identify and address outliers
in the dataset. For instance, entities with unusually
long spans could be flagged for review, as these
may indicate potential mislabeling or annotation er-
rors. Similarly, entities that appear to be mislabeled
could be systematically identified and corrected;
Those that lack any annotations might be removed
to ensure the dataset’s consistency and relevance.

Secondly, the selected transformer architectures
have a maximum input size of 512 tokens, but many
reports in our dataset are longer than that. It’s un-
certain if dividing a report into several parts affects
the model’s effectiveness due to the loss of con-
text. Additionally, expanding the model to a size
comparable to ‘Large Language Models’ and fine-
tuning all its parameters hasn’t led to any enhance-
ments. More advanced techniques, referred to as
Parameter-Efficient Fine-Tuning (PEFT), might al-
low for more consistent training and the scaling up
to larger models that are capable of more sophisti-
cated reasoning.

Finally, our reader study indicates that while our
model generally produces good annotations on un-
seen datasets, it is not immune to significant errors
when dealing with out-of-distribution data. It re-
mains uncertain how effectively our model handles
unseen modalities and anatomies, and whether it
can be considered reliable for annotating data in
such contexts for subsequent tasks.
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References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory
Anthony, Herbie Bradley, Kyle O’Brien, Eric Hal-
lahan, Mohammad Aflah Khan, Shivanshu Purohit,
USVSN Sai Prashanth, Edward Raff, et al. 2023.
Pythia: A suite for analyzing large language mod-
els across training and scaling. In International
Conference on Machine Learning, pages 2397–2430.
PMLR.

David M Blei, Andrew Y Ng, and Michael I Jordan.
2003. Latent dirichlet allocation. Journal of machine
Learning research, 3(Jan):993–1022.

Benedikt Boecking, Naoto Usuyama, Shruthi Bannur,
Daniel C Castro, Anton Schwaighofer, Stephanie
Hyland, Maria Wetscherek, Tristan Naumann, Aditya
Nori, Javier Alvarez-Valle, et al. 2022. Making the
most of text semantics to improve biomedical vision–
language processing. In European conference on
computer vision, pages 1–21. Springer.

Aurelia Bustos, Antonio Pertusa, Jose-Maria Salinas,
and Maria De La Iglesia-Vaya. 2020. Padchest: A
large chest x-ray image dataset with multi-label an-
notated reports. Medical image analysis, 66:101797.

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua,
Nicole Limtiaco, Rhomni St John, Noah Constant,
Mario Guajardo-Cespedes, Steve Yuan, Chris Tar,
et al. 2018. Universal sentence encoder for english.

12910



In Proceedings of the 2018 conference on empiri-
cal methods in natural language processing: system
demonstrations, pages 169–174.

Zhihong Chen, Maya Varma, Xiang Wan, Curtis Lan-
glotz, and Jean-Benoit Delbrouck. 2023. Toward ex-
panding the scope of radiology report summarization
to multiple anatomies and modalities. In Proceed-
ings of the 61st Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Pa-
pers), pages 469–484, Toronto, Canada. Association
for Computational Linguistics.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2019. Unsupervised
cross-lingual representation learning at scale. CoRR,
abs/1911.02116.

Surabhi Datta, Yuqi Si, Laritza Rodriguez, Sonya E
Shooshan, Dina Demner-Fushman, and Kirk Roberts.
2020a. Understanding spatial language in radiology:
Representation framework, annotation, and spatial
relation extraction from chest x-ray reports using
deep learning. Journal of biomedical informatics,
108:103473.

Surabhi Datta, Morgan Ulinski, Jordan Godfrey-Stovall,
Shekhar Khanpara, Roy F Riascos-Castaneda, and
Kirk Roberts. 2020b. Rad-spatialnet: a frame-based
resource for fine-grained spatial relations in radiol-
ogy reports. In LREC... International Conference on
Language Resources & Evaluation:[proceedings]. In-
ternational Conference on Language Resources and
Evaluation, volume 2020, page 2251. NIH Public
Access.

Jean-Benoit Delbrouck, Pierre Chambon, Christian
Bluethgen, Emily Tsai, Omar Almusa, and Curtis
Langlotz. 2022. Improving the factual correctness of
radiology report generation with semantic rewards.
In Findings of the Association for Computational
Linguistics: EMNLP 2022, pages 4348–4360, Abu
Dhabi, United Arab Emirates. Association for Com-
putational Linguistics.

Jean-Benoit Delbrouck, Maya Varma, Pierre Cham-
bon, and Curtis Langlotz. 2023. Overview of the
radsum23 shared task on multi-modal and multi-
anatomical radiology report summarization. In The
22nd Workshop on Biomedical Natural Language
Processing and BioNLP Shared Tasks, pages 478–
482.

Markus Eberts and Adrian Ulges. 2020. Span-based
joint entity and relation extraction with transformer
pre-training. In Proceedings of the 24th European
Conference on Artificial Intelligence (ECAI).

Yu Gu, Robert Tinn, Hao Cheng, Michael Lucas, Naoto
Usuyama, Xiaodong Liu, Tristan Naumann, Jianfeng
Gao, and Hoifung Poon. 2020. Domain-specific lan-
guage model pretraining for biomedical natural lan-
guage processing. arXiv preprint arXiv:2007.15779.

Jeremy Irvin, Pranav Rajpurkar, Michael Ko, Yifan Yu,
Silviana Ciurea-Ilcus, Chris Chute, Henrik Marklund,
Behzad Haghgoo, Robyn Ball, Katie Shpanskaya,
et al. 2019. Chexpert: A large chest radiograph
dataset with uncertainty labels and expert comparison.
In Proceedings of the AAAI conference on artificial
intelligence, volume 33, pages 590–597.

Saahil Jain, Ashwin Agrawal, Adriel Saporta, Steven
Truong, Du Nguyen Duong, Tan Bui, Pierre Cham-
bon, Yuhao Zhang, Matthew Lungren, Andrew Ng,
Curtis Langlotz, Pranav Rajpurkar, and Pranav Ra-
jpurkar. 2021. Radgraph: Extracting clinical entities
and relations from radiology reports. In Proceedings
of the Neural Information Processing Systems Track
on Datasets and Benchmarks, volume 1.

Michael Jantscher, Felix Gunzer, Roman Kern, Eva
Hassler, Sebastian Tschauner, and Gernot Reishofer.
2023. Information extraction from german radio-
logical reports for general clinical text and language
understanding. Scientific Reports, 13(1):2353.

Alistair EW Johnson, Tom J Pollard, Seth J Berkowitz,
Nathaniel R Greenbaum, Matthew P Lungren, Chih-
ying Deng, Roger G Mark, and Steven Horng.
2019. Mimic-cxr, a de-identified publicly available
database of chest radiographs with free-text reports.
Scientific data, 6(1):317.

Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina
Toutanova. 2019. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. In
Proceedings of naacL-HLT, volume 1, page 2.

Curtis P Langlotz and Lee Meininger. 2000. Enhancing
the expressiveness and usability of structured image
reporting systems. In Proceedings of the AMIA sym-
posium, page 467. American Medical Informatics
Association.

Wilson Lau, Kevin Lybarger, Martin L Gunn, and
Meliha Yetisgen. 2023. Event-based clinical find-
ing extraction from radiology reports with pre-
trained language model. Journal of Digital Imaging,
36(1):91–104.

Mingjie Li, Wenjia Cai, Karin Verspoor, Shirui Pan, Xi-
aodan Liang, and Xiaojun Chang. 2022. Cross-modal
clinical graph transformer for ophthalmic report gen-
eration. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR),
pages 20656–20665.

Qianchu Liu, Stephanie Hyland, Shruthi Bannur, Kenza
Bouzid, Daniel Castro, Maria Wetscherek, Robert
Tinn, Harshita Sharma, Fernando Pérez-García, An-
ton Schwaighofer, Pranav Rajpurkar, Sameer Khanna,
Hoifung Poon, Naoto Usuyama, Anja Thieme,
Aditya Nori, Matthew Lungren, Ozan Oktay, and
Javier Alvarez-Valle. 2023a. Exploring the bound-
aries of GPT-4 in radiology. In Proceedings of the
2023 Conference on Empirical Methods in Natural
Language Processing, pages 14414–14445, Singa-
pore. Association for Computational Linguistics.

12911

https://doi.org/10.18653/v1/2023.acl-short.41
https://doi.org/10.18653/v1/2023.acl-short.41
https://doi.org/10.18653/v1/2023.acl-short.41
http://arxiv.org/abs/1911.02116
http://arxiv.org/abs/1911.02116
https://doi.org/10.18653/v1/2022.findings-emnlp.319
https://doi.org/10.18653/v1/2022.findings-emnlp.319
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/file/c8ffe9a587b126f152ed3d89a146b445-Paper-round1.pdf
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/file/c8ffe9a587b126f152ed3d89a146b445-Paper-round1.pdf
https://doi.org/10.18653/v1/2023.emnlp-main.891
https://doi.org/10.18653/v1/2023.emnlp-main.891


Qianchu Liu, Stephanie Hyland, Shruthi Bannur, Kenza
Bouzid, Daniel C Castro, Maria Teodora Wetscherek,
Robert Tinn, Harshita Sharma, Fernando Pérez-
García, Anton Schwaighofer, et al. 2023b. Exploring
the boundaries of gpt-4 in radiology. arXiv preprint
arXiv:2310.14573.

Vignav Ramesh, Nathan A Chi, and Pranav Rajpurkar.
2022. Improving radiology report generation systems
by removing hallucinated references to non-existent
priors. In Machine Learning for Health, pages 456–
473. PMLR.

Eduardo P Reis, Joselisa PQ de Paiva, Maria CB
da Silva, Guilherme AS Ribeiro, Victor F Paiva, Lu-
cas Bulgarelli, Henrique MH Lee, Paulo V Santos,
Vanessa M Brito, Lucas TW Amaral, et al. 2022.
Brax, brazilian labeled chest x-ray dataset. Scientific
Data, 9(1):487.

Guergana K Savova, James J Masanz, Philip V Ogren,
Jiaping Zheng, Sunghwan Sohn, Karin C Kipper-
Schuler, and Christopher G Chute. 2010. Mayo clin-
ical text analysis and knowledge extraction system
(ctakes): architecture, component evaluation and ap-
plications. Journal of the American Medical Infor-
matics Association, 17(5):507–513.

StabilityAI. 2024. Stable lm 2 1.6b.

K Sugimoto, T Takeda, JH Oh, S Wada, S Konishi,
A Yamahata, S Manabe, N Tomiyama, T Matsunaga,
K Nakanishi, et al. 2021. Extracting clinical terms
from radiology reports with deep learning. Journal
of Biomedical Informatics, 116:103729–103729.

Tao Tu, Shekoofeh Azizi, Danny Driess, Mike Schaek-
ermann, Mohamed Amin, Pi-Chuan Chang, Andrew
Carroll, Chuck Lau, Ryutaro Tanno, Ira Ktena, et al.
2023. Towards generalist biomedical ai. arXiv
preprint arXiv:2307.14334.

Maya Varma, Jean-Benoit Delbrouck, Sarah Hooper,
Akshay Chaudhari, and Curtis Langlotz. 2023. Villa:
Fine-grained vision-language representation learn-
ing from real-world data. In Proceedings of the
IEEE/CVF International Conference on Computer
Vision, pages 22225–22235.

David Wadden, Ulme Wennberg, Yi Luan, and Han-
naneh Hajishirzi. 2019. Entity, relation, and event
extraction with contextualized span representations.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 5784–5789.

Chaoyi Wu, Xiaoman Zhang, Ya Zhang, Yanfeng Wang,
and Weidi Xie. 2023a. Medklip: Medical knowledge
enhanced language-image pre-training. medRxiv,
pages 2023–01.

Chaoyi Wu, Xiaoman Zhang, Ya Zhang, Yanfeng
Wang, and Weidi Xie. 2023b. Towards general-
ist foundation model for radiology. arXiv preprint
arXiv:2308.02463.

Benjamin Yan, Ruochen Liu, David Kuo, Subathra
Adithan, Eduardo Reis, Stephen Kwak, Vasan-
tha Venugopal, Chloe O’Connell, Agustina Saenz,
Pranav Rajpurkar, et al. 2023. Style-aware radiol-
ogy report generation with radgraph and few-shot
prompting. In Findings of the Association for Com-
putational Linguistics: EMNLP 2023, pages 14676–
14688.

Shujun Zhang, Liwei Tan, Qi Han, Hongyan Wang,
and Jianli Meng. 2023a. Automatic report gener-
ation on a large-scale stroke mri dataset. In 2023
IEEE 6th International Conference on Electronic In-
formation and Communication Technology (ICEICT),
pages 123–128.

Xiaoman Zhang, Chaoyi Wu, Ya Zhang, Weidi Xie,
and Yanfeng Wang. 2023b. Knowledge-enhanced
visual-language pre-training on chest radiology im-
ages. Nature Communications, 14(1):4542.

12912

[https://huggingface.co/stabilityai/stablelm-2-1.6b](https://huggingface.co/stabilityai/stablelm-2-1.6b)
https://doi.org/10.1109/ICEICT57916.2023.10245487
https://doi.org/10.1109/ICEICT57916.2023.10245487


A Information Schema

In RadGraph-1.0 (Jain et al., 2021), Entities and
Relations are defined as such:

Figure 2: Example of annotations for an impression.
Figure taken from Jain et al. (2021).

Entities: We categorize text into units called
‘entities’, which are spans of text that might be
just one word or a string of words stuck together.
These entities fall into two big buckets: ‘Anatomy’,
which is about body parts like the lung you might
read about in a medical report, and ‘Observation’,
which is about words associated with visual fea-
tures, identifiable pathophysiologic processes, or
diagnostic disease classifications.

Relations: We look at how these entities re-
late to each other, which are like arrows that con-
nect one entity to another in a specific way. We use
three types of relations: ‘Suggestive Of’, which
connects two Observations when one might imply
the other; ‘Located At’, which links an Observation
to an Anatomy to show where something’s happen-
ing or to describe their relationship in other ways;
and ‘Modify’, which can connect two Observations
or two Anatomies to show how one changes or adds
detail to the other.

B Labeling challenges

In the complex landscape of radiology reports,
accurately identifying and annotating anatomical
terms and their associated modifiers presents a sig-
nificant challenge. This challenge is not only im-
portant to create high-quality labels but also crucial
for maintaining consistency across reports. The
nuances involved in this process can lead to vari-
ability in interpretations, which, in turn, may affect
patient care and outcomes.

Anatomical Term Identification A primary
concern in anatomical term identification is dis-
tinguishing between the main anatomical regions
or organs and the modifiers that specify their exact
locations or characteristics. An illustrative exam-
ple can be seen in the description of lung scarring:
‘The lung bases are clear with the exception of
some scarring in the right lung base.’ Here, ‘right’,

‘lung’, and ‘base’ are all anatomical terms. The am-
biguity arises in determining whether ‘right’ modi-
fies ‘lung’ or ‘base’, or if ‘right lung base’ should
be collectively annotated as a singular anatomical
entity. To mitigate such ambiguities, it is recom-
mended that the major anatomic region or organ, in
this case, ‘lung’, be labeled as the primary anatom-
ical term. The terms ‘right’ and ‘base’ should then
be annotated as modifiers that delineate the specific
location within the lung.

Modifier Identification Another layer of com-
plexity is introduced when considering how to accu-
rately label modifiers, particularly in phrases where
multiple anatomical terms are present. For instance,
the phrase "There is moderate intrahepatic biliary
duct dilatation" contains "intrahepatic," "biliary,"
and "duct" as anatomical terms. The challenge
here is to ascertain whether "intrahepatic" modifies
"duct" or "biliary." Consistency can be achieved
by identifying the duct as the primary anatomical
term and treating "intrahepatic" and "biliary" as
modifiers that provide additional specificity.

Measurements A common question that arises
in this context is how to handle phrases that in-
clude qualifiers such as "up to," "less than," or
"greater than," which provide crucial information
about the measurements being reported. Consider
the sentence: "The CBD (Common Bile Duct) it-
self measures up to 3 cm in diameter." The use
of "up to" may not be the most precise phrasing
for a radiology report, where the exact measure-
ment is typically preferred. However, the reality of
clinical practice often involves approximations and
ranges, particularly when exact measurements are
challenging to obtain. Given their significance, it is
recommended that qualifiers such as "up to," "less
than," and "greater than" be labeled as observation
modifiers.

Qualitative Modifiers Annotating qualitative
modifiers such as ‘extensive’, ‘some’, and ‘clear’
in radiology reports presents a notable challenge.
These terms significantly impact the clinical inter-
pretation by modifying observations (e.g., ‘exten-
sive diverticulosis’) or indicating uncertainty (e.g.,
‘grossly unremarkable’). The complexity arises
from their dual role in describing the severity of
findings and spatial relationships between anatom-
ical entities. Our approach recommends labeling
terms that alter the interpretation of findings as ob-
servations and utilizing a generalized ‘located_at’
relation for spatial descriptors to simplify the an-
notation process. Terms that introduce ambiguity,
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like ‘clear’ and ‘grossly’, are best represented by
annotating the corresponding observations as ‘un-
certain’.

Contextual Modifiers Phrases like ‘in the set-
ting of recent surgical procedure’ or ‘hematocrit
drop’ provide essential clinical context but do not
directly describe imaging findings. Our guideline
suggests excluding these terms from annotation, as
they do not describe the radiological findings.

Compound words Determining whether to split
or merge terms for annotation, such as in "hiatal
hernia" or "focal pancreatitis," can be perplexing.
The rule of thumb is to label words individually to
maintain clarity, especially since compound terms
might not always appear together in the text. How-
ever, it’s crucial to identify the primary entity in
each compound term, which typically represents
the main anatomy or observation. For example,
"hernia" in "hiatal hernia" is the observation, with
"hiatal" specifying the anatomical location. Sim-
ilarly, "pancreatitis" is the observation in "focal
pancreatitis," with "focal" indicating the observa-
tion’s nature.

C Dataset

The figure below illustrates the process we used to
select the reports, as detailed in Section 3.1.

Figure 3: t-SNE representation of the embeddings gen-
erated by the Universal Sentence Encoder for CT ab-
domen/pelvis (left) and MR Brain (right). We use the
automatic topic modeling LDA algorithm (Blei et al.,
2003) to generate ten clusters.

Entities Label Count
Right Anatomy: DP 4078
Left Anatomy: DP 3652
Normal Observation: DP 3619
Unremarkable Observation: DP 1840
Lobe Anatomy: DP 1572
Pulmonary Anatomy: DP 1553
Artery Anatomy: DP 1402
Size Anatomy: DP 1222
Small Observation: DP 1193
Pleural Anatomy: DP 1118
Source => Target Label Count
Right => Lobe Modify 818
Normal => Caliber Located At 706
Normal => Size Located At 695
Effusion => Pericardial Located At 665
Left => Lobe Modify 564
Lower => Lobe Modify 501
Effusion => Pleural Located At 462
Small => Bowel Modify 414
Size => Heart Modify 378
Caliber => Aorta Modify 376
Adrenal => Glands Modify 375

Table 13: Most common entities and relations in the
dataset

D Training details

Our best model is trained using the Entity and Re-
lation Extraction framework DyGIE++ (Wadden
et al., 2019). The parameters are defined in Ta-
ble 14.

Parameter Value
max_span_width 8
initializer xavier_normal
Loss Weights - ner 0.2
Loss Weights - relation 1.0
Feedforward Params - num_layers 2
Feedforward Params - hidden_dims 768
Feedforward Params - dropout 0.4
Data Loader - sampler_type random
Data Loader - batch_size 8
num_epochs 100
grad_norm 5.0
Optimizer (classifier) - lr 1e-3
Optimizer (classifier) - weight_decay 0.0
Optimizer (transformer) - lr 5e-5
Optimizer (transformer) - weight_decay 0.1
Learning Rate Scheduler - type slanted_triangular

Table 14: Hyperparameters

E GPT-4 Evaluations

We provide the prompt used for GPT-4 evaluations
in Figure 4.
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GPT-4 prompt

Prompt:
Your task is to extract medical entities and relations from a given radiology report. I’ll provide you
with 1) the problem setup, 2) the radiology report, and 3) the output format.

1) Problem setup: For each report, you will be asked to identify 7 types of medical entities:
(1) observation::present, which is used for visual features, pathophysiologic processes, or
diagnosable diseases that are present;
(2) observation::absent, which is used for visual features, pathophysiologic processes, or
diagnosable diseases that are absent;
(3) observation::uncertain, which is used for visual features, pathophysiologic processes, or
diagnosable diseases where you are uncertain about presence or absence;
(4) observation::measurement::present, which refers to a measurement associated with visual
features, pathophysiologic processes, or diseases;
(5) anatomy::present, which refers to an anatomical body part that is present;
(6) anatomy::absent, which refers to an anatomical body part that is absent;
(7) anatomy::measurement::present, which refers to a measurement associated with an anatomical
body part;
For each report, you will also be asked to identify 3 types of relations between entities:
(1) suggestive_of, which is a relation between two Observation entities indicating that the presence
of the second Observation is inferred from the first Observation.
(2) located_at, which is a relation between an Observation entity and an Anatomy entity indicating
that the Observation is related to the Anatomy
(3) modify, which is a relation between two Observation entities or two Anatomy entities indicating
that the first entity modifies the scope of or quantifies the degree of the second entity.

2) Radiology report:
Report

3) Output format:
Please strictly follow this output format. Entities must be short substrings (often just 1 word) from
the radiology report with no changes to formatting. Each relation exists between a pair of identified
entities. Please list entities and relations in the order they appear in the radiology report.

[Entities]:
[[<entity>, <entity type>], [<entity>, <entity type>], ..., [<entity>, <entity
type>]]

[Relations]:
[[<entity 1>, <entity 2>, <relation type>], [<entity 1>, <entity 2>, <relation
type>], ..., [<entity 1>, <entity 2>, <relation type>]]

Figure 4: Here, we provide the input prompt used by GPT-4 in order to extract entities and relations from RadGraph-
XL. Definitions for entities and relations are adapted from (Jain et al., 2021). For few-shot prompting, we append
example reports and example outputs to the end of this prompt.
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