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Abstract

Named entity recognition (NER) is a pivotal
task reliant on textual data, often impeding
the disambiguation of entities due to the ab-
sence of context. To tackle this challenge, con-
ventional methods often incorporate images
crawled from the internet as auxiliary infor-
mation. However, the images often lack suffi-
cient entities or would introduce noise. Even
with high-quality images, it is still challenging
to achieve fine-grained alignment with texts.
We introduce a novel method named Instruct-
NER to address these issues. Leveraging the
rich real-world knowledge and image synthesis
capabilities of a large pre-trained stable diffu-
sion model, InstructNER transforms the text-
only NER into a multimodal NER (MNER)
task. A selection process automatically iden-
tifies the best synthetic image by comparing
fine-grained similarities with internet-crawled
images through a visual bag-of-words strat-
egy. Note, during the image synthesis, a
cross-attention matrix between synthetic im-
ages and raw text emerges, which inspires a
soft attention guidance alignment (AGA) mech-
anism. AGA optimizes the MNER task and
concurrently facilitates instructive alignment
in MNER. Experiments on prominent MNER
datasets show that our method surpasses all text-
only baselines, improving F1-score by 1.4%
to 2.3%. Remarkably, even when compared
to fully multimodal baselines, our approach
maintains competitive. Furthermore, we open-
source a comprehensive synthetic image dataset
and the code to supplement existing raw dataset.
The code and datasets are available in https:
//github.com/Heyest/InstructNER.

1 Introduction

Named entity recognition (NER) is a fundamental
information extraction task that identifies named

*Corresponding author.
†Now working in Meta.
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Figure 1: Examples of NER and MNER, where PER,
ORG, LOC and MISC denote the entity labels of person,
organization, location and others, respectively.

entities in sentences and classifies them into pre-
defined categories(Li et al., 2020). Text-based NER
methods in practice mainly depend on textual in-
formation, which poses challenges in recognizing
short or ambiguous sentences (Zhang et al., 2018).
In comparison with text-based NER, multimodal
NER (MNER) leverages images as supplementary
information to boost the task’s robustness (Xu et al.,
2022; Jia et al., 2022; Wang et al., 2023a). In Figure
1 (a), the word ICRC in the sentence I love ICRC
is ambiguous, hindering the classification based
solely on the text. An additional image clarifies
that ICRC refers to the International Committee of
the Red Cross, labeled as ORG.

Despite the promising results of MNER methods
(Chen et al., 2021), they still struggle with acquir-
ing large-scale and high-quality text-image paired
corpus. Common MNER datasets, Twitter-2015
(Zhang et al., 2018) and Twitter-2017 (Lu et al.,
2018), consist of 8,257 and 4,819 image-text pairs,
respectively. This represents a mere 26% and 16%
of the volume found in the frequently employed tex-
tual NER dataset CoNLL03 (Tjong Kim Sang and
De Meulder, 2003). One potential solution involves
crawling supplementary images by internet search
engines. Whereas, unlike raw texts, the internet-
crawled images often fail to cover enough entities,

1277

https://github.com/Heyest/InstructNER
https://github.com/Heyest/InstructNER


which might further bring unexpected noise. As
exemplified in Figure 1 (b), the two images are
retrieved from Google based on Messi is playing
football at FCB home stadium Camp Nou, where
the left image only contains Messi while the right
one only includes Camp Nou.

Another critical challenge to the success of the
MNER task lies in the accurate alignment between
text tokens and image regions. Existing techniques
for the text-image alignment can be summarized
into two groups: explicit alignment and implicit
alignment. Explicit alignment extracts visual object
regions, then maps them to corresponding textual
tokens (Wu et al., 2020; Zheng et al., 2020; Jia
et al., 2022), but errors can propagate from initial
inaccurate region extraction (Yang et al., 2019a).
Consider the left image in Figure 1 (c), only the
object regions of Messi and football are extracted,
missing the FCB clothes logo and Camp Nou sta-
dium in the background. In contrast, implicit align-
ment alleviates this issue by employing an attention
mechanism to learn the alignment weights adap-
tively (Zhou et al., 2022; Xu et al., 2022; Wang
et al., 2023a). Despite the token-to-image align-
ment achieved by these approaches, the attention
may not be sufficiently concentrated. Regarding
the right image of Figure 1 (c), the attention heat-
map illustrates Messi is located, yet it noticeably
allocates irrelevant attention to surrounding areas.

In response to the aforementioned challenges,
we propose InstructNER, a novel approach that
harnesses the rich real-world knowledge and the
image synthesis capabilities of stable diffusion
models (Rombach et al., 2022) to provide sup-
plemental information, thereby transforming the
textual NER task into MNER task. Specifically,
we first feed the raw text into the pre-trained sta-
ble diffusion (SD) model to generate large-scale
synthetic images. Then, to alleviate the variability
of image quality and select the best one, we em-
ploy an off-the-shelf visual bag-of-words (BoW)
method (Gidaris et al., 2020) to measure the fine-
grained similarity between the internet-crawled im-
ages and the synthetic images, ultimately selecting
the most similar one. Particularly, the similarity
metric of images considers both the coverage and
accuracy of entities. As depicted in Figure 1 (d)
(left), the selected image accurately encompasses
all entities, including Messi, the FCB logo, and
the Camp Nou stadium. Furthermore, the image
synthesis process also produces a cross-attention
matrix between the synthetic images and the raw

text as a byproduct, inspiring our soft attention
guidance alignment (AGA) mechanism for MNER
model training. In addition to optimizing the orig-
inal MNER task, our objective also aims to min-
imize the Kullback-Leibler (KL) divergence be-
tween the MNER model’s cross-attention matrix
and the aforementioned byproduct matrix. Figure 1
(d) shows the attention of the AGA mechanism paid
to token Messi, displaying a higher concentration.

We conduct experiments on three representative
MNER datasets, i.e., Twitter-2015, Twitter-2017,
and WikiDiverse, while excluding images with only
textual corpus. Experimental results demonstrate
the superiority of our method over all text-only
baselines, with absolute F1-score improvements
of 1.4%, 2.3% and 2.1%. Moreover, our method
still achieves competitive results even when com-
pared to fully multimodal baselines. To sum up,
the contributions of this paper are three-fold:

• We are the first to leverage the artificial intel-
ligence generated content (AIGC) ability of
stable diffusion model to switch textual NER
into MNER with synthetic images.

• We propose a comprehensive framework In-
structNER with a novel text-to-image mecha-
nism AGA, which instructs the cross-attention
being learned in a soft manner.

• Experimental results compared with both text-
only and fully MNER baselines verify the
effectiveness of our method. Moreover, we
release the large-scale and high-quality syn-
thetic images to supplement the raw datasets.

2 Method

NER aims to categorize named entities in a sen-
tence S = (s1, s2, . . . , sn) consisting of n tokens,
and often adopts the BIO tagging schema (Sang and
Veenstra, 1999). The output Y = (y1, y2, . . . , yn)
consists of n labels, where yi ∈ L and L =
{B, I,O} represents the predefined label set. The
MNER task receives an image as additional input,
then identifies named entities similar to NER.

Figure 2 provides an overview of the compre-
hensive architecture of InstructNER. In Stage #1,
InstructNER leverages the pre-trained stable dif-
fusion model to generate images, and selects the
optimal synthetic image covering sufficient and ac-
curate entities. In Stage #2, InstructNER utilizes
the soft attention guidance alignment (AGA) mech-
anism to fuse the raw text and synthetic image. In
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Figure 2: Illustration of InstructNER. The arrows indicate the data flow from the previous stage to the next one.

Stage #3, InstructNER adopts a multi-task training
object to cocurrently optimize the loss of entity
classification and instructive alignment.

2.1 Image Synthesis and Selection

For the sentence S = (s1, s2, . . . , sn), we first gen-
erate l synthetic images I = {I1, I2, . . . , Il} using
the pre-trained SD model (Rombach et al., 2022),
and then select the best one Iτ ∈ I considering the
entity coverage and accuracy.

2.1.1 Image Selection with Entity Coverage
For each synthetic image Ii ∈ I , we derive its
cross attention matrix Msyn

i from pre-trainted SD
model, where Msyn

i = (mi,1,mi,2, . . . ,mi,n),
and mi,j ∈ Rdp represents the attention score vec-
tor between token sj and image Ii (decomposed
into dp pixels). Notably, the entity tokens (e.g.,
Messi and Camp Nou) could receive higher atten-
tion scores, while function tokens (e.g., is and at)
obtain lower attentions. For each token sj , its im-
portance wj is measured by summing up the aver-
age attention score µi,j , which corresponds to all
the image pixels:

µi,j =
1

dp

dp∑

k=1

mi,j [k], wj =

l∑

i=1

µi,j (1)

We use a predefined threshold θ to select the entity
tokens. In particular, wj ≥ θ indicates that token
sj is the desired entity token. We can then filter
out the images which exhibit low attention scores
with the entity tokens. To this end, we take this
strategy to rank the quality of the synthetic image
set I , and keep α best images among them, denoted
as I ′, where I ′ ⊂ I and α is a hyper-parameter.

2.1.2 Image Selection with Entity Accuracy

The synthetic image set I ′ excel in entity coverage,
but may include some unrealistic and inaccurate
contents. Conversely, internet-crawled images of-
ten exhibit high factual but lack sufficient entity
coverage. Combing the advantage of these two
types of images, we employ internet-crawled im-
ages to filter synthetic images and select the opti-
mal image Iτ from I ′.

Specifically, we crawl m images C =
{C1, C2, . . . , Cm} from a search engine. For a
specific image Ci ∈ I ′ ∪ C, we utilize the pre-
trained RotNet encoder (Gidaris et al., 2018) to ob-
tain visual features vi = (v1

i ,v
2
i , . . . ,v

r
i ), which

consist of r regions, where vr
i ∈ Rc represents a

c-dimensional vector. To measure the fine-grained
similarity between C and I ′, an off-the-shelf visual
bag-of-words (BoW) model (Gidaris et al., 2020)
is employed. K-Means algorithm is first adopted
in clustering all the region features {vi}

∣∣|I′∪C|
i=1

within the image set I ′ ∪ C into k-cluster, in order
to calculate the image similarity with vocabulary
consisting of k vectors. Formally, the vocabulary
F = (f1, f2, . . . , fk) can be represented as:

(f1, f2, . . . , fk) = KMeans
(
v1,v2, . . . ,v|I′∪C|

)

(2)
where fk ∈ Rc denote a specific vector. Then, we
quantize each region of the image Ci with the most
similar (the minimum squared Euclidean distance)
feature in the vocabulary, and compute the visual
bag-of-words representation bow(Ci).

bow(Ci) =
{
bow(Cj

i )
} ∣∣∣

k

j=1
(3)
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bow(Cj
i ) = 1 (ED(fj ,vi) < η) (4)

where 1[·] is the indicator operator, ED(·) denotes
the minimum squared Euclidean distance, η is a
threshold manually defined. Following the steps
above, we compute the BoW representations for all
images in I ′∪C, and select the most similar image
in I ′ comparing with C as Iτ . Following the steps
above, we compute the BoW representations for all
images in I ′∪C, and select the most similar image
in I ′ comparing with C as Iτ .

Iτ = arg min
Ii∈I′

m∑

j=1

ED (bow(Ii), bow(Cj)) (5)

where ED(·) denotes the minimum squared Eu-
clidean distance.

2.2 Attention Guided Text-Image Alignment

After obtaining the optimal synthetic image Iτ , we
reframe the text-only NER into MNER, i.e., first
performing text and image representation and sec-
ond conducting instructive multimodal alignment.

2.2.1 Text and Image Encoding

For sentence S, BERT (Devlin et al., 2019) is em-
ployed to encode contextualized textual represen-
tations Ĥt ∈ Rn×d, where n and d denotes the
sentence length and hidden dimension. Then, to fur-
ther guide the interaction within textual modality, a
self-attention transformer (Vaswani et al., 2017) is
utilized. We first map the initial text representation
Ĥt as query Qt, key Kt and value Vt by different
linear projections, where Qt,Kt,Vt ∈ Rn×d, then
use attention mechanism to obtain the interacted
text representations Ht ∈ Rn×d.

Mt = softmax
(
QtK

T
t√

dk

)
,Ht = LN(Ĥt+MtVt)

(6)
where Mt ∈ Rn×n, LN denotes the normaliza-
tion function of transformer layer . Moreover,
for the image Iτ , we resize it to 224 × 224 pix-
els and derive the visual output ResNet(Iτ ) =
{hj |hj ∈ R2048, j = 1, 2, . . . , 49} from the last
convolutional layer of pre-trained ResNet (He et al.,
2016). The obtained output is divided into 49 re-
gions, with each region as a 2048-dimensional vec-
tor hj . To align these visual representations with
the textual counterparts, a linear mapping operation
with parameter Wv ∈ Rd×2048 is applied, resulting
in the final visual representation Hv ∈ R49×d.

Hv = Wv · ResNet(Iτ ) (7)

2.2.2 Instructive Text-Image Alignment

After obtaining the unimodal text representation
Ht and image representation Hv respectively, we
further utilize two cross-attention transformers (Yu
et al., 2020) to facilitate interaction between modal-
ities. As illustrated in Stage #2, we first takes Hv

as query and Ht as key and value, learning the
image-aware token representation Hcrs

t ∈ R49×d.

Hcrs
t = Cross-ATT(Hv,Ht,Ht) (8)

where Cross-ATT(·) denotes the cross-attention
layers. Then, we take Ht as query and Hv as key
and value, learning the token-aware visual repre-
sentation:

Hcrs
v = Cross-ATT(Ht,Hv,Hv) (9)

In order to guide the attention in the cross-
attention transformers to be more focused, our
AGA mechanism utilize the byproduct of attention
matrix Msyn

τ between each token and image Iτ gen-
erated by SD to guide the soft attention alignment.
In the above two cross-attention transformers, two
attention matrixes can be obtained similar to Mt

in Equation 6. We average the two attention matrix
to obtain Mcrs = {mcrs

1 ,mcrs
2 , . . . ,mcrs

n }, where
mcrs

i ∈ R49 represents the attention scores be-
tween word si and the 49 regions of image Iτ . How-
ever, Msyn

τ = {msyn
1 ,msyn

2 , . . . ,msyn
n }, where

msyn
i ∈ Rdp represents the attention between word

si and all dp image pixels. To facilitate compari-
son, we use an average pooling operation to convert
msyn

i to the same dimension as mcrs
i . Finally, we

calculate the KL divergence between the two atten-
tion matrices and use it as an auxiliary loss.

Lalign =
n∑

i=1

DKL (q (m
crs
i ) ||p(msyn

i )) (10)

where q(·) and p(·) refer to transforming mcrs
i and

mgen
i into attention distributions through a softmax

layer, and DKL represents the KL divergence.

2.3 Model Training and Inference

During training, the visual representation Hcrs
v and

textual representation Hcrs
t are first fed into a gated

network (Xu et al., 2022) for fusion, and then con-
nected with a CRF layer to computes the probabil-
ity of the label, where the labeling loss is denoted as
Lcrf . During training, our method consists of two
learning tasks, the CRF negtative log-likelihood
loss for MNER task and the auxiliary loss for the
AGA mechanism. We train the two tasks jointly,
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and the final loss function is defined as follows:

L = Lcrf + λLalign (11)

where λ is a hyper-parameter to control the contri-
bution of the auxiliary loss.

During inference, we switch textual NER into
MNER task by synthesizing image in Stage #1. The
raw text and synthetic image are fed into Stage #2
for alignment and fusion. Then the obtained multi-
modal representations are input into CRF layer to
predict the labels Y = (y1, y2, . . . , yn).

3 Experiments

3.1 Datasets and Settings

We perform experiments on three representative
datasets, Twitter-2015, Twitter-2017 and WikiDi-
verse (Wang et al., 2022), by excluding images
that solely consist of textual corpus. Details of the
datasets and metrics are described in the appendix
A. We use the pre-trained stable diffusion 2.0-v to
synthesize images1. During the image selection
stage, we set the threshold θ to 0.05, η to 0.2 and
the visual vocabulary size k to 100. For each tex-
tual sample, we generate 5 synthetic images and
compare the similarity with 5 internet-crawled im-
ages, where α = 3 denotes the number of selected
images for the first filtering procedure. We set the
maximum sentence length n to 128, the epochs to
25, the mini-batch size to 32, the hidden dimension
d to 768, and the number of attention heads to 12.
The Adam optimizer (Kingma and Ba, 2014) is
used with a learning rate of 5e-5, a dropout rate of
0.9, and an auxiliary loss weight λ of 0.5.

3.2 Baselines

3.2.1 Text-Only Models
(1) BiLSTM-CRF (Huang et al., 2015) is a classic
NER model stacking a bidirectional LSTM layer
and a CRF layer. (2) BERT-CRF (Liu et al., 2020)
employs BERT as the encoder and CRF as the de-
coder. (3) BERT+BS (Zhu and Li, 2022) proposes
boundary smoothing as a regularization technique
for span-based NER models. (4) MultiNER (Wang
et al., 2023b) proposes a multi-task learning frame-
work for MRC-based NER.

3.2.2 Text-Image Models
(1) UMT (Yu et al., 2020) presents a multimodal in-
teraction module to generate expressive text-visual

1https://github.com/Stability-AI/stablediffusion

representations. (2) MT (Yu et al., 2020) is the vari-
ation of UMT with the ablation of auxiliary entity
span detection. (3) RpBERT (Sun et al., 2021) pro-
poses a novel text-image relation propagation based
multimodal BERT model. (4) UMGF (Zhang et al.,
2021a) proposes a unified graph fusion approach
to obtain the text-image representation. (5) MAF
(Xu et al., 2022) is a general matching and align-
ment framework for the MNER task. (6) CogVLM
(Weihan Wang, 2023) is the latest multimodal large
model, fine-tuned here with LoRA (Hu et al., 2022)
to serve as the newest baseline for comparison.

3.3 Main Results
The main results are reported in Table 1, from
which we draw the following conclusions.

First, MNER methods generally perform better
than text-only NER methods. Comparing the mul-
timodal SOTA model MAF with its unimodal coun-
terpart MultiNER, the former achieves F1 gains of
0.63%, 1.54%, and 1.11% on three datasets, re-
spectively. The observation validates our motiva-
tion that image information functions as auxiliaries
to provide enriched context for text-based NER.
However, the fine-tuned CogVLM exhibits poor
performance, attributed to the inherent limitations
of generative multimodal large models in handling
natural languange understanding tasks (i.e. NER),
for which comprehension based models like BERT
are inherently more adept.

Second, solely relying on the textual corpus of
three datasets, InstructNER achieves F1 scores of
74.12%, 86.28%, and 74.46%, surpassing all text-
only models. Notably, our method outperforms the
best text-only model, MultiNER, by 1.41%, 2.30%,
and 2.13%, demonstrating the efficacy of synthetic
images as a supplement for enhancing textual NER.

Third, comparing Twitter-2017 with Twitter-
2015 and WikiDiverse, there exists a discrepancy of
12.16% and 11.82% of InstructNER’s F1-scores.
The discrepancy is attributed to the shorter sentence
length and the chaos derived from more ungram-
matical sentences in Twitter-2015, like the internet
slang YOLO, man. In WikiDiverse, the presence
of multiple topics and more entity categories also
increase the complexity of identification.

Last, when compared to existing multimodal
methods that rely on sophisticated annotated im-
ages in datasets, our method still achieves remark-
able results. InstructNER yields a substantial en-
hancement by 0.78%, 0.76%, and 1.02% compared
to the best MNER method MAF. It is noteworthy that
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Table 1: Performance comparison (%) on three datasets, where the best results are in bold. All results are obtained by
running the code released by the author. We report the average performance over 5 runs with random initialization,
with InstructNER significantly better than MultiNER and MAF with p-value < 0.05 based on paired t-test.

Model Twitter-2015 Twitter-2017 WikiDivere
P R F1 P R F1 P R F1

Text-Only Datasets

BiLSTM-CRF (Huang et al., 2015) 68.14 61.09 64.42 79.42 73.43 76.31 67.32 60.19 63.55
BERT-CRF (Liu et al., 2020) 69.22 74.59 71.81 83.32 83.57 83.44 69.61 73.17 71.34
BERT+BS (Zhu and Li, 2022) 71.34 73.34 72.32 83.24 84.12 83.68 71.27 72.81 72. 03
MultiNER (Wang et al., 2023b) 71.42 74.05 72.71 83.82 84.14 83.98 71.25 73.45 72.33

Text & Raw Image Datasets

CogVLM (Weihan Wang, 2023) 65.37 59.42 62.03 69.86 66.43 68.10 65.43 63.58 64.49
MT (Yu et al., 2020) 71.24 74.17 72.68 84.04 85.34 84.69 70.80 72.90 71.84
UMT (Yu et al., 2020) 71.84 74.61 73.20 85.08 85.27 85.18 71.75 73.77 72.75
RpBERT (Sun et al., 2021) 70.93 74.94 72.88 84.27 85.80 85.03 72.77 73.84 73.30
UMGF (Zhang et al., 2021a) 71.54 74.59 73.03 85.30 84.99 85.14 - - -
MAF (Xu et al., 2022) 71.75 75.01 73.34 85.39 85.65 85.52 73.03 73.86 73.44

Text & Synthetic Image Datasets

InstructNER 73.41 74.84 74.12 86.22 86.34 86.28 74.08 74.84 74.46

our approach achieves the highest enhancement of
1.02% on WikiDiverse. This can potentially be
attributed to the fact that WikiDiverse is sourced
from the news domain, encompassing more en-
riched and diverse topics. Our method is capable of
synthesizing images that incorporate various topic-
specific scenarios. Furthermore, WikiDiverse in-
cludes more diverse entity categories, such as APP
and Film. Through the guidance of the AGA mech-
anism, entities of these categories are more readily
aligned with corresponding regions in images.

3.4 Ablation Experiments

To access individual component efficacy, we con-
duct ablation experiments on the full InstructNER
model and its variants. As depicted in Table 2, we
observe that the two image selection strategies (EC
and EA) and the AGA mechanism significantly
contribute to the final results. The performance
decline follows the order: InstructNER w/o AGA
>InstructNER w/o EA >InstructNER w/o EC.
Specifically, removing the EC module results in a
decrease of 0.49%, 0.43%, and 0.41% in the F1
score, while the removal of the EA module leads to
performance drops of 0.87%, 0.82%, and 0.64%.
This highlights the relatively more substantial fac-
tor by the EA than EC in improving performance.
The primary reason behind this observation might
be that the entity nouns are consistently portrayed
in synthetic images, yet the fidelity or accuracy
of these entities might not invariably be upheld.
Moreover, removing the AGA module has the most
significant decline of 1.17%, 1.20%, and 1.04%.

This supports the critical importance of AGA tech-
nique in aligning text and images.

Table 2: Results of ablation experiments w.r.t. the
attention-guided alignment (AGA) module, two image
selection strategies considering entity coverage (EC)
and entity accuracy (EA). Here, ↓ represents the perfor-
mance declines of variant models.

Models Twitter-2015 Twitter-2017 WikiDiverse
F1(%) ↓(%) F1(%) ↓(%) F1(%) ↓(%)

InstructNER 74.12 - 86.28 - 74.46 -
w/o EC 73.63 0.49 85.85 0.43 74.05 0.41
w/o EA 73.25 0.87 85.46 0.82 73.82 0.64

w/o AGA 72.95 1.17 85.08 1.20 73.42 1.04

3.5 Analysis Experiments

3.5.1 Effect under Different Sample Numbers

To examine the robustness of our models under
varying dataset sizes, we conduct experiments by
randomly sampling 2000 to 500 instances from
three datasets. As shown in Figure 3, the perfor-
mance of InstructNER is compared against two
baseline models, MultiNER and BERT-CRF. It can
be observed that when the number of training sam-
ples decreases, the F1 scores of the two text-only
baseline models both decline rapidly. However,
the decline trend of InstructNER is relatively slow.
This observation indicates that recognizing named
entities based solely on textual context becomes
increasingly challenging when the training sample
size is limited. To address this point, incorporating
images as supplementary information significantly
enhances the robustness of NER.
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Figure 3: Performance of InstructNER, BERT-CRF and
BiLSTM-CRF under different sample numbers.

3.5.2 Effect of Multi-Task Learning Losses
We examine and illustrate the influence of the auxil-
iary loss weight λ on the AGA mechanism in Figure
4, providing valuable insights into its impact. Our
first observation reveals that as λ varies from 0.3
to 0.7, the F1 scores for both datasets exhibit an
upward trend, reaching their peak around the value
of 0.5. However, further increasing the value of λ
leads to a decline in F1 scores. Essentially, a higher
value of λ indicates a stronger emphasis on text-
image alignment within the model. Conversely,
as λ decreases, the model places greater impor-
tance on learning the entity classification. When
the losses from both modules are approximately
balanced at a value of 0.5, the model achieves its
highest overall performance. This balance allows
for effective integration of both text-image align-
ment and entity classification, resulting in superior
results across the board.
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Figure 4: Performance of InstructNER under different
multi-task learning weights on three datasets.

3.5.3 Effect of Synthetic Image Datasets
To validate the synthetic image datasets constructed
by our method, we substitute the images in raw
datasets with our synthetic ones and evaluate the
performance on several existing MNER models. As
shown in Table 4, our synthetic images exhibit com-
parable results to original images across all three
models. Considering MAF model, using the syn-
thetic images only results in a marginal decrease of
0.22%, 0.13%, and 0.18% in performance. This un-
derscores the effectiveness of our synthetic image
dataset. Without any manual annotation, our syn-
thetic image datasets have achieved results closely
resembling the original images at an remarkably
low cost. Furthermore, even when using slightly
less effective synthetic images, the inclusion of the

AGA mechanism has allowed our method to sur-
pass MAF with raw images. This demonstrates the
robustness of our AGA mechanism.

Table 3: Results of different models on our synthetic
image dataset (F1-score). Raw and Syn respectively
represent original images and synthetic images.

Methods Twitter-2015 Twitter-2017 WikiDiverse
Raw Syn Raw Syn Raw Syn

UMT 73.20 73.07 85.18 85.03 72.75 72.65
RpBERT 72.86 72.74 85.03 84.81 73.30 73.57

MAF 73.34 73.12 85.52 85.39 73.44 73.26

3.5.4 Effect under Different Sentence Length
To validate that InstructNER provides more aux-
iliary information for text-only NER tasks under
the challenging condition of short sentence lengths,
we categorize samples in the test sets based on
sentence length and separately record recognition
results for the text-only methods and InstructNER
in Table 4. For sentences shorter than 10 words,
MultiNER achieves the lowest F1 score at 70.11%,
81.68% and 69.69% on three datasets, underscor-
ing the limitation of relying solely on textual con-
text, particularly in shorter sentences. However,
in this scenario, InstructNER shows the highest
improvement in F1 score compared to MultiNER,
reaching 1.75%, 3.08% and 2.55%. This suggests
that our synthetic images provide more supplemen-
tal information when the textual context is limited.

Table 4: Results (F1-score) across samples with varing
sentence length. Here, L refers to sentence length.

Methods Twitter2015 Twitter2017 WikiDiverse
L<10 L:10-20 L>20 L<10 L:10-20 L>20 L<10 L:10-20 L>20

BERT-CRF 69.31 72.46 72.54 80.96 84.25 84.37 69.11 72.14 72.25
MultiNER 70.11 73.28 73.41 81.68 84.78 84.86 69.69 73.07 73.13

InstructNER 71.86 74.77 74.83 84.76 86.83 86.85 72.24 75.18 75.24

3.5.5 Effect of BOW Strategy
We employ the siamese network approaches as an
alternative to the BOW strategy, verifying the ef-
fect of BOW for image selection with entity ac-
curacy. Specifically, pre-trained models VGG (Si-
monyan and Zisserman, 2015) and Vision Trans-
former (ViT) (Dosovitskiy et al., 2021) are utilized
to extract image features for similarity measure-
ment. The selected synthetic images are then fed
into our model to perform MNER. Results in Ta-
ble 5 demonstrate thay the utilization of the BOW
strategy in extraction region-level image features,
coupled with the comparison of fine-grained simi-
larities is overall superior to the siamese network
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methods. Notably, the BOW strategy achieve score
improvements of 0.51%, 0.13%, 0.29% compared
to ViT encoder, supporting for our motivation in
adopting the BOW strategy for the image selection.

Table 5: Results of Different Image Selection Methods.

Methods Twitter-2015 Twitter-2017 WikiDiverse
P R F1 P R F1 P R F1

VGG 72.47 74.36 73.40 85.74 85.98 85.86 73.34 74.57 73.95
ViT 72.64 74.62 73.61 85.89 86.22 86.05 73.66 74.68 74.17

BOW 73.41 74.84 74.12 86.22 86.34 86.28 74.08 74.84 74.46

3.6 Case Study
Figure 5 illustrates two representative NER cases
comparing InstructNER, MultiNER, and MAF. Re-
garding the first example, MultiNER incorrectly
labels the named entity Iman Shumpert as O. How-
ever, with the aid of the image containing Iman
Shumpert, MAF and InstructNER accurately align
the text with the corresponding image region, and
assign the correct labels. Regarding the second
example, both MAF and MultiNER misclassify Loch
Lomond, whereas InstructNER leverages attention
guidance to focus more on the Loch Lomond lake,
leading to the correct classification as LOC.

O

O

InstructNER with synthetic image

[Knicks]ORG [Iman]PER [Shumpert]PER under-the-hoop dunk vs. [Bucks]ORG 

[O] [LOC]
[LOC]
[LOC] [LOC]

[LOC][ORG]MAF:

InstructNER:
MAF:

[ORG] [O] [O] [ORG]
[ORG]
[ORG]

[ORG]
[ORG]

[PER] [PER]
[PER] [PER]

InstructNER:

MultiNER: O
O
O

O
O
O

O
O
O

O

O

O
O
O

O
O

MAF with raw image

MAF with raw image InstructNER with synthetic image

Raw sentence:

Raw sentence:

MultiNER:

[Highland Cow]MISC in [Loch Lomond]LOC and the [Trossachs National Park]LOC
[LOC][LOC]

[LOC]
[LOC]

[MISC]
[MISC]
[MISC]

[MISC]
[MISC]
[MISC]

[ORG]
[O]

[LOC][LOC]

Figure 5: Two representative cases. For each case, the
left two images correspond to MAF, while the right two
images correspond to InstrucNER. The heat-maps cor-
respond to Iman Shumpert and Loch Lomond.

4 Related Work

4.1 Textual NER and MNER
Traditional NER methods combine various neu-
ral network architectures with a CRF layer (Rati-
nov and Roth, 2009) to perform sequence labeling
(Huang et al., 2015; Ma and Hovy, 2016; Yang
et al., 2018). BERT (Devlin et al., 2019), a pre-
trained language model, has also shown impressive

results. To enhance NER, Zhu and Li (2022) pro-
pose boundary smoothing as a regularization tech-
nique for span-based NER. To address the issue of
lacking context (Zhang et al., 2020; Ju et al., 2020)
in text-only NER methods, MNER is introduced by
utilizing image information as supplement. (Zhao
et al., 2022; Wang et al., 2023a). However, obtain-
ing high-quality images is costly. In this study, we
propose utilizing stable diffusion models for image
synthesis to provide additional information.

4.2 Text-Image Alignment
Existing text-image alignment approaches can be
categorized into explicit and implicit alignment
methods. Explicit methods involve extracting ob-
ject regions from images and aligning them with
corresponding words. Zhang et al. (2021b) utilize
a visual grounding toolkit (Yang et al., 2019b) to
ground sentences to image regions. Jia et al. (2022)
further design queries of label types to enhance the
association between regions and tokens. However,
explicit alignment methods may suffer from error
propagation with inaccurate object regions (Yang
et al., 2019b). Implicit methods address this is-
sue by using attention mechanisms to adaptively
align texts and images. Yu et al. (2020) introduces
a multimodal interaction module that integrates
transformer layers with cross-modal attention to
perform a hierarchical alignment. To eliminate
noise, Zong and Sun (2023) aggregates visual fea-
tures into bottleneck tokens and propagates the re-
fined tokens into alignment. Despite the efficiency
of these approaches, attention may lack concentra-
tion and contain irrelevant noise. Therefore, we
utilize the by-product cross-attention matrix of sta-
ble diffusion to guide soft alignment and facilitate
attention concentration.

5 Conclusion
In this paper, we propose InstructNER, a compre-
hensive method that utilizes the image synthesis ca-
pability of the stable diffusion model, in order to re-
frame the textual NER as the MNER task and learn
instructive alignment between synthetic images and
raw texts. The experimental results demonstrate the
effectiveness of synthetic images and the innovative
soft attention guidance alignment (AGA) mecha-
nism in improving NER performance. Moreover,
we have made available a large-scale, high-quality
dataset of synthetic images, which complements
existing raw datasets and provides valuable insights
for future research endeavors.
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Limitations

Our method employs the image synthesis capability
of stable diffusion to provide additional context for
text-only NER tasks, achieving significant results
in general domains. However, domain-specific im-
age synthesis methods, like the medical and electri-
cal domains, encounter challenges in transforming
text into images (Kazerouni et al., 2023), resulting
in suboptimal outcomes. Regrettably, there is lim-
ited current research addressing domain-specific
MNER tasks. Therefore, our approach may not
be suitable for specialized domains. Furthermore,
recent studies have proposed pre-training stable
diffusion in specific domains (Moghadam et al.,
2023; Kazerouni et al., 2023), which can partially
mitigate this issue.
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A Datasets Details

We perform experiments on three representative
English datasets, Twitter-2015, Twitter-2017 and
WikiDiverse, by excluding images that solely con-
sist of textual corpus. Note that WikiDiverse is
a cutting-edge multimodal entity linking dataset
based on WikiNews. We transform WikiDiverse
into a MNER dataset to further verify the effective-
ness on the news domain. The statistic are shown
in Table 6. Among these, Twitter2015 and Twit-
ter2017 encompass four types of entity categories:
Person, Organization, Location, and Other. WikiDi-
verse contains seven categories, namely: Person,
Organization, Country, Movie, Event, Building,
and Other. We utilize precision (P), recall (R), and
micro F1 score (F1) to evaluate the performance of
named entity recognition for all datasets.

Table 6: The statistics of the three MNER datasets.

Dataset Domain Types Train Dev Test

Twitter-2015 Social Media 4 4000 1000 3257
Twitter-2017 Social Media 4 3373 723 723
WikiDiverse News 7 6377 796 796
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