CaLLM: Contrasting Large and Small Language Models to
Verify Grounded Generation

I-Hung Hsu'; Zifeng Wang?, Long T. Le?, Lesly Miculicich?,
Nanyun Peng®, Chen-Yu Lee?, Tomas Pfister?
!University of Southern California, 2Google Cloud Al Research,
3University of California, Los Angeles

Abstract

Grounded generation aims to equip language
models (LMs) with the ability to produce more
credible and accountable responses by accu-
rately citing verifiable sources. However, ex-
isting methods, by either feeding LMs with
raw or preprocessed materials, remain prone
to errors. To address this, we introduce CalLM,
a novel verification framework. CalLM lever-
ages the insight that a robust grounded re-
sponse should be consistent with information
derived solely from its cited sources. Our
framework empowers smaller LMs, which rely
less on parametric memory and excel at pro-
cessing relevant information given a query, to
validate the output of larger LMs. Larger LM
responses that closely align with the smaller
LMs’ output, which relies exclusively on cited
documents, are verified. Responses showing
discrepancies are iteratively refined through a
feedback loop. Experiments on three open-
domain question-answering datasets demon-
strate significant performance gains of 1.5%
to 7% absolute average without any required
model fine-tuning.

1 Introduction

Large Language Models (LLMs) are increasingly
popular tools for information seeking. A recent
trend emphasizes integrating citations from verifi-
able sources to boost LLLM credibility and enable
user verification. This aims to reduce hallucina-
tions and increase accountability (Gao et al., 2023b;
Huang and Chang, 2023; Liu et al., 2023b). To
achieve this, LLMs must not only identify rele-
vant documents within vast retrieved collections
but also accurately ground their responses in these

* Work done while the author was a student re-
searcher at Google Cloud AI Research. Correspon-

dence to: I-Hung Hsu <ihunghsu@usc.edu>, Chen-Yu Lee
<chenyulee @google.com>

(a) Basic: LLM with single run

Query ——
I[LLM H...BL.HA[SL...[H J

Achieving accurate responses and precise citations
in a single attempt can be challenging due to the
potential irrelevance of input documents.

Reference
Documents

(b) Prior: Preprocessing simplifies task complexity but does not allow
for correcting hallucinations after LLM output.

Query Query
@]::[LLM H...B], ..[4], .[1]12) J

Error and hallucination
can propagate.

Reference
Summaries

Reference
Documents

Query

Feed
back

3]
[5], ..[1]

Reference
Documents

Figure 1: Comparison between different categories of
existing inference methods for grounded generation.
(a) LLM with single-run can hallucinate easily due to
the high complexity of the task. (b) Preprocessing
methods reduce task complexity but the hallucination
issues can propagate from preprocessing steps. (c) We
propose using verification and rectification to ensure
LLMs generate outputs with complete citations and ac-
curate answers, maintaining quality.

sources and effectively generate their responses.
This significantly increases the complexity of LLM
operations (Gao et al., 2023b).

A standard approach to achieve this grounded
generation is by retrieval-augmented generation
with instructions to guide LLMs to generate re-
sponses along with their corresponding sources
in one single LLM inference run (see Fig. 1 (a)).
More recently, more sophisticated approaches uti-
lize LLMs to first summarize relevant documents
(Gao et al., 2023b) or use key information extrac-
tion and algorithms that explore different relevant
document combinations by asking LLMs to enrich

12782

Findings of the Association for Computational Linguistics: ACL 2024, pages 12782-12803
August 11-16, 2024 ©2024 Association for Computational Linguistics

the original input query with additional information
(Li et al., 2023) (see Fig. 1 (b)).

However, both single-run (Fig. 1 (a)) and pre-
processing (Fig. 1 (b)) strategies face challenges
for accurate generation and citation. Single-run ap-
proaches require LLMs to process the input query
and a potential large volume of retrieved documents
in one forward pass, which can strain their capa-
bilities. Preprocessing approaches, while more fo-
cused, risk error propagation or loss of information.
Additionally, both strategies limit the LLM’s ability
to iterate, refine, and verify responses, impacting
citation accuracy and answer correctness.

In contrast to single-run and preprocessing strate-
gies, we propose a novel post-verification approach
that enables LLMs to fact-check and ground their
responses. Our design leverages the complemen-
tary strengths of larger and smaller LMs. We ob-
serve that larger LMs excel at identifying relevant
information within a vast corpus but can rely ex-
cessively on internal parametric memory during
generation. Smaller LMs, however, are adept at
processing retrieved relevant information but less
capable of identifying it from large collections (see
§ 3.3 for details).

Building on these observations, we propose
CalLM (Contrasting Large and sMall language
models to verify grounded generation). CalL.M
validates the large LLM’s response by cross-
referencing it with output from a smaller LM. The
smaller LM scrutinizes the cited documents to con-
firm the large LLM’s citation accuracy. If the re-
sponses align, the large LLM’s answer is verified.
If not, CaLM extracts useful statements and evi-
dence from the large LLM’s response and seeks
additional supporting information to improve the
query response. Importantly, CalLM requires no
model fine-tuning, allowing smaller LMs to signifi-
cantly enhance the grounded generation capabili-
ties of large LMs. Fig. 3 illustrates this process.

We conduct experiments on three open-domain
question answering datasets (QAMPARI, ASQA,
and ELI5), which require consulting multiple
sources for comprehensive answers. Our method
demonstrates significant improvements in both an-
swer accuracy and citation quality, outperforming
state-of-the-art methods by an average of 1.5% to
7%. Crucially, our method remains robust even in
challenging scenarios with less powerful retrieval
systems, while other baselines often struggle.

2 Problem Statement

Task Setup. We cope with the problem of
grounded generation (Gao et al., 2023b). Given
a query ¢ and a corpus of trustworthy text passages
D, the model needs to generate an answer response
A, which consists of n statements s1, Sg, ...Sp,
based on the knowledge in D. Each statement s;
cites a list of passages C; = {c}, c?, ..},Vel € D.
The collective sets C; fori = 1,2, ..., n constitute
the grounded evidence G, from which A is derived.
Our goal is to jointly optimize the usefulness of A
to g, the preciseness of C; for statement s;, and the

integrity of G to adequately support A.

Evaluation of Response. The task involves mea-
suring three dimensions of system responses, fol-
lowing the setup from Gao et al. (2023b).

* Fluency: Determining whether the model’s gen-
erated text A is fluent and coherent.

» Correctness: Assessing if A is accurate and cov-
ers all relevant aspects of query q.

« Citation Quality: Evaluating whether cited pas-
sages directly support the answer and avoids ir-
relevant citations. This is achieved by evaluat-
ing both citation recall and citation precision.
Gao et al. (2023b) propose measuring citation
quality by averaging scores for each statement
s;. Citation recall ensures there is at least one
supporting citation cZ for s;. Citation precision
measures whether all the citations are “relevant”.
Specifically, a citation 027 is considered “irrele-
vant” to statement s; if C’Z cannot support s;, and
removing cf from C; would not impact the overall
support for s; from the remaining citations.

3 Automated Verification for Grounded
Generation

Although LLMs have demonstrated proficiency in a
wide range of tasks, they remain susceptible to gen-
erating hallucinations (Huang et al., 2023; Zhang
et al., 2023). These hallucinations could occur in
both answers and citations within grounded gen-
erations due to the high complexity of the entire
working pipeline, which includes noise from the
retrievers and the limited ability of LLMs to handle
long contexts (Liu et al., 2023a). This issue under-
scores the critical need for verification mechanisms
to ensure the quality of the generated output and
to leverage the interplay between verification and
generation systems to improve the final output A.
In this section, we first analyzes key factors to

12783

verify grounded generation (§ 3.1). Subsequently,
we introduce an automated and unsupervised ver-
ification method for grounded generation using a
small LM as a verifier and contrasting results from
large and small LMs to verify large LMs’ response
(§3.2&3.3).

3.1 Key Factors for Automated Verification

Automated verification, unlike the task evaluation
in § 2, operates without a ground-truth reference
and should be efficient for real-time system feed-
back. Here, our focus lies on assessing answer
correctness and citation quality. To evaluate the
correctness of a generated grounded response, we
must ensure that generated responses (.4) faithfully
leverage information from the knowledge base D,
avoiding hallucinations or model biases. Addi-
tionally, correct reasoning in deriving the answer
is also crucial. For the automatic evaluation of
citation quality, a trained Natural Language In-
ference (NLI) model can assess each citation and
statement pair iteratively to measure the citation’s
fidelity (Gao et al., 2023b). However, this pro-
cess can be computationally expensive for lengthy
generated answers with numerous citations. Effi-
cient automated verification for grounded genera-
tion must consider these factors.

3.2 Contrasting Large and Small LMs for
Automated Verification

We propose a verification method using a smaller
LM to assess the quality of a larger LM’s grounded
generation. The small LM receives only the large
LM’s cited documents (G) as input to answer the
same query q. Consistency between their responses
indicates the quality of G and the grounded genera-
tion from the large LM.

Our design exploit the inherent characteristics of
smaller LMs. We posit that a robust G should en-
able even small LMs to deduce the correct answer.
Notably, small LMs, having fewer parameters, are
demonstrably more receptive to integrating exter-
nal knowledge (Xie et al., 2023). Reaching consis-
tent results from both LMs indicate high answer
fidelity. ! Leveraging different LMs as support also
reduce the reasoning error risks as the different
LM:s exhibit diverse strengths and reasoning mech-
anisms (Jiang et al., 2023). These characteristics of

'In this paper, we differentiate LMs by size, labeling them
as large or small. However, a more accurate categorization
would be strong versus weak LMs, reflecting their varying
performance levels across different LM families.

small LMs makes our design effective for verifying
the answer correctness.

Furthermore, as will detailed in § 3.3, smaller
LMs are more sensitive to the relevance of input
evidence. Irrelevant documents in the evidence set
G can easily mislead small LMs, while missing
crucial citations hinder their ability to reach the
correct answer independently, due to their limited
parametric knowledge. This sensitivity allows us
to utilize small LMs for assessing the quality of G.

3.3 Analyzing Model Size Impact on LMs’
Sensitivity to Input Document Relevance

Our automated verification method exploits the
high sensitivity of small LMs. This section em-
pirically demonstrates that, within the same model
family, smaller LMs exhibit greater sensitivity to
the relevance of input documents to a given query
q compared to their larger counterparts.

We investigate the sensitivity of LMs to the rel-
evance of input documents by modeling the per-
formance of an LM as a function of the input doc-
ument’s relevance. To mitigate the effects of the
divergent abilities for different LMs to follow in-
structions, we examine the relative performance
improvement of the model response as the rele-
vance of the input document increases. The larger
this value is, the more sensitive the LM is.

Yet, the complexity of this function is be-
yond simple linearity. As depicted in Fig. 2(a),
this function typically exhibits a monotonic in-
crease and hence we intend to additionally
study second-order improvements gain analy-
sis to further study the curvature of the func-
tion. This analysis use three anchoring points
Tlow, Tmeds Thigh» and the corresponding perfor-
mance P(Zioy), P(Zmed), P(Thign) to study the
much incremental performance gain the LM can get
when the input document’s relevance keep increas-
ing. Specifically, we use the ratio 1;((9; }:i Z))_l;((izzjd))
to represent the incremental performance gain. A
higher ratio indicates the LM is more sensitive to
input document’s relevance, as illustrated by the
orange line in Fig. 2(a).

We conduct empirical studies using a retrieval-
augmented generation setting on the ASQA
dataset (Stelmakh et al., 2022). Each instance in
the dataset contains multiple answers and requires
reading multiple documents to make correct pre-
diction. In this experiment, a LM utilizes five input
documents d to answer queries ¢, with model per-

12784

0.8
(*nigh)=P (X1ow)

P
Relative Improvement: 07
P(X10w)

P(xmea)—P(x1ow)

2" Order Relative Improvement: 0.6
05
0.4

03
Accuracy of LM

A

0.2

Cenighs P(*nign)) 8

(meds P(tmea))
(10w, P(x10w))

0.50
0.45
0.40
0.35
0.30
0.25

- Function with lower
second order relative

improvement rate

Irrput Document
Relevancy to Query

0.20

0.15
010 "oy
Fig. (a): The illustration of describing the

accuracy of LM as a function of the

input document relevancy to the query

parameters
Fig. (b): Relative Improvement in QA accuracy when input high relevant documents compared to input noisy ones.

parameters

Yi Vicuna

T~

348

Yi

I

348

0.8
WizardLM Tulu-2-dpo
0.7

\

0.6
05
0.4
03

0.2 0.2

33 7B 708
parameters

78
parameters

708
parameters

0.50
0.45
0.40
0.35
0.30
0.25
0.20
0.15
0.10

0.50
Vicuna 0 o
0.40
0.35
0.30

0.25

0.50
WizardLM

0.45

0.40
0.35
78 708
parameters

Tulu-2-dpo

-

0.30
0.25
0.20
0.15
0.10

0.20
0.15

78 138 010

parameters

338 78 138

parameters

708

Fig. (c): 2" Order Relative Improvement Analysis in QA accuracy when adjusting input document relevancy.

Figure 2: The studies of the performance of an LM as a function of the input document’s relevance score using
the ASQA dataset. We show that, within the same LM family, smaller LMs demonstrate higher sensitivity to the
relevance of the input document, when anchored to the largest model in the family. (a) The illustration of the
function. This function is a monotonic increase function as the accuracy always increase when input document’s
relevance score increase. Hence, studying the second order relative improvements can help us know the incremen-
tal performance gain for the LM when the input document’s relevance keep increasing. (b) The result of relative
improvement. (c) The result of the second order relative improvement analysis. From (b)(c), we can observe that
smaller models tend to exhibit greater relative improvements and achieve larger incremental performance gains

compared to their larger counterparts.

formance evaluated based on answer accuracy, and
the relevance of the input documents d is assessed
by their average recall rate in containing answers.
We prepare three different set of d with approxi-
mately 27%, 56%, and 78% recall rates, respec-
tively, to represents Tiow, Tmed, Thigh in Fig. 2(a).

Fig. 2(b) presents the results of relative perfor-
mance improvement, while Fig. 2(c) shows the
second-order analysis. Our study encompasses
LM families such as Yi-LM, Vicuna (Zheng et al.,
2023), WizardLM (Xu et al., 2023), and Tulu-2-
dpo (Ivison et al., 2023). The findings indicate that
within the same LM family, compared to the largest
model, smaller LMs usually achieve higher relative
improvement and receive a greater incremental per-
formance gain, suggesting their higher sensitivity
to the relevance of input documents to the query
q. On the other hand, smaller LMs are more prone
to erroneous results and suboptimal performance
with irrelevant documents, which motivates our
automated verification method design.

4 CalLM Framework

Building on the automated verification design from
§ 3.2, we introduce CalLM, an inference framework
that leverages the synergy between verification and
generation systems to enhance the system’s final

grounded generation.

Fig. 3 depicts the iterative five-step algorithm
of our CaLM framework. Steps three and four
correspond to the automated verification method
detailed in § 3.2. The remaining steps involve the
large LM making predictions.

We now present a detailed breakdown of each
step below. We differentiate between the “main
LM,” whose responses are verified, and the “veri-
fier LM,” an auxiliary LM assisting the verification
process. As described in § 3.2, we recommend us-
ing a larger LM as the main LM and a smaller LM
for verification to achieve optimal performance.

Step (1) Context Retrieval. Cal.M starts by se-
lecting a ranked pool of trustworthy passages p for
a given query g using a retriever.

Step (2) Main LM Generation. We select the
top-k documents from the reference pool p and
feed them into the main LM. This value of & is a
hyperparameter constrained by the maximum input
capacity of the main LM. The LM then analyzes
these k passages to generate an answer candidate
A for the query ¢. Our findings in § 3.3 suggest
employing a large-scale LM at this stage. This
is because larger LMs exhibit greater robustness
in accurately identifying useful information and
filtering out noise within the retrieved passages.

12785

Step (1): Retrieve document
pool p given query.

—& @

Step (3) Verifier LM takes the cited
documents from Main LM to generate
another response.

Output if the answers are consistent.

Step (5) Explore next batch of
documents from pool p

'y

——

Step (2): Main LM generate response
with citations based on input documents.

Step (4) Contrast Main LM and Verifier LM’s responses to produce
verified statements and documents, discarding unverified ones.

/ Step (1) \ / Step (2) Write an accurate and concise Prompt \ / Step (3) \
Q: Gl Ford answer using the provided search p
- Glenn ror WaS. results and cite them properly. [Doc 1:]
a member of cast in .., the movie was
which film? [Doc 1] "The Brotherhood
the movie ... [G[r)c 3[]: J “ed Z The Brotherhood. of of the Bell", and
enn Fort b
e . the Bell [Doc 1], the film's star was
[Doc 1] [Doc 2] played Cadein E) - B 4 ith Gl ; Ford,
Ford’s first movie . N leaven with a lenn Ford, a
[Doc 2] " the TV series § . %\L()ﬁ Barbed Wire Fence. movie actor....
was "Heaven “Cade’s County” R
[Doc 3] with a Barbed Main LM
\ / \ Wire Fence” ... /
B
/ Werite an accurate and ... Step (5) Extract verified Step (4) l \ < L” . '
New Additionally, you will be provided with tatements & d <) Q_%%
prompt for an incomplete draft solution, which statements & 2(:15 .
next step 2 _is based on the first search results.. ! IDoc1] :- Consistency Verifier LM
! 1 | Measurement
1 I | The I
1 !"| Brotherhood |!
I The : « : of the Bell [1] : if consistent | The Brotherhood of
! Brotherhood | L— === == === / the Bell [Doc 1]
of the Bell [1] |1
1

Output Answer Candidate

\ Verifier Output /

Figure 3: Overview of CaLM: Top: The flow diagram of our method. Bottom: A detailed depiction of each
step’s operation. The algorithm starts with a retriever extract a relevant document pool p for the input query (Step
(1)). Then, the main language model (LM) takes the first batch of documents and employs retrieval-augmented
generation to produce an answer candidate, which cites relevant supporting documents (Step (2)). Subsequently,
this candidate is validated by contrasting it with the verifier output from the verifier LM (Steps (3) & (4)). Our
verifier LM evaluates citation quality by accessing only the documents cited by the main LM’s response, rather
than the same input documents. For responses with sufficient consistency, we accept the answer candidate directly.
If inconsistent, we break down the answer candidate into individual statements, retaining only those corroborated
by similar arguments in the verifier output for further correction in next iteration (Step (5)).

Step (3) Verifier LM Generation. Building upon
the automated verification design outlined in § 3.2,
this step leverages a grounded evidence set G ex-
tracted from the main LM’s answer candidate A. A
smaller, dedicated verification LM then re-attempt
the grounded generation process and obtain veri-
fier output A’ for query ¢ by solely providing the
model with the evidence set, G, rather than the full
top-k documents.

Step (4) Contrasting Answer Candidate and
Verifier Output: A strong evidence G should en-
able small LMs to deduce correct answers reliably.
Our goal in this step is to verify consistency (Wang
etal., 2023) of A’ against the answer candidate A.

If the comparison shows enough consistency, we
accept the answer A and stop the iterative process.
Otherwise, we dismiss the inconsistent segments
from the answer and citations, and continue with
the next iteration. More technically, we extract
A= AN A’ and the corresponding G within A for
Step (5) usage.

The realization of consistency measurement is
done via calculating ROUGE-2 score between the

A’ and A. If the ROUGE-2 score exceeds a thresh-
old 6, the answer candidate is considered accept-
able. This threshold can be tuned using a small
development set. Empirically, by our observation,
setting 6 = 0.2 to 0.5 yields satisfactory results by
small set of qualitative examination.

Step (5) Input Preparation for Next Iteration:
In this final step, we prepare input for the next it-
eration, including input reference document lists
and the draft for correction. The new input ref-
erence document lists is initialized by G and is
supplemented more passages from the next batch
of passages from pool p until complete the budget
k. This process boosts the likelihood of finding
relevant documents while maintaining useful doc-
uments that have been verified. Then, we create a
new prompt for large LM focusing on leveraging
the new input reference document lists to correct
the incomplete answer response .A.

The full prompt we use for each step are detailed
in Appx. §B. In practice, we should set a maximum
iteration 7" to halt the whole process to prevent the
verification condition cannot be satisfied. If this

12786

Dataset

| Example

ASQA

Question: Who sings don’t tell me what to do?

Reference Answer: Marty Stuart recorded the song Don’t Tell Me What to Do, recorded as I'll Love You
Forever (If I Want To) in 1988. Pam Tillis sang Don’t Tell Me What To Do in 1990, and in 1993, the Baby
Animals recorded the song.

QAMPARI

Question: Which movie did John Carpenter direct for which he also composed the music?

Reference Answer: Vampires, In the Mouth of Madness, Assault on Precinct 13, Dark Star, Big Trouble in
Little China, They Live, Halloween, Escape from New York, Prince of Darkness, Ghosts of Mars, The Fog,
Chevil, Village of the Damned

ELIS

Question: Why are fruit in Chinese supermarkets so much bigger than western chains like loblaws or food
basics?

Reference Answer: There are a lot less restrictions on using chemicals in agriculture here, so some farmers
use “growth accelerators’ to make their fruit (and other products) bigger. Last May, overuse of the chemicals
resulted in a spate of [exploding watermelons]

Table 1: Illustrative examples from each experiment’s dataset.

maximum iteration is reached, we will output the
last answer candidate we get from the main LM.

S Experimental Setup

We consider three factoid question-answering (QA)
datasets. For each dataset, we present an illustrative
example in Tab. 1 for better understanding.

We prepare the trustworthy text passages D for
each dataset accordingly following (Gao et al.,
2023b). Each entry in D is a 100-word pas-
sage following previous works on open-domain
QA (Karpukhin et al., 2020; Petroni et al., 2021;
Liu et al., 2023a).

5.1 The ASQA dataset

Basic Introduction. ASQA (Stelmakh et al.,
2022) is a long-form generation QA dataset derived
from the AmbigQA dataset (Min et al., 2020). It
comprises questions characterized by their ambigu-
ity, necessitating multiple short answers to address
various aspects. Each entry in the dataset is accom-
panied by a comprehensive long-form answer that
covers all the corresponding short answers. 948
samples are tested for our experiment.

Experimental Setting Since most questions can
be answered by Wikipedia, prior works usually use
2018-12-20 Wikipedia snapshot as D.

For retriever utilization, we examine the applica-
tion of both DPR (Karpukhin et al., 2020) and GTR-
large (Ni et al., 2022). DPR introduces marginally
more complex challenges for the LLM, achieving a
recall rate of 51.5%, whereas GTR achieves 56.8%
when considering the top-5 retrieved documents.

Evaluation
* Fluency: We use MAUVE score (Pillutla et al.,
2021) to evaluate the corpus-wise similarity of

the machine generated text and the long answers
generated by systems.

¢ Correctness: We follow (Stelmakh et al., 2022)
to calculate the exact matching recall (EM re-
call) of the presents of correct short answers.

* Citation quality: As mentioned in § 2, we calcu-
late citation recall and citation precision using
the scripts provided by (Gao et al., 2023b).

5.2 The QAMPARI dataset

Basic Introduction. QAMPARI (Amouyal et al.,
2022) is created from Wikipedia, pairing questions
with multiple answers derived from its knowledge
graph and tables. These answers, comprised of enti-
ties, describe simple relationships to the entities in
the query g. As a result, this dataset focuses on test-
ing systems’ abilities on entity identification within
questions and accurately pinpointing the relevant
entities. We use the same 1000 testing samples
used in (Gao et al., 2023b) for experiments.

Experimental Setting Similar to the ASQA case,
we employ the Wikipedia snapshot from 2018-12-
20, as our D. For retrieval, we again use both DPR
and GTR-large, achieving recall rates of approxi-
mately 17.6% and 31.6%, respectively, for the top
five retrieved documents for each query.

Evaluation Metrics In QAMPARI, we only con-

sidering the correctness and the citation quality

since the output of the dataset is a list of entities.

¢ Correctness: We follow (Stelmakh et al., 2022)
to to calculate the entity precision and recall of
the model prediction using exact string match.
When calculate recall, the evaluation considers
recall to be 100% if the prediction includes at
least 5 correct answer, denoted as recall-5.

« Citation quality: We use the same way as the

12787

ASQA dataset to evaluate the citation quality.

5.3 The ELI5 dataset

Basic Introduction. The ELIS5 dataset, introduced

by (Fan et al.), primarily features “How,” “Why,

E]

and ‘What” questions. It tests a system’s ability
to summarize complex information into clear and
insightful answers. We use the 1000 samples used
in (Gao et al., 2023b) for our experiment.

Experimental Setting Unlike ASQA and QAM-
PARI, the ELI5 dataset covers diverse topics and
hence, documents in Sphere corpus are treated as
D (Piktus et al., 2021). Given the large size of the
Sphere corpus, BM25 is used for efficient retrieval.

Evaluation Metrics

Correctness: ELI5 dataset does not provide
short entity answers. We follow (Gao et al.,
2023b) to calculate claim recall for correctness.
For each reference answer in the dataset, three
“sub-claims” are first extracted, and we will test
whether the machine’s answer A can entail these
sub-claims using a TRUE NLI model (Honovich
et al., 2022)

Fluency & Citation quality: We use the metrics
as the ASQA dataset for evaluation.

5.4 Compared Methods

We compare the following methods, all of which
we have independently rerun, except Self-RAG.
For our own rerun results, the reported results are
the average of three random runs.

1.

In-Context Learning (ICLCite): LLMs are in-
voked once for grounded generation through
instruction-based in-context learning. Follow-
ing (Gao et al., 2023b), we provide five docu-
ments to the LLM. They suggest that increasing
the number of input document lists does not
significantly improve performance when using
GPT-3.5-turbo.

. Summary then In-Context Learning (Summ

+ ICLCite) (Gao et al., 2023b): This method
follows the preprocessing paradigm shown in
Fig. 1. Initially, LLMs generate summaries for
each document based on the query g. Then,
these summaries are fed into the LLM to exe-
cute ICLCite. In our experiments, we generate
summaries for the top-9 documents retrieved for
each instance.

. Snippet then In-Context Learning (Snippet +

ICLCite) (Gao et al., 2023b): Similar to Summ

+ ICLCite, but LLM are guided to generate ex-
tractive summaries during preprocessing steps.

4. In-Context Learning with Self-Consistency
(ICLCite + USC): This post-processing
method that employs ICLCite to initially gen-
erate various output samples. Then, it applies
universal self-consistency Chen et al. (2023) to
obtain the results. For a fair comparison with
other baselines, like Summ+ICLCite, we first
generate 9 samples and then use a LLM to de-
termine the most consistent result among them.

5. Self-RAG (Asai et al., 2023): This method fine-
tunes LMs to generate special tokens to trigger
additional fact checks and retrieval. Since this
method requires model finetuning, we only re-
port results on ASQA dataset only.

6. CaLM: We use verification and an iterative re-
finement design to ensure the output quality. We
follow the setting of ICLCite to set the our main
LM’s reading budget £ = 5. We set the consis-
tency threshold § = 0.25 for the ELIS dataset
and # = 0.5 for the ASQA dataset. This 0 is
decided by manual qualitative examination on a
small set of development data. Besides, we set
the maximum iteration to be 4 for budget con-
cern, and use the 13B version of tulu-2-dpo (Ivi-
son et al., 2023) as the verifier LM.

6 Experimental Results

6.1 Main Results

For the main experiment, we consider two differ-
ent large LMs as the backbone: GPT-3.5-Turbo-
1106 (Ouyang et al., 2022) and the PalLM-based
LLMs (Anil et al., 2023), text-unicorn 2.

Tab. 2, Tab. 3, and Tab. 4 present the results on
ASQA, QAMPARLI, and ELIS, respectively. We
have three discovery across the three datasets:

1. Snippet+ICLCite performs as the strongest base-
line. We hypothesize that for tasks involving
grounded generation, preserving original evi-
dence within documents is crucial for citation
quality. Abstractive summarization can result in
the loss of significant evidence crucial for solv-
ing the task. Additionally, accurately extracting
consistent answers from multiple samples en-
hances correctness, yet determining correspond-
ing consistent citations poses a challenge.

2. Despite Snippet+ICLCite being the strongest
baseline, it does not always outperform ICLCite.

Zhttps://cloud.google.com/vertex-ai/docs/generative-
ai/model-reference/text

12788

Method ‘ #Main # Verifier ‘

DPR as retriever ‘ GTR as retriever

Method Type E:;Il égﬁ Fluency Correct. Citation Average Fluency Correct. Citation Average
mauve EMRec. Prec. Rec. 8 mauve EMRec. Prec. Rec. 8
GPT-3.5-Turbo-1106 as Main LM
ICLCite (Gao et al., 2023b) Single Run 1 74.73 3932 67.36 69.48 62.72 71.85 41.92 7314 77.90 66.20
Summ + ICLCite (Gao et al., 2023b) Preprocess 10 48.95 2930 60.14 54.52 48.23 (-14.49) | 68.01 41.11 66.04 7443 6240 (33)
Snippet + ICLCite (Gao et al., 2023b) process 10 48.56 29.48 59.52 53.84 47.85(-1487)| 68.84 39.89 62.05 71.06 60.46 (5
ICLCite + USC (Chen et al., 2023)" Postbrocess 10 - 717.50 40.71 61.20 64.07 60.87 (-1.85) | 77.31 4275 67.08 71.64 64.69 (-151)
CalLM (ours) process <4 <3 81.35 43.56 66.00 69.95 64.71 (+1.99) | 83.98 45.01 72.59 78.03 68.98 (+2.78)
text-unicorn as Main LM
ICLCite (Gao et al., 2023b) Single Run 1 62.01 37.09 6242 60.35 55.46 63.25 39.83 69.39 67.98 60.11
Summ + ICLCite (Gao et al., 2023b) Preprocess 10 63.21 38.67 5241 5945 53.43 (203 | 75.68 42.65 61.18 68.91 62.11 (+2.00)
Snippet + ICLCite (Gao et al., 2023b) p 10 59.03 37.69 54.62 59.44 52.69 (277 | 72.50 4097 60.88 68.02 60.59 (+0.48)
ICLCite + USC (Chen et al., 2023) Postbrocess 10 - 57.92 37.16 62.05 60.00 5428118 | 63.27 40.75 68.90 67.60 60.13 (+0.02)
CalLM (ours) P <4 <3 77.18 4224 63.71 64.99 62.03 +6.57) | 82.08 4421 70.55 72.37 67.30 (+7.19)
Finetune Llama-2 Baseline
Self-RAG (7B) T Finetune LM - - - - 74.3 30.0 66.9 67.8 59.8
Self-RAG (13B) Finetune LM - - 71.6 31.7 703 713 61.2

Table 2: The experimental results on ASQA. CaLM achieves an average improvement of over 6% when using
text-unicorn. When using GPT-3.5-Turbo-1106 as the main LM, CalLM is the only method that outperforms the
ICLCite baseline while making the fewest total LM API calls. The best results are bold, while the second best
are underlined. *USC stands for Universal Self Consistency (Chen et al., 2023). TWe report Self-RAG’s numbers
using the results from their original paper, where they retrieve up to ten documents per input using Contriever as

the retriever (Izacard et al., 2022).

Method ‘ #Main # Verifier ‘

DPR as retriever ‘ GTR as retriever

Method Type E:;[l E:ﬁ Correctness Citation Average Correctness Citation Average
Prec. Rec.-5 Prec. Rec. 2 Prec. Rec.-5 Prec. Rec. 2
GPT-3.5-Turbo-1106 as Main LM
ICLCite (Gao et al., 2023b) Single Run 1 - 1247 10.28 12.60 11.62 11.74 19.23 17.32 21.75 20.77 19.77
Summ + ICLCite (Gao et al., 2023b) Preprocess 10 - 6.65 497 1056 9.43 790384 | 15.06 13.10 21.89 21.00 17.76 (2.01)
Snippet + ICLCite (Gao et al., 2023b) p > 10 - 11.67 7.87 14.14 12.64 11.58 (-0.16) | 20.48 17.18 25.45 2391 21.76 (+1.99)
ICLCite + USC (Chen et al., 2023)* Postprocess 10 - 9.88 836 10.14 9.28 942 (202 |14.07 1245 1734 16.60 15.12 (-4.65)
Cal.M (ours) P <4 <3 17.65 13.61 13.93 1299 14.55 (+2.81)|26.71 18.55 25.16 24.39 23.70 (+3.93)
text-unicorn as Main LM
ICLCite (Gao et al., 2023b) Single Run 1 - 17.06 12.55 15.77 15.59 15.24 26.27 2142 2552 2521 24.61
Summ + ICLCite (Gao et al., 2023b) Preprocess 10 18.61 15.17 15.61 1536 16.19 (+0.95 | 27.11 26.14 24.61 2498 25.71 (+1.10)
Snippet + ICLCite (Gao et al., 2023b) * Pro°®S | o , 18.81 15.11 1610 15.83 1646 +122)|27.26 25.07 2596 2555 25.96 (+1.35)
ICLCite + USC (Chen et al., 2023) Postprocess 10 - 17.04 12.47 15.81 15.62 15.24 (+0.0) | 26.34 22.10 25.48 25.19 24.78 (+0.17)
Cal.M (ours) P <4 <3 19.62 16.71 1590 15.95 17.05 (+1.81)|30.28 22.79 28.53 28.34 27.49 (+2.88)

Table 3: The experimental results on QAMPARI. Compared to all the preprocess and postprocess baselines, our
method obtains the best average performance across different settings and use the fewest LM API calls.

Fluency Correct. Citation
Method mauve Claim. Prec. Rec. Average
GPT-3.5-Turbo-1106 as Main LM
ICLCite 25.33 1290 44.63 49.34 33.05
Summ + ICLCite 17.86 10.67 38.81 43.26 26.40 (-6.65)
Snippet + ICLCite | 25.30 12.06 3549 41.35 28.55 (-4.50)
ICLCite + USC 25.04 12.16 34.87 39.60 27.92 (-5.13)
CaLLM (ours) 25.84 1292 46.55 51.90 34.30 (+1.25)
text-unicorn as Main LM
ICLCite 35.82 12.21 3535 32.05 28.86
Summ + ICLCite 34.57 11.74 35.54 35.02 29.22 (+0.36)
Snippet + ICLCite | 47.43 13.51 34.37 33.00 32.08 (+3.22)
ICLCite + USC 31.42 1229 3490 31.66 27.57 (-1.29)
CaLLM (ours) 37.06 11.95 46.26 43.60 34.72 (+5.86)
Table 4: The experimental results on ELIS. CaLM ob-

tains the best average performance regardless of the
used main LM. The improvements are especially sig-
nificant in the citation quality.

We observe that with a weaker retriever, Snip-
pet+ICLCite often fails to enhance performance.
We conjecture that this is attributed to increased

noise in these scenarios. More noisy input lists
can lead to a higher likelihood of hallucinations
and errors during the preprocessing steps, result-
ing in degraded performance.

. CaLLM effectively improves the performance in
both answer correctness and citation quality, and
the improvement is robust against the choice of
retriever. We attribute this robustness to our ap-
proach of releasing only high-quality responses
in each iteration while continuously exploring
new batches of documents.

6.2 Analysis

We conduct analysis of CaLM on the QAMPARI
dataset. All the studies are conducted using GTR
as the retriever and text-unicorn as the main LM,
except where noted in the table.

What if we use larger LM as the verifier LM?
Tab. 5 shows how the size of the verifier impacts

12789

| Correctness Citation

Choice of Verifier LM. Average

| Prec. Rec.-5 Prec. Rec.
GPT-3.5-Turbo-1106 as Main LM
‘ 19.23 17.32 21.75 20.77 19.77

2536 17.95 2429 23.64 22.81 (+3.04
26.71 18.55 25.16 24.39 23.70 (+3.93)
25.61 18.69 23.64 23.57 22.88 (+3.11)

‘24.39 18.36 22.94 2230 22.00 (+2.23)

No verification

Tulu-2-dpo-7b
Tulu-2-dpo-13b (our choice)
Tulu-2-dpo-70b

GPT-3.5-Turbo-1106

text-unicorn as Main LM
\ 26.27 2142 2552 2521 24.61

29.71 21.80 27.67 27.45 26.65 (+2.04)
30.28 22.79 28.53 28.34 27.49 (+288)
28.94 22.61 27.06 26.88 26.37 (+1.76)

‘29.73 2344 28.01 27.54 27.18 (+2.57)

No verification
Tulu-2-dpo-7b

Tulu-2-dpo-13b (our choice)
Tulu-2-dpo-70b

text-unicorn

Table 5: Evaluating the choice of verifier LM. Our in-
vestigation focuses on comparing the performance of
models of varying sizes and using the main LM itself
as the verifier. Compared to the largest LM in the
same family, a smaller-sized LM yields better perfor-
mance.Additionally, our choice of verifier can largely
outperform using the main LM itself as verifier.

Correctness Citation
Prec. Rec.-5 Prec. Rec.

30.28 2279 28.53 2834 27.49
28.19 2326 2522 25.65 25.58

Verifier LM’s input document Average

Only cited documents (Ours.)
Same as the main LM

Table 6: Ablating our design of using only cited doc-
uments for verification. We can observe a significant
performance drop if we remove the design.

the task performance. We can see that all verifiers
improve the performance, demonstrating the robust-
ness of our framework. Additionally, the smaller
LM variants outperforms the largest LM (tulu-2-
70b) in citation quality, and the medium-sized LM
achieves the best performance. A medium-sized
LM combines external knowledge integration and
information discernment, resulting in a better veri-
fier performance. Comparing with using the large
LM itself as verifier, our choice of a smaller LM as
the verifier performs better.

What if the verifier LM could access more than
just the cited documents? In our automated
verification method, the verifier LM is limited to
accessing only the cited documents. Removing
this constraint simplifies our verification algorithm
to re-sampling with a different LM. The results,
shown in Tab. 6, demonstrate a notable decline
in performance when such verification design is
removed, especially in citation quality. This high-
lights the essential role and effectiveness of our
design of automated verification.

Further Analysis Appendix A details additional
studies on model performance and prediction

changes across iterations.
7 Related Work

Evaluation Early research focused on evaluating
attribution in text generation. Rashkin et al. (2023)
introduced the “Attributable to Identified Sources”
(AIS) framework for assessing faithfulness. Subse-
quent studies developed automatic (Honovich et al.,
2022; Yue et al., 2023) and human (Bohnet et al.,
2022) evaluation methods based on AIS. Recent
work by Liu et al. (2023b) evaluated generative
search engines that provide citations, and Gao et al.
(2023b) proposed ALCE, an automatic benchmark
for text generation with citations. In this study, we
assess our approach using ALCE.

Finetuned LMs Some studies have investigated
fine-tuning language models (LLMs) for generating
cited answers (Menick et al., 2022; Nakano et al.,
2021). Similarly, Ye et al. (2023) employed adap-
tation approach for fine-tuning. These methods
required training and could be be susceptible to
generalization issues.

Retrieval-based Methods He et al. (2022); Gao
et al. (2023a) used post-editing to ensure text con-
sistency by retrieving relevant documents. Gao
et al. (2023b) explored methods like document sum-
marization and LL.M-enabled searches for citation
improvement, yet lacked verification for answer
validation. Li et al. (2023) utilized an LLLM as a
verifier for document relevance but didn’t employ
the answer to verify the correct grounding.

Self-reflection Prompting LLMs to self-reflect on
their answers has been shown to improve factuality
(Jietal., 2023). Asai et al. (2023) employed this
concept, enhancing LM quality and factuality via
retrieval and self-reflection by training special to-
kens. CaLLM outperforms this method without the
need of training.

8 Conclusion

In this paper, we introduce CalLM, a novel verifica-
tion approach for grounded generation. We observe
that while larger LMs excel at identifying relevant
materials, they tend to rely excessively on internal
parametric memory. Conversely, smaller LMs are
adept at processing focused information. CaLM
leverages these complementary strengths to offer a
fresh perpective on robust and scalable solution for
verification in grounded generation.

12790

Limitation

We acknowledge the limitations of CaLM from the
following aspects to inspire future research oppor-
tunities in the field of grounded generation.

Firstly, as a postprocessing technique, our
method introduces additional latency in generat-
ing the final answer. As a remedy, we can set
the maximum iteration 7" smaller. From Fig. 4
in the appendix, we have shown that only even a
single iteration of our correction process signifi-
cantly enhances performance, yet latency remains
an unavoidable factor.

Moreover, unlike preprocessing approaches de-
picted in Fig. 1(b), which can reduce input token
consumption for the final LLM, our method neces-
sitates that the LLM initially processes all docu-
ments, leading to a higher cost for token usage.

Lastly, despite the considerable advancements
CalLM has made across datasets, the instances that
pass our verification process are still not flawless.
Given that both the answer candidate and the ver-
ifier output are outcomes from LMs, there is an
inevitable risk of both models producing hallucina-
tions simultaneously.

We hope future works can leverage the idea and
insights from CaLLM to advance the development of
more robust grounded generation with low latency
and reduced token costs.

Broader Considerations

As a method that directly apply LLMs, CaLLM in-
herits all potential risks associated with LLMs, in-
cluding but not limited to unethical outputs, toxi-
city, and biases (Bender et al., 2021; Yuan et al.,
2024; Gallegos et al., 2023). Our qualitative assess-
ment of CaLM, conducted across several samples
from three datasets, indicates that LLMs generally
adhere to instructions and generate responses rele-
vant to the content of provided documents. How-
ever, we strongly advise conducting a comprehen-
sive evaluation of these potential issues before de-
ploying CalLM in practical settings.

References

Samuel Joseph Amouyal, Ohad Rubin, Ori Yoran,
Tomer Wolfson, Jonathan Herzig, and Jonathan Be-
rant. 2022. QAMPARI: : An open-domain ques-
tion answering benchmark for questions with many
answers from multiple paragraphs. arXiv preprint
arXiv:2205.12665.

Rohan Anil, Andrew M. Dai, Orhan Firat, Melvin John-
son, Dmitry Lepikhin, Alexandre Passos, Siamak
Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng
Chen, Eric Chu, Jonathan H. Clark, Laurent El
Shafey, Yanping Huang, Kathy Meier-Hellstern,
Gaurav Mishra, Erica Moreira, Mark Omernick,
Kevin Robinson, Sebastian Ruder, Yi Tay, Ke-
fan Xiao, Yuanzhong Xu, Yujing Zhang, Gus-
tavo Hernandez Abrego, Junwhan Ahn, Jacob
Austin, Paul Barham, Jan A. Botha, James Brad-
bury, Siddhartha Brahma, Kevin Brooks, Michele
Catasta, Yong Cheng, Colin Cherry, Christopher A.
Choquette-Choo, Aakanksha Chowdhery, Clément
Crepy, Shachi Dave, Mostafa Dehghani, Sunipa
Dev, Jacob Devlin, Mark Diaz, Nan Du, Ethan
Dyer, Vladimir Feinberg, Fangxiaoyu Feng, Vlad
Fienber, Markus Freitag, Xavier Garcia, Sebastian
Gehrmann, Lucas Gonzalez, and et al. 2023. Palm 2
technical report. CoRR, abs/2305.10403.

Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and
Hannaneh Hajishirzi. 2023. Self-rag: Self-reflective
retrieval augmented generation. In NeurIPS 2023
Workshop on Instruction Tuning and Instruction Fol-
lowing.

Emily M. Bender, Timnit Gebru, Angelina McMillan-
Major, and Shmargaret Shmitchell. 2021. On the
dangers of stochastic parrots: Can language models
be too big? In FAccT °21: 2021 ACM Conference on
Fairness, Accountability, and Transparency, Virtual
Event / Toronto, Canada, March 3-10, 2021.

Bernd Bohnet, Vinh Q Tran, Pat Verga, Roee Aha-
roni, Daniel Andor, Livio Baldini Soares, Massimil-
iano Ciaramita, Jacob Eisenstein, Kuzman Gancheyv,
Jonathan Herzig, et al. 2022. Attributed ques-
tion answering: Evaluation and modeling for at-
tributed large language models. arXiv preprint
arXiv:2212.08037.

Xinyun Chen, Renat Aksitov, Uri Alon, Jie Ren, Kefan
Xiao, Pengcheng Yin, Sushant Prakash, Charles Sut-
ton, Xuezhi Wang, and Denny Zhou. 2023. Univer-
sal self-consistency for large language model gener-
ation. arXiv preprint arXiv:2311.17311.

Angela Fan, Yacine Jernite, Ethan Perez, David Grang-
ier, Jason Weston, and Michael Auli. ELIS: long
form question answering. In Proceedings of the
57th Conference of the Association for Computa-
tional Linguistics, ACL 2019, Florence, Italy, July
28- August 2, 2019, Volume 1: Long Papers.

Isabel O. Gallegos, Ryan A. Rossi, Joe Barrow,
Md. Mehrab Tanjim, Sungchul Kim, Franck Der-
noncourt, Tong Yu, Ruiyi Zhang, and Nesreen K.
Ahmed. 2023. Bias and fairness in large language
models: A survey. CoRR, abs/2309.00770.

Luyu Gao, Zhuyun Dai, Panupong Pasupat, Anthony
Chen, Arun Tejasvi Chaganty, Yicheng Fan, Vincent
Zhao, Ni Lao, Hongrae Lee, Da-Cheng Juan, and
Kelvin Guu. 2023a. RARR: Researching and revis-
ing what language models say, using language mod-
els. In Proceedings of the 61st Annual Meeting of

12791

the Association for Computational Linguistics (Vol-
ume 1: Long Papers).

Tianyu Gao, Howard Yen, Jiatong Yu, and Dangi Chen.
2023b. Enabling large language models to generate
text with citations. In Proceedings of the 2023 Con-
ference on Empirical Methods in Natural Language
Processing.

Hangfeng He, Hongming Zhang, and Dan Roth. 2022.
Rethinking with retrieval: Faithful large language
model inference. arXiv preprint arXiv:2301.00303.

Or Honovich, Roee Aharoni, Jonathan Herzig, Ha-
gai Taitelbaum, Doron Kukliansy, Vered Cohen,
Thomas Scialom, Idan Szpektor, Avinatan Hassidim,
and Yossi Matias. 2022. TRUE: Re-evaluating fac-
tual consistency evaluation. In Proceedings of the
2022 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies.

Jie Huang and Kevin Chen-Chuan Chang. 2023. Ci-
tation: A key to building responsible and ac-
countable large language models. arXiv preprint
arXiv:2307.02185.

Lei Huang, Weijiang Yu, Weitao Ma, Weihong
Zhong, Zhangyin Feng, Haotian Wang, Qianglong
Chen, Weihua Peng, Xiaocheng Feng, Bing Qin,
and Ting Liu. 2023. A survey on hallucination
in large language models: Principles, taxonomy,
challenges, and open questions. arXiv preprint
arXiv:2311.05232.

Hamish Ivison, Yizhong Wang, Valentina Pyatkin,
Nathan Lambert, Matthew Peters, Pradeep Dasigi,
Joel Jang, David Wadden, Noah A. Smith, Iz Belt-
agy, and Hannaneh Hajishirzi. 2023. Camels in a
changing climate: Enhancing LM adaptation with
tulu 2. arXiv preprint arXiv:2311.10702.

Gautier Izacard, Mathilde Caron, Lucas Hosseini, Se-
bastian Riedel, Piotr Bojanowski, Armand Joulin,
and Edouard Grave. 2022. Unsupervised dense in-
formation retrieval with contrastive learning. Trans.
Mach. Learn. Res.

Ziwei Ji, Tiezheng Yu, Yan Xu, Nayeon Lee, Etsuko
Ishii, and Pascale Fung. 2023. Towards mitigat-
ing LLM hallucination via self reflection. In Find-
ings of the Association for Computational Linguis-
tics: EMNLP 2023.

Dongfu Jiang, Xiang Ren, and Bill Yuchen Lin. 2023.
Llm-blender: Ensembling large language models
with pairwise ranking and generative fusion. In
Proceedings of the 61st Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), ACL 2023, Toronto, Canada, July 9-
14, 2023.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
S. H. Lewis, Ledell Wu, Sergey Edunov, Dangqi

Chen, and Wen-tau Yih. 2020. Dense passage re-
trieval for open-domain question answering. In Pro-
ceedings of the 2020 Conference on Empirical Meth-
ods in Natural Language Processing, EMNLP 2020,
Online, November 16-20, 2020.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. 2023. Effi-
cient memory management for large language model
serving with pagedattention. In Proceedings of the
ACM SIGOPS 29th Symposium on Operating Sys-
tems Principles.

Xiaonan Li, Changtai Zhu, Linyang Li, Zhangyue
Yin, Tianxiang Sun, and Xipeng Qiu. 2023. Lla-
trieval: Llm-verified retrieval for verifiable genera-
tion. arXiv preprint arXiv:2311.07838.

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paran-
jape, Michele Bevilacqua, Fabio Petroni, and Percy
Liang. 2023a. Lost in the middle: How language
models use long contexts. ArXiv:2307.03172.

Nelson F. Liu, Tianyi Zhang, and Percy Liang. 2023b.
Evaluating verifiability in generative search engines.
In Findings of the Association for Computational
Linguistics: EMNLP 2023, Singapore, December 6-
10, 2023.

Jacob Menick, Maja Trebacz, Vladimir Mikulik,
John Aslanides, Francis Song, Martin Chad-
wick, Mia Glaese, Susannah Young, Lucy
Campbell-Gillingham, Geoffrey Irving, et al
2022. Teaching language models to support an-
swers with verified quotes, 2022. URL https://arxiv.
org/abs/2203.11147.

Sewon Min, Julian Michael, Hannaneh Hajishirzi, and
Luke Zettlemoyer. 2020. Ambigqa: Answering am-
biguous open-domain questions. In Proceedings of
the 2020 Conference on Empirical Methods in Nat-
ural Language Processing, EMNLP 2020, Online,
November 16-20, 2020.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu,
Long Ouyang, Christina Kim, Christopher Hesse,
Shantanu Jain, Vineet Kosaraju, William Saunders,
et al. 2021. Webgpt: Browser-assisted question-
answering with human feedback. arXiv preprint
arXiv:2112.09332.

Jianmo Ni, Chen Qu, Jing Lu, Zhuyun Dai, Gus-
tavo Herndndez Abrego, Ji Ma, Vincent Y. Zhao,
Yi Luan, Keith B. Hall, Ming-Wei Chang, and Yin-
fei Yang. 2022. Large dual encoders are general-
izable retrievers. In Proceedings of the 2022 Con-
ference on Empirical Methods in Natural Language
Processing, EMNLP 2022, Abu Dhabi, United Arab
Emirates, December 7-11, 2022.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex
Ray, John Schulman, Jacob Hilton, Fraser Kelton,

12792

Luke Miller, Maddie Simens, Amanda Askell, Peter
Welinder, Paul F. Christiano, Jan Leike, and Ryan
Lowe. 2022. Training language models to follow
instructions with human feedback. In Advances in
Neural Information Processing Systems 35: Annual
Conference on Neural Information Processing Sys-
tems 2022, NeurIPS 2022, New Orleans, LA, USA,
November 28 - December 9, 2022.

Fabio Petroni, Aleksandra Piktus, Angela Fan, Patrick
S. H. Lewis, Majid Yazdani, Nicola De Cao, James
Thorne, Yacine Jernite, Vladimir Karpukhin, Jean
Maillard, Vassilis Plachouras, Tim Rocktischel, and
Sebastian Riedel. 2021. KILT: a benchmark for
knowledge intensive language tasks. In Proceedings
of the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, NAACL-HLT 2021,
Online, June 6-11, 2021.

Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin,
Dmytro Okhonko, Samuel Broscheit, Gautier Izac-
ard, Patrick S. H. Lewis, Barlas Oguz, Edouard
Grave, Wen-tau Yih, and Sebastian Riedel. 2021.
The web is your oyster - knowledge-intensive NLP
against a very large web corpus.

Krishna Pillutla, Swabha Swayamdipta, Rowan Zellers,
John Thickstun, Sean Welleck, Yejin Choi, and Zaid
Harchaoui. 2021. MAUVE: measuring the gap be-
tween neural text and human text using divergence
frontiers. In Advances in Neural Information Pro-
cessing Systems 34: Annual Conference on Neu-
ral Information Processing Systems 2021, NeurlPS
2021, December 6-14, 2021, virtual.

Hannah Rashkin, Vitaly Nikolaev, Matthew Lamm,
Lora Aroyo, Michael Collins, Dipanjan Das, Slav
Petrov, Gaurav Singh Tomar, Iulia Turc, and David
Reitter. 2023. Measuring Attribution in Natural Lan-
guage Generation Models. Computational Linguis-
tics.

Ivan Stelmakh, Yi Luan, Bhuwan Dhingra, and Ming-
Wei Chang. 2022. ASQA: factoid questions meet
long-form answers. In Proceedings of the 2022 Con-
ference on Empirical Methods in Natural Language
Processing, EMNLP 2022, Abu Dhabi, United Arab
Emirates, December 7-11, 2022.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V.
Le, Ed H. Chi, Sharan Narang, Aakanksha Chowd-
hery, and Denny Zhou. 2023. Self-consistency
improves chain of thought reasoning in language
models. In The Eleventh International Conference
on Learning Representations, ICLR 2023, Kigali,
Rwanda, May 1-5, 2023.

Jian Xie, Kai Zhang, Jiangjie Chen, Renze Lou,
and Yu Su. 2023. Adaptive chameleon or stub-
born sloth: Unraveling the behavior of large lan-
guage models in knowledge clashes. arXiv preprint
arXiv:2305.13300.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng,
Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin

Jiang. 2023. Wizardlm: Empowering large lan-
guage models to follow complex instructions. arXiv
preprint arXiv:2304.12244.

Xi Ye, Ruoxi Sun, Sercan O Arik, and Tomas Pfis-
ter. 2023. Effective large language model adap-
tation for improved grounding. arXiv preprint
arXiv:2311.09533.

Tongxin Yuan, Zhiwei He, Lingzhong Dong, Yiming
Wang, Ruijie Zhao, Tian Xia, Lizhen Xu, Binglin
Zhou, Fangqi Li, Zhuosheng Zhang, Rui Wang,
and Gongshen Liu. 2024. R-judge: Benchmark-
ing safety risk awareness for LLM agents. CoRR,
abs/2401.10019.

Xiang Yue, Boshi Wang, Ziru Chen, Kai Zhang, Yu Su,
and Huan Sun. 2023. Automatic evaluation of attri-
bution by large language models. In Findings of the
Association for Computational Linguistics: EMNLP
2023.

Yue Zhang, Yafu Li, Leyang Cui, Deng Cai, Lemao
Liu, Tingchen Fu, Xinting Huang, Enbo Zhao,
Yu Zhang, Yulong Chen, Longyue Wang, Anh Tuan
Luu, Wei Bi, Freda Shi, and Shuming Shi. 2023.
Siren’s song in the AI ocean: A survey on hallu-
cination in large language models. arXiv preprint
arXiv:2309.01219.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang,
Joseph E. Gonzalez, and Ion Stoica. 2023. Judg-
ing llm-as-a-judge with mt-bench and chatbot arena.
arXiv preprint arXiv:2306.05685.

12793

A Further Analysis

In this section, we focus on analysis when iteration
of CalLM proceed.

How does the model’s performance improve as
iterations proceed? Fig. 4 illustrates the out-
comes of terminating the process from iteration 0
through 6. As demonstrated in the figure, the preci-
sion for correctness consistently improve with each
iteration of CaLLM as our framework only allows
high quality final output. On the other hand, our de-
sign of updating the input document list contributes
to a consistent rise in correctness recall.

However, we observe that performance tends to
plateau after the third iteration, with subsequent
iterations yielding diminishing returns. Extending
the maximum iterations to six produced only a
marginal average improvement of 0.4 compared to
the third iteration, while significantly increasing
the computational cost in terms of API calls.

We believe CaLM’s iterative nature is a key
strength, allowing for continuous improvement.
However, our findings suggest that two to three
iterations offer substantial gains with minimal com-
putational overhead. This demonstrates the frame-
work’s efficiency and practicality for real-world
applications.

Case study on CaLM’s correction. We present
two case studies to demonstrate that by looping
through our verification design, more accurate ev-
idence can be found and more accurate responses
can be generated. Fig. 5 is based on the ASQA
dataset, and Fig. 6 utilizes the QAMPARI dataset.

From the example of Fig. 5, we can see that the
small LM, serving as a verifier, when given access
to cleaner input document sets, is capable of identi-
fying overlooked information by the main LM. This
detection initiates iterative correction processes in
subsequent rounds.

The example in Fig. 6 demonstrates that (1)
CalLM finds more convincing evidence documents
in later rounds, and (2) CaLLM catches citation er-
rors through verification.

B Used prompts

In this section, we list the prompts we use for our
experiment.

B.1 Prompts for ASQA

Two different prompt sets are used for the ASQA
dataset. Fig. 7 shows the prompts we used for the

LM to conduct grounded generation, which mainly
follow the prompt used in (Gao et al., 2023b) with
two shot examples. We design our own prompt for
the main model to perform correction. The prompt
is detailed in Fig. 8, which use 1-shot example.

B.2 Prompts for QAMPARI

Two different prompt sets are used for the QAMPRI
dataset. Fig. 9 shows the prompts we used for the
LM to conduct grounded generation, which mainly
follow the prompt used in (Gao et al., 2023b) with
two shot examples. We design our own prompt for
the main model to perform correction. The prompt
is detailed in Fig. 10, which use 1-shot example.

B.3 Prompts for ELI5

Two different prompt sets are used for the ELI5
dataset. Fig. 11 shows the prompts we used for the
LM to conduct grounded generation, which mainly
follow the prompt used in (Gao et al., 2023b) with
two shot examples. We design our own prompt for
the main model to perform correction. The prompt
is detailed in Fig. 12, which use 1-shot example.

C Implementation Details

For all experiments with public available models,
we use VLLM framework for inference (Kwon
et al., 2023). We operate vLLM on our machine
with 16 NVIDIA-A100-40GB GPU. For experi-
ments with GPT-3.5-Turbo-1106, we use the offi-
cial API 3. For experiment with text-unicorn, we
use Google-Cloud vertex API 4.

D Dataset and Evaluation Tool

We use the artifacts provided by Gao et al. (2023b).
The dataset and corresponding evaluation code is
under MIT licence °>. We do not change any of the
provided data and maintain consistent with their
intended use.

3https://platform.openai.com/
*https://cloud.google.com/vertex-ai/docs/reference/rest
Shttps://github.com/princeton-nlp/ ALCE/tree/main

12794

29

26

23

20

17

—e—Correctness Prec.

0 (No ver.)

Performance v.s. # Iteration

—e—Correctness Rec.-5

—e—Citation Prec.

—e—Citation Rec.

27.74
26.69 26.74
25.28 25.29
24.96 22.49
t ——
24.54 24.34
18.73 18.8 18.91
2 3 (Our Report) 4 5 6

Correction Iteration

Figure 4: The study examines the iterative performance improvements on the QAMPARI dataset. We use GPT-3.5-
Turbo as the main LM for this running study.

12795

Figure 5: A case study of CaLM on ASQA dataset. The question is “Who sings don’t tell me what to do?” and all
reference short answers are “Pam Tillis”, “Marty Stuart”, and “Baby Animals” .

Figure 6: A case study of CaLM on QAMPARI dataset. The question is “Which movie did John Carpenter direct
for which he also composed the music?” and all reference answers are “Vampires”, “In the Mouth of Madness”,
“Assault on Precinct 137, “Dark Star”, “Big Trouble in Little China”, “They Live”, “Halloween”, “Escape from
New York”, “Prince of Darkness”, “Ghosts of Mars”, “The Fog”, “Chevil”, “Village of the Damned” .

12797

Figure 7: Prompt for the LM to conduct the grounded generation on ASQA dataset.

12798

Figure 8: Prompt for the main LM to conduct correction on ASQA dataset.

12799

Figure 9: Prompt for the LM to conduct the grounded generation on QAMPARI dataset.

12800

Figure 10: Prompt for the main LM to conduct correction on QAMPARI dataset.

12801

Figure 11: Prompt for the LM to conduct the grounded generation on ELIS dataset.

12802

Figure 12: Prompt for the main LM to conduct correction on ELI5 dataset.

12803

