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Abstract

Longitudinal language modelling has been
receiving increasing attention, especially in
downstream tasks such as mental health moni-
toring of individuals where modelling linguis-
tic content in a temporal fashion is crucial.
A key limitation in existing work is effec-
tive modelling of temporal sequences within
Transformer-based language models. Here we
address this challenge by introducing a novel
approach for predicting ‘Moments of Change’
(MoC) in the mood of online users, by si-
multaneously considering users’ linguistic and
temporal context. A Hawkes process-inspired
transformation layer is applied over a hierar-
chical transformer architecture to model the
influence of time on users’ posts – capturing
both their immediate and historical dynamics.
We perform experiments on the two existing
datasets for the MoC task and showcase clear
performance gains when leveraging the pro-
posed layer. Our ablation study reveals the
importance of considering temporal dynamics
in detecting subtle and rare mood changes. Our
results indicate that considering linguistic and
temporal information in a hierarchical manner
provides valuable insights into the temporal
dynamics of modelling user generated content
over time, with applications in mental health
monitoring.

1 Introduction

Since the advent of the Transformer model
(Vaswani et al., 2017), much of the work in Natural
Language Processing (NLP) has focused on mak-
ing improvements to attention mechanisms or lever-
aging different sub-modules of the Transformer ar-
chitecture among others, bringing significant gains
in performance to multiple NLP tasks. However,
less attention has been paid to the importance of
longitudinal modelling of text, which is crucial for
a wide range of downstream tasks such as those
within the healthcare domain.

Work at the intersection of NLP and mental
health has been focusing increasingly on tem-
porally sensitive tasks, such as that of predict-
ing changes in a mood (‘Moments of Change’ –
‘MoC’) of an online social media user on the ba-
sis of self disclosure (Tsakalidis et al., 2022b,a).
While transformer-based architectures have shown
great potential for non-temporally sensitive tasks
, the longitudinal modelling aspect of the major-
ity of state-of-the-art on temporally sensitive tasks
is based on RNN-based models (Tsakalidis et al.,
2022b; Azim et al., 2022; Hills et al., 2023). This
has the drawback of (i) not utilising state-of-the-art
(SOTA) models in NLP and (b) not studying the
effect of the timing of the occurring events (e.g.,
social media posts) with respect to the task at hand
(Gamaarachchige et al., 2022).

Aiming at tackling the aforementioned chal-
lenges, this paper introduces a novel Time-aware
Hierarchical Transformer, to predict MoC in online
user posts. Our model simultaneously analyzes
linguistic patterns in textual content, via BERT
(Devlin et al., 2019) as a fine-tunable component,
and integrates the temporal context of posts via
a time-sensitive decay and self-excitation mecha-
nism based on the Hawkes process (Hawkes, 1971).
Our approach operates on sequences of temporally
ordered user posts (‘timelines’), recognizing that
moments of emotional change show cascading ef-
fects, forming clusters of localized mood-changes
due to self-excitation effects – that are crucial to
understanding the trajectory and possible future
of a user’s emotional state. Our approach is mo-
tivated by the two following guiding hypotheses:
(1) Localized (Mood) Changes: real-life events (in
our case, changes in mood) are not occurring in
an isolated/random fashion; such an event is of-
ten surrounded by other significant related events,
indicating periods of volatility. (2) Temporal Exci-
tation: a recent real-life event could be a trigger, or
indicator of susceptibility, to changes (both positive
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and negative) in the near future – providing theoret-
ical grounds for the application of a self-exciting
process such as the Hawkes process.
Our contributions are as follows:

• We propose a formulation of the Hawkes pro-
cess to model how past emotional states simul-
taneously decay and excite future emotional
probabilities – allowing for predictions that
are semantically and temporally aware. Com-
pared to prior work, our proposed formulation
allows historical posts to both positively and
negatively affect future emotional events.

• We propose a time-aware hierarchical trans-
former, modeling the linguistic and post-level
dynamics at different levels. Our model is moti-
vated by the insights of temporally exciting and
localized mood changes – and of considering
the linguistic context of posts in such a manner.

• We contrast our approach against SOTA on the
task of identifying MoC in two datasets, show-
casing superior performance for the CLPsych
2022 shared task (Tsakalidis et al., 2022a).

• We ablate our model and investigate the suit-
ability of our proposed modifications to the
Hawkes process, investigating the importance
for modelling time-sensitive information, for
capturing MoCs.

2 Related Work

Mental Health and Social Media. Early work
from Coppersmith et al. (2014) involved predict-
ing mental health conditions from Twitter posts at
the user level. More recently, social media data
has been used to aid the assessment of depression
(Bathina et al., 2021; Kelley and Gillan, 2022),
suicidal ideation (Cao et al., 2019; Shing et al.,
2020; Sawhney et al., 2021b) and anxiety (Saiful-
lah et al., 2021; Juhng et al., 2023), while shared
tasks such as CLPsych (Zirikly et al., 2019; Tsaka-
lidis et al., 2022a) and CLEF eRISK (Parapar et al.,
2023), have paved an avenue for the community to
contribute towards the identification of a range of
mental health conditions on social media.
Predicting Moments of Change (MoC). The de-
tection of changes in a user’s behaviour over time
has been sparsely explored through the lenses of
suicide detection (De Choudhury et al., 2016) and
sentiment change (Pruksachatkun et al., 2019).
Tsakalidis et al. (2022b) introduced the task of
MoC (mood ‘switches’ and ‘escalations’) iden-

tification in user timelines. Subsequently, the
CLPsych 2022 shared task on Reddit data (Tsaka-
lidis et al., 2022a) focused on the same task. Work
by Tseriotou et al. (2023) addressed temporality
in modeling this taks through the integration of
path signatures in recursive neural models and Pre-
trained Language model (PLM) representations.
Hills et al. (2023) modeled sequence dynamics us-
ing recurrence and integrated temporality by ap-
plying a Hawkes-inspired layer. While previous
work addressed temporality and explored the use
of temporal point processed towards doing so, it
did not examine its interplay with the Transformer
(Vaswani et al., 2017) architecture. In this work we
investigate the interplay of Hawkes process with
Transformers to jointly model contextualised and
temporal dynamics.
Hierarchical Transformers. Transformer-based
models, like BERT (Devlin et al., 2019) and
RoBERTA (Liu et al., 2019), have proven invalu-
able across NLP domains and applications, with
mental health being no exception. Hierarchical ver-
sions of transformers have contributed significantly
to processing longer sequences (Pappagari et al.,
2019; Zhang et al., 2019; Wu et al., 2021; Nawrot
et al., 2021) or multiple document inputs (Liu and
Lapata, 2019; Ng et al., 2023). More specifically,
Pappagari et al. (2019) proposed RoBERT and
ToBERT, using Recurrence and Transformer over
BERT respectively through an additional module
operating on the CLS tokens of the long segmented
input for different NLP classification tasks. We
adapt these models and propose a time-aware hi-
erarchical transformer for sequential modeling of
user timelines, named HoRoBERT and HoToBERT
respectively, demonstrating superior performance.
Hawkes Process. Hawkes processes (Hawkes,
1971) are stochastic processes (Daley et al., 2003;
Daley and Vere-Jones, 2008; Shchur et al., 2021)
with the ability to model temporal patterns, in
which historic events encourage the appearance
of future events. They can capture self-excitatory
behaviour where events trigger future events. They
have been widely applied in various domains, in-
cluding social science, neural activity, earthquakes,
epidemic modelling as well as language modelling.
They are particularly well-suited for modelling
variable length event sequences spaced irregularly
throughout time, such as social media-posts. In
NLP, Hawkes processes have been used to model
social media data (Rizoiu et al., 2017) such as
retweet cascades (Dutta et al., 2020; Naumzik and
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Feuerriegel, 2022), and mental health disorders on-
line (Zhang et al., 2020; Sawhney et al., 2021c;
Hills et al., 2023). Self-excitation can effectively
cases of where a linguistically manifested event
increases the chances of another event happening
in the near future – which aligns with our afore-
mentioned hypothesis that mood changes can occur
in localized, temporally excited clusters.

Thus here we use the Hawkes process combined
with a Hierarchical Transformer architecture to in-
tegrate temporal context and self-excitation in time-
lines of posts. The result is a model capable of
predicting mood changes by simultaneously consid-
ering semantic and temporal context in segmented
social media timelines.

3 Task Definition

Identifying Moments of Change (Tsakalidis et al.,
2022b) refers to the longitudinal task of detect-
ing posts within a user’s posting history which
indicate that the user’s mood has been changed
compared to their recent past (on the basis of self-
disclosure) in one of the following two ways: (a)
‘switch’ (the post(s) indicate that the user’s mood
has switched from neutral/positive to negative, or
from neutral/negative to positive); (b) ‘escalation’
(the post(s) indicate that the user’s mood has esca-
lated from negative to very negative, or from posi-
tive to very positive). Switches (a) and escalations
(b) are rare but important events as shown in exist-
ing annotated datasets (Tsakalidis et al., 2022b,a)
– i.e., the user’s mood stays constant in the vast
majority of their posts – and as such the MoC iden-
tification task is a challenging case of mental health
monitoring, as indicated by SOTA results (Bayram
and Benhiba, 2022; Tsakalidis et al., 2022b). The
complexity of this task, and other longitudinal tasks
in NLP, arises from the subtlety of linguistic cues
and the importance of considering temporal context
in predicting changes, which is often neglected.

4 Methodology

Our work aims to address the challenge of inte-
grating temporal dynamics with textual content, an
approach critical across many NLP tasks. Here,
we propose a novel hierarchical transformer archi-
tecture inspired by the Hawkes process to simul-
taneously model linguistic and temporal contexts,
specifically in social media posts. This approach
allows us to longitudinally capture nuanced dynam-
ics in emotional changes over time, a key factor in

mental health monitoring and other related fields.
In this section, we introduce our model (§4.1),

a time-aware hierarchical transformer (Figure 1),
inspired by the Hawkes process, for modelling tex-
tual (§4.1.2) and temporal (§4.1.3) context in seg-
mented timelines (§4.1.1) of social media posts to
predict mood changes of online users.

4.1 Model
Our full architecture is outlined in Figure 1. It
consists of the following components, where the
input data flows from ingestion to final predictions
via the following modules: (1) segmentation, (2)
linguistic encoder, (3) post dynamics encoder, (4)
prediction layer (See Figure 1).

These components are summarized below, and
also in our algorithmic description in §4.2:

1. Segmentation (§4.1.1): Divides user time-
lines into manageable segments that the model
can process, acknowledging the localized na-
ture of mood changes.

2. Linguistic Encoder (§4.1.2): Utilizes a fine-
tuned BERT model to convert textual data into
semantic embeddings, capturing the nuances
in language used in posts.

3. Post Dynamics Encoder (§4.1.3): A combi-
nation of an LSTM / Transformer which first
analyzes the embeddings to model sequence
dynamics, followed by a temporal transforma-
tion layer inspired by the Hawkes process to
integrate temporal context.

4. Prediction Layer (§4.1.4): Integrates the out-
puts from previous layers to make final pre-
dictions about the presence of MoC in the
segments.

4.1.1 Segmentation
The inputs to our model are chunks – segments
consisting of timestamped textual posts of a given
user’s entire timeline. A timeline in the available
datasets MoC identification can have up to a maxi-
mum of 124 posts. We process them into windows
of w = 16 posts, with a stride of s = 8.

4.1.2 Linguistic Encoder
The textual context of posts is modelled via BERT
as a fine-tunable part of the architecture. Segments
are first passed through a tokenizer to get tokens of
posts, which are then fed as input to BERT, using
the ‘bert-based-uncased’ implementation available
on Hugging Face 1. The output of BERT is con-

1https://huggingface.co/google-bert/bert-base-uncased
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textualized word embeddings; we consider their
average to get a resulting representation for each
post in the chunk.

4.1.3 Post Dynamics Encoder
Both the sequential and the temporal information
of the posts are modelled by this component.
Sequentially-aware Encodings. We modify
the linguistic representations of individual posts
(§4.1.2) to become aware of sequential patterns
in previous posts, via a Transformer (Vaswani
et al., 2017) or LSTM (Hochreiter and Schmid-
huber, 1997). We refer to this decision as ToBERT
or RoBERT respectively, similarly to (Pappagari
et al., 2019). Both approaches are highly capa-
ble for modelling sequential information, and have
shown great benefit for processing large input se-
quences that would typically not fit naturally fully
into a model for computational reasons, such as
modelling long documents of news articles (Dai
et al., 2022), legal articles (Chalkidis et al., 2022),
and clinical notes (Dai et al., 2022). However these
models are not designed for modelling patterns ex-
hibited in the time-intervals between elements in a
sequence, which we hypothesize carry important
information, especially for predicting changes in
mood from social media posts.

Time-aware Encodings. We utilise the Hawkes
process to simultaneously decay and excite infor-
mation learned by previous layers in the architec-
ture, emphasizing temporally recent context.

In particular, we transform the sequentially-
aware encodings provided by a transformer / LSTM
(§4.1.3) into time-aware encodings – by modifying
the approach proposed by Sawhney et al. (2021c),
termed Historical Emotional AggregaTion (HEAT).
HEAT creates representations of posts by weight-
ing the time-intervals to non-time-sensitive repre-
sentations of previous posts, using self-excitation
and time-decay in equation 1. It was explored by
Sawhney et al. (2021a) to operate over static BERT-
based representations of posts, to model temporal
dependencies.

HEAT was also adopted by Hills et al. (2023), op-
erating over BiLSTM hidden states of static BERT-
based representations, in both temporal directions.
Their approach, "BiLSTM-HEAT", aimed to simul-
taneously capture and contrast both past and future
temporal-sequential-sensitive representations of a
user’s entire timeline of posts.

We modify and improve HEAT in the following
ways: Firstly we strongly emphasize recent context,

proposing a Markovian version – where rather than
summing all previous representations we instead
sum directly the previous hidden representation,
v(i−1), while still decaying and exciting all other
previous information in a segment. Furthermore,
we remove the restriction which only excites/de-
cays the positive parts of the previous context, as
we see that approximately half (i.e., the negative
values) of the contextual information learned in
previous layers will be lost with this approach. As
such our proposed Markovian HEAT layer is as
follows:

H(i) = v(i−1) +
∑

j:∆τj>0

v(j) · ϵe−β∆τj , (1)

where ∆τj=t(i)−t(j), and ϵ and β are learnable
parameters reflecting the behaviour of the self-
excitation between the posts, which were treated
as static hyper-parameters in prior work. We simi-
larly use the widely-used form of the exponential
time-decay in the intensity of (1) following previ-
ous work (Sawhney et al., 2021c; Hills et al., 2023),
given the wide applicability and realistic assump-
tions of this form. The learnable parameters, ϵ and
β allows us to respectively learn (i) the amount of
impact of a previous event to a future event and
(ii) how soon in the future this excitation will take
place. While these were static hyper-parameters in
previous work (Sawhney et al., 2021c; Hills et al.,
2023), we treat these as weights that can be learned
to more suitable values based on the temporal dy-
namics of the linguistic posts. Similar to Hills et al.
(2023), we concatenate these time-aware encodings
with the sequential encodings, followed by a nor-
malization in the range of -1 to +1, allowing these
two perspectives of the data to be contrasted in the
subsequent linear layer.

In this way, our Markovian HEAT encodes and
learns the dynamics of historical post represen-
tations in a time-aware manner. We thus inte-
grate a modified, mathematically grounded, flexi-
ble Hawkes process with a hierarchical transformer
architecture.

Compared to the previous formulation of HEAT
in (Sawhney et al., 2020; Hills et al., 2023):

H(i) =
∑

j:∆τj>0

v(j)+ ϵ′e−β′∆τjmax(v(j), 0), (2)

where ϵ′ and β′ were previously static hyper-
parameters, our proposed Markovian HEAT (equa-
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tion 1) uses dynamic, learnable parameters to en-
hance performance efficiency and model conver-
gence. Our Hawkes formulation also allows for
the retention of negative semantic representations,
enriching learnable representations of users’ mood
over time, which were discarded in prior work
(Sawhney et al., 2020; Hills et al., 2023). Addi-
tionally, our Markovian adaptation of the Hawkes
process emphasizes recent contexts, to help more
strongly contrast such changes.

4.1.4 Prediction
To account for predictions of duplicate posts, due
to using a stride of s > 1 when segmenting posts,
we merge their predictions by retaining only the
class prediction which had the highest probability
output by the model.

4.2 Algorithm
For clarity and reproducibility, we provide a de-
tailed algorithmic description of our model, from
data ingestion to mood change prediction:

Algorithm 1 Mood Change Detection Algorithm

1: Input: Post timeline: T={p1,...,pn}, where
each pi occurs at time ti.

2: Segment T into chunks of consecutive posts
C = {c1, c2, . . . , cm} (§4.1.1).

3: for ck in C do
4: v′k = BERT(ck) (§4.1.2).
5: uk = Transformer/LSTM(v′k) (§4.1.3)
6: hk = HEAT(uk, t′k)

2 (Eq. 1)
7: ŷk = f (Concat(hk, uk)) 3

8: end for
9: Output: Set of {ŷk} = mood change labels for

C.

5 Experiments

5.1 Datasets
We work on two datasets introduced by Tsakalidis
et al. (2022b) and Tsakalidis et al. (2022a), which
consist of timelines of social media posts, sourced
from the platforms (TalkLife and Reddit respec-
tively), that were manually annotated for MoCs
in mood (§Appendix:C). Posts from Reddit were
sourced from mental health subreddits for the pur-
poses of the CLPsych 2022 Shared task (Tsakalidis
et al., 2022a), and posts on TalkLife similarly pri-
marily discussed topics relating to mental health -
as the website is designed as a peer-to-peer mental
health support forum.

Dataset TalkLife Reddit
Source Tsakalidis et al. (2022b) Tsakalidis et al. (2022a)
Number of users 500 186
Number of timelines 500 255
Total posts 18,702 6,195
Length of timelines 2 weeks ∼ 2 months
Median no. posts per timeline 31 18
Mean no. posts per timeline 37.40 24.29
Median time-interval between posts 0.99 hours 22.72 hours
Mean time-interval between posts 6.82 hours 54.96 hours

Table 1: Summary of the general information of the
datasets used in this study.

A general summary of the datasets is presented
in Table 1, where we note that timelines from Talk-
Life generally occur over shorter time-scales and
and are denser in posts compared to timelines on
Reddit. Table 2 presents descriptive statistics for
the 3 types of labels present in the dataset which
describe MoCs in mood that our models aim to
predict.

Switch (S) Escalation (E) No Change (O)
Label distribution

TalkLife 4.7% 10.8% 84.5%
Reddit 6.6% 15.8% 77.6%

Mean no. events per timeline
TalkLife 1.77 4.04 31.60
Reddit 1.60 3.85 18.84

Median no. events per timeline
TalkLife 1 1 25
Reddit 1 2 14

Table 2: Summary of the label-specific statistics (Switch,
Escalation, No Change) for the datasets used in this
study.

5.2 Experimental Procedure

We train and evaluate our models on 3 seeds, tak-
ing the average scores on the resulting test sets.
We evaluate on the same test set proposed in the
CLPsych 2022 shared task for Reddit (Tsakalidis
et al., 2022a). For TalkLife, similar to Tsakalidis
et al. (2022b); Hills et al. (2023), we train and eval-
uate on all posts on TalkLife, treating each post as
part of the test set. We similarly use 5 folds for
training, validation, and testing with sizes of 60%,
20%, 20% respectively performing a grid-search as
described in the Appendix (A).

6 Results

We present our main results in Table 3, comparing
our proposed time-aware hierarchical transformers
to that of related work – and further compare our
models to ablated variants in Table 4 to investi-
gate the relative performance gains with different
components of our model. We report classification
scores precision, recall and F1, in terms of their
macro-average, and class-wise specific scores on
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Figure 1: Time-aware hierarchical transformer designed to predict mood changes in social media posts. An example
timeline of 122 posts, of a given user, is segmented (§4.1.1) into 15 overlapping chunks of 16 posts each, with a
stride of 8 posts to ensure each chunk captures context of posts while allowing for overlap. Each chunk is processed
through the linguistic encoder (§4.1.2) to generate semantic embeddings of the language used in posts. These
are processed by a post dynamics encoder (§4.1.3), consisting of either a Transformer or an LSTM, to generate
sequentially-aware encodings. A temporal transformation layer, HEAT (equation 1), inspired by the Hawkes process,
then modifies these to incorporate the time intervals between posts, enhancing the model’s temporal awareness.
Predictions are then finally made through a linear layer and processed (4.1.4) to generate labels of predicted mood
changes. The architecture is trained end-to-end, where modules highlighted in red indicate trainable components.

detecting Switches (S), Escalations (E), and No
Change (O). Finally, we discuss and compare our
main models and our ablation in section 7.

6.1 Ablation Study

To investigate the contribution of the different com-
ponents of our model, we perform an ablation anal-
ysis aiming at examining their importance for mod-
elling linguistic, temporal, and sequential patterns
in social media posts for predicting moments of
change in mood.

By doing so we aim to investigate the inclusion
of self-excitation (ϵ in equation 1), time-decay (β
in eq. 1), the residual connection to the previ-
ous hidden state, and the Markovian modification
made to HEAT which more strongly emphasizes
the directly previous post representation rather than
evenly considering the context in the entire timeline

as a whole.
Specifically, the ablated variants of the models

are denoted as follows, and are all baselines are
implemented as hierarchical architectures:

• BERT: BERT model followed by a linear layer.
This model has no sequential/temporal mod-
elling ability and is included to measure the
effectiveness of our proposed additional modi-
fications.

• RoBERT/ToBERT: BERT followed by an
LSTM/Transformer respectively and linear
layer, serving as a baseline for comparison.
This model is capable of sequential, but not
temporal modelling.

• HoRoBERT / HoToBERT: This is the base
model applying our Markovian HEAT layer
over the LSTM/ Transformer architectures re-
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Reddit macro-avg S E O
P R F1 P R F1 P R F1 P R F1

HoRoBERT .703 .681 .688 .452 .508 .478 .750 .590 .660 .905 .946 .925
RoBERT .690 .677 .677 .423 .525 .468 .738 .564 .637 .909 .943 .926
HoToBERT .658 .638 .633 .364 .517 .427 .717 .455 .556 .893 .942 .917
ToBERT .722 .619 .612 .601 .325 .300 .670 .595 .620 .896 .938 .916
BiLSTM-HEAT .681 .708 .686 .501 .479 .489 .602 .792 .677 .940 .853 .893
BERT .535 .544 .465 .229 .608 .332 .482 .088 .148 .893 .937 .914
CLPsych 2022 SOTA: UoS .689 .625 .649 .490 .305 .376 .697 .630 .662 .881 .940 .909

TalkLife macro-avg S E O
P R F1 P R F1 P R F1 P R F1

HoRoBERT .520 .609 .547 .215 .451 .292 .432 .551 .484 .913 .824 .866
RoBERT .515 .618 .543 .204 .478 .286 .424 .570 .486 .916 .807 .858
HoToBERT .511 .573 .534 .217 .356 .269 .414 .524 .462 .903 .839 .870
ToBERT .507 .562 .528 .223 .351 .273 .398 .493 .440 .899 .843 .870
BiLSTM-HEAT .516 .591 .540 .213 .388 .273 .424 .556 .479 .910 .829 .868
BERT .488 .570 .514 .218 .386 .279 .341 .520 .412 .904 .804 .851

Table 3: Per-class and macro-averaged results on each dataset (Reddit, TalkLife). Results are the P (precision), R
(recall), F1 score (harmonic mean of precision and recall). Best scores for each dataset are highlighted.

spectively. We ablate parts of the model in the
following variants:

• HoRoBERT / HoToBERT (ϵ : 0): The influ-
ence of event excitation (ϵ) in Eq. 1 is removed,
effectively eliminating the self-excitation com-
ponent. This helps us assess the importance of
excitation in capturing temporal dynamics.

• HoRoBERT / HoToBERT (β : 0): We re-
move the time-decay component (β) in Eq. 1,
allowing us to analyze the model’s performance
without the temporally diminishing influence
of historical events.

• HoRoBERT (No Residual): The Markovian
component, vi−1, in Eq. 1 is removed, effec-
tively removing the residual connection to the
directly previous hidden state – to understand
how much this residual connection, as opposed
to temporal modelling, is benefiting the overall
model performance.

• HoRoBERT (Not Markovian): Here we ag-
gregate all prior hidden states, contrasting this
with the Markovian variant which considers
only the directly previous hidden state. This
will thus provide us insight into the impact of
considering the entire historical context versus
a more localized, recent view. This ablated
formula is given by:

H(i) =
∑

j:∆τj>0

v(j) + v(j) · ϵe−β∆τj . (3)

With the above ablated models, we aim to study
the contributions of specific elements of our model:
self-excitation, time-decay, sequential modelling,
residual connections, in modelling the contexts
in social media posts for predicting moments of
change in mood.

7 Discussion

We investigate the performance of each ablated
model based on their precision (P), recall (R) and
F1 scores for the rare Moments of Change classes
"Switch" (S), "Escalation" (E), and "No Change"
(0), as well as their macro-average scores across all
classes.

7.1 Main Table of Results

HoRoBERT: The HoRoBERT model in Table
3 performs the highest overall on both datasets
for macro-average F1, demonstrating its general-
izability to capture mood changes across differ-
ent social media platforms. Its high performance
on escalations in terms of F1 demonstrate its abil-
ity to capture gradual mood shifts, which are of-
ten identified through a series of posts over time –
demonstrating the recurrent inductive bias of the
RNN as being suitable for this task, when com-
pared to the performance of the transformer vari-
ants which have comparably worse performance
for escalations. HoRoBERT also has comparatively
higher scores for detecting Switches, which is also
improved by integrating temporal information –
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Reddit macro-avg S E O
P R F1 P R F1 P R F1 P R F1

HoRoBERT .703 .681 .688 .452 .508 .478 .750 .590 .660 .905 .946 .925
HoRoBERT (ϵ : 0) .704 .682 .688 .454 .513 .482 .753 .587 .659 .904 .946 .925
HoRoBERT (β : 0) .703 .683 .689 .453 .513 .481 .752 .591 .661 .905 .945 .925
HoRoBERT (No Residual) .690 .685 .682 .424 .537 .474 .733 .579 .646 .912 .938 .925
HoRoBERT (Not Markovian) .675 .679 .676 .447 .479 .462 .662 .641 .649 .917 .916 .916
HoToBERT .658 .638 .633 .364 .517 .427 .717 .455 .556 .893 .942 .917
HoToBERT (ϵ : 0) .649 .641 .631 .355 .521 .422 .694 .470 .558 .898 .932 .914
HoToBERT (β : 0) .658 .638 .633 .363 .521 .427 .719 .452 .554 .893 .942 .917
HoToBERT (No Residual) .651 .668 .657 .393 .504 .441 .644 .590 .615 .917 .910 .913
HoToBERT (Not Markovian) .642 .611 .565 .402 .404 .323 .591 .633 .533 .933 .795 .839

TalkLife macro-avg S E O
P R F1 P R F1 P R F1 P R F1

HoRoBERT .520 .609 .547 .215 .451 .292 .432 .551 .484 .913 .824 .866
HoRoBERT (ϵ : 0) .518 .610 .546 .213 .454 .290 .428 .555 .483 .913 .821 .865
HoRoBERT (β : 0) .521 .611 .549 .217 .451 .293 .431 .556 .486 .913 .825 .867
HoRoBERT (No Residual) .514 .621 .543 .204 .476 .285 .419 .583 .488 .918 .803 .856
HoRoBERT (Not Markovian) .515 .579 .538 .217 .369 .273 .423 .525 .468 .906 .842 .873
HoToBERT .511 .573 .534 .217 .356 .269 .414 .524 .462 .903 .839 .870
HoToBERT (ϵ : 0) .512 .572 .535 .235 .345 .279 .399 .529 .455 .903 .841 .871
HoToBERT (β : 0) .514 .576 .537 .230 .361 .281 .409 .526 .460 .903 .841 .871
HoToBERT (No Residual) .497 .590 .525 .215 .413 .283 .367 .558 .441 .909 .799 .850
HoToBERT (Not Markovian) .506 .563 .527 .247 .328 .282 .368 .525 .432 .902 .836 .867

Table 4: Ablation study, removing components of the model. Per-class and macro-averaged results on each dataset
(Reddit, TalkLife). Best scores per dataset are highlighted.

demonstrating the effectiveness of our implementa-
tion of HEAT for detecting sudden shifts in mood.

ToBERT: Interestingly, ToBERT achieves the
highest precision in the "Switch" class across both
datasets – indicating it’s ability to accurately iden-
tify these sudden mood changes. However, its re-
call is comparatively low for Switches when com-
pared to other models. However, when including
the temporal component on top we see a jump in
recall across both datasets. This suggests that the
transformer architecture alone is quite effective at
accurately identifying sudden mood changes – but
the RNN variants are better overall at modelling
all types of mood changes, as evidenced by their
higher F1 scores for Switches and Escalations on
both datasets.

Comparing RoBERT and ToBERT: RoBERT
and ToBERT, without the temporal Hawkes-based
formulation on top – have relatively poor perfor-
mance for predicting the rare events: "Switch" and
"Escalations", emphasizing the importance of our
architecture, including the Hawkes process on top,
for capturing temporal dynamics for these moments
of change.

BiLSTM-HEAT: This model offers a balanced
performance on both datasets. This further suggests
that the LSTM-based models, especially when cou-
pled with the ability for modelling time, are par-
ticuarly effective at modelling MoCs. Hills et al.
(2023) demonstrated a large performance improve-
ment when using the BiLSTM variant compared
to a single forward LSTM variant. However we
demonstrate improved performance over the BiL-
STM variant of Hills et al. (2023) using just the
forward LSTM, when using the modifications to
HEAT with our HoRoBERT. Since both models
are implemented as hierarchical architectures in
our paper, this suggests that our modifications
made for modelling time-intervals has been sig-
nificantly improved over (Hills et al., 2023) as we
can achieve higher performance even when just
considering historical information. Thus, our pro-
posed HoRoBERT is more efficient and simpler
compared to BiLSTM-HEAT - requiring fewer pa-
rameters, less computational cost, and no access to
future context. This capability was not possible for
BiLSTM-HEAT, demonstrating our model’s better
suitability, and higher performance, for real-time
applications such as offering timely interventions in
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mental health monitoring, demonstrating the prac-
tical gains of our improvements in model design.

7.2 Ablation Study
Temporal Dynamics’ Impact: The results from
our ablation study provides a deeper insight into
the importance of temporal dynamics for modelling
mood changes on both datasets, seen from the ef-
fect of removing the self-excitation (ϵ : 0) and
the time-decay components (β : 0) in our HEAT
based models – and helps reveal where the relative
performance increase is obtained.

While the precision for Escalations benefit from
fine-grained temporal modeling in TalkLife, over-
all we see very minor variations in performance
when removing the epsilon and beta parameters,
which raises questions about the significance of
explicit temporal modelling for capturing MoCs
in these datasets. The fact that high performance
is achieved without considering these temporal
components, highlights that sequential and linguis-
tic patterns captured by the models may already
encode sufficient information to capture mood
changes. This could imply that the temporal prox-
imity of posts, without any weighting for recency
or self-excitation, might not be as critical in the
current context to discern mood changes.

While temporal intervals between posts are intu-
itively significant for understanding mood changes,
the minor differences observed in the models per-
formances with and without explicit modelling
of time-intervals suggest that the key to effective
mood change detection may lie more in the model’s
ability to understand and integrate linguistic and
sequential cues. This insight emphasizes the impor-
tance of considering temporal models which nat-
urally complement the inherent predictive power
of neural architectures that consider linguistic and
sequential patterns.

Importance of Residual Connection: The (No
Residual) variants shows a higher recall in the
"Switch" class, suggesting the potential of this for
identifying these rare events – but at a quite high rel-
ative cost to precision – suggesting that considering
the directly previous post (through the residual con-
nection) provides information to help contrast the
current post with the previous to more accurately
identify sudden changes in mood (i.e. "Switches").

Markovian Modification: Finally, the (Not
Markovian) variant has the steepest drop in perfor-
mance in terms of precision for "Escalations" – but

maintains a high recall for escalations, suggesting
that considering the entire history of posts helps
the model capture a large number of posts as being
Escalations – which typically follow each other in
a long sequence. These suggest that the incorpo-
ration of the residual connection to the previous
hidden state – and the modificiation of HEAT to
be a Markovian version offer the greater perfor-
mance gains to our model, rather than considering
time-intervals alone.

HoToBERT: This model under-performs, com-
pared to HoRoBERT on both datasets, especially
in the "Switch" class – suggesting the Transformer,
even with temporal modelling, is less effective for
modelling sudden mood changes.

Class-wise Analysis: Predicting "Switches" ap-
pears to be consistently more challenging across all
models, as indicated by the lower F1 scores over-
all. This may be due to the rarity and complexity
of identifying "Switch" events, which typically de-
pend on fewer contextual posts (as they are more
sudden), and they twice as rare as "Escalations"
– which are already exceedingly rare events. Pre-
dicting "Escalations" generally appears to be easier,
possibly due to the more clear linguistic patterns
and the model’s ability to capture gradual changes
more effectively. Finally, the "No Change" class,
the dominant class in both datasets, unsurprisingly
has the highest scores.

8 Conclusion

From our ablation study, we have demonstrated
the importance of our Hawkes formulation, partic-
ularly the ability to capture event excitation and
time-decay – to enhance our models to detect com-
plex changes in mood. We have seen HoRoBERT
consistently outperform other models in this study,
across both datasets, illustrating the effectiveness of
modelling changes in mood using a time-sensitive
hierarchical transformer with an LSTM component.
Our ablation study has helped validate our design
choices and modifications made in our proposed
model, and also help reveal important areas for
further refinements in future work, by pinpointing
the contribution of different model components in
discerning the rare classes "Switches" and "Escala-
tions".
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Limitations

While the proposed time-aware hierarchical trans-
former shows superior performance on temporally
aware tasks such as predicting MoC of users using
their social media posts, such work comes with
some limitations. Firstly, the models rely on lever-
aging the online content of users, meaning that this
content shall be available through a publicly avail-
able source or licensing for processing. At the same
time our models operate only on online content and
remain blind to any mood changes that manifest
offline but are not shared online. Significantly, a
range of off-line data available to clinicians such
as psychotherapy sessions content could be very
insightful but still remain untested. Secondly, our
datasets consists purely of native English speaking
users who are comfortable and vocal in expressing
the state of their mental health online. Thus, we are
still yet to examine the applicability of this work
on more reserved non-English speakers individuals.
Additionally, our models have not been examined
on languages beyond English.

Use of our models on different platforms show-
cases variability in performance. These variations
in performance may likely be due to variances
in posting frequency on these platforms, and the
choice of and switching-between topics discussed
by users on the social media platforms. Therefore
the generalizability of our work is yet to be exam-
ined across a range of social media platforms.

Lastly, we have exclusively focused on linguistic
and temporal context in social media posts. How-
ever, non-textual cues such as photos and videos
and social-network interactions between users, are
especially abundant online and considering these
may help better capture a more holistic representa-
tion of a user’s emotional state.
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when dealing with the analysis of user-generated

content on social media platforms, specifically Red-
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from TalkLife, a formal agreement was made along
with a detailed project proposal that was submit-
ted for them to review. The ethical implications
of our research, in particular the ability to identify
changes in mood within user timelines, share sim-
ilar concerns to that of prior research focused on
identifying personal events through social media,
and recognizing signs of suicidal thoughts. To help
mitigate these risks, measures were taken such as
the limited and regulated access to the developed
software and the annotations that were used in this
study.
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A Grid-search Used in Experimental
Procedure

We performed a grid-search on both datasets (§5.1),
over the enlisted hyper-parameters – selecting the
best performing model based on macro-average
F1 score on the validation set, and optimizing the
model using focal loss with a gamma of 2.0, train-
ing for 3 epochs, and fine-tuning the last 6 (i.e.
half) of BERT’s hidden layers:

Learning rate: {0.00001, 0.00005}, LSTM/

Transformer hidden dimension: {512, 768}, ϵprior:
{0.01}, βprior: {0.01}, chunk size: {16}, stride:
{8}, number of attention heads in the transformer:
{12}.

B Infrastructure

All models and experiments were implemented
with PyTorch, and run on a server with 384 GB
of RAM and 3 NVIDIA A30 GPUs.

C Annotation of Datasets

Posts in both datasets were in English. Posts from
Reddit were annotated by 4 English (2 native)
speakers. Posts from TalkLife were annotated by
3 English speaking (1 native) university educated
annotators.
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