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Abstract

Stance detection is a challenging task that aims
to identify public opinion from social media
platforms with respect to specific targets. Pre-
vious work on stance detection largely focused
on pure texts. In this paper, we study multi-
modal stance detection for tweets consisting of
texts and images, which are prevalent in today’s
fast-growing social media platforms where peo-
ple often post multi-modal messages. To this
end, we create five new multi-modal stance de-
tection datasets of different domains based on
Twitter, in which each example consists of a
text and an image. In addition, we propose
a simple yet effective Targeted Multi-modal
Prompt Tuning framework (TMPT), where target
information is leveraged to learn multi-modal
stance features from textual and visual modali-
ties. Experimental results on our five bench-
mark datasets show that the proposed TMPT
achieves state-of-the-art performance in multi-
modal stance detection.

1 Introduction

Stance detection is an important task for learning
public opinion from social media platforms, which
aims to determine people’s opinionated standpoint
or attitude (e.g., Favor, Against, or Neutral, etc.)
expressed in the content towards a specific target,
topic, or proposition (Somasundaran and Wiebe,
2010; Augenstein et al., 2016). Existing conven-
tional machine learning-based methods (Hasan and
Ng, 2013; Mohammad et al., 2016; Ebrahimi et al.,
2016) and deep learning-based methods (Augen-
stein et al., 2016; Sun et al., 2018; Zhang et al.,
2020; Chen et al., 2021; Allaway et al., 2021; Liang
et al., 2022a) have made promising progress in dif-
ferent types of stance detection tasks for pure texts.
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Target: Donald Trump
Target: Joe Biden

Text: It is exactly what I want to say!!!

Image: WHICH AMERICA DO YOU WANT?

B

Stance: Against
Stance: Favor

Figure 1: An example of a user expressing an “Against”
stance towards “Donald Trump” and a “Favor” stance
towards “Joe Biden” using multi-modal information.

However, more and more present-day social me-
dia platforms like Twitter allow people to post
multi-modal messages, which encourages people
to express their stances and opinions through multi-
modal content, posting texts with images for ex-
ample. That is, detecting stance from the pure text
modality may not accurately identify the user’s real
view of a target. For example, Figure 1 shows
a post composed of a text and an image. The
stance expression towards ‘“Donald Trump” and
“Joe Biden” in this example can not be accurately
identified based on text information unless com-
bined with the information of the visual modality.
Therefore, how to detect users’ stances on a topic
from multi-modal posts might help better identify
public opinion in social media.

For multi-modal stance identification, Weinzierl
and Harabagiu (2023) discussed the multi-modal
stance towards frames of communication. Different
from conventional stance detection tasks that con-
centrate on the stance towards several predefined
targets, their focus was centered on the frames of
communication within multi-modal posts. There-
fore, aiming to push forward the research of multi-
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modal stance detection, we create five new datasets,
in which each example consists of a target, a text,
and an image. These datasets contain a total of
17,544 examples across 5 domains and 12 targets,
including hot topics, politicians, and debates.

To deal with multi-modal stance detection, we
propose a simple yet effective Targeted Multi-
modal Prompt Tuning framework (TMPT), where
the targeted prompt tuning is employed to adapt pre-
trained models for learning stance features from
different modalities. Specifically, to leverage the
target information in stance detection, we first de-
vise targeted prompts for both textual and visual
modalities. Then, the targeted prompts are fed to
the pre-trained language model and pre-trained vi-
sual model to learn stance features for the target
from different modalities. Further, a simple vector
concatenation is used to fuse the features from dif-
ferent modalities for multi-modal stance detection.

The main contributions of our work are summa-
rized as follows:

1) We manually annotate five new multi-modal
stance detection datasets based on Twitter data
from different domains. The release of the datasets
would push forward the research in this field.

2) A simple yet effective targeted multi-modal
prompting tuning framework is proposed to deal
with multi-modal stance detection, where the tar-
get information is used to prompt the pre-trained
models for learning multi-modal stance features.

3) A series of experiments on our datasets show
that the proposed method significantly outperforms
the baseline models'.

2 Related Work

Textual Stance Detection Various methods
based on conventional machine learning (Hasan
and Ng, 2014; Mohammad et al., 2016) and deep
learning (Sun et al., 2018; Zheng et al., 2022; Li
and Caragea, 2023; Li et al., 2023) have been pro-
posed to deal with the stance detection regarding a
specific target. For performing stance detection in
real-world scenarios, many existing methods focus
on the task of zero-shot stance detection®(Liu et al.,
2021b; Liang et al., 2022b; Wen and Hauptmann,
2023; Zhao et al., 2023).

To facilitate future research, our datasets and code are
publicly available at https://github.com/Leon-Francis/
Multi-Modal-Stance-Detection

?Following (Allaway and McKeown, 2020), the term "zero-
shot" here refers to the model’s ability to detect stance towards
targets it has not encountered during training.

Prompt Tuning Prompting (Liu et al., 2021a)
was originally aimed to design language instruc-
tions for pre-trained language models (PLMs) to
transfer learning in downstream tasks (Shin et al.,
2020; Jiang et al., 2020). Recent works begin to
treat prompts as continuous vectors and optimize
them during fine-tuning, called Prompt Tuning (Li
and Liang, 2021; Lester et al., 2021; Liu et al.,,
2021c¢). Besides, Radford et al. (2021); Zhou et al.
(2022); Ju et al. (2022); Jia et al. (2022) introduce
prompt into vision-language models to leverage the
ability of prompt tuning in multi-modal tasks.

3 Multi-modal Stance Detection Datasets

Based on three open-source textual stance detection
datasets: Twitter Stance Election 2020 (Kawintira-
non and Singh, 2021), COVID-CQ (Mutlu et al.,
2020), and Will-They-Won’t-They (Conforti et al.,
2020), and two hot topics in recent years: Russo-
Ukrainian Conflict® and Taiwan Question*. We
create five multi-modal stance detection datasets
of different domains to provide available data for
this task: Multi-modal Twitter Stance Election
2020 (MTSE), Multi-modal COVID-CQ (MccCQ),
Multi-modal Will-They-Won’t-They (MWTWT),
Multi-modal Russo-Ukrainian Conflict (MRUC)
and Multi-modal Taiwan Question (MTWQ).

3.1 Data Collection

We use Twitter Streaming APT to collect tweets
with corresponding keywords of five datasets
(shown in Appendix A), keeping the posts con-
taining text in English and at least one image or
video/GIF. For videos/GIFs, we retain their first
frame because the visual information contained in
consecutive frames may be very similar. For posts
with multiple images, we combine the text with
each image to form multiple samples due to the
fact that different images may contain completely
different visual information. Finally, we obtain
130000, 90000, 60000, 100000, and 80000 candi-
date examples of five datasets, respectively.

3.2 Data Annotation

To ensure consistency with previous stance detec-
tion work, we follow the guidelines of Twitter

Shttps://en.wikipedia.org/wiki/
Russo-Ukrainian_War

4https://en.wikipedia.org/wiki/Cross-Strait_
relations

5https://developer.twitter.com/en/products/
twitter-api
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Dataset Target # Samples and Proportion of Labels

Favor % Against %  Neutral % - - Total
MTSE Donald Trump (DT) 231 14.03 1297 78.75 119 7.23 - - 1647
Joe Biden (JB) 602 47.78 524 41.59 134 10.63 - - 1260
Mcco Favor % Against %  Neutral % - - Total
Chloroquine (CQ) 455 3358 503 37.12 397 29.30 - - 1355
Support %  Refute % Comment % Unrelated % Total
CVS_AET 426 2438 65 3.72 866 49.57 390 22.32 1747
MWTWT CI_ESRX 321 3571 91 10.12 298 33.15 189 21.02 899
ANTM_CI 59 5.01 238  20.22 306 26.00 574 48.77 1177
AET_HUM 94 9.82 287 29.99 267 27.90 309 32.29 957
DIS_FOXA 417 1397 103  3.45 1504  50.37 962 32.22 2986
Support % Oppose %  Neutral % - - Total
MRuC Russia (RUS) 16 1.4 763 68.74 331 29.82 - - 1110
Ukraine (UKR) 742 68.64 39 3.61 300 27.75 - - 1081
Support %  Oppose % Neutral % - - Total
MTWQ |Mainland of China (MOC) 339 2427 834 59.70 224 16.03 - - 1397
Taiwan of China (TOC) 1595 82.73 74 3.84 259 13.43 - - 1928

Table 1: Label distribution of the five multi-modal stance detection datasets.

- IT;%C ngsgn E‘ée;ts V;’ngs M;Snz)es N;g“;d age Cohen’s Kappa between our annotator pairs for
TSE . } . . . . . . .
Mcco | 441 | 122 229 267 163 219 MTSE is 0.703, fo.r MccQ is 0.689, for MWTWT is
MWTWT | 46.2 26.4 16.8 38.4 5.9 12,5 0729, for MRUC is 0752, and for MTWQ 18 0.691.
MRUC | 54.8 | 32.1 207 204 185 83 This demonstrates that the Kappa scores of all
MtwqQ | 41.0 | 368 429 81 24 98 datasets are substantial. In addition, the average Co-

Table 2: The statistics of whether the image conveys
stance information (%Image) and the type of each image
(%Person, %Events, %Words, %Memes, %Mixed).

Stance Election 2020 (Kawintiranon and Singh,
2021), COVID-CQ (Mutlu et al., 2020), and Will-
They-Won’t-They (Conforti et al., 2020) to anno-
tate the multi-modal stance of MTSE, McCQ and
MWwWTWT. For MRUC and MTWQ, the annotation
guidelines are shown in Appendix B. The mean-
ingless/noisy posts or those that do not comply
with Twitter’s policies or annotation guidelines are
discarded during the annotation. We invite eight ex-
perienced researchers® to label the stance for each
example. Each sample will be annotated by three
different annotators, and the gold label is obtained
by majority vote. For the disagreed results among
the three annotators, we invited three additional an-
notators to annotate and then performed a majority
vote to obtain the gold label”.

3.3 Quality Assessment

We use Cohen’s Kappa Statistic to evaluate the
inter-annotator agreement (Cohen, 1960). The aver-

We recruit experienced researchers who have worked on
multi-modal learning over 3 years.

"During the annotation process, only 2.54% of the data
need to be allocated to additional annotators.

hen’s Kappa reported in the related textual stance
detection dataset Will-They-Won’t-They (Conforti
et al., 2020) is 0.67, which also indicates the high
quality of our new datasets from another angle.

3.4 Data Analysis

We finally got 17,544 well-annotated multi-modal
samples across 5 domains and 12 targets. Each
example consists of a text in English and an as-
sociated image. The statistics of datasets are re-
ported in Table 1. Note that differences in label
distribution between targets are common, which
is also observed in other textual stance detection
datasets (Mohammad et al., 2016; Mutlu et al.,
2020; Conforti et al., 2020). Through analyzing
the indication of whether the image conveys stance
information introduced in Section 3.2, and analyz-
ing the type of each image, we obtained statistics
shown in Table 2. It can be seen that nearly half
of the stance information in all five datasets comes
from visual modalities. Further, the proportion of
image types varies greatly among different datasets.
This complicates image comprehension for stance
detection, which is also the main challenge of multi-
modal stance detection.

4 Methodology

In this section, we introduce our proposed targeted
multi-modal prompt tuning framework (TMPT) in
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Figure 2: The overall architecture of our proposed TMPT. Textual Prompting is devised for adapting the large
pre-trained language model. Visual Prompt Tuning is devised for adapting the large pre-trained vision model.

Dataset | Target |Textual Targeted Prompt
MTSE DT The stance on Donald Trump is:
The stance on the use of Chloroquine
and Hydroxychloroquine for the treat-
MccQ CQ

ment or prevention from the coron-
avirus or COVID 19 is:

The stance on merger and acquisition
between CVS Health and Aetna is:

The stance on Russia is:
The stance on Mainland of China is:

MWwWTWT|CVS_AET

RUS
MOC

MRuUC
MTwWQ

Table 3: The example of textual targeted prompts.

detail. Given a text S and an image I, the goal
of multi-modal stance detection is to identify the
stance label y for the specific target t based on .S
and I. Therefore, to leverage the target informa-
tion for multi-modal stance detection, we design
targeted multi-modal prompt tuning for both tex-
tual and visual modalities, which are utilized to
prompt the pre-trained models for learning multi-
modal stance features. The architecture of our
TMPT is illustrated in Figure 2, containing four main
components: 1) Textual Prompt Tuning, which en-
codes the input of textual modality based on the
textual targeted prompt; 2) Visual Prompt Tuning,
which encodes the input of visual modality based
on the visual targeted prompt; 3) Multi-modal Fu-
sion, which fuses the representations from textual
and visual modalities to capture the stance features.
4) Multi-modal Stance Detection, which derives
the stance label for an input example according to
the multi-modal stance features.

4.1 Textual Prompt Tuning

Textual Prompt Construction Inspired by the
textual prompt tuning (Liu et al., 2023), consid-
ering the characteristics of stance detection, we
devise a textual targeted prompt for each text to
adapt the pre-trained language model to the stance
detection task. As the example shown in Figure 2,
take the target “Donald Trump” as an example, the
textual targeted prompt is defined as:

)

That is, the textual targeted prompts are de-
signed according to the targets and the purpose
of stance detection. The examples of textual tar-
geted prompts are shown in Table 3. Other textual
prompt settings are introduced in Section C.1.

PT = The stance on Donald Trump is :

Textual Encoder Based on the textual targeted
prompts, we construct the input of each text on
target t. Given a text S consists of a sequence of
words S = {w;}}_, n is the length of S. The
input of the textual modality is represented as:

Z7 = [cLSIPT [SEP]S[SEP] )

Then, we adopt the pre-trained uncased BERT-
base model (Devlin et al., 2019) to map each textual
token into a d” -dimensional embedding:

[w,{CLS]w'B{a e ,wfwnw] = BERT(ZT) (3)

Where @ s; represents the embedding of the
[CLS] token, m is the length of the textual tar-
geted prompt. In this way, the pre-trained language
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model can encode the input text according to the
target, and obtain the feature representation that
contains the target-specific stance information.

4.2 Visual Prompt Tuning

Visual Embedding Layer Following (Dosovit-
skiy et al., 2021), we first divide the image [ into
r fixed-sized patches I = {p; € RI**¢}7_, where
(1,1) is the resolution of each patch, c is the num-
ber of channels. Then, following (Jia et al., 2022),
we flatten the patches and map to d¥ -dimensional
vector with a trainable linear embedding projec-
tion E2. We refer to the output of this projection
as the patch embeddings. Then we concatenate
these patch embeddings in the sequence dimension
and added the standard learnable 1D position em-
beddings E,, to the patch embeddings to retain
positional information:

v;=p,E v eR je{lr} @
VY = [{v;}j1] + Epos ®)
Where V' is the embedding for the input image.

Visual Prompt Construction Inspired by the vi-
sual prompt tuning proposed by (Jia et al., 2022),
we devise visual targeted prompt, aiming to instruct
the pre-trained vision model to learn the features
according to the specific target. Specifically, we
introduce continuous embedding (visual prompt
tokens), as the visual prompt for target t. Each
prompt consists of A learnable embedding, which
can be formulated as follows:

PV ={e; eR¥ |1 <i< A} (6)

Here, each different target corresponds to a differ-
ent set of visual prompt embedding. In Section C.2,
we introduced different initialization methods of
visual prompt embedding.

Visual Encoder Based on the visual embedding
V0 and the visual targeted prompts PV, we use the
pre-trained Vision Transformer model ViT (Doso-
vitskiy et al., 2021) with IV layers to encode the
input image for learning visual stance features on
target t. Here, the targeted prompts are inserted
into the first Transformer layer L'. Therefore, the
first layer targeted prompted ViT is defined as:

[':BE/CLSJN Z,V1] = Ll([;pE/CLSJOJDV’ Vo) (D)
For layer k& € {2, N}, the targeted prompted ViT

is defined as:
[wlois, Ze Vil = LM ([2feisy, ,» Zi1, Vi)
(®)

Here, we use mE/CLS] to represent the embedding
of [CLS] token learned by the final Transformer
layer N, i.e., l‘E/CLS] = :B‘[/CLSJN. By using the vi-
sual prompts corresponding to each target, the pre-
trained visual model can encode the input image
according to the target, and obtain the feature rep-
resentation that contains the target-specific stance
information.

4.3 Multi-modal Fusion

Based on the embeddings of [CLS] tokens, we first
use two dense layers with Leaky ReLU (Maas et al.,
2013) to derive the hidden representations of tex-
tual and visual modalities:

h' = f(WTzfy g +b") ©)
hY = fWVal s +bY) (10)

Where h7 € R? and BV € R?" are the hid-
den representation of textual and visual modali-
ties respectively. d” is the dimensionality of the
hidden representation. f(-) represents the Leaky
ReLU activation function. W7 € RZ"*d" and
WV e Rxd" gre weight matrices. b’ € R
and bV € R?" are biases.

In our TMPT, vector concatenation is used to fuse
the feature vectors from different modalities:

h=hT ®hY (11)

Where h € R2?" is the final multi-modal stance
representation. @ represents the vector concatena-
tion operation.

4.4 Multi-modal Stance Detection

Then, the final multi-modal stance representation
is fed into a fully-connected layer with a softmax
function to capture a probability distribution y €
R in the stance decision space:

y = softmax(W°h + b°) (12)

Where dP is the dimensionality of stance labels.
We e R¥x2d" and b° € R? are weight matrix
and bias respectively.

5 Experimental Setup

To advance and facilitate research in the field of
multi-modal stance detection, based on our new
datasets, we conduct experiments on In-target
Multi-modal Stance Detection, training and test-
ing on the same target, and Zero-shot Multi-modal
Stance Detection, performing stance detection on
unseen targets based on the known targets.
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Task Dataset Target  # Train # Valid # Test
DT 1150 170 327
R B s s 250
o Mmece cQ_ 934 .14l 280
CSV_AET 1216 179 352

CI_ESRX 628 91 180
MWTWT ANTM_CI 825 114 238

In-target AET_HUM 674 97 186
DIS_FOXA 2081 306 599
] RUS 777 111 2227
MRUC UKR 756 108 217
o MOC 977 140 280
MTWQ TOC 1349 193 386
DT 1114 146 1647
MR B w2 e
CVS_AET 5253 737 1747
CI_ESRX 5994 841 899
Zero-shot MWTWT ANTM_CI 5694 804 1177
AET_HUM 5884 840 957
7777777777 RUS 945 136 1110
MRUC kR om0 o1
MOC 1686 242 1397
MTWQ TOC 1222 175 1928

Table 4: Statistics of the experimental data.

5.1 Data Partition

For in-target multi-modal stance detection, each
dataset is divided into training, development, and
testing sets with a ratio of 7:1:28. For zero-shot
multi-modal stance detection, the training and de-
velopment set is built on known target(s), and the
testing set is built on unknown target(s). Since
there is only one target in the MCCQ dataset, we
only use it for in-target multi-modal stance detec-
tion. In the MWTWT dataset, following (Conforti
et al., 2020), we select four targets (CVS_AET,
CI_ESRX, ANTM_CI, and AET_HUM) to per-
form zero-shot scenario since DIS_FOXA is not in
the same domain as them. The statistics of each
dataset are shown in Table 4.

5.2 Comparison Models

Pure textual modality baselines: 1) BERT (De-
vlin et al., 2019), the uncased BERT-base; 2)
RoBERTa (Liu et al., 2019a), the RoBERTa-base;
3) KEBERT (Kawintiranon and Singh, 2022), a
BERTweet-base model with specific knowledge
of Twitter political posts. 4) LLaMA2 (Touvron
et al., 2023), the LLaMA2-70b-chat; 5) GPT4 9,
Pure visual modality baselines: 1) ResNet (He
et al., 2016), the ResNet-50 v1.5; 2) ViT (Doso-

8To address the possibility of one text corresponding to
multiple images, we use the Twitter ID to split datasets, thus
avoiding the issue of data leakage.

9https ://openai.com/research/gpt-4

vitskiy et al., 2021), the vit-base-patch16-224; 3)
Swin Transformer (SwinT) (Liu et al., 2021d), the
swinv2-base-patch4-window12-192-22k. Multi-
modal baselines: 1) VIiLT (Kim et al., 2021),
the vilt-b32-mlm; 2) CLIP (Radford et al., 2021),
the clip-vit-base-patch32; 3) BERT+ViT, utilizing
BERT as the textual encoder and ViT as the visual
encoder, and concatenating the [CLS] vectors of
textual and visual modalities for stance detection.
4) Qwen-VL (Bai et al., 2023), the Qwen-VL-Chat-
7b. 5) GPT4-Vision '°.

5.3 Experimental Settings

To leverage the powerful capabilities of large lan-
guage models, following Gatto et al. (2023), we
propose a variant of our TMPT model, named
TMPT+CoT. By utilizing GPT4-Vision to generate
a chain of thought from the text and image of
the sample, we concatenate this chain of thought
with the text to serve as the textual modality input
for TMPT+CoT. The images are used as the visual
modality input. This approach is employed for both
the training and testing phases. We utilize the pre-
trained uncased BERT-base (Devlin et al., 2019) to
embed each word as a 768-dimensional embedding
and employ the pre-trained ViT-base (Dosovitskiy
et al., 2021) to embed each image patch as a 768-
dimensional embedding, i.e., dT = dV = 768. The
resolution of the visual patch is set to (16, 16). The
length of visual prompt tokens is set to ¢ = 7. The
dimensionality of hidden vectors is set to d, = 768.
We use Macro FI-score to measure the model per-
formance. The experimental results of our models
are averaged over 5 runs to ensure the final reported
results are statistically stable. For detailed settings
of the experiments, please refer to Appendix C.

6 Experimental Results

6.1 In-target Multi-modal Stance Detection

The results of in-target multi-modal stance detec-
tion are shown in Table 5. It can be seen that our
proposed TMPT outperforms fine-tuning based base-
lines on most of datasets, denoting that exploit-
ing targeted prompt tuning can preferably leverage
the target-specific multi-modal stance information,
thus improving stance detection performance. Fur-
ther, TMPT+CoT performs overall better than TMPT,
which demonstrates that leveraging the knowledge

10https://openai.com/research/
gpt-4v-system-card
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MODALITY METHOD MTSE MCCQ MWTWT MRUC MTWQ
DT B CQ CA CE AC AH DF RUS UKR MOC TOC
BERT 48.25 52.04 66.57 75.62 60.85 63.05 59.24 81.53 41.25 46.80 57.77 4591
RoBERTa 58.39 60.79 66.57 69.56 65.03 69.74 67.99 79.21 39.52 57.66 5522 48.88
Textual KEBERT 64.50 69.81 66.84 71.67 67.56 69.29 69.74 80.57 41.55 59.01 58.15 47.75
LLaMA2  53.2352.67 47.40 34.89 41.95 49.09 4432 30.21 38.84 3854 5531 46.51
GPT4 68.74 66.39 65.84 63.14 65.12 69.93 71.62 52.69 41.64 53.76 58.05 49.81
ResNet 37.89 38.59 47.16 39.89 4220 43.52 37.05 50.34 35.10 40.00 42.02 33.94
Visual ViT 40.48 40.42 46.64 46.63 50.00 40.16 46.32 50.86 33.31 39.87 38.63 35.53
SwinT 39.89 40.43 48.80 46.30 46.99 41.02 47.39 51.32 35.01 40.89 35.03 3547
BERT+VIiT 41.86 45.82 61.32 63.20 44.71 56.45 46.85 73.71 39.28 48.41 47.47 40.86
VILT 35.32 48.24 47.85 62.70 56.44 58.06 60.22 73.66 34.62 42.41 4443 59.51
Mag.,  CLP__ S3226583 6365 7093 67.17 6743 7086 79.06 4499 5986 5520 40.98
modal Qwen-VL  43.31 45.13 50.51 43.06 45.49 49.79 46.04 27.73 36.50 40.78 42.14 39.34
GPT4-Vision 70.46 72.82 61.63 44.59 47.07 57.47 5790 37.61 44.83 56.40 66.72 56.90
TMPT 55.41 61.61 67.67 76.60 63.19 67.25 62.92 81.19 43.56 59.24 55.68 46.82
TMPT+CoT 66.61 68.75 71.79* 74.40 69.96* 68.43 63.00 82.71* 45.04* 60.52 68.95* 59.87*

Table 5: Experimental results (%) of in-target multi-modal stance detection. The dark background results are for
our TMPT. Best scores of each group are in bold. Results with x denote the significance tests of our TMPT over
the baseline models at p—value < 0.05. The dashed line represents a separation between fine-tuned methods,

non-fine-tuned LLM-type methods, and our TMPT.

MODALITY METHOD MTSE MWTWT MRUC MTWQ
DT JB CA CE AC AH RUS UKR MOC TOC

BERT 3252 2997 6355 61.30 59.18 52.89 2201 1545 28.04 9.57
Textual RoBERTa  26.60 32.21 5922 59.22 64.86 57.46 27.10 19.98 30.62 15.84
KEBERT  26.17 31.81 59.70 62.56 63.92 5553 24.68 28.18 29.17 19.80
‘LLaMA2 ~ 53.57 5392 3247 3837 48.08 46.13 31.86 3634 51.46 44.10
GPT4 70.78 68.83 57.19 60.56 65.63 69.01 40.22 49.18 62.10 52.12
ResNet 2552 2970 2301 24.11 2521 2527 2388 2557 27.59 24.88
Visual ViT 28.63 29.70 2459 28.18 34.06 3340 27.26 2851 29.37 23.69
SwinT 28.54 30.85 2853 28.50 35.87 3433 2544 24.54 27.90 19.69
BERT+ViT 26.70 31.57 59.21 59.30 65.04 59.28 23.33 1521 2476 11.70
ViLT 28.08 29.74 3833 46.00 55.01 48.55 21.56 23.96 23.54 19.18
CLIP 2821 2899 61.08 55.67 63.80 60.06 25.62 2740 27.21 15.69
Multi-modal Qwen-VL —~ 47.62 46.14 3857 4336 47.82 41.01 3695 4139 4432 44.08
GPT4-Vision 72.68 71.28 4223 4592 54.59 53.19 42.09 47.00 65.00 52.36
TMPT 31.69 32.65 66.36 66.39° 66.32 61.56 23.87 2471 32.18 26.48
TMPT+CoT  54.30 58.46 67.28" 63.73 64.87 5426 48.99* 51.75" 4532 43.70

Table 6: Experimental results of zero-shot multi-modal stance detection. The dark background results are for our
TMPT. Best scores of each group are in bold. Results with x denote the significance tests of our TMPT over the baseline
models at p—value < 0.05. The dashed line represents a separation between fine-tuned methods, non-fine-tuned

LLM-type methods, and our TMPT.

from large language models can improve the com-
prehension of textual modality, thereby achieving
better performance. For uni-modal baselines, the
performance of visual modality methods is unsatis-
factory, while the performance of textual modality
methods is much better. This indicates that the
stance expression primarily resides in the textual
modality. Further, CLIP, which considers both tex-
tual and visual modalities performs overall better
than models which only consider textual modality,
which proves the importance of visual modality in
multi-modal stance detection. While, in datasets
like MWTWT and MccQ, GPT4-Vision underper-

forms GPT-4. Our analysis of images within these
datasets revealed that a noteworthy proportion of
images had comparatively high complexity levels.
This also implies effective use of visual information
is key to improving multi-modal stance detection
performance. In addition, KEBERT, which inte-
grates specific knowledge of Twitter political posts
into BERTweet, achieves promising performance
compared to other textual models, which indicates
that exploring external target-related knowledge
might improve the performance of multi-modal
stance detection.
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METHOD [MTSE MCCQ MWTWT MRUC MTWQ
TMPT 60.84 67.67 7759 7576 67.59
‘wio P [5493 6276 7142 7053 61.77
wloPY | 5814 6571 7393  70.85 63.69

Table 7: Experimental results of ablation study. The
reported results are the Macro F1-score across all targets
in a dataset on in-target multi-modal stance detection.

6.2 Zero-shot Multi-modal Stance Detection

The results of zero-shot multi-modal stance detec-
tion are reported in Table 6. It can be seen that
the large language models achieve superior per-
formance due to the need for detecting stances on
unseen targets. This may be attributed to the pow-
erful zero-shot learning ability of large language
models. For our TMPT, which does not use chain-of-
thoughts from large language models, still achieves
better performance than large language models in
some targets, while also outperforming most of
non-large language model baselines. This shows
the promise of our TMPT in zero-shot stance detec-
tion. Further, TMPT+CoT performs overall better
than TMPT, which indicates that obtaining powerful
text and visual comprehension abilities from large
models may be key to improving the performance
of detecting stance for unseen targets.

6.3 Ablation Study

To analyze the impact of the targeted prompt tun-
ing in our proposed TMPT, we conduct an ablation
study and report the results in Table 7. Note that
the removal of textual prompting (w/o P’ sharply
degrades the performance, which verifies the sig-
nificance of textual prompting in learning textual
targeted stance features for multi-modal stance de-
tection. In addition, the removal of visual prompt
tuning (w/o P"') leads to considerable performance
degradation, which indicates that utilizing visual
prompt tuning can make better learning of visual
targeted stance information and thus improves the
performance of multi-modal stance detection.

6.4 Generalization of Targeted Multi-modal
Prompt Tuning

Pre-trained Models Previous experiments have
demonstrated that the stance expression primarily
resides in the textual modality. Therefore, to in-
vestigate the generalization of our TMPT when used
with different pre-trained language models, we con-
duct experiments with two variants of our TMPT by
using two other promising PLMs: RoBERTa (Liu

[ RoBERTa

[ RoBERTa+ViT [EEE TMPT-RoBERTa

0.97
80 78.71
75 [4.52 74.41
72.55
70.87
70
67.61
66.57
64.91
65 o7 B 240
: 0.93) 0.8
60
55 4.55|
50 ﬂ
MTSE MCCQ MWTWT MRUC MTWQ
[ KEBERT [ KEBERT+VIiT [EEE TMPT-KEBERT
80 79.1:
77.0
75 [73.45| 7ﬂ
72.39
701672 6219 68.35
66.8 66.42
5.96)
65 5.31) 5.49) a3
0.91)
60
55
50
MTSE MCCQ MWTWT MRUC MTWQ

Figure 3: Performance of using different pre-trained
language models: RoBERTa (Nguyen et al., 2020) (top)
and KEBERT (Kawintiranon and Singh, 2021) (bottom).
The reported results are the Macro F1-score across all
targets in a dataset on in-target multi-modal stance de-
tection.

[ BERT+ViT [ -Cross-modal Attention [ -GAT EEE TMPT (ours)
77.59

]38
75 73.63 7]
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Figure 4: Performance of using different multi-modal
fusion methods. The reported results are the Macro
F1-score across all targets in a dataset on in-target multi-
modal stance detection.

et al., 2019b) and KEBERT (Kawintiranon and
Singh, 2021). The results are shown in Figure 3.
Note that our Targeted Multi-modal Prompting can
directly work with the two PLMs and achieve bet-
ter performance, showing the compatibility of our
method with various pre-trained models.

Multi-modal Fusion We choose cross-modal at-
tention (Wei et al., 2020) and GAT (Velickovic
et al., 2018) to analyze the performance of our
TMPT with different multi-modal fusion methods.
The results are shown in Figure 4. It can be seen
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Person Events Words Memes Mixed
ERR-Img(%) 7.8 134 377 266 14.5
ERR-Img-prop| 0.28 0.60 1.60 1.95 1.16

Table 8: The results of error analysis on image types.
ERR-Img means the proportion of different image types
among the incorrect samples with stance-related con-
tent. ERR-Img-prop means ERR-Img divided by the
proportion of its image types in the original dataset.

that no matter which fusion method we use, the ex-
perimental performance is better than BERT+ViT.
This indicates that our TMPT can directly work with
various multi-modal fusion methods and lead to im-
proved multi-modal stance detection performance.

6.5 Error Analysis

From the results in Table 6, we can see that our
TMPT performs well in the MWTWT dataset, but still
insufficient in other datasets on zero-shot stance
detection. One possible reason is that targets in
MWTWT are all about expressing views on corpo-
rate mergers, so unknown targets can easily find
commonalities in the dataset. However, for other
datasets, the topics are diverse, which poses a chal-
lenge to mining targeted information. Therefore,
how to better learn the correlation information be-
tween targets from data on diverse topics is a po-
tential direction to improve the performance of the
zero-shot scenario.

Further, after analyzing examples of misclassifi-
cation, we found that among the incorrect samples,
approximately 70% (based on calculations on ran-
domly sampled 300 incorrect samples from five
datasets) of the images contained stance-related
content. This indicates that for our multi-modal
stance detection task, it is important for further ex-
ploration in extracting and utilizing features from
the visual modality.

Building on the previous step, we conduct error
analysis on different image types. The results are
illustrated in Table 8. A larger ERR-Img-prop indi-
cates a weaker ability of the model to handle sam-
ples with images of that category, indicating that
for images containing words, memes, and mixed
features, more effective methods of feature extrac-
tion and understanding remain to be proposed.

6.6 Visualization

To qualitatively investigate how our TMPT improves
the performance of multi-modal stance detection,
we visualize the attention values calculated by the
targeted prompts and the vectors of the final layer
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(b) Attention Visualization of target “Joe Biden”.

Figure 5: Visualization of a typical example.

of two encoders. The results are shown in Figure 5.
It can be seen that the crucial textual tokens and the
key visual patches regarding different targets are
highly attended to and discriminated by our TMPT.
This illustrates that the proposed TMPT can learn the
important stance features for the specific target with
the help of targeted prompt tuning, thus improving
the learning ability of multi-modal stance detection.

7 Conclusion

In this paper, we present MTSE, MCCQ, MWTWT,
MRUC and MTWQ, five new datasets for multi-
modal stance detection. Based on the created
datasets, we present in-target multi-modal stance
detection and zero-shot multi-modal stance detec-
tion, aiming to advance and facilitate research in
the field of multi-modal stance detection. In ad-
dition, we propose a simple yet effective targeted
multi-modal prompting framework (TMPT) to deal
with multi-modal stance detection, where the target
information is explored to prompt the pre-trained
models in learning multi-modal stance features. Ex-
tensive experiments on the new datasets show that
our proposed TMPT achieves overall better perfor-
mance than state-of-the-art baseline methods.
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Limitations

Our method needs to devise a specific prompt for
the given target, which needs to take time and ar-
tificial effort to analyze the target information in
the real-world scenario for designing and selecting
appropriate prompts. Furthermore, our proposed
method does not integrate external target-specific
knowledge to improve the learning of multi-modal
stance information, such as the background knowl-
edge of targets. Integrating external knowledge
related to the target can improve the performance
of stance detection. In addition, the current version
of the data does not consider audio modality and
video information, which is also an issue we need
to explore in the future.

Ethics Statement

This work presents MTSE, MCCQ, MWTWT,
MRUC and MTWQ, five new open-source datasets
for the research community to study multi-modal
stance detection. The MTSE, MCCQ, and MWTWT
are the extension of Twitter Stance Election
2020 (Kawintiranon and Singh, 2021), COVID-CQ
(Mutlu et al., 2020), and Will-They-Won’t-They
(Conforti et al., 2020), which are three open-source
textual stance detection datasets for academic re-
search. We only collect the tweet text and image
content needed for our research from Twitter fol-
lowing the privacy agreement of Twitter for aca-
demic usage, so there is no privacy issue. To anno-
tate extended data, we recruited 8 experienced re-
searchers who work on natural language processing
or multi-modal learning. The detailed collect and
annotate process has been illustrated in Section 3.
Each researcher is paid $6.5 per hour (above the
average local payment of similar jobs). The entire
annotation process lasted 5 months, and the aver-
age annotation time of the eight researchers was
430 hours. During the annotation process, samples
that contain personally identifiable information will
be discarded, and only the tweet IDs and human-
annotated stance labels will be shared. Thus, our
data set complies with Twitter’s information pri-
vacy policy. The annotators have no affiliation with
any of the companies that are used as targets in the
dataset, so there is no potential bias due to conflict
of interest. We used the ChatGPT service from
OpenAl for our writing. We followed their term
and policies. Some examples in our paper may
include a stance or tendency. It should be clarified
that they are randomly sampled from the dataset

for better studying the dataset and task, and do not
represent any personal viewpoints.
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A Keywords

In this section, we introduce the keywords to re-
trieve tweets.
A.1 Multi-modal Twitter Stance Election 2020

¢ Since Twitter Stance Election 2020 (Kaw-
intiranon and Singh, 2021) didn’t explicitly

give the Keywords for collecting tweets, We
used the keywords related to the election
while with no clear preference: one of #vofte,
#Debates2020, #USElection2020, #Presiden-
tialDebate2020, #2020Election, #votersup-
pression, #GetOuttheVote, #2020elections +
mention of Trump or Biden.

Filter for posting time:

DT 01/01/2020 — 09/30/2020
JB  01/01/2020 — 09/30/2020

A.2 Multi-modal COVID-CQ

We followed the keywords for collecting
tweets from COVID-CQ (Mutlu et al., 2020):
one of hydroxychloroquine,
HCQ.

chloroquine,

Filter for posting time:

CQ 04/01/2020 — 04/30/2020

A.3 Multi-modal Will-They-Won’t-They

* We followed the keywords for collecting
tweets from Will-They-Won’t-They (Conforti
et al., 2020): one of merge, acquisition, agree-
ment, acquire, takeover, buyout, integration +
mention of a given company/acronym.

Filter for posting time:

CVS_AET  02/15/2017 — 12/17/2018
CI_ESRX 05/27/2017 — 09/17/2018
ANTM_CI  04/01/2014 — 04/28/2017
AET_HUM 09/01/2014 — 01/23/2017
DIS_FOXA 07/09/2017 — 04/18/2018

A.4 Multi-modal Russo-Ukrainian Conflict
* We used the keywords: Ukraine, Russia,

Putin, Zelensky, Ukrainian, Russian

* Filter for posting time:

RUS 01/01/2022 — 06/30/2023
UKR 01/01/2022 — 06/30/2023

A.5 Multi-modal Taiwan Question

* We used the keywords: Taiwan, Taiwan Crisis,
Nancy Pelosi, Taiwan Strait

* Filter for posting time:
MOC 01/01/2022 — 06/30/2023
TOC  01/01/2022 — 06/30/2023
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B Annotation Guidelines

To ensure consistency with previous stance detec-
tion work, we follow the guidelines of Twitter
Stance Election 2020 (Kawintiranon and Singh,
2021), COVID-CQ (Mutlu et al., 2020), and Will-
They-Won’t-They (Conforti et al., 2020) to anno-
tate the multi-modal stance of MTSE, MCCQ and
MWTWT. For MRUC and MTWQ, the annotation
guidelines are shown below:

B.1 Annotation Guidelines of MRUC and
MTWQ

The annotation process consists of choosing one
of three possible labels, given a tweet and an im-
age. The three labels to choose from are Support,
Oppose and Neutral.

Label 1: Support - If the tweet and image use
direct or indirect expressions to support the target,
or support objects which can represent the target
(such as leaders, events).

Label 1: Oppose - If the tweet and image use
direct or indirect expressions to oppose the target,
or oppose objects which can represent the target
(such as leaders, events).

Label 1: Neutral - If the tweet and image only
mention the target without expressing a stance.

B.2 Details of Datasets Partition

As mentioned in Section 5.1, for each task/target,
the dataset is divided into a training set, a de-
velopment set, and a testing set with a ratio of
70%:10%:20%. In order to ensure that the partition
is not affected by the data distribution bias. We per-
formed 20 different random divisions for each task
using the ratios above. We use the two baselines:
BERT and BERT+VIiT, to test every 20 groups of
divisions. For each task, we take the division that
can make the results of two baseline close to the
median as the final partition.

C Prompt Tuning Analysis
C.1 Analysis of Textual Prompt Tuning

Frozen vs Tuned For textual prompt tuning, we
utilize a frozen paradigm to make full use of the
semantic information learned by the pre-trained
language model. To analyze the effectiveness of
the frozen paradigm, we also tried a tuned soft
prompt, the results are shown in Table 9. The re-
sults of the tuned paradigm are extremely poorer
than the frozen one and fluctuate greatly. One pos-
sible reason is that, unlike the continuous picture

METHOD | MTSE MCCQ MWTWT MRUC MTWQ
Frozen 60.84 67.67 77.59 75.76 67.59

‘Tuned  [53.85 5841 62.58 59.64 52.26

Table 9: Experimental results of fixed prompt and tuned
soft prompt of textual modality. The reported results
are the Macro F1-score across all targets in a dataset on
in-target multi-modal stance detection.

METHOD Textual Prompts MTSE
BERT+ViT | - 53.29
) Trump 58.54
@) Donald Trump 59.53
©) stance on Donald Trump 60.24
@ What is the stance on Donald | 58.85
Trump?
®) (Ours) |The stance on Donald Trump is: | 60.84

Table 10: Experimental results of using different textual
prompts in MTSE dataset on target “Donald Trump”.

patch in the visual transformer, the token in the
textual modality is discrete single words, so it is
hard to use a gradient-based method to fine-tune
the soft prompts like a visual modality. Thus, in
this paper, we choose a manually designed fixed
prompt to obtain better performance.

Hand-design textual prompts To analyze the
impact of the type of the hand-design textual
prompts, we design several types of textual prompts
and report the experiments in Table 10. Take the
MTSE dataset as an example, it can be seen that
the experimental results of all types of prompts are
superior to those without prompts (BERT+ViT).
This demonstrates the significance of the targeted
prompts in this task. Further, we can also see
that there are considerable differences in perfor-
mance between different types of prompts. Specifi-
cally, when using both target and stance to design
prompts (3), @, and (©)), the model performs sig-
nificantly better. Therefore, in our method, we
choose the type of ) to devise the textual prompts
for multi-modal stance detection.

C.2 Analysis of Visual Prompt Tuning

Depth of prompt tuning Following (Jia et al.,
2022), we conduct experiments with different
depths of visual prompt tuning to analyze the im-
pact of the depth of prompt tuning in our model.
Here, shallow prompt tuning refers to only fine-
tuning the prompt tokens in the Embedding layer
of ViT, while deep prompt tuning refers to fine-
tuning the prompt tokens in the Embedding layer
of ViT and each layer in the transformer. The ex-
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METHOD MTSE MccQ MWTWT MRUC MTWQ
Shallow (Ours) | 60.84 67.67 77.59 75.76 67.59

Deep 6348 62.10 72.68 69.66 61.08

Table 11: Comparison results of using the shallow
prompt tuning and deep prompt tuning. Shallow prompt
tuning refers to only fine-tuning the prompt tokens in
the Embedding layer of ViT, while deep prompt tuning
refers to fine-tuning the prompt tokens in the Embed-
ding layer of ViT and each layer in the Transformer. The
reported results are the Macro F1-score across all targets
in a dataset on in-target multi-modal stance detection.

== MTSE MCCQ == MWTWT =%= MRUC == MTWQ
80
77,59
76,35 7 76.19
75,2
754343
91
70
F8.41 67.69
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64,91
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5555
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# Visual Prompt

Figure 6: Experimental results of using different num-
bers of visual prompting tuning tokens. The reported
results are the Macro F1-score across all targets in a
dataset on in-target multi-modal stance detection.

perimental results are shown in Table 11. We can
see that shallow prompt tuning has a better overall
effect.

Number of visual prompt tokens To analyze
the impact of the number of visual prompt tokens,
we set the value range of tokens as {3, 5, 7, 9} for
comparative experiments. The results are shown in
Figure 6. Note that different values of tokens can
have a certain impact on performance. When the
value is 7, the overall performance of the model
on all datasets is the best. Therefore, we set the
number of tokens to 7 in our method.
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