CIDAR: Culturally Relevant Instruction Dataset For Arabic
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Abstract

Instruction tuning has emerged as a prominent
methodology for teaching Large Language
Models (LLMs) to follow instructions. How-
ever, current instruction datasets predominantly
cater to English or are derived from English-
dominated LLMs, leading to inherent biases
toward Western culture. This bias negatively
impacts non-English languages such as Arabic
and the unique culture of the Arab region. This
paper addresses this limitation by introducing
CIDAR, the first open Arabic instruction-tuning
dataset culturally aligned by native Arabic
speakers. CIDAR contains 10,000 instruction
and output pairs that represent the Arab region.
We discuss the cultural relevance of CIDAR
via the analysis and comparison to a few
models fine-tuned on other datasets. Our
experiments indicate that models fine-tuned
on CIDAR achieve better cultural alignment
compared to those fine-tuned on 30x more
data. The dataset is available on HuggingFace
https://huggingface.co/datasets/arbml/CIDAR.

1 Introduction

The need for Natural Language Processing (NLP)
applications has exploded in an era of unprece-
dented linguistic interaction between humans and
machines. As these applications strive for greater
inclusivity and effectiveness across diverse linguis-
tic landscapes, the need for datasets that reflect the
cultural differences and linguistic peculiarities of
specific regions becomes increasingly important.
In the context of Arabic language understanding,
the challenge lies not only in linguistic complexity
but also in capturing the rich cultural fabric that
shapes communication in the Arab world.
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Figure 1: An example of our localization procedure in
CIDAR of a given ( instruction , output ) pair. We show,
in colors, the grammatical and cultural modifications.

In the past year, many language models have
been pre-trained and instruct-tuned for Arabic,
like JATS (Sengupta et al., 2023), and ACEGPT
(Huang et al., 2023). All these models have been
trained on a large corpus of Arabic text and then
fine-tuned to respond to users’ instructions via
instruction-tuning. However, such efforts do not re-
lease high-quality instruction datasets to be openly
used for research. Moreover, they use a lot of
machine-translated or machine-generated instruc-
tion datasets without further human review or audit,
disregarding the consequences of using such poor,
distorted, and misaligned instructions.

In this paper, we introduce CIDAR, the first open
instruction-tuning dataset that has gone through
extensive review and localization (see Figure 1)
crafted for instructional tuning in Arabic. In the
next sections, we delve into the dataset creation
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Figure 2: Workflow diagram of CIDAR’s data collection pipeline, illustrating each pipeline phase and its components.

process, elucidating the methodology employed to
navigate the delicate balance between linguistic ac-
curacy and cultural relevance. The paper discusses
the potential applications of CIDAR in enhancing
the performance of Arabic LLMs, shedding light
on its role in bridging the gap between language un-
derstanding and cultural context within the realm
of Arabic instruction-tuning. We study the per-
formance of a fine-tuned model on CIDAR and
other models fine-tuned on non-localized datasets.
Our experiments show the importance of CIDAR in
adapting LL.Ms to the Arabic culture.
We summarize our contributions as follows:

1. We release three open datasets, CIDAR,
CIDAR-EVAL-100, and CIDAR-MCQ-100,
as a suite for fine-tuning and evaluating Ara-
bic LLMs on cultural relevance.

2. We highlight our data localization approach
and showcase the cultural relevance of
CIDAR, compared to a translated dataset
(ALPAGASUS) via thorough analysis.

3. We show that a model fine-tuned on our
dataset, CIDAR, can better capture the Ara-
bic cultural nuances compared to models fine-
tuned on translated datasets like ALPAGASUS
or much more data like ACEGPT.

2 Issues of Arabic Instruction Datasets

Two main issues currently exist in the literature,
as addressed in Section 6, in creating Arabic
instruction-tuning datasets: the full translation
of both instruction-response pairs using Machine
Translation tools (MTs) and the translation of in-
structions, then generating responses using LLMs
like GPT-4 (Achiam et al., 2023). Next, we high-
light the drawbacks of such approaches.

2.1 MTs-related Issues

One harmful drawback of the current instruction-
tuning datasets’ creation approaches is the poor,
naive, and direct translation of English instruction-
output pairs to Arabic without human intervention
or supervision using off-the-shelf MTs like Google
Translate, which is widely known for their social
problems like gender, cultural, and religious bi-
ases and stereotypes (Prates et al., 2020; Ullmann
and Saunders, 2021; Lopez-Medel, 2021; Chen
et al., 2021; Naik et al., 2023; Alshahrani et al.,
2022b; Al-Khalifa et al., 2024; Alshahrani et al.,
2024). Many researchers have repeatedly stressed
how such unguided translations are not only prone
to various linguistic and grammatical errors, detri-
mental outcomes, cultural misalignment (favoring
the Western culture), and representational harm
to native speakers (unrepresentative content) but
also introduce negative performance implications
of models trained on them (Stanovsky et al., 2019;
Habash et al., 2019; Das, 2020; Agrawal et al.,
2023; Alshahrani et al., 2023; Thompson et al.,
2024; Roscoe, 2024; Saadany et al., 2024).

2.2 LLMs-related Issues

The other hazardous drawback of the current
instruction-tuning datasets’ creation approaches is
the unvetted, unchecked, and unsupervised trans-
lation of instruction-response pairs from English
to Arabic or the generation of responses for the
previously translated instructions, all using LL.Ms
like GPT-3.5 Turbo or GPT-4 without paying atten-
tion to the consequences. Many research studies
have underscored various risks, threats, and con-
troversies in LLMs, for example, research stud-
ies like (Paullada et al., 2021; Wach et al., 2023;
Thakur, 2023; Naous et al., 2023; Dong et al., 2023;
Acerbi and Stubbersfield, 2023) accentuated that
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Table 1: Comparison between translated ALPAGASUS and CIDAR regarding names and countries using Word
Clouds. In ALPAGASUS, the top locations are the United States (Q\i\f jJ 1) and New York (& ) 32 9+9), and the top

names are John ((y =) and Marry (¢ J\.a), while in CIDAR, after our localization, the top locations are Yemen ( Qo.:ﬂ)
and Egypt (~=»), and the top name§ are Muhammad (A=) and Sarah (.O.J\.w).
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most commonly used LL.Ms could exhibit a wide
spectrum of biases, privacy, and security hazards,
ethical questions, hallucination, and could create
a damaging or deceptive content of certain group.
Besides, LLMs could generate content (e.g., re-
sponses) that suffer cultural misalignment and cul-
tural contradictions, leading to culturally unaligned,
undiverse, untruthful, and unrepresentative outputs
(Prabhakaran et al., 2022; Alshahrani et al., 2022a;
Kasirzadeh and Gabriel, 2023; Cetinic, 2022; Bang
et al., 2023; Yu et al., 2023; Masoud et al., 2023;
Galileo, 2023; Ji et al., 2024; Mubarak et al., 2024).

3 CIDAR

We introduce CIDAR, a dataset that has 10,000 in-
struction and output pairs. CIDAR was constructed
using two sources. First, we used the ALPAGA-
Sus dataset' by (Chen et al., 2023a), which is a
high-quality dataset filtered from the Stanford Al-
paca dataset (Taori et al., 2023). ALPAGASUS con-
tains more than 9K instruction, input, and output
triplets. We translate 9,109 of the data to Arabic
using ChatGPT (GPT-3.5 Turbo). Then, we append
it with around 891 questions and answers about the
Arabic language and Grammar crawled from Ask-
TheTeacher website”. Figure 2 highlights the main

'ALPAGASUS: https://hf.co/mlabonne/alpagasus.
2AskTheTeacher: https://aljazeera.net/ar/asktheteacher.

Names in CIDAR

] '_',‘__‘}‘, J 7 2

procedure for our data collection process. Next, we
explain our approach to construct CIDAR further.

3.1 Machine Translation

We use the Taqyim library (Alyafeai et al., 2023)
to translate all the examples in ALPAGASUS using
GPT-3.5 Turbo. As a preprocessing step, we first
concatenated the instructions and input. After some
prompt engineering, we realized that ChatGPT is
translating coding blocks. Thus, we had to explic-
itly instruct ChatGPT to ignore coding blocks. We
also append the instruction and output with User,
and Bot, respectively, as shown in the following
example:

You are given a conversation between a user
and a bot, translate the full conversation
into Arabic. Don’t translate any coding
blocks.

User: Given the context, identify a suitable
word to complete the sentence. The sun
feels so <mask> today, I just want to sit
here and relax.

Bot: warm.

3.2 Initial Review

After translating our seed dataset, we noticed some
initial problems. Therefore, we followed multiple
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Figure 3: Number of mentions of every Arab country in both CIDAR and translated ALPAGASUS datasets.

steps to fix these machine translation issues:

* Fix instructions or outputs that contain a large
number of the English alphabet.

* Fix empty fields of instructions or outputs.

* Fix manually some of the instructions that had
wrong first words that are not in the correct
form of an instruction.

The main goal of this step is to observe the cur-
rent problems in the dataset to initialize the guide-
lines for the annotators.

3.3 Localization

After fixing the initial issues with translation, we
prepare our dataset to be manually reviewed. To
simplify the annotation process, we created a web-
based Annotation Tool (see Appendix C), where
reviewers were instructed to fix two main issues:

* Linguistic Issues: Some words might not
be translated correctly, especially at the be-
ginning of each instruction; we want all the
statements to start with an instruction. For ex-
ample, we should replace iwds (summary)
with uai(summarize). Also, some instruc-

tions might be specific to English. The anno-
tators are asked to provide their corresponding
examples in Arabic.

* Cultural Relevance: Some examples in the
translated AlpaGasus dataset might contain
instructions and outputs that represent West-
ern cultures. We want to replace them with

samples that represent the Arab region and its
culture. For instance, the name Gt () 9>
(John Smith) should be replaced by an Arabic
name like A& J:- (Ali Khalid).

In our dataset localization process, 12 native Ara-
bic speakers voluntarily participated in localizing
and reviewing all the 10,000 samples of CIDAR.

4 Dataset Analysis

We, in this section, compare between CIDAR and
the initial translated ALPAGASUS to emphasize the
importance of manual revision and cultural align-
ment of machine-generated or translated data.

4.1 Modifications

We show, in Table 2, the number of modifications
made on our dataset, CIDAR, concerning the in-
structions, outputs, or either. Of 9,109 instruction-
response pairs in ALPAGASUS dataset, there were
around 64.5% of them required a modification to
be included in CIDAR dataset. These modifica-
tions are either due to a linguistic error or cultural
irrelevance, as stressed in the subsection 3.3.

Modifications | # Samples
Instructions 3,202
Outputs 4,879
Instructions or Outputs 5,871

Table 2: Number of modified instructions, outputs, or
either from the original translated ALPAGASUS dataset
using our manual review.
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Figure 4: Comparison between CIDAR and translated ALPAGASUS in terms of instruction (Left) and output (Right)
lengths. Noticeably, the length of outputs increased in CIDAR due to the possible reviewers’ rewriting of outputs.

4.2 Locations and Names

The translated ALPAGASUS dataset contains a lot
of Western names and countries. To calculate how
much CIDAR mitigates that, we use Named Entity
Recognition (NER) to extract the tokens represent-
ing persons and locations. We use a fine-tuned
CAMEeLBERT (Inoue et al., 2021) model on NER?
to extract the names of persons and countries in
both CIDAR and the translated ALPAGASUS. In
Table 1, we draw a comparison between locations
and persons in both datasets using word cloud visu-
alizations. We can see that the majority of locations
and names in CIDAR are from the Arab region.

4.3 Countries

In Figure 3, we highlight the distribution of
instruction-output pairs that contain Arab coun-
tries. We observe a huge superiority for CIDAR
over the translated ALPAGASUS in terms of men-
tioning Arab countries. In CIDAR, the mentions of
Arab countries have increased noticeably after our
localization. While, in ALPAGASUS, the mentions
of Arab countries are mostly around ten mentions
for most countries, except for Sudan (Ol

This highlights the importance of CIDAR in repre-
senting the region.

4.4 General Topics

We use keyword-based search to extract how many
instruction-output pairs contain a specific topic. In

3CAMEeLBERT NER: https://hf.co/CAMeL-Lab/bert-base-
arabic-camelbert-mix-ner.

*Note that Sudan is considered an outlier because many
food recipes contain peanuts as an ingredient, which is trans-

lated to d'b ) gor Jd 9° (Sudanese Bean) in Arabic.

Figure 5, we observe, in general, that our dataset,
CIDAR, covers a wider range of topics, including
Arabic-specific tasks such as poetry’, books, dia-
critization, and Arabic grammar, which are much
less in the translated ALPAGASUS dataset.

Books

—— CIDAR
Translated AlpaGasus

Technology,

> |Grammar

Translatiol

Diacritization

Recipe

Figure 5: Comparison between CIDAR and translated
ALPAGASUS datasets in terms of the covered topics.

4.5 Annotation Lengths

We, in Figure 4, compare the length of instructions
and outputs between CIDAR and translated ALPA-
GASUS before and after our review. We highlight
fewer changes in terms of instructions compared
to outputs after the review. This is expected be-
cause sometimes the reviewer might re-write the
whole output depending on changing a few words
in the instruction. For example, if an instruction
asks to find the best tourist places in a given US
state, the reviewer will /ikely change one word in
the instruction and completely rewrite the whole

>The ALPAGASUS dataset contains English poetry which
is completely different from Arabic poetry.
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output, which might result in a longer output.

5 Evaluation

We, in this section, shed light on the performance
of LLMs after being fine-tuned on CIDAR dataset.

5.1 Experimental Setup

We employed ACEGPT-7B, a variant of LLaMA-
7B pre-trained on a large Arabic corpus (Huang
et al., 2023), as our base model. This model was
further fine-tuned using two instruction datasets,
CIDAR and ALPAGASUS, to assess their adaptabil-
ity in culturally and regionally nuanced contexts.
This study compares the following three variants
of ACEGPT across diverse cultural and regional
scenarios.

1. ACEGPT\CIDAR: A fine-tuned variant of
ACEGPT-7B model on our culturally aligned
dataset, CIDAR.

2. ACEGPT\ALPAGASUS: A fine-tuned vari-
ant of ACEGPT-7B model on translated AL-
PAGASUS dataset.

3. ACEGPT\CHAT®: The instruct-tuned vari-
ant of ACEGPT-7B model released by the
original authors (Huang et al., 2023).

We fine-tuned the first two models using super-
vised fine-tuning (SFT) with the Quantized Low-
Rank Adaptation (QLoRA) technique (Dettmers
et al., 2023). We provide detailed specifications of
the fine-tuning and inference hyper-parameters in
Appendix E. We, in Table 3, compare the number
of instructions used to fine-tune each model. Note
that ACEGPT\CHAT is fine-tuned on 30x more
data compared to the other models.

Model # Instructions
ACEGPT\CIDAR 10,000
ACEGPT\ALPAGASUS 9,230
ACEGPT\CHAT 363,155

Table 3: Number of instructions used for fine-tuning
each model in our evaluation study.

5.2 Qualitative Analysis

We qualitatively analyze the outputs of the three
fine-tuned models used in this study and find that
ACEGPT\CIDAR model better adheres to the Arab

8 ACEGPT\CHAT: https:/huggingface.co/FreedomlIntell-
igence/AceGPT-7B-chat.

region’s culture. We display, in Figure 6, a qualita-
tive example to showcase the outputs of the three
models on a given instruction. In this example, we
want to know which model can utilize the names
that are related to Arabic culture. We observe that
ACEGPT\CIDAR demonstrates a marked improve-
ment in aligning with Arabic culture by choosing a
perfume name that is related to our region. In con-
trast, the ACEGPT\ALPAGASUS shows a tendency
towards creating English and French names. We
also observe that ACEGPT\CHAT generated a list
of suggestions of the names, even though this was
not requested in the instruction. We also share a
few qualitative examples in Table 6 in Appendix F.

5.3 Multiple Choice Analysis

We create CIDAR-MCQ-100, a dataset containing
100 multiple-choice questions with answers that are
culturally relevant to the Arab region to evaluate the
three fine-tuned models. We integrated the dataset
with lm—-evaluation-harness (Gao et al.,
2023) and tested with two prompts. 1) A prompt
that formulates the dataset as a multiple choice
problem, where the question and the multiple
choices are used within the input, and 2) a prompt
that formulates the dataset in open-form question
format, where the input takes only the question.
Note that Im—-evaluation-harness uses two
metrics for multiple-choice tasks: accuracy and
normalized accuracy. The accuracy computes the
log probability of each option within the multiple-
choice set given the input. However, this metric
can introduce bias by picking a shorter answer over
a longer one. Therefore, we used normalized ac-
curacy, which addresses this issue by calculating
the average log probability per character, removing
any bias toward answer length. Figure 7 shows that
ACEGPT\CHAT outperforms in multiple-choice
format, achieving 39% in normalized accuracy. On
the other hand, ACEGPT\CIDAR outperforms in
open-form questions, achieving 39% in normal-
ized accuracy. These findings are consistent with
the fact that multiple-choice questions are not pre-
sented in CIDAR, whereas the open-ended ques-
tions are more aligned closely with the mode of
completion objectives. In both prompts’ assess-
ments, we highlight that ACEGPT\CIDAR achieve
better results compared to ACEGPT\ALPAGASUS.

5.4 GPT Analysis

For this experiment, we create CIDAR-EVAL-100,
a dataset containing 100 instructions that are cul-
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Translation: Al-Aseel. This name is popular and
conveys a sense of trust and quality. It also creates
the impression that the perfume products are of
high quality and made with great care. In addition,
the name is not already used by any other brand,
which increases the chances of its success and
spread. Finally, the name conveys an impression of
authenticity and tradition, making it ideal for a
brand that focuses on luxury and traditional
fragrances. Therefore, “Al-Aseel” is an ideal name
for a new perfume brand.

excitement.

\ ) Lgood,

B2l @Sl o i Ll dpgendly JLDJI

Translation: 1. “Eau de Vie" (French for “Water of
Life”) — This name is elegant, and refers to the rich,
sweet qualities of the perfume.

2. “Aroma Vitae” (“Life Aroma”)- This name adds a
touch of romance and appeal to the brand.

3. "Sensoria” (“The Senses”) — This name reflects the
focus on the full fragrance experience, from scent to

4. “Odore di Vida” (“Smell of life") — This name shows
an emphasis on life, vitality and a beautiful scent.
5. “Fleur d'Vie” (“Bloom of Life”) — This name refers to
the beauty and vitality that comes from smelling

Translation: “Scentiments” — The idea of this name is
that perfumes can create a positive feeling. Perfumes
are a booming industry, so the name should be
non-consumeristic and reflect this content. The name
should be exciting and attract customers to learn
more about the perfume. The name should be
meaningful and lead to a pleasant customer
experience. The name should be consistent with the
Scentiments brand and reflect its values. The name
should be easy to remember and easy to remember.
The name should be exciting and memorable.

J \L J

Figure 6: Comparison between the outputs of the three evaluated models on a given instruction. All the instructions
are from CIDAR-EVAL-100. The output of ACEGPT\CIDAR model reveals a remarkable improvement.

100
---- Human Baseline
--- ChatGPT Baseline
rw CIDAR

80 &+3 Chat
= AlpaGasus
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Normalized Accuracy (%)
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prompt 2

Figure 7: Performance comparison of ACEGPT\CHAT
and models fine-tuned on CIDAR and ALPAGASUS on
the CIDAR-MCQ-100 using normalized accuracy.

turally relevant to the Arabic region. We use these
instructions to generate responses for the three fine-
tuned models in the study and then feed their re-
sponses to the GPT-3.5 Turbo to rank their outputs
descendingly in terms of the best representation of
the Arab region. As we observe from Figure 8, the
best results are achieved by the model fine-tuned
on CIDAR, which shows that such a model is more
relevant to the region. Interestingly, such a model
achieves more than 50% win rate, which shows
its dominance compared to other models that are
trained on 30x larger data, i.e. ACEGPT\CHAT.

100
80
S
o 60
(=]
8
c
g 40
&
20
| XX
e

Chat AIpaGasus
AceGPT\[model name]

Figure 8: Win percentage for each model after feeding
the responses to GPT-3.5.

6 Related Work

In the literature, there are many English instruc-
tion datasets, whether generated by LLMs like Al-
paca (Taori et al., 2023), Dolly (Conover et al.,
2023), and SELF-INSTRUCT (Wang et al., 2023),
or human-generated with templates like Flan col-
lections (Wei et al., 2021; Longpre et al., 2023), P3
(Bach et al., 2022), and NATURAL INSTRUCTIONS
(Mishra et al., 2022).

6.1 Multilingual Instruction-tuning Datasets

Many multilingual instruction-tuning datasets have
been translated from English to Arabic using
prompts or directly translating the instructions.

12884



For example, xP3 (Crosslingual Public Pool of
Prompts), which is an extension of the P3 dataset
(Sanh et al., 2022), is constructed of applying En-
glish prompts across 16 NLP tasks for 46 lan-
guages, including Arabic (Muennighoff et al.,
2023). Later, the authors released xP3x (xP3
eXtended) covering English prompts for 277 lan-
guages, including Arabic and ten of its Arabic di-
alects. MULTILINGUALSIFT (Multilingual Su-
pervised Instruction Fine-tuning) is also created
by translating instructions for 11 languages, in-
cluding Arabic Chen et al. (2023c). The authors
translated Alpaca-GPT4 (Peng et al., 2023), Evol-
Instruct (Xu et al., 2023), and ShareGPT (Zheng
et al., 2023), from English to Arabic using GPT-
3.5 Turbo. The Multilingual Instruction-Tuning
Dataset (MITD) (Upadhayay and Behzadan, 2023)
is another dataset that is composed of the transla-
tion of Alpaca-GPT4 (Peng et al., 2023), Dolly
(Conover et al., 2023), and Vicuna Benchmark
(Chiang et al., 2023) in 132 languages, includ-
ing Arabic, using Google Cloud AI Translation’.
Lastly, the Bactrian-X dataset comprises 3.4M
instruction-response pairs for 52 human languages,
including Arabic, with around 65.4K pairs, which
have been translated selected instructions from Al-
paca (Taori et al., 2023) and Dolly (Conover et al.,
2023), using Google Translate to Arabic. After
that, the authors generated responses for such in-
structions using GPT-3.5 Turbo.

On the other hand, a few multilingual instruction-
tuning datasets have been proposed from human-
generated and human-annotated examples or con-
versations using templates. For instance, SUPER-
NATURALINSTRUCTIONS (SUP-NATINST) bench-
mark consists of 1,616 diverse NLP tasks, besides
their expert-written instructions, and covers nearly
76 distinct task types, spanning 55 languages, and
includes 80.3K Arabic instructions for 16 Arabic
NLP tasks (Wang et al., 2022). The OpenAssis-
tant Conversations (OASST1) is made of a human-
generated and human-annotated assistant-style con-
versation dataset consisting of 161.4K messages in
35 human languages, including Arabic, resulting
in over 10K complete and fully annotated conver-
sation trees (Kopf et al., 2023). In a concurrent
work, Singh et al. (2024) released the AYA dataset,
a multilingual instruction-tuning dataset with 204K
instructions and responses, around 14K of which
are in dialectal Arabic. The authors invited human

"Google Cloud Al Translation: https://cloud.google.com.

reviewers (crowdsourcing) to contribute and review
data samples, yet no cultural alignment or regional
localization has been implemented on the dataset.

6.2 Arabic Instruction-tuning Datasets

A few Arabic-specific LLMs have been instruct-
tuned on closed (not publicly released) Arabic
instruction-tuning datasets. For example, PHOENIX
(Chen et al., 2023b) has been instruct-tuned us-
ing three groups of instructions, including post-
translated multilingual instructions, created by
translating Alpaca instruction and output pairs
(Taori et al., 2023) using GPT-4 to Arabic and
sometimes by generating responses for the GPT-
4 translated instructions using GPT-3.5. NOON
(Naseej, 2023) has also been instruct-tuned on
a collection of Arabic instructions from differ-
ent datasets, such as Alpaca-GPT4 (Peng et al.,
2023), Dolly (Conover et al., 2023), Truthful QA
dataset (Lin et al., 2022), Grade School Math
dataset (Cobbe et al., 2021), and Arabic arith-
metic problems generated using GPT-3.5 Turbo.
Ja1s(Sengupta et al., 2023) have been instruct-
tuned using a translated collection of instructions
to Arabic from various instructions-tuning datasets,
such as SUPER-NATURALINSTRUCTIONS (Wang
et al., 2022), Unnatural (Honovich et al., 2023),
NaturalQuestions (Kwiatkowski et al., 2019), Al-
paca (Taori et al., 2023), HC3 (Guo et al.,
2023), Dolly (Conover et al., 2023), Basic-Conv?®,
Bactrian-X (Li et al., 2023) and enriched the collec-
tion of instructions with Arabic examples from xP3
(Muennighoff et al., 2023). ACEGPT (Huang et al.,
2023) has been instruct-tuned using instructions
compiled from some open-source datasets, like Al-
paca (Taori et al., 2023), Alpaca-GPT4 (Peng et al.,
2023), Evol-Instruct (Xu et al., 2023), Code-Alpaca
(Chaudhary, 2023), and ShareGPT (Zheng et al.,
2023), and translated the questions from English to
Arabic and regenerated the responses using GPT-
4. AlGhafa model (Almazrouei et al., 2023) used
many translated Arabic instruction-tuning datasets,
including xP3 (Muennighoff et al., 2023), Bactrian-
X (Li et al., 2023), Alpaca (Taori et al., 2023), and
UltraChat (Ding et al., 2023). The only stand-alone
(without models) open-source monolingual, Ara-
bic instruction-tuning dataset is released by Yas-
bok (2023), which is poorly translated from the
Alpaca dataset (Taori et al., 2023) to Arabic using
Google Translate without human review, cultural

8ChatterBot Corpus: https://chatterbot-corpus.docs.io.
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alignment, or translation error checking.

7 Conclusion

In this work, we present CIDAR, the first open
Arabic instruction-tuning dataset that is culturally
aligned by native Arabic reviewers to address the
drawbacks of the conventional approach of fine-
tuning LL.Ms on machine-generated or machine-
translated datasets. Additionally, we introduce
two datasets, CIDAR-EVAL-100 and CIDAR-MCQ-
100, for evaluating LLMs on cultural relevance for
Arabic. Using such benchmarks and via thorough
analyses, we demonstrate that CIDAR is useful
for enriching research efforts in culturally aligning
LLMs with the Arabic culture. The experiments
conducted validate our datasets’ cultural relevance
and highlight their potential to enhance the perfor-
mance and understanding of LL.Ms within the rich
Arabic linguistic and cultural context.

8 Broader Impact

We aim to establish CIDAR with the primary goal
of incorporating rich Arabic content that authenti-
cally reflects our cultural values and the linguistic
beauty of the language. Unlike much of the existing
literature that relies on translated datasets or LLM-
generated responses, which may encounter many
challenges, as previously discussed, our primary
focus is on preserving the integrity and quality of
the Arabic culture. Moreover, the original Alpaca
or ALPAGASUS mostly features Western cultural
themes, such as food recipes, poems, tourist des-
tinations, names, and countries. In our endeavor
to curate CIDAR, we have diligently ensured the
inclusion of elements specific to our culture and
traditions, encompassing Arabic linguistic nuances,
narratives, tourism, names, culinary recipes, po-
etry, and countries. The open release of the dataset
allows for culturally-aligned fine-tuning of LLMs
that undoubtedly can help with different domains.
Our pilot study on fine-tuning ACEGPT reveals the
huge impact such datasets can have in the region.

9 Limitations

CIDAR poses some limitations related to the data
curation process. We summarize them as follows:

* Country Biases: Localizing a given instruc-
tion usually depends on the nationality of the
person annotating. Often, annotators will pre-
fer to add annotations related to the countries
they were born in or currently residing in.

* Dataset Size: The size of the dataset might
limit its uses in large-scale instruction tuning.
In our evaluation, we attempted to show that it
helps to train on a culturally relevant dataset.

* Topics Covered: In our data localization pro-
cess, we tried to cover as many topics that
are related to the culture of the region. We
opted out of topics related to religion as it is
considered a sensitive topic in the region.

* Dialects: The Arabic language is not limited
to Modern Standard Arabic (MSA). There are
various Arabic dialects. Localization of data
was limited to corrections of the translated
text, which is mostly written in MSA, without
incorporating multiple dialects.

» Safety: Due to the relatively small size of
CIDAR, the fine-tuned models on our dataset
can show some degree of hallucinations, espe-
cially since it is not subjected to further align-
ment processes such as Reinforcement Learn-
ing from Human Feedback (RLHF) (Ouyang
et al., 2022).
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A Evaluation Benchmarks

To evaluate the cultural relevance of LLMs, we in-
troduce CIDAR-EVAL-100 and CIDAR-MCQ-100.
The two benchmarks, to the best of our knowledge,
are the first of their kind to assess the Arabic culture
alignment. CIDAR-EVAL-100 and CIDAR-MCQ-
100 contain 100 questions each and together cover
17 different categories related to Arabic culture,
such as Language, Literature, Geography, etc. The
questions were crafted manually by native Arabic
speakers to ensure their relevance to the Arabic
culture. Categories covered are listed in Table 4.
CIDAR-EVAL-100 consists of open free-form
questions to evaluate responses against Arabic cul-
ture. Due to the difficulty of evaluating LLMs on
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open free-form questions and the need for auto-
matic evaluation, we introduce CIDAR-McQ-100,
which contains MCQs written manually by native
Arabic speakers to assess the cultural relevance of
LLM:s.

Table 4: CIDAR-EVAL-100 and CIDAR-MCQ-100 cat-
egory distribution

Category CIDAR- CIDAR-
EVAL-100 McQ-100

Food & Drinks 14 8
Names 14 8
Animals 2 4
Language 10 20
Jokes & Puzzles 3 7
Religion 5 10
Business 6 7
Cloths 4 5
Science 3 4
Sports & Games 4 2
Tradition 4 10
Weather 4 2
Geography 7 8
General 4 3
Fonts 5 2
Literature 10 2
Plants 3 0
Total 100 100

B CIDAR Data Card

We follow the style of Costa-jussa et al. (2022)
and adopt their data card template to document the
CIDAR dataset.

B.1 Data Description

» Dataset Summary: CIDAR is a 10k culturally
aligned dataset adopted from ALPAGASUS.

» Dataset Access: You can access CIDAR at
https://huggingface.co/datasets/arbml/CIDAR.

B.2 Data Structure

Dataset is uploaded as a single file in parquet for-
mat with 3 features: instruction, output, and index.

B.3 Data Creation

* Source Data: The dataset was created by
selecting around 9,109 samples from ALPA-
GASUS dataset and then translating it using
ChatGPT. In addition, we appended that with
around 891 instructions from the website Ask
the Teacher.

* Data Adoption: The 10,000 samples were re-
viewed by around 12 reviewers, who are from
different Arab countries, backgrounds, and
education levels.

B.4 Considerations when using CIDAR

CIDAR is intended for research purposes only. The
authors disclaim any responsibility for the misuse
and condemn any use contrary to Arabic culture or
Islamic values. CIDAR is a result of a collabora-
tive effort, and all of its entries do not necessarily
represent the beliefs and cultural background of
all contributors. Even though subjected to human
verification, there is no guarantee that CIDAR is
entirely aligned with Arabic culture and Islamic
values. Also, no guarantee that fine-tuned models
on CIDAR will always respond in alignment with
Arabic culture and Islamic values. Users are urged
to exercise caution, employ critical thinking, and
seek guidance when necessary.

B.5 Additional Information

e Dataset Curators: The dataset was collected
through crowdsourcing.

* Licensing Information: The dataset is re-
leased under CC-BY-NC. The text and copy-
right (where applicable) remain with the orig-
inal authors or publishers. Please adhere to
the applicable licenses provided by the origi-
nal authors.

e Citation Information: CIDAR Team et al.,
CIDAR: Culturally Relevant Instruction
Dataset For Arabic, 2024.

C Annotation App

The annotation app contains two main parts: En-
glish and Arabic. Reviewers can make changes to
Instruction and Output to fix mistakes and
align data with the Arabic culture. The original
English instructions are shown to guide the review-
ers for better re-annotation of the data. We have
given the annotators 2 tasks (see Subsection 3.3)
that they should take into consideration during the
annotation process. We require the annotators to
write their names in the bottom left corner. The an-
notators can use Total Contributions to keep track
of their contributions to CIDAR and Remaining
to keep track of the remaining samples to be re-
annotated. We also allow the annotators to observe
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CIDAR aims to create an Arabic version of the Alpaca dataset. We used the Alpagasus dataset to select around 9,000 samples to be reviewed. We also add around 1,000 samples

that contain linguisitc instructions.

1. Fix Grammatical Issues

Some words might not be translated correctly especially at the start, we want all the statements to start by a question For example 1 1= should be replaced by 31> or a3

A=l

ra

. Fix Translation Issues

Some inputs or cutputs might not be translted. Also, some instructions might be specific to English please give their corropsonding examples in Arabic.

w

. Adapt Cultural Content

Some examples in the original English Alpaca might contain some examples that represent the western cultures. We want to replace them with insturctions that represent

the Arabic region and its culture.

index: 3315

Generate a profile for a fictional character modeled after Amelia Earhart.

Amelia Earhart is a bold and adventurous woman. Born and raised in Kansas, the
daughter of a successful business owner and a teacher, Amelia was determined
from a young age to make her mark in the world. She attended the prestigious
School of World Expleration and graduated with honors. Her daring feats include
long-distance solo flights with her faithful airplane, the Maverick. She is an
advocate for women in aviation, a trailblazer in her field, and an inspiration to
anyone who dreams of living life to its fullest.

Enter your name here

Remaining: 177 Total Contributions:

eyl Lol o Blrgive Auls Guacil B Blo gl

22l Jlach Uz disl . guluslS i Slig Sy Gysleng dly dlyel oo Oylapl Lilisl
LS| dwyie Dpas allw)l b ey 25 gle bR die dejle DilSg .dalneg
Lyl 83ydiall dlghll Colloyll &t yall gllac Jaidsr . §oity Cuz yaig Bagid] allll
dgllan 5 Gy 828l luhll (b Blall Goio oo dnblia (b .ol jilall dualsall
Ol e Bl sl plow gai $U plgl] ooy

-

Figure 9: A screenshot of CIDAR Annotation App, showing its features. The annotators can use it to fix grammatical
issues, fix translation issues, and culturally localize a given instruction and output pair from any given dataset.

the reviewed submissions and track the distribution
of contributions. The website is designed using
the Flask framework®. The app regularly (every 1
hour) pushes the changes to the Hugging Face to
save the progress. The web-based annotation tool

is deployed using the Railway service!".

D Instruction Datasets

In Table 5, we showcase the main instruction-
tuning datasets that include Arabic subsets/versions
from the literature. We highlight that, to the best
of our knowledge, all the datasets used to instruct-
tuned Arabic LL.Ms are mostly machine-generated
without human review or editing.

E Used Hyper-parameters

This section provides detailed specifications of the
hyper-parameters used in the inference and fine-
tuning of the ACEGPT-7B model.

%Flask Framework: https:/flask.palletsprojects.com.
ORailway: https://www.railway.app.

Table 6 details the fine-tuning hyper-parameters
employed to optimize the models’ performance. It
includes adjustments to learning rates, batch sizes,
and regularization, alongside LoRA adaptations
and precision formats. Specifically, we loaded the
models in 4-bit precision and used for LoRa a low
rank (7) of 16 and a scaling factor (alpha ) of 16.

In the inference setup, we used the
text—generation pipeline from the Hug-
ging Face Transformers!' with the following
hyper-parameters: max_length=512 to con-
strain output length, temperature=0.2 for
lower randomness favoring higher probability
tokens, top_p=1.0 and top_k=0 allowing
full probability distribution without restricting
to top tokens, repetition_penalty=1.2
to reduce repetition, and do_sample=True
to enable stochastic sampling. These settings
were chosen carefully to balance coherence and
context relevance, aligning with our objectives for
high-quality and diverse linguistic output.

"Pipelines: hf.co/docs/transformers/main_classes/pipelines.
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Table 5: Collection of Arabic instruction-tuning datasets discussed in the literature (Section 6), highlighting their
Arabic instructions count, dataset collection, type (multilingual or monolingual), and access status (open or closed).

Dataset Name Size (ar) Dataset Collection Type | Status
e 2,148,955 Prompts applied to multiple datasets
(Muennighoff et al., 2023) 0 pts app P
MSIFT 114,231 Translated using GPT4: Alpaca-GPT4, Evol-Instruct, ShareGPT
(Chen et al., 2023¢) - gL AP : : E
)
OASST1 Conversational data was collected using a web app interface and obtained 5 =
N 666 . = g
(Kopf et al., 2023) through crowd-sourcing. § 3
xP3x 18.246.158 An extended large version of the xP3 dataset with multi-dialectal Arabic
(Muennighoff et al., 2023) e instructions, besides the Modern Standard Arabic instructions.
SUPNATINST 30.396 A large benchmark was collected through a large community effort on
(Wang et al., 2022) ’ GitHub with the help of university students and NLP practitioners.
MITD A composed multilingual instruction-tuning dataset from Alpaca-GPT4,
81,451 Databricks’ Dolly, and Vicuna Benchmark in 132 languages, including
(Upadhayay and Behzadan, 2023) Arabic, was translated using Google Cloud Translation.
Bactrian-X .
(Li et al., 2023) 67,017 Translated Alpaca using Google Translate then Feed to GPT3.5 Turbo.
AYA Dataset .
(Singh et al., 2024) 14,210 Manually collected through crowdsourcing.
alpaca-arabic-instruct .
(Yasbok, 2023) 52,002 Alpaca translated using Google Translate _
<
. . xP3-Ar, Super-Naturallnstructions-Ar, Baize-Ar, Unnatural-Ar, Natural 2‘3
Jais Instructions . . . =
(Sengupta et al., 2023) 3,683,144 Questions-Ar, Bactrian-Ar, Alpaca-Ar, SafetyQA-Ar, NativeQA-Ar, S
gup v Dolly-Ar, HC3-Ar, NER-Ar, Basic-Conv-Ar § o
Q
AceGPT Instructions 363.155 Collection of instructions from Quora-Arabic, Alpaca-Arabic, 58
(Huang et al., 2023) ’ Code-Alpaca-Arabic, Evol-Instruct-Arabic, ShareGPT.
AlGhafa Instructions .
(Almazrouei et al., 2023) 1,459,000 xP3-Ar, Bactrian-Ar, Alpaca-Ar, UltraChat-Ar
Noon Instructions 110.000 Alpaca Instructions GPT4, Self-instruct records, Databricks, TruthfulQA,
(Naseej, 2023) ’ Grade School Math, Arabic-arithmetic-ChatGPT
g . A collection of translated Alpace instructions using GPT-4 to Arabic with
Phoenix Instructions . .
8,000 a mixture of Arabic-generated responses for the GPT-4 translated
(Chen et al., 2023b) . . .
instructions using GPT-3.5 Turbo.

Table 6: List of the fine-tuning hyperparamters for the models fine-tuned on CIDAR and the translated ALPAGASUS.

Parameter Value Parameter Value
lora_r 16 lora_alpha 16
lora_dropout 0.1 bnb_4bit_compute_dtype "bfloat16"
bnb_4bit_quant_type "nf4" bf16 True
num_train_epochs 3 per_device_train_batch_size 2
per_device_eval_batch_size 2 gradient_accumulation_steps 1
gradient_checkpointing True max_grad_norm 0.3
learning_rate 2e-4 weight_decay 0.001
optim "paged_adamw_32bit" warmup_ratio 0.03
group_by_length True

F Example Outputs

In Table 7, we give some example outputs for
a few given Arabic instructions generated by
the three evaluated models (ACEGPT\CIDAR,
ACEGPT\ALPAGASUS, and ACEGPT\CHAT)

used in this study, like ‘How did our language orig-
inate? Yl olad a8, To prevent any bias,
we use the same inference parameters for all the

models. Furthermore, we do not generate multiple
outputs or cherry-pick specific outputs for the same
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instruction. We provide the outputs considering var-
ious topics, like clothes, fonts, food and drinks, lan-
guage, grammar, and traditions. The examples pro-
vided show that ACEGPT\CIDAR can better cap-
ture the culture compared to the ACEGPT\CHAT,
which was fine-tuned on hundreds of thousands
of instructions, whereas ACEGPT\ALPAGASUS
produces the worst results in terms of cultural rele-
vance and Arabic grammar.

G Computing infrastructure

ACEGPT\ALPAGASUS and ACEGPT\CIDAR
were fine-tuned on an RTX-3090. We used Trans-
formers, PEFT, and PyTorch for the training. The
training process for each model lasted approxi-
mately 6 hours for 3 epochs, with a batch size of
2. This approach was used to finetune both models.
For more details about the choice of fine-tuning
hyperparameters, see section E and table 6.
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Table 7: Example outputs for a few given Arabic instructions generated by the three evaluated models
(ACEGPT\CIDAR, ACEGPT\ALPAGASUS, and ACEGPT\CHAT) used in this study. We note that some
sentences have been truncated for better readability.
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Table 8: MCQs Samples from CIDAR-MCQ-100 marked with correct answers from 10 different categories.
The answers are based on the majority voting of four different human annotators.
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