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Abstract

Understanding and following natural language
instructions while navigating through com-
plex, real-world environments poses a sig-
nificant challenge for general-purpose robots.
These environments often include obstacles
and pedestrians, making it essential for au-
tonomous agents to possess the capability
of self-corrected planning to adjust their ac-
tions based on feedback from the surroundings.
However, the majority of existing vision-and-
language navigation (VLN) methods primar-
ily operate in less realistic simulator settings
and do not incorporate environmental feedback
into their decision-making processes. To ad-
dress this gap, we introduce a novel zero-shot
framework called CorNav, utilizing a large lan-
guage model for decision-making and compris-
ing two key components: 1) incorporating en-
vironmental feedback for refining future plans
and adjusting its actions, and 2) multiple do-
main experts for parsing instructions, scene un-
derstanding, and refining predicted actions. In
addition to the framework, we develop a 3D
simulator that renders realistic scenarios using
Unreal Engine 5. To evaluate the effectiveness
and generalization of navigation agents in a
zero-shot multi-task setting, we create a bench-
mark called NavBench. Our empirical study in-
volves deploying 7 baselines across four tasks,
i.e., goal-conditioned navigation given a spe-
cific object category, goal-conditioned naviga-
tion given simple instructions, finding abstract
objects based on high-level instructions, and
step-by-step instruction following. Extensive
experiments demonstrate that CorNav consis-
tently outperforms all baselines by a significant
margin across all tasks.

1 Introduction

Language-driven navigation is a critical skill for
robot assistants when it comes to performing a
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Figure 1: Comparison with existing VLN agents. (a)
The single agent planning paradigm requires the agent
to analyse and make decisions by itself. (b) Multi-agent
planning paradigm enables the agent to communicate
with multiple experts and perform complex reasoning.
(c) Our self-corrected planning considers in-plan or out-
of-plan feedback from a near-realistic environment.

wide range of real-world tasks. Most autonomous
agents are trained using predefined datasets and
tasks, and perform well in familiar environments.
However, the real world is filled with a multitude of
objects and scenes, making it challenging to train
an agent that can generalize effectively. Recently,
large language models (LLMs) (Chowdhery et al.,
2022; OpenAI, 2023; Touvron et al., 2023; Chiang
et al., 2023; Geng et al., 2023) have demonstrated
remarkable effectiveness across various tasks and
have emerged as versatile autonomous agents capa-
ble of informed decision-making (Sun et al., 2023;
Wang et al., 2023; Sumers et al., 2023). These
LLMs are pre-trained on massive textual data, en-
dowing them with extensive commonsense knowl-
edge that proves invaluable for navigation tasks.
For instance, they can infer that a stove is likely to
be found in the kitchen and that a bed is typically
located in a bedroom.

The success of GPT has highlighted the efficacy
of utilizing human instructions for zero-shot navi-
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gation tasks. Recently, zero-shot agents based on
GPT (Zhou et al., 2023a; Long et al., 2023), have
harnessed the power of GPT-4 (OpenAI, 2023) to
make decisions in R2R dataset (Anderson et al.,
2018). However, R2R dataset is based on a static,
discrete, and unrealistic environment that lacks the
complexity of real-world scenarios, including ob-
stacle avoidance. These GPT-based methods may
struggle when applied to real-world settings due to
their limited consideration of environmental feed-
back. Additionally, other agents (Rajvanshi et al.,
2023; Yu et al., 2023) only focus on object naviga-
tion but are unable to comprehend complex instruc-
tions.

To address the aforementioned challenges,
we present CorNav, an autonomous agent with
self-corrected planning for zero-shot vision-and-
language navigation in continuous environment.
CorNav possesses several key capabilities, includ-
ing the ability to understand complex instructions,
engage in self-corrected planning based on both
environmental and historical feedback, and consult
domain experts for crucial information. Here is
a breakdown of CorNav’s functionalities: 1) Self-
Corrected Planning: During exploration, CorNav
actively adapts its plan based on feedback. If the
agent receives in-plan feedback, indicating that the
environmental observation aligns with the plan, it
adheres to the generated plan and proceeds with
the next action. However, when faced with out-
of-plan feedback, it modifies the plan accordingly.
2) Domain Expert Consultation: CorNav pos-
sesses complex reasoning and more accurate plan-
ning by seeking guidance from various domain
experts. To manage computing resources and costs
effectively, we have incorporated two key experts
in addition to the vision perception expert: instruc-
tion parsing expert for understanding instructions
and decision-making expert for evaluating and ver-
ifing the predicted actions. The distinctive features
and differences between CorNav and existing VLN
agents are illustrated in Figure 1. Through a series
of extensive experiments across multiple tasks, our
agent has demonstrated outstanding performance,
underscoring the effectiveness of its self-corrected
planning mechanism and its ability to communicate
and collaborate with multiple domain experts.

We also develop a near-realistic simulator using
Unreal Engine 5, which offers enhanced lighting
and intricate details compared to previous simu-

https://www.unrealengine.com/

lators (Duan et al., 2022). Our simulator encom-
passes four scenes carefully modeled from real-
world scenarios. Building upon this novel sim-
ulator, we have established a multi-task bench-
mark named NavBench for zero-shot vision-and-
language navigation. Unlike traditional data col-
lection methods, we have harnessed the capabil-
ities of powerful GPT-4 to generate high-quality
instructions for various tasks. NavBench has been
designed to reflect realistic scenarios, covering four
distinct tasks: 1) object navigation, namely, goal-
conditioned navigation given a specific object cate-
gory, which is a well-explored aspect of zero-shot
navigation; 2) goal-conditioned navigation given
a simple instruction, e.g., “I want to go upstairs.
Please help me find the elevator”; 3) completing
abstract instruction, e.g., “The floor is dirty and I
want to sweep it”, implying that the robot should lo-
cate a broom; 4) step-by-step instruction following,
which simulates common realistic navigation sce-
narios where the agent must follow a series of step-
by-step instructions. We have conducted an exten-
sive study involving various large language models
and open-vocabulary models, implementing 7 zero-
shot baselines within the NavBench framework.
Our experiments not only showcase the zero-shot
capabilities of these foundational models but also
highlight the challenging nature of NavBench as a
benchmark.

In summary, our work presents three-fold contri-
butions:

• CorNav: We introduce CorNav, a novel zero-
shot VLN agent that stands out for its ability to
adapt plans based on environmental feedback and
its capacity to discuss with domain experts.

• Realistic Simulator: We have developed a re-
alistic simulator using Unreal Engine 5, which
provides a more immersive and challenging envi-
ronment for our research.

• NavBench: We have established the NavBench
benchmark, which leverages GPT-4 to generate
and refine instructions in the dataset, eliminating
the need for labor-intensive data collection.

2 Related Work

Vision-and-Language Navigation Language-
guided visual navigation tasks have been a signifi-
cant focus in recent research, and various models
and tasks have contributed to advancing the field.
The indoor navigation tasks such as R2R (Ander-
son et al., 2018) and RxR (Ku et al., 2020) pro-
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vide a foundation for language-guided navigation
in simulated indoor environments. Many research
efforts have been built upon these tasks, emphasiz-
ing cross-modal learning (Ma et al., 2019a), data
augmentation (Fu et al., 2020; Tan et al., 2019;
Liang et al., 2022b), waypoint tracking (Deng et al.,
2020; Ma et al., 2019b), and pre-training using
Transformer models to improve navigation perfor-
mance (Hao et al., 2020; Hong et al., 2020; Liang
et al., 2022a). In addition, there are other tasks
including outdoor navigation task Touch-Down
(Chen et al., 2019), dialogue-based navigation task
CVDN (Thomason et al., 2020), and remote object-
grounded navigation, such as REVERIE (Qi et al.,
2020) and SOON (Zhu et al., 2021), introducing
the challenge of associating time-correlated visual
observations with decision-making instructions.

The performance of existing VLN methods often
falls short when applied to the challenges of con-
tinuous 3D simulated environments, as exemplified
by the more demanding task of VLN-CE (Krantz
et al., 2020). Recent advancements in the field,
driven by the availability of large-scale datasets
and the development of continuous environment
simulators like Habitat (Savva et al., 2019), Gibso-
nEnv (Eftekhar et al., 2021), and AI2THOR (Kolve
et al., 2017)), have enabled a new set of tasks and
benchmarks, which include PointGoal navigation
(Wijmans et al., 2019; Ye et al., 2021), Object-
Goal navigation (Chaplot et al., 2020a,b; Gervet
et al., 2022; Ramakrishnan et al., 2022), and in-
structions following navigation (Krantz et al., 2021;
Raychaudhuri et al., 2021; Hong et al., 2022; An
et al., 2022). Wang et al. (Wang et al., 2022a)
propose a large-scale indoor dataset designed for
multimodal and multitask navigation in continuous
and audiovisual complex environments.

Zero-shot Navigation The recent paradigm
shifts in machine learning, driven by advancements
in large-scale pre-training models, have indeed
opened up exciting possibilities for zero-shot learn-
ing and have led to notable improvements in vari-
ous downstream vision-language tasks, as demon-
strated by Radford et al. (Radford et al., 2021).
In zero-shot navigation, CoW (Gadre et al., 2023)
leverages CLIP for localization and frontier-based
exploration (FBE) for exploration strategies. Dor-
bala et al. (Dorbala et al., 2022, 2023) subse-
quently used a Costmap to handle obstacle avoid-
ance. ESC (Zhou et al., 2023b) leverages a prompt-
based language-image grounding model for open-
world scene understanding and harnesses LLMs

to acquire commonsense knowledge at object and
room levels. Inspired by recent advancements and
the progress in open vocabulary (Radford et al.,
2021; Li et al., 2022; Kirillov et al., 2023; Liu
et al., 2023; Kamath et al., 2021) pre-training mod-
els, our work aims to empower embodied robots
for improved navigation to uncommon objects.

Large Language Model Large Language Mod-
els (LLMs) (Chowdhery et al., 2022; OpenAI,
2023; Touvron et al., 2023; Chiang et al., 2023;
Geng et al., 2023; Taori et al., 2023; Du et al.,
2022; Bai et al., 2022; Ouyang et al., 2022; Alayrac
et al., 2022) have ushered in a significant transfor-
mation in the field of Artificial Intelligence (AI),
particularly in language understanding, generation,
and logical reasoning. These models have evolved
over the years, with recent breakthroughs primar-
ily attributed to factors such as larger model sizes,
enhanced pre-training data, instruction-following
Tuning, and reinforcement learning from human
feedback (RLHF) (Ouyang et al., 2022; OpenAI,
2023; Bai et al., 2022). Moreover, the develop-
ment of hierarchical prompting systems for LLMs
has gained prominence, aiming to enhance their
logical reasoning abilities and response accuracy
in specific domains (Wei et al., 2022; Wang et al.,
2022b; Yao et al., 2022; Shinn et al., 2023; Yao
et al., 2023).

3 CorNav

Our CorNav mainly comprises two pivotal compo-
nents, i.e., multiple domain experts and plan refine-
ment with environmental feedback. An overview
of our architecture is shown in Figure 2. In this
section, we will delve into the intricacies of these
components, followed by a discussion of our navi-
gation discussion mechanism and local policy.

3.1 Domain experts

Domain experts in our framework are powered by
large models. In this section, we introduce three
core experts: the instruction parsing expert, the vi-
sion perception expert, and the decision-making
expert. For the purpose of cost-efficiency, we
have implemented the instruction parsing expert
and decision-making expert using the open-source
Large Language Model (LLM) Vicuna v1.5 (Chi-
ang et al., 2023). Additionally, we have conducted
comparisons with GPT-4 Turbo on a subset of our
experiments to further evaluate performance.
Instruction Parsing Expert. Our benchmark en-
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Initial Plan Generation

Starting from the counter, turn left until you 
see the coffee machine. After passing some 
drinks, keep walking straight until you 
reach the refrigerator, then stop.

Landmarks: counter, coffee machine, 
drinks, refrigerator

Cleaning is necessary right now.

Goals: garbage bin, vacuum cleaner

Plan: 1. Turn left; 2. Find the coffee 
machine; 3. Find the drinks; 4. Go straight; 
5. Find the refrigerator.

Plan: Find one object in the list [garbage 
bin, vacuum cleaner].

front left right behind

Image tags:
Front: hardwood | floor;
Left: coffee machine | container | 
counter;
Right: hardwood | wall;
Behind: door | machine | counter | 
hallway;

Detection:
Front: drink [95, 4, 145, 97];
Left: table [96, 194, 582, 291]; 
Right: None;
Behind: table [413, 221, 639, 478], …

Scene Understanding Environmental feedback

Successfully turn left.

Move to the coffee 
machine failed. There 
are some obstacles.

Trajectory History

[Step1] Observation: …, 
Thought: …, Action: …; 
[Step2]: …

Executed actions:
1. move_to_direction(left); 
2. move_to_object(coffee 
machine)

Making Decision

Plan: 1. Turn left; 2. Find the drinks; 3. 
Go straight; 4. Find the refrigerator.

Thought: Cannot reach the coffee 
machine, but I see the drinks in the right, 
move to the drinks.

Action: move_to_ object(drinks)

Reasoning: …； Final action: …

3D Mapping

Acting

Goal: (x, y)

Local Policy

Cycle until Stop

Cycle until Stop

instruction parsing expert

instruction parsing expert

vision perception expert

decision-making expert

Figure 2: The overall architecture of our CorNav. After receiving the instruction, the instruction parsing expert
extracts landmarks or figures out the needed objects. Then the agent generates the initial plan based on the
instruction and information from the instruction parsing expert. The vision perception expert is driven by an image
tagging model and an open-vocabulary grounding model, and performs scene understanding given four perspectives.
Environmental feedback records both in-plan and out-of-plan feedback, while trajectory history maintains the
reasoning process and executed actions. The decision-making expert assists the agent in deciding the final action.
Finally, the local policy would plan a path for the robot.

compasses a diverse range of navigation tasks,
spanning from simple to complex instructions. The
instruction parsing expert excels at handling these
instructions, particularly those of a more intricate
nature. For complex instructions, the role of the ex-
pert is to extract crucial information and deduce the
intended goal objects. In scenarios involving step-
by-step instruction following, where the instruction
may span several steps, the task of the expert is to
extract relevant landmarks. This process is depicted
in the top left of Figure 2. Utilizing the original in-
struction and the extracted landmarks, the planner
agent generates an initial navigation plan, setting
the stage for successful execution. In tasks such
as completing abstract instructions, where specific
object names may not be explicitly mentioned, the
instruction parsing expert steps in to decipher the
intent of the user. For instance, when presented
with the instruction “I am thirsty”, the expert de-
duces that the user likely requires water or a bever-
age and produces a list of potential options, such
as “[water, drink]”. This capability is showcased in
the bottom left of Figure 2.

Vision Perception Expert. Vision perception is a
fundamental module in VLN, tasked with provid-
ing comprehensive and accurate environmental in-
formation to aid navigation. To achieve this, we in-
tegrate two key components into this expert: an im-
age tagging model and an open-vocabulary ground-

ing model. For image tagging, we employ the ro-
bust and state-of-the-art model RAM++ (Huang
et al., 2023). The vision perception expert pro-
cesses input images captured from four different
perspectives of the robot: front, left, right, and
rear. RAM++ then predicts object tags for each
of these perspectives. It is important to note that
occasional noise in the predicted results can disrupt
the planner’s decision-making process. To mitigate
the potential impact of noise in the predicted re-
sults, we introduce an open-vocabulary grounding
model Grounding DINO (Liu et al., 2023) for ob-
ject detection. This model prompts the planner to
pay more attention on the objects that have been
reliably detected. By combining image tagging and
object detection capabilities, the expert enhances
th overall environmental perception for the agent.

Decision-making Expert. The decision-making
expert plays a pivotal role in overseeing and re-
fining the predicted actions. The system em-
ploys four primary types of global actions, each
serving a distinct purpose: move_to_object(),
move_to_room(), move_to_direction(), and stop().
move_to_object(o) signifies the intention to ap-
proach and navigate near object oi, while
move_to_room(r) indicates the desire to enter and
navigate into room r. If the agent faces uncertainty
regarding object or room selection, then it would
move in the most probable direction (i.e., front,
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left, right, rear) considering the available environ-
mental information. The primary responsibility
of the expert is to review and validate the deci-
sions generated by the planner. Vicuna v1.5 is not
as intelligent as GPT-4, and might present a sub-
optimal decision. For example, the planner thinks
that “Since the kettle is not detected in front of
me, I will move to the left to check the shelf”, and
gives the action “move_to_direction(left)”. Given
the thought from the planner, the decision-making
expert should recognize that the kettle may be on
the shelf, and modify the action to a more suitable
one “move_to_object(shelf)”.

3.2 Environmental feedback
After generating the initial plan, the planner pro-
ceeds to predict the next global action based on
this plan. However, real-world environments can
introduce unexpected challenges, occasionally ne-
cessitating adjustments to the original plan to ac-
commodate these changes.
In-Plan Feedback. In scenarios where the
predicted action is move_to_object(o) or
move_to_room(r), we leverage the detection
model Grounding DINO to localize object o or
room r. Then we can obtain the location of o
or r in the simulator by transforming pixels in
2D images into 3D voxels, taking into account
the agent’s location, camera perspective, and
depth information. To obtain more precise object
locations, we employ SAM (Kirillov et al., 2023)
for semantic segmentation. Then we can calculate
the distance between the the agent’s stopping
location and the detected location of o or r. If
this distance falls below a predefined threshold,
we consider the action successful, indicating that
the agent has effectively reached the vicinity of
the object or room. Conversely, if the distance
exceeds the threshold, the action is considered
a failure. When the agent successfully moves
near object o or room r, it signifies that the
environment aligns with the anticipated plan. In
such cases, the in-plan feedback is documented as
“successfully move to o or r”. For predicted actions
of move_to_direction(d), the agent is expected
to traverse a specific distance in the specified
direction. Analogous to the previous cases, if the
agent accomplishes this task without issues, the
in-plan feedback is registered as “successfully
turn to direction d”. When the feedback indicates
success, the planner retains the previous plan, as it
accurately corresponds to the environment.

Out-of-Plan Feedback. As outlined earlier, our
system provides a means to determine whether
the agent successfully executes a planned action.
When an action is executed unsuccessfully, the sys-
tem registers out-of-plan feedback, indicating that
obstacles or challenges were encountered during
the execution. If the agent’s attempt to move to
object o or room r results in failure, it is indicated
as “move to o or r failed”. This feedback sug-
gests that obstacles or impediments prevented the
successful execution of the action, requiring fur-
ther adaptation. Similarly, for actions involving
move_to_direction(d), a failure is noted as “turn to
direction d failed”. Let {a1, a2, ..., at} be the orig-
inal plan. Upon receiving out-of-plan feedback at a
particular step i, the planner takes corrective action.
Specifically, the planner discards the subsequent
actions in the original plan, resulting in the formula-
tion of a new plan {a1, a2, ..., ai−1, a

′
i, ..., a

′
t} that

considers the environmental feedback and obser-
vations. This revised plan is designed to guide the
planner in making informed and adaptive decisions.

3.3 Navigation Discussion Mechanism

In this part, we delve into the comprehensive nav-
igation discussion process, depicted in Figure 2.
Initially, the planner calls upon the instruction pars-
ing expert I to extract landmarks or infer goals
from the instruction I . Subsequently, the planner
generates an initial plan p based on the instruction
and insights provided by the instruction parsing
expert:

p = P(I, I(I)). (1)

Simultaneously, the vision perception expert V pro-
cesses observations O received from the environ-
ment. This expert summarizes the outcomes of
image tagging and object detection. The trajectory
history buffer H serves as a repository of historical
information, encompassing observations, thoughts,
and executed actions (a). At each time step t, if
the planner receives out-of-plan feedback f , it trig-
gers a series of actions to generate a new plan and
decide as follows:

p′ = P(H,V(O), I, I(I), p, {a}, f),
Tt+1, at+1 = P(H,V(O), I, I(I), p′, {a}), (2)

where Tt+1 indicates thought for taking action at+1.
In the absence of out-of-plan feedback, the planner
relies on the original plan p for decision-making.
Subsequently, the planner engages the decision-
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making expert D to arrive at a final decision:

T ′
t+1, a

′
t+1 = D(Tt+1, at+1). (3)

3.4 Local Policy
Once the agent has ascertained the goal location, as
outlined in Section 3.2, the local policy engages the
Fast Marching Method (Sethian, 1996) to formulate
a path from the current location to the designated
goal. This path planning process ensures efficient
and effective navigation to reach the specified ob-
jective.

4 NavBench

Our simulator is featured for indoor navigation. It
stands out by seamlessly integrating a state-of-the-
art real-time physics engine, which significantly
elevates the quality of visual rendering. Notably,
our simulator boasts dynamic global illumination
and diffuse global illumination, allowing for more
highly detailed geometry rendering than ever be-
fore. Table 1 offers a comprehensive comparison
between our simulator and existing counterparts,
highlighting the distinctive features and capabili-
ties that set ours apart. We conduct a visual quality
assessment involving 60 human participants on pre-
vious and our proposed simulators in Table 1.

Our benchmark, NavBench, is purposefully de-
signed to address the challenges of zero-shot multi-
task vision-and-language navigation. It encom-
passes a wide range of tasks, including navigation
to specific goal objects, abstract objects, and spe-
cific locations, all guided by natural language in-
structions. Unlike previous benchmarks relying on
manual data labeling, we collect data using large
language models. Table 2 succinctly outlines the
key distinctions between NavBench and previous
benchmarks.

4.1 Task Definition
To construct our benchmark, we have categorized
it into four distinct tasks, including object naviga-
tion given a category, goal-conditioned navigation
given a simple instruction, completing abstract in-
struction, and step-by-step instruction following.
Object navigation given a category (ObjectNav).
This task revolves around the navigation to specific
objects based on their predefined categories within
our simulated environments.
Goal-conditioned navigation given a simple in-
struction (Simple). In this task, the language in-
structions provided to the agent contain references

to object categories or closely related terms. For
example, instructions generated by GPT-4 may re-
semble, “Proceed toward the nearest mug that is
detectable”, where the term “mug” is included in
the instruction.
Completing abstract instruction (Abstract).
Here, the instructions issued to the agent are in-
tentionally abstract and do not explicitly mention
object names. Instead, the agent must infer the
intended goal based on the user’s abstract intent.
For instance, when presented with the instruction
“I am thirsty”, the agent should deduce that the user
requires water or a beverage and output a list such
as “[water, drink]”.
Step-by-step instruction following (Step-by-
step). In this task, the agent is required to fol-
low detailed step-by-step instructions provided in
the language. This mirrors real-world navigation
scenarios where complex instructions guide the
agent’s actions.

It is noteworthy that for the last three tasks, we
employ the cutting-edge GPT-4 (OpenAI, 2023) to
generate the dataset. GPT-4’s remarkable language
generation capabilities are instrumental in crafting
realistic and diverse instructions for these tasks,
enabling a comprehensive evaluation of the agent’s
performance.

4.2 Dataset Statistics

Our benchmark encompasses four distinct scenes,
including a restaurant, cafe, nursing room, and
home settings. In total, our dataset comprises a
substantial corpus of 1,615 instructions. Specifi-
cally, the distribution of instructions across tasks
is as follows: 81 instructions for ObjectNav, 494
instructions for the simple tasks, 278 for the ab-
stract task, and 762 for the step-by-step task. More
details are shown in Appendix.

5 Experiment

5.1 Experimental Setup

Navigation metrics. We use standard navigation
metrics to measure performance: Success Rate
(SR), the fraction of episodes where the agent suc-
cessfully reaches within 1.5m of the target object
or location; Success Rate weighted by inverse path
Length (SPL), success weighted by the oracle short-
est path length and normalized by the actual path
length (Batra et al., 2020); and Distance to Success
(DTS), the distance of the agent from the success

12543



Table 1: Comparison with embodied AI simulators. Physics simulation: basic physics features (B) and advanced
physics features (A). Model library support: built-in (L) and user-extensible (E). Action interactivity: navigation
(N), object manipulation (M), and human-computer interaction using virtual reality (VR) devices (H). Pedestrian:
adding walking and stationary pedestrians. Visual quality: 5 indicates most realistic, while 1 represents least.

Simulator Simulation Engine Physics Models Action Pedestrian
Object
number

Object
category

Visual
quality

DeepMind Lab (Beattie et al., 2016) Quake II Arena Engine - - N ✗ - - 1.6
CHALET (Yan et al., 2018) Unity 3D Engine B - N, M ✗ 1740 150 2.7

VirtualHome (Puig et al., 2018) Unity 3D Engine - - N, M, H ✗ 2142 308 2.5
VRKitchen (Gao et al., 2019)] Unreal Engine 4 B - N, M ✗ 880 - 2.4

Habitat-Sim (Savva et al., 2019) Bullet B - N ✗ 92 - 2.2
AI2-THOR (Kolve et al., 2017) Unity 3D Engine B L N, M ✗ 609 - 3.2

iGibson (Xia et al., 2020) PyBullet B L N, M ✗ 570 - 2.8
SAPIEN (Xiang et al., 2020) PhysX Physical engine and ROS B L N, M ✗ 2346 46 1.8

ThreeDWorld (Gan et al., 2020) Unity 3D Engine B, A L, E N, M, H ✗ 2500 200 3.2
BEHAVIOR-1K (Li et al., 2023) Nvidia’s Omniverse B, A L, E N, M ✗ 5215 1265 3.5

NavBench (Ours) Unreal Engine 5 B, A L, E N, M, H ✓ 4758 2165 4.3

Table 2: Comparison with existing vision-and-language benchmarks.

Benchmark Simulator Continuous Tasks Instruction Type

R2R (Anderson et al., 2018) Matterport3D (Anderson et al., 2018) ✗ 1 Route-oriented
RoomNav (Wu et al., 2018) House3D (Wu et al., 2018) ✓ 1 Goal-oriented
LANI (Misra et al., 2018) AI2-THOR (Kolve et al., 2017) ✓ 1 Goal-oriented

3D Doom (Chaplot et al., 2018) VizDoom (Kempka et al., 2016) ✓ 1 Goal-oriented
VNLA (Nguyen et al., 2019) Matterport3D ✗ 1 Oracle guidance

HANNA (Nguyen and Daumé III, 2019) Matterport3D ✗ 1 Oracle guidance
R4R (Jain et al., 2019) Matterport3D ✗ 1 Route-oriented

CVDN (Thomason et al., 2020) Matterport3D ✗ 1 Dialogue
R6R, R8R (Zhu et al., 2020) Matterport3D ✗ 1 Route-oriented

RxR (Ku et al., 2020) Matterport3D ✗ 1 Route-oriented
VLNCE (Krantz et al., 2020) Habitat (Savva et al., 2019) ✓ 1 Route-oriented
REVERIE (Qi et al., 2020) Matterport3D ✗ 1 Goal-oriented
SOON (Zhu et al., 2021) Matterport3D ✗ 1 Goal-oriented
BnB(Guhur et al., 2021) - ✗ 1 Route-oriented

ROBUSTNAV (Chattopadhyay et al., 2021) ROBOTHOR (Deitke et al., 2020) ✓ 2 Goal-oriented
PASTURE (Gadre et al., 2023) ROBOTHOR ✓ 3 Goal-oriented

NavBench (Ours) Ours ✓ 4 Goal-oriented, Route-oriented

threshold boundary when the episode ends (Chap-
lot et al., 2020b).
Embodiment. We define four actions: Move
Forward, Turn Left, Turn Right, and Stop. The
Move Forward action advances the agent by 20cm,
while Turn Left and Turn Right actions turn
15◦horizontally.

5.2 Comparison of Zero-Shot Methods

We have implemented a total of seven baseline mod-
els, leveraging three distinct methods for zero-shot
object navigation in a continuous environment, as
detailed in Table 3. Recognizing that these methods
are primarily designed for object navigation and
may struggle with longer instructions, we employ
LLMs to parse instructions, which is the same as
our instruction parsing expert. The results of these
baselines are summarized in Table 3. Notably, the
models incorporating GLIP or Grounding DINO
tend to outperform the CoW baseline. Interestingly,

the co-occurrence knowledge from LLMs in ESC
appears to have a lesser impact on the results. It
is worth noting that selecting boundaries based on
common sense may not be ideal in our specific
scenarios.

5.3 Compare CorNav with Previous Methods

In our evaluation, we compare CorNav with pre-
vious methods, and the results are summarized in
Table 3. Notably, our method outperforms all base-
lines across all four tasks, achieving an average
Success Rate (SR) of 28.1%. This represents a sig-
nificant improvement, with a 7.6% increase com-
pared to the best-performing baseline. Particularly
noteworthy is CorNav’s remarkable performance
in the step-by-step task, where it achieves an 8.6%
increase in SR. This outcome underscores the ef-
fectiveness of our approach, which incorporates
environmental feedback and leverages trajectory
history to enhance navigation capabilities.
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Table 3: Multi-task navigation results on NavBench.

ObjectNav Simple Abstract Step-by-step Avg.

Model Detector SR SPL SR SPL SR SPL SR SPL SR

CoW (Gadre et al., 2023) CLIP-Grad. 12.2 10.2 15.0 11.5 28.4 25.8 18.5 6.7 18.5
FBE (Yamauchi, 1997) GLIP (Li et al., 2022) 18.3 14.3 17.4 13.7 28.1 24.0 17.7 13.8 20.4
FBE (Yamauchi, 1997) Grounding DINO (Liu et al., 2023) 17.1 11.4 15.6 10.8 27.1 21.2 19.5 12.6 19.8
ESC (Vicuna v1.5-13B) (Zhou et al., 2023b) GLIP 15.8 12.9 14.8 11.6 25.6 22.5 17.7 13.5 18.5
ESC (Vicuna v1.5-13B) (Zhou et al., 2023b) Grounding DINO 18.3 11.3 15.2 9.2 25.9 20.1 20.8 11.2 20.1
ESC (GPT-4) (Zhou et al., 2023b) GLIP 15.9 13.3 16.8 13.2 26.0 23.6 20.5 16.2 19.8
ESC (GPT-4) (Zhou et al., 2023b) Grounding DINO 18.3 11.7 15.6 10.0 30.2 22.9 18.0 9.9 20.5

CorNav (Vicuna v1.5-13B) Grounding DINO 23.4 16.1 23.7 19.8 36.0 29.0 29.4 23.1 28.1

5.4 Ablation Study

The effect of environmental feedback. To assess
the significance of environmental feedback, we con-
ducted an ablation study, the results of which are
presented in Table 4. Notably, the inclusion of the
plan refiner with environmental feedback (row 2)
yields a remarkable improvement over the baseline
(row 1). This highlights the crucial role that envi-
ronmental feedback plays in enhancing the realism
of navigation.
The effect of trajectory history. Examining the
impact of trajectory history, as demonstrated in
Table 4 reveals that planning with trajectory history
(row 3) further improves the results compared to the
plan refiner alone (row 2). This observation aligns
with the inherent logic of navigation, where past
actions and experiences inform future decisions.
The effect of multiple experts. Our study also
delves into the effects of consulting with domain
experts, specifically, the decision-making expert
and the instruction parsing expert. As depicted in
Table 4, involving the decision-making expert con-
tributes to improved navigation outcomes, suggest-
ing instances where the agent’s decisions might
have been sub-optimal. Further insights emerge
from Table 5, where the instruction parsing expert
exhibits significant enhancements in the abstract
task (SR +8.3%). Parsing instructions becomes
particularly important in scenarios where object
names are absent, emphasizing its importance.
The effect of environmental description. The
vision perception expert incorporates both an im-
age tagging model and an object detection model.
An ablation study, detailed in Table 6, reveals that
while utilizing either image tags or detection re-
sults alone yields similar performance, combining
both aspects results in significantly improved per-
formance.
Compare between Vicuna v1.5 and GPT-4. We
conducted a comparative analysis between Vicuna

Table 4: Ablation study about different components of
CorNav on ObjectNav.

Method SR SPL DTS (m)

Baseline 18.5 13.8 7.85
+ Environmental Feedback 21.0 16.1 7.74
+ Trajectory History 22.2 16.0 7.80
+ Decision-making Expert 23.4 16.1 7.52

Table 5: Ablation study about instruction parsing expert
on complex tasks.

Abstract Step-by-step

Method SR SPL SR SPL

w/o instruction parsing expert 27.7 21.7 28.1 21.7
CorNav (Vicuna v1.5-13B) 36.0 29.0 29.4 23.1

v1.5-13B and GPT-4 Turbo, focusing on a subset
of our dataset. For this subset, we randomly se-
lected three instructions from each scene for each
task, resulting in a total of 48 instructions. The re-
sults are presented in Table 7. Remarkably, GPT-4
Turbo exhibited a substantial improvement in per-
formance (+6.3% on SR) compared to Vicuna v1.5.
This suggests that GPT-4 Turbo operates as a more
intelligent agent.

6 Conclusion

In this paper, we introduce CorNav, an innovative
autonomous agent designed for zero-shot VLN.
CorNav excels in leveraging environmental feed-
back to refine its plans in realistic scenarios, en-
suring adaptability to dynamic surroundings. It
also incorporates multiple domain experts for in-
struction parsing, scene comprehension, and action
refinement. Our experimental results demonstrate
CorNav’s significant performance advantages over
baseline methods across various navigation tasks.
Furthermore, we contribute to the field by devel-
oping a more realistic simulator powered by Un-
real Engine 5. To evaluate our agent’s capabilities,
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Table 6: Comparison of results from different environ-
mental description on ObjectNav.

Description SR SPL DTS (m)

Image Tags 21.0 15.2 7.95
Detection 21.0 14.6 8.29
Image Tags + Detection 23.4 16.1 7.52

Table 7: Comparison between Vicuna v1.5-13B and
GPT-4 Turbo on a subset containing four tasks.

Method SR SPL DTS (m)

CorNav (Vicuna v1.5-13B) 20.8 13.0 7.01
CorNav (GPT-4 Turbo) 27.1 18.5 5.87

we create NavBench, a comprehensive multi-task
benchmark for open-set zero-shot VLN. Leverag-
ing the powerful GPT-4, we generate and self-refine
a range of free-form instructions for different tasks
within NavBench, including goal-conditioned nav-
igation, abstract object retrieval, and step-by-step
instruction following. Our benchmark offers a chal-
lenging platform for assessing navigation methods.
Limitations While CorNav has demonstrated re-
markable performance across tasks, it relies on the
outcomes of the image tagging and object detec-
tion models. These models may introduce noise
or miss certain objects in the environment. Future
research could explore fine-tuning existing vision-
language models specifically for navigation, poten-
tially yielding even better results.
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A More Method Details

In this section, we elaborate on the functionali-
ties of the acting module, as depicted in Figure
3. In scenarios where the predicted action is
move_to_object(o) or move_to_room(r), our ap-
proach incorporates the open-vocabulary model
such as Grounding DINO for localizing the spec-
ified object o or room r. Subsequently, the local-
ization of o or r in the simulation environment
is achieved by converting pixel representations in
2D image into 3D voxel. This conversion process
takes into account the agent’s location, the cam-
era’s perspective, and depth information. In order
to enhance the precision of object localization, we
engage the SAM (Kirillov et al., 2023) for semantic
segmentation in semantic localization. Following
the acquisition of both the obstacle map and the des-
ignated goal location, the agent navigates towards
the goal utilizing the fast marching technique as in
Section 3.4.

Observation (RGBD)
Sensor Pose

Semantic Localization Goal: (𝑥𝑥, y)

Open-Vocabulary Model
Obstacle map

Fast Marching Local
actions

navigate

Figure 3: The illustration of the acting module in Cor-
Nav.

B Simulator

Scenes Our simulator provides four scenes, i.e.,
cafe, restaurant, nursing room, and home, which
have a relatively large demand for robots. The
overview of scenes is shown in Figure 4. These
scenes are rendered based on real-world scenarios
and contain more realistic details. The simulator is
flexible and users can change the lighting and place
more additional objects in the scene.

Agents Our simulator supports multiple agents
with different practical uses. For example, the hu-
manoid robot can navigate like a human and per-
form more actions such as turning the head or nod-
ding to have a wider view, while the sweeping robot
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Figure 4: Our simulator includes scenes of different difficulty, i.e., restaurant, cafe, nursing room, and home.

aims at cleaning the floor. We list all supported
agents in Figure 5. Different agents have different
movable joints. We mainly use the humanoid agent
in our experiments.

Actions Our simulator supports continuous
move or teleport actions. Users can define dis-
crete actions such as rotating right by 30◦. The
humanoid agent has 21 movable joints that can
make all human movements, including rotation of
the head, neck, and waist.

Objects Our simulator was built with 2,165 cat-
egories in total. We choose 129 categories among
them for interaction. Except for common objects in
indoor environments, our simulator also includes
some uncommon objects and more fine-grained cat-
egories, such as “soft drink” and “juice”. Figure
6 shows some samples of objects in our simulator.
Users can generate more objects in the scene by
Python API.

B.1 Image Modalities
Different image modalities from different cameras
are shown in Figure 7. There are three image
modalities in the scene, including RGB, depth, and
semantic segmentation. Some humanoid agents
have three cameras on the head, chest, and waist,
respectively.

B.2 3D Model
Our simulator is built based on real scenarios at
a 1:1 ratio. We use 689 object models, classified
into 534 categories, to build the cafe scene. For
building the restaurant scene, we employ 2,023
object models classified into 782 categories. For
the nursing house scene, we adopt 1,518 object
models, which can be classified into 849 categories.
For the home scene, we utilize 528 models.

Since our ultimate goal is to develop intelligent
robots that can perform multiple tasks such as navi-
gation and grasping in the future, we select some of
these categories to build the benchmark. We have
chosen 65 categories in the four scenes to evaluate
navigation approaches. Among these scenes, the
cafe contains 17 categories, the restaurant includes
14 categories, the nursing room has 32 categories,
and the home scene contains 18 categories.

We also provide Python API for users to generate
more objects in the scene. For example, put more
stuff on the table or on the floor. In this way, they
can change the layout of objects in the scene by
themselves. There are a total of 129 categories for
interaction.

B.3 Pedestrian

Our simulator supports walking and stationary
pedestrians and provides Python API for users to
generate and control them, aligning more closely
with real-world navigation scenarios. This feature
is not included in previous benchmarks and signifi-
cant for developing navigation methods in complex
scenarios. We present some examples in Figure 8.

C Dataset Details

Figure 9 (a) displays the length distribution of the
collected instructions for three tasks. It shows that
most instructions have 8 ∼ 12 words in the simple
task, while most instructions have 15 ∼ 18 words
in the reasoning task. For step-by-step instruction
following, most instructions have 50 ∼ 70 words.
We also compute the number of mentioned objects
in the step-by-step instruction following and its dis-
tribution is presented in Figure 9 (b). It shows that
32% instructions mention 2 objects, 14% instruc-

12551



Figure 5: Supported agents in our simulator. We include agents in a variety of application scenarios, such as
humanoid agents, sweeping agents, and delivery agents.

Figure 6: Examples of objects in our simulator.

tions mention 9 objects, and around 20% instruc-
tions mention 13 ∼ 15 objects.

Figure 10 (a) presents the relative amount of
words used in instructions in the form of the word
cloud. It shows that GPT-4 prefers to generate
‘find’, ‘nearby’, and ‘toward’ for navigation. Most
instructions involve ‘something’. For step-by-step
instruction following, most instructions involve
‘door’ and ‘chair’.

D Prompt Details

D.1 Prompts for Data Collection

We have to generate instructions for three tasks:
goal-conditioned navigation given a simple instruc-
tion, completing abstract instruction, and step-by-
step instruction following. We detail prompts for
different tasks during data collection in the follow-
ing.

D.1.1 Goal-conditioned navigation given a
simple instruction

As the navigator of a walking robot, your
task is to provide clear instructions for it to
find specific objects.
When I tell you the name of the item that
the robot needs to go to, please output a
command to the robot.
For example:
when I say "Bread", you should say "Get
close to a loaf of bread", "Find a loaf of
bread", "Go to a loaf of bread";
when I say "Teacup", you should say
"Please go to find a teacup", "Get to a
teacup", "Robot, please find a teacup";
when I say "Drinking Machine", you should
say "Seek out a drinking machine in your
vicinity", "Get near to a drinking machine
nearby", "Navigate towards a drinking ma-
chine”;
when I say "Glass”, you should say "Robot,
help me to find a glass", "Make your way to
the glass I referred to", "Navigate to a glass
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(a) (b) (c)

(d) (e) (f)

Figure 7: Examples of image modalities in our simulator: (a) RGB image from head camera; (b) depth image from
head camera; (c) semantic segmentation mask from head camera; (d) RGB image from chest camera; (e) RGB
image from waist camera; (f) depth image from waist camera.

Figure 8: Examples of stationary and walking pedestrians in our simulator.

nearby”;
Please adhere to the following guidelines:
1. Avoid using phrases such as "for exam-
ple”, "I can say”, "or”, and "and”;
2. Only provide clear instructions, and ad-
ditional inquiries are not allowed;
3. Do not refer to any specific location, such
as a kitchen or drawing room;
4. Only mention the provided items and
avoid mentioning any other objects;
5. Avoid explicitly stating where the robot
should retrieve an object from;
6. Use simple language when providing
instructions.

Remember, when giving instructions, make
sure they are clear enough for the robot
to understand which object it needs to go
to. The instructions should only require the
robot to find and walk toward that specific
object. Avoid mentioning any additional
requirements beyond walking.
So, give the robot 10 instructions about {Ob-
ject}:

D.1.2 Completing abstract instruction

As the navigator of a walking robot, your
task is to provide clear instructions for it to
find specific objects.
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(a)

(b)

Figure 9: The distribution of the number of words (a)
and objects in Step-by-step (b) in each instruction.

When I tell you the name of the item that
the robot needs to go to, please output a
command to the robot.
For example:
when I say "bread", you should say: "I’m
hungry and want something to eat.", "I just
got off work and haven’t eaten yet. Find me
something to eat".
Please adhere to the following guidelines:
1. Avoid using phrases such as "for exam-
ple", "I can say", "or", and "and";
2. Only provide instructions; additional in-
quiries are not allowed;
3. Do not refer to any specific location, such
as a kitchen or drawing room;
4. Only mention the provided items and
avoid mentioning any other objects.
5. Avoid explicitly stating where the robot
should retrieve an object from.
6. Use less direct expressions
Remember, when giving instructions, make
sure they never mention the name of the
given object. The instructions should only
require the robot to find and walk toward
that specific object. Avoid mentioning any
additional requirements beyond walking.

(a)

(b)

Figure 10: Word cloud of all instructions (a) and target
objects in Step-by-step (b) in our dataset. The bigger
the font, the more percentage it occupies.

And NEVER DIRECTLY reference to the
name I give.
For example:
I say "Banana", You can say: "Feeling a bit
low on energy. Could you fetch something
to pick me up?", "Find me something I can
eat on the go, without needing a plate or
utensils", "Just got back from my run. I
want to use a quick natural energy booster",
"Find me a snack that’s a good source of
natural sugars";
I say "Blood pressure monitor", You can
say: "I’ve been feeling a bit light-headed
lately. I need to check something impor-
tant", "I think it’s time for a quick health
check, but nothing too invasive", "I’ve been
feeling a bit odd lately, and want to use
something to check my wellness".
So, give the robot 1 instruction about {Ob-
ject}:

D.1.3 Step-by-step instruction following

Imagine that you are someone who is good
at expressing needs. Now, you need to com-
mand a robot to follow a certain path and
reach a specific object. Remember the fol-
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lowing rules:
1. Use everyday expressions as much as
possible;
2. Keep your words as simple as possible,
don’t get too complicated, and focus on the
key objects;
3. Do not use expressions like "position 0"
to distinguish;
4. Only provide clear instructions; addi-
tional inquiries are not allowed;
5. Only mention the items that have been
provided and avoid mentioning any other
objects;
6. Remember, you can output a command
with up to 80 words;
7. Don’t concatenate landmarks with verbs
that contain location information. Only use
verbs like "go to" and "find".
This is the path that you need to command
the robot to walk through, recording the
name of the nearest object at intervals:
Target name: {Target}
Things around every point of the trajectory:
{Object1}, {Object2}, {Object3}.
Now, based on the information above, you
need to clearly describe the trajectory given
to a navigation robot so that it can follow the
path after understanding your description.
Describe the important information and
summarize it into a paragraph of 80 words
or less.
Now, give your instructions directly.

For this task, we define two types of instructions:
instructions providing only landmarks and goals,
and instructions providing additional movement
sequences. When generating instructions provid-
ing additional movement sequences, we provide
the movement sequences in the prompt as follows:
Actions that the robot should take at each point:
{Action1}, {Action2}, {Action3}, · · · .

D.2 Self-refinement

• Bring me a little touch of nature that can
thrive under indoor care and brighten up
the space. (BEFORE: plants, plant, fruit,
cloth; AFTER: plants, plant)

• It’s been a tough day, could you find me
something to support me while moving

around? (BEFORE: chair, wheelchair,
armrest, table; AFTER: chair, wheelchair,
armrest)

• Help me find something to neatly pour
hot water. (BEFORE: pot, table, teapot;
AFTER: pot, teapot)

• After a long day, it’s time to wind down
and find a place to rest my eyes. (BE-
FORE: curtain, chair, sofa, books, bed;
AFTER: curtain, chair, sofa, bed)

• I’m in the mood to choose an outfit; find
me an area where I can store clothes
neatly. (BEFORE: closet, cloth; AFTER:
closet)

Using LLMs to assess the viability of their own
predictions is becoming an increasingly important
procedure in problem-solving (Shinn et al., 2023;
Madaan et al., 2023; Paul et al., 2023; Yao et al.,
2023). In the task of completing abstract instruc-
tion, GPT-4 (OpenAI, 2023) outputs possible ob-
jects for each instruction. Then we use GPT-4
to self-refine its output. In the above examples,
the content inside the brackets represents the de-
sired objects. BEFORE indicates outputs without
self-refinement, while AFTER represents outputs
with self-refinement. We can conclude that self-
refinement improves the initial generation.

D.3 Prompts for Instruction Parsing

We design different prompts for decoding instruc-
tions as follows.

D.3.1 Goal-conditioned navigation given a
simple instruction

Imagine that you are a very intelligent ser-
vice robot.
You receive an instruction from the user:
{Instruction}
You need to figure out what object the user
needs, and then output it. Remember, an-
swer in a short statement, because you can
only choose one item.
Your output is:
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D.3.2 Completing abstract instruction

Imagine that you are a very intelligent ser-
vice robot.
You will receive an instruction from the user,
and the only things you can provide to the
user are listed as below {Option1, Option2,
· · · }.
The instruction you have just received is
{Instruction}.
You need to choose the item you can provide
that best fits the user’s needs. Remember,
answer in a short statement, because you
can only choose one item.

D.3.3 Step-by-step instruction following

Given an instruction, you need to extract
the landmarks in the instruction and sort
them in the order in which they appear in
the realistic navigation (not in the order they
appear in the instruction).
Requirement 1: Extract all landmarks in the
instruction.
Requirement 2: Do not generate landmarks
that are not in the instruction.
Requirement 3: Print the landmarks in se-
quence.
Requirement 4: Don’t put anything other
than a landmark on the landmark line.
For example:
Instruction: First, start at the Curtain, then
walk along until you see the Plants, and
continue heading straight. When you reach
the Fridge, take a slight turn towards the
right, and just a bit beyond it, you should
see the Monitor.
Landmarks: 1. Curtain; 2. Plants; 3. Fridge;
4. Monitor.
Now, you are given an Instruction: {Instruc-
tion}
Landmarks:

E Instruction Samples

We provide some generated instructions for differ-
ent tasks.

E.1 Goal-conditioned navigation given a
simple instruction

• Locate the nearest monitor.

• Robot, move towards the knife.

• Approach the chess set nearby.

• Walk towards a closet in your vicinity.

• Seek out any visible book in the area.

• Please locate and walk to the desired
medicine container.

• Make your way to the nearest table.

• Seek out an emergency kit in your prox-
imity.

• Look for a plant and make your way to-
wards it.

• Proceed to the nearest bed in the area.

E.2 Completing abstract instruction

• I’m thinking about doing some screen-
based work, find me a device that will
help me with that.

• I’m about to make a sandwich and need
a helpful utensial to get the job done effi-
ciently.

• Feeling inspired to make a cozy, warm
meal for tonight. Could you fetch me the
key vessel we’ll be using to cook it in?

• In the mood for some strategic fun, can
you locate a board game with elegant
pieces engraved with squares on it?

• Find me a place where I can enjoy my
meal more comfortably.

• Locate a snack that contains vitamins and
is both sweet and refreshing.

• It’s getting a bit chilly, could you find me
something cozy to wear?

• I’m in need of something designed to hold
a warm beverage for brewing.

• I’ve been on my feet all day, and now I
ought to locate a cozy spot to recharge.
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• Feeling a tad warm, could you look for
something that keeps food and drinks
chilled?

E.3 Step-by-step instruction following

• Robot, please start by heading towards the
teapot. As you continue, you will pass by
a drinking machine multiple times. After
that, you’ll see an alcoholic drink in the
area. Keep going until you find a cake.
Make sure you follow the cakes - there
will be a few. Your final destination is
the tongs. Keep following this path, and
you’ll reach the tongs. Remember, the
keynote of our journey is teapot, drinking
machines, alcoholic drink, cakes, and then
tongs. Good luck!

• Robot, I need you to follow this path to
reach the Tongs. Begin by moving for-
ward towards the Teapot, continue going
straight, passing the Drinking Machine
and Alcoholic Drink. Keep moving for-
ward until you reach the Cake and then
take a slight left. Proceed forward next to
more Cakes, then take a right turn as you
keep forward. After that final turn, you
will see the Tongs in front of you. Please
stop upon reaching the Tongs.

• Robot, please move forward along this tra-
jectory. As you proceed, you will first no-
tice a monitor nearby. Keep going straight
and focus on your path. Then, after ap-
proaching the plants, immediately stop.
That is your final destination, which we
referred to as Plants. Remember to take
actions such as Forward and STOP only
when necessary. Good luck on your jour-
ney!

• Hey robot, first, I need you to move for-
ward and head towards the door. Make
sure they’re on your side. Continue along
the path, and you’ll eventually reach our
desired target - the drinks. Keep focused,
nice, and simple - locate the door, then
finally the drinks.

F Human Scoring

We sample 60 instructions generated by different
LLMs and ask 100 people to rate their plausibil-
ity. We have developed detailed scoring guidelines
for raters to reference. The maximum score an
instruction can receive is 10 points.

Scoring criteria for the Simple task:

• Clarity and fluency of expression: 1 point

• No mention of specific locations (e.g., "Please
go to the kitchen and get a plate" is incorrect):
2 points

• Mention of provided object names is allowed:
2 points

• Adherence to human expression habits and
grammatical correctness: 2 points

• The command aligns with your vision of using
a robot in the future: 3 points

Scoring criteria for the Abstract task:

• The target object should not be directly men-
tioned: 2 points

• Objects not listed in the given set should not
be mentioned: 1 point

• Specific locations of objects should not be
mentioned (e.g., "I’m hungry, please go to the
kitchen" is incorrect): 1 point

• Instructions should not be overly simple: 1
point

• Adherence to human expression habits and
grammatical correctness: 2 points

• The command aligns with your vision of using
a robot in the future: 3 points

Scoring criteria for the Step-by-step task:

• Correct inclusion of all required elements:

– For tasks without actions: Correct inclu-
sion of all landmarks: 2 points; No inclu-
sion of unfounded actions: 2 points

– For tasks with actions: Correct inclusion
of all actions and landmarks: 4 points (2
points each for actions and landmarks)

• Brevity: The description is within 80 words:
1 point
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Abstract instruction :
u Requirements: 

Target name：wheelchair
u LLM output :
l GPT-4 : Looking for an aid to improve mobility for someone with limited leg 

strength.? (8.94)
l ChatGPT : I sense a need for a reliable and convenient means of transportation. 

Help me find an object that can assist in moving around effortlessly and 
comfortably. (8.6)

l Fastchat-t5-3b : Find me a wheelchair.(5.53)
l LLaMA-13b: I'm sorry, I didn't get your question. Please rephrase it. (4.66)
……

Simple instruction :
u Requirements: Target name：cake   

l GPT4 : Locate a cake nearby and approach it. (9.8)
l Chatglm-6b : Find the cake. (9.8)
l ChatGPT : Go towards a cake. (8.49)
l Vicuna-13B : Go to a cake. (8.57)
l LLaMA-13B : The robot should navigate towards a loaf of bread. (4.61)
……

ChatGPT Alpaca-13b VicunaLLaMA-13b
…...LLMs:

Step-by-step instruction with movement ：
u Requirements：

Target name: Trolley   
Actions : ["Forward","Turn Left", "Turn left", "Turn  Right","STOP" ]
Trajectory : ["Trolley","Bread", "Bread", "Alcoholic Drink","Trolley" ]

u LLM output :
l GPT-4 : Robot, I need you to start your journey heading 

towards the trolley. After reaching it, take a left turn and 
keep going until you see some bread. Then, make 
another left, keep your sensors peeled for bread again. 
Once found, it's time for a right turn, don't stop until you 
pass an alcoholic drink. Finally, stop your journey as 
soon as you spot the trolley again. Remember, your 
target is the trolley. (9.36)

l Claude-v1 : Go straight forward until you see the bread, 
then turn left. Keep going until you encounter the next 
bread, then turn left again. Continue moving and turn 
right when you spot the alcoholic drink. Stop as soon as 
you see the trolley for a second time, that is your target 
destination. (9.12)

l Vicuna-13b : Start by moving forward, then turn left, 
then turn left again, followed by a turn right. Once you 
reach the trolley, stop. The trolley and nearby objects 
such as bread and alcoholic drinks can be seen around 
the path. (7.4)

……

Step-by-step instruction without movement ：
u Requirements：

u LLM output :
l GPT-4 : Robot. First, you'll need to head towards the chair, 

it's on your path. Keep going until you reach the 
wheelchair, it's a bit further down the same route. Finally, 
seek out the chess set. It's your ultimate destination. (9.63)

l Claude-v1 : Go to the chair. Then go to the wheelchair. 
After that,  go straight ahead to find the chess. (8.06)

l Koala-13b : Please follow the path indicated by the name 
"Chess", keeping in mind that the nearest landmarks are 
"Chair", "WheelChair", and "Chess". ( 6.3)

l Fastchat-t5-3b : Go to chairs and wheelchairs on the path 
and find the Chess.  (4.3)

l Alpaca-13b : The robot should start from the origin point 
and move to the north-east for 5 steps, then turn left and 
move for 10 steps, turn right and move for 5 steps, and 
finally turn left. The robot should take the leftmost path at 
every intersection. There are three objects (Chair, 
WheelChair, Chess) around the path.(4.84)

……

GPT4

u LLM output :

Claude

Target name : Chess 
Trajectory : ["Chair","Wheel Chair","Chess"]

Figure 11: Examples of instruction generated by different LLMs under three different tasks.

Table 8: Humans score LLMs on a scale of 0∼10. M represents movement sequences. AVG indicates the average
score.

Simple Reasoning Step-by-step w/o M Step-by-step w/ M AVG

GPT-4 (OpenAI, 2023) 9.80 8.94 9.63 9.36 9.43
Claude-v1 (Bai et al., 2022) 8.26 8.39 8.06 9.12 8.46

ChatGPT (Ouyang et al., 2022) 8.49 8.60 8.00 8.08 8.29
Vicuna-13b (Chiang et al., 2023) 8.57 7.42 6.80 7.40 7.55
Vicuna-7b (Chiang et al., 2023) 8.26 7.10 7.89 6.60 7.46
Koala-13b (Geng et al., 2023) 8.57 7.30 6.30 6.44 7.15
Chatglm-6b (Du et al., 2022) 9.80 6.10 5.50 5.85 6.81

Fschat-t5-3b (Chiang et al., 2023) 9.10 5.53 4.30 5.33 6.07
Alpaca-13b (Taori et al., 2023) 8.50 4.84 4.84 5.84 6.01

LLaMA-13b (Touvron et al., 2023) 4.61 4.66 2.71 5.77 4.44

AVG 8.40 6.89 6.40 6.98 -

• Adherence to human expression habits and
grammatical correctness: 2 points

• Alignment with future use vision: The com-
mand aligns with your vision of using a robot
in the future: 3 points

These guidelines are designed to ensure a uni-
form and fair assessment of the instructions’ suit-
ability and effectiveness for guiding the robot’s
actions in various task scenarios. As shown in Ta-
ble 8, GPT-4 (OpenAI, 2023) performs best overall.
For the simple task, Chatglm-6b (Du et al., 2022)
performs as well as GPT-4. The evaluations of
the quality of instructions are collected from 100
people, who are undergraduate and graduate stu-
dents from the university and ages from 18 to 30.
They are able to evaluate the dataset accurately.
Examples of some of the higher-scoring and lower-
scoring cases are presented in Figure 11.

G Qualitative Results

G.1 Compare with previous simulators
We present qualitative comparisons between differ-
ent simulators in Figure 12. These visual compar-
isons underscore the superior realism and intricacy
of our simulator.

G.2 Environment details
We provide more figures of the environment details
in different scenes in our simulator as in Figure
13. We can see that the illumination, reflections,
and shadows are close to the physical world. Be-
sides, our simulator also contains dynamic steam
and water, following the principles of the physical
world.
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Figure 12: Compare with existing simulators. The last two pictures are from our simulator. Our environment is
more elaborate, and the lighting in our simulator is more realistic.

Figure 13: Elaborate environment details in different scenes in our simulator.
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