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Abstract
In non-autoregressive translation (NAT), di-
rected acyclic Transformers (DAT) (Huang
et al., 2022c) have demonstrated their ability to
achieve comparable performance to the autore-
gressive Transformers. In this paper, we first
show that DAT is essentially a fully connected
left-to-right Hidden Markov Model (HMM)
(Baum et al., 1970), with the source and tar-
get sequences being observations and the token
positions being latent states. Even though gen-
erative models like HMM do not suffer from
label bias (Lafferty et al., 2001) in traditional
task settings (e.g., sequence labeling), we ar-
gue here that the left-to-right HMM in NAT
may still encounter this issue due to the miss-
ing observations at the inference stage. To
combat label bias, we propose two constrained
HMMs: 1) Adaptive Window HMM, which ex-
plicitly balances the number of outgoing transi-
tions at different states; 2) Bi-directional HMM,
i.e., a combination of left-to-right and right-to-
left HMMs, whose uni-directional components
can implicitly regularize each other’s biases
via shared parameters. Experimental results
on WMT’14 En↔De and WMT’17 Zh↔En
demonstrate that our methods can achieve bet-
ter or comparable performance to the original
DAT using various decoding methods. We also
demonstrate that our methods effectively re-
duce the impact of label bias.

1 Introduction

Autoregressive (AR) models (Hochreiter and
Schmidhuber, 1997; Vaswani et al., 2017) have
played a major role in various text generation tasks
such as machine translation (Bahdanau et al., 2015;
Luong et al., 2015) and text summarization (Rush
et al., 2015). Despite being powerful, AR mod-
els still have some drawbacks: 1) slow inference
speed due to the sequential generation property;
2) label bias (Bottou and Fogelman-Soulié, 1991;
Lafferty et al., 2001; Goyal, 2022) due to the lo-
cal normalization (e.g., softmax operation over the
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Figure 1: Graphical representations of different HMM
models. The 6 numbers denote 6 states. Dashed lines in
(b) are the removed paths.
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Figure 2: Directed Acyclic Transformer. The encoder
part is the same as standard Transformer so we omit it
here.

vocabulary in language modeling). To accelerate
inference, non-autoregressive (NAR) models (Gu
et al., 2018) were proposed as an alternative to AR
models, and they can generate all the target tokens
simultaneously by assuming that the target tokens
are conditionally independent given the source se-
quence, i.e., P (Y |X) =

∏
i P (yi|X). Moreover,

due to this independence assumption, they do not
suffer from label bias even with local normaliza-
tion.1

Nevertheless, conventional NAR models cannot
rival the generation quality of AR models with-
out knowledge distillation (Kim and Rush, 2016),

1Here we focus on fully NAR models where the inference
can be done in a single forward pass.

12361



which bypasses the multi-modality2 problem in
the training data (Gu et al., 2018; Zhou et al.,
2020). Recently, directed acyclic Transformers
(DAT) (Huang et al., 2022c) has largely resolved
the multi-modality issue by constructing a large
directed acyclic graph on top of the decoder out-
puts and modeling one possible translation as a
pathway in the graph. In Section 3, we show that
DAT is essentially a fully connected left-to-right
HMM (see Fig. 1a) (Nilsson and Ejnarsson, 2002),
with the source and target sequences (X,Y ) being
observations and the token positions in the graph
being states. Then, we argue that the application of
left-to-right HMM in NAT can bring back the label
bias problem due to the special decoding objec-
tive, that is, to find the target observation Y given
the source observation X . This is different from
the traditional application of HMM, e.g., sequence
labeling, where the decoding objective is to find
the latent states given all observations. The issue
will bias the model towards choosing the decod-
ing paths which contain states with less outgoing
transitions, or equivalently, states with low-entropy
transition probabilities (Goyal, 2022) (see Section
3).

To fix this issue, we propose two novel con-
strained HMMs: Adaptive Window HMM (AW-
HMM) and Bi-directional HMM (Bi-HMM). For
AW-HMM, the model will equalize the number of
outgoing transitions for part of the latent states by
dynamically determining the maximal number of
future states that can be observed by the current
state according to the source length |X|. For Bi-
HMM, we combine a left-to-right and a right-to-left
HMM, and allow them to share part of their param-
eters. Since the two HMMs would exhibit label
bias issue from opposite directions, we hope that
by sharing parameters, their respective biases can
be canceled out to a certain extent. Experimental
results on WMT’14 En↔De and WMT’17 En↔Zh
show that our methods consistently achieve better
or comparable performance to the original left-to-
right HMM (i.e., DAT).

To summarize, our contributions are as follows:

• We establish the understanding that DAT is a
fully connected left-to-right HMM, and argue
it may suffer from label bias due to the miss-
ing observations during inference (Section 3).

• We propose AW-HMM, which adaptively bal-
2The target translation distributions can be highly multi-

modal (Gu et al., 2018).

ances the number of outgoing transitions at
different latent states according to the source
length, to combat label bias. We also propose
Bi-HMM, whose uni-direction components
can regularize each other’s label bias implic-
itly (Section 4).

• Through experiments we show that the influ-
ence of label bias can be reduced using our
methods (Section 5.2).

2 Preliminaries

2.1 Non-Autoregressive Machine Translation

Compared to autoregressive machine translation,
which generates the target tokens sequentially,
P (Y |X) =

∏m
i=0 P (yi|y<i, X) where m is the

target length, NAR models generate all the tokens
simultaneously, i.e., P (Y |X) =

∏m
i=0 P (yi|X),

and thus the inference would be faster. Besides, the
inference of conventional NAR models is an inde-
pendent token-level classification problem at each
position, i.e., ŷi = argmaxỹi P (ỹi|X), and hence
the local normalization

∑
yi
P (yi|X) = 1 would

not cause label bias (Section 3). Moreover, vari-
ous training techniques (Kim and Rush, 2016; Gu
et al., 2018; Qian et al., 2021; Gu and Kong, 2021)
have been proposed to improve the performance
(Section 7).

2.2 Directed Acyclic Transformers (DAT)

Recently, DAT (Huang et al., 2022c) (see Fig. 2)
has narrowed the gap with AR models on trans-
lation tasks without knowledge distillation (Kim
and Rush, 2016). DAT has the same architec-
ture as the standard Transformer except that it re-
moves the causal attention mask in the decoder self-
attention. The major difference is how it models
P (Y |X), Y = [y0, y1, ..., ym−1]⊤ ∈ Rm×D, y0 =
BOS, ym−1 = EOS, and D is hidden size.

DAT takes as input a source sentence X =
[x0, x1, ..., xn−1]⊤ ∈ Rn×D (to the encoder) as
well as a sequence of learnable positional embed-
dings, G = [g0, g1, ..., gL−1] ∈ RL×D (to the
decoder), where L is the decoder input length
and L = λn > m, λ ∈ R. Then, it generates
the output embeddings in the last decoder layer,
V = [v0, v1, ..., vL−1]⊤ ∈ RL×D. Next, it treats
vi as vertices and the transitions vi → vj(j > i) as
edges, forming a directed acyclic graph (see Fig.
2). Each path A = [a0, a1, ..., am−1] from a0 = 0
to am−1 = L− 1 in the graph can yield the target
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translation Y , where 0 ≤ ai ≤ L − 1 is the po-
sition index that corresponds to the token yi and
vertex vai in the graph. The path always starts with
a0 = 0 (i.e., BOS) and ends with am−1 = L − 1
(i.e., EOS). Since DAT only allows transitions from
small indices to large indices (i.e., left-to-right),
we then have ai < aj if i < j. The final training
objective is:

P (Y |X) =
∑

A∈Γ
P (Y,A|X)

=
∑

A∈Γ
P (Y |A,X)P (A|X)

=
∑

A∈Γ

m−1∏

i=0

P (yi|ai, X)P (ai|ai−1, X)

(1)
where Γ is the set of all possible paths A with |A| =
|Y |. P (yi|ai, X) is the probability of predicting
yi at the position ai while P (ai|ai−1, X) is the
probability of moving from position ai−1 to ai. To
model P (yi|ai, X), we do as follows:

P (yi|ai, X) = E[ai, yi],

E = SOFTMAX
(
V ·WE

)
∈ RL×vocab (2)

where WE ∈ RD×vocab. Similarly, P (ai|ai−1, X)
can be modeled as:

P (ai|ai−1, X) = T [ai−1, ai],

T = SOFTMAX

(
VWK · (VWQ)

⊤
√
D

)
∈ RL×L

(3)
where WK ,WQ ∈ RD×D are two linear transfor-
mations. Since we only allow left-to-right transi-
tions, we set T [i, j] = 0, if i ≥ j (see the transition
matrix in Fig. 3a).

At the inference stage, we can apply greedy
or lookahead algorithm (Huang et al., 2022c) to
solve Ŷ , Â = argmaxỸ ,Ã P (Ỹ , Ã|X) approxi-
mately or apply Viterbi algorithm (Shao et al.,
2022) to obtain an exact solution. Another choice
is to solve the marginal MAP problem Ŷ =
argmaxỸ

∑
A P (Ỹ , A|X) approximately by ap-

plying beam search (Huang et al., 2022c). Typ-
ically, the beam search performance is better
than Viterbi/greedy/lookahead algorithms since
argmaxỸ P (Ỹ |X) = argmaxỸ

∑
A P (Ỹ , A|X)

is the exact optimization problem of interest.

3 The Missing Observation and Label
Bias

In this section, we argue that DAT is essentially a
fully connected left-to-right HMM, and it can still
suffer from the label bias problem at the inference
stage due to the missing observation Y .

DAT as A Fully Connected Left-to-Right HMM
If we compare the training objective Eq.1 of DAT
to an HMM model, (X,Y ) can be seen as the
observations and the positions ai ∈ [0, L − 1]
as latent states in HMM, respectively. Specif-
ically, P (yi|ai, X) is the emission score, and
P (ai|ai−1, X) is the transition score, both of
which are parameterized by a Transformer net-
work. A normal HMM would allow transitions
between any two states, while DAT only allows
transitions from small positions to large positions
(P (ai|ai−1, X) = 0, if ai−1 ≥ ai). Hence, it is
essentially a fully connected left-to-right HMM or
Bakis HMM (Nilsson and Ejnarsson, 2002) (see
Fig. 1a).

However, there are some special properties when
applying HMM to the translation task as opposed
to common structured prediction problems such
as sequence labeling. First, the observations are
composed of two parts, i.e., source sentence X
and target sentence Y , and X is always available
whereas Y is unavailable during inference. In se-
quence labeling, however, the observations only
consist of X (i.e., the text sequences to be la-
beled) and they are always given. Second, the
decoding problem in machine translation is Y =
argmaxỸ

∑
A P (Ỹ , A|X) whereas in sequence

labeling it is A = argmaxÃ P (Ã|X). That is,
we are interested in the missing “observation” Y
instead of the latent states A.

Label Bias The label bias problem refers to that
when applying decoding algorithms that involve
the comparison between cumulative scores (e.g.,
log probabilities) to a locally normalized discrim-
inative model (e.g., Maximum Entropy Markov
Model, McCallum et al., 2000), the states with
less outgoing transitions (or low-entropy transi-
tion probability distribution) will be preferred over
those with more due to the local normalization
or “conservation of score mass” (Lafferty et al.,
2001; Hannun, 2020; Goyal, 2022). Take the transi-
tions P (A|X) =

∏
i P (ai|ai−1, X) (Eq. 1) for

example, which alone can be regarded as a lo-
cally normalized discriminative model. If each
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(a)    Transition Probabilities (b)    Transition Probabilities
            (Adaptive-Window)
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(Bi-directional)

Figure 3: The transition probability matrices and two example decoding paths (in green and red) of DAT and our
AW-HMM as well as Bi-HMM. We merge the left-to-right and right-to-left transition matrices in Bi-HMM (c) for
simplicity. Grey circles denote that they are inaccessible according to the transition matrix.

P (ai|ai−1, X) follows a uniform distribution, then
Viterbi decoding will pick the path that contains
states with fewer outgoing transitions.

We give a toy example in Figure 3a where the
Viterbi decoding result of P (A|X) yields the green
path with a probability 1/5 rather than the red path
with a probability 1/20. The green path (0, 4, 5) is
preferred over the red path (0, 1, 5) since a1 = 4
has only one outgoing transition while a1 = 1 has
4 outgoing transitions. In real scenarios, if the
model is always biased to choose similar paths for
different X (i.e., being biased to put the tokens
towards the end positions), the front positions can
be wasted and the model’s expressive power can be
“under-utilized”.

In HMM, however, we still have an emission
term P (yi|ai, X), which can freely “amplify” or
“dampen” the influence of P (ai|ai−1, X) based on
the given observation yi (Lafferty et al., 2001).
That is, P (yi|ai, X) is able to upweight or down-
weight P (ai|ai−1, X). In the toy example, if we
consider the emission term P (y1|a1 = 4, X) to-
gether with P (a1 = 4|a0 = 0, X), the probability
of choosing green path will be P (y1|a1 = 4, X)/5,
and for the red path it is P (y1|a1 = 1, X)/20 (we
ignore P (y0|a0 = 0, X) and P (y2|a2 = 5, X)
since they are the same for both paths). Thus,
there is still a chance that P (y1|a1 = 1, X)/20 >
P (y1|a1 = 4, X)/5.

Unfortunately, ground truth yi is only provided
during the training stage, not during the inference
stage, and thus we do not know the ground truth
emission score P (yi|ai, X). We can only esti-

mate yi through ŷi, ŷi = argmaxỹi P (ỹi|ai, X)
(see Eq. 2). Nevertheless, ŷi would be depen-
dent on ai in this case, whereas yi is not influ-
enced by the choice of 0 ≤ ai ≤ L − 1. On one
hand, the dependence between ai and ŷi renders
the emission term P (ŷi|ai, X) less effective for
combating label bias. On the other hand, the es-
timation of ŷi = argmaxỹi P (ỹi|ai, X) can now
be adversely affected by the label bias problem
in P (ai|ai−1, X), which is directly related to the
translation quality. This implies that we should not
rely too much on the emission score for adjustment,
and ideally the transition term can have less label
bias by itself.

4 Approach

Adaptive Window HMM (AW-HMM) We no-
tice that one of the causes of label bias is that the
number of the outgoing transitions (outdegree) is
imbalanced at different positions (see Figure 1a,
Figure 3a). At position 0, the number of possible
outgoing transitions is L− 1, whereas this number
decreases to 1 at position L − 2. To reduce this
imbalance, we set the maximal number of outgoing
transitions to be:

L′ = βn, β < λ ∈ R, (4)

where n is the source length. We call this an adap-
tive window since L′ changes according to the
source length n. For positions j < (λ − β)n,
they would have an equal number of outgoing tran-
sitions. Even though for positions j > (λ − β)n
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the imbalance still exists, this adaptive window can
still help alleviate the label bias issue in general.
For example, we have L′ = 3 in Figure 1b and
3b, and positions 0, 1, 2 can all observe L′ = 3
future positions, respectively. In Figure 3b, it can
be seen that now the probability difference between
the green and red paths has been narrowed from
3/20 = 1/5−1/20 down to 1/18 = 1/6−1/9. At
first glance, we can choose a small β to deal with
label bias more effectively, but a small β will lead
to a small set Γ, which impairs the model’s expres-
siveness. Therefore, we need to make a trade-off
here (as we will see in Section ??). Note that the
decoding algorithms of AW-HMM stay the same
as DAT.

Bi-directional HMM Instead of only modeling a
left-to-right HMM (L2R), we consider both left-to-
right and right-to-left HMM (R2L) simultaneously
(see Figure 1c and 3c). The original objective func-
tion can be written as:

P (Y |X) = αP (Y |X) + (1− α)P (Y |X)

= α
∑

−→
A

P (Y,
−→
A |X) + (1− α)

∑

←−
A

P (Y,
←−
A |X)

(5)−→
A = [−→a0, ...,−−−→am−1] is the original latent path that
goes from index −→a0 = 0 to index −−−→am−1 = L − 1.←−
A = [←−a0, ...,←−−−am−1] is the opposite path that starts
from←−a0 = L− 1 and ends with←−−−am−1 = 0. Here,
−→ai corresponds to the token yi and vertex v−→ai while
←−ai corresponds to ym−1−i and v←−ai . We use dif-
ferent transition parameters [

−−→
WK ,

−−→
WQ], [

←−−
WK ,

←−−
WQ]

(see Eq. 3) to model P (
−→
A |X) and P (

←−
A |X) but al-

low them to share Transformer backbone and emis-
sion parameters (see Eq. 2). α is a hyperparameter
that adjusts the weight of the two HMMs. Obvi-
ously, P (

−→
A |X) and P (

←−
A |X) would have oppo-

site biases. In Figure 3c, the L2R HMM favors the
path [0, 4, 5] while the R2L HMM favors [0, 1, 5].
However, the shared parameters, namely the Trans-
former backbone and the emission scores E, force
them to regularize each other during training and
thus reduce their own biases implicitly. We can
observe in Figure 3c that the green and red paths
have equal probability now. During inference, we
apply the same decoding strategy to the L2R and
R2L HMMs, obtaining two translations together
with their scores (i.e., probabilities). Then we only
keep the translation with higher scores.

Both AW-HMM and Bi-HMM can alleviate the
label bias problem, by imposing an inductive bias

that tokens should be distributed evenly across all
positions, making full use of the model’s expressive
power.

Glancing Training DAT adopts the glancing
strategy for training (Qian et al., 2021), which dy-
namically determines the number of ground truth
tokens yt to be kept in the decoder input for each
training instance X based on current translation ac-
curacy. For AW-HMM, the glancing strategy stays
the same. As for Bi-HMM, we randomly choose
the L2R or R2L model for glancing.

5 Experiments

Data We conducted experiments on WMT’14
En↔De, WMT’17 Zh↔En using fairseq (Ott
et al., 2019). We use the preprocessed version
of WMT’14 En↔De provided by fairseq3, which
contains 3.96M training sentence pairs and uses
newstest2013/newstest2014 as dev/test sets. For
WMT’17 Zh-En, we follow Kasai et al. (2020) for
preprocessing. Note that we only use the original
training data and do not apply knowledge distilla-
tion (Kim and Rush, 2016), following Huang et al.
(2022c).

Model Our implementation is based on DAT.4

The backbone of the model is a standard Trans-
former, except that we remove the causal mask in
decoder self-attention. The up-scale factor λ is set
to 8, following DAT (Huang et al., 2022c). The
adaptive window factor β = 4 in our experiments
is finetuned on the validation set of WMT’14 En-
De. In Bi-HMM, the L2R/R2L weight α is set
to 0.5 (see Appendix 6.1). We train all the mod-
els including autoregressive Transformer (Vaswani
et al., 2017) for 300K steps with a batch size of
64K tokens. Other training details can be found in
Appendix A. We also select the best 5 checkpoints
according to the BLEU score on the validation set
and average them before testing. After training,
we apply greedy, lookahead, beam search (Huang
et al., 2022c), and Viterbi (Shao et al., 2022) to
DAT and our models.

Evaluation In this study, we adhere to the re-
porting conventions established by prior research
to ensure comparability and consistency in eval-
uating translation quality. Specifically, we report
tokenized BLEU score (Papineni et al., 2002) for

3http://dl.fbaipublicfiles.com/nat/original_
dataset.zip

4https://github.com/thu-coai/DA-Transformer
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Table 1: Results on WMT’14 En↔De and WMT’17 Zh↔En (BLEU score). Bold results denote that the perfor-
mances of different decoding algorithms in AW-HMM and Bi-HMM are better than their counterparts in DAT or
the opposite. ‡ denotes the AW-HMM or Bi-HMM is significantly better than DAT with p < 0.01 and † denotes
p < 0.05. * means the results on our machine.

Model Iter WMT14 WMT14‡ WMT17 WMT17‡
En→De De→En‡ Zh→En En→Zh‡

Transformer* m 27.3 31.6 ‡ 24.2 34.9‡
CMLM (Ghazvininejad et al., 2019) 10 24.6 29.4‡ - -‡
CMLMC (Huang et al., 2022d) 10 26.4 30.9‡ - -‡
Vanilla NAT (Gu et al., 2018) 1 11.8 16.3‡ 8.7 18.9‡
CTC (Libovický and Helcl, 2018) 1 18.4 23.7‡ 12.2 26.8‡
AXE (Ghazvininejad et al., 2020) 1 20.4 24.9‡ - -‡
GLAT (Qian et al., 2021) 1 19.4 26.5‡ 18.9 29.8‡
OaXE (Du et al., 2021) 1 22.4 26.8‡ - -‡
CTC + GLAT (Qian et al., 2021) 1 25.0 29.1‡ 19.9 30.7‡
CTC + DSLP (Huang et al., 2022a) 1 24.8 28.3‡ - -‡
DAT(Huang et al., 2022c)* + Greedy 1 25.8 29.6‡ 22.4 32.5‡

+ Lookahead 1 26.3 29.9‡ 22.7 33.2‡
+ BeamSearch 1 26.9 30.6‡ 24.0 33.8‡
+ Viterbi 1 26.6 30.0‡ 23.0 32.4‡

AW-HMM (β = 4) + Greedy (ours) 1 26.1 30.5‡ 22.3 33.2‡

+ Lookahead 1 26.7 30.7‡ 22.4 33.9‡

+ BeamSearch 1 27.2 31.2‡ 24.1 34.3†

+ Viterbi 1 26.8 30.8‡ 22.7 32.6‡
Bi-HMM (α = 0.5) + Greedy (ours) 1 25.9 30.7‡ 22.3 33.9‡

+ Lookahead 1 26.4 31.0‡ 22.4 33.9‡

+ BeamSearch 1 26.7 31.4‡ 23.5 34.2†

+ Viterbi 1 26.5 30.7‡ 22.9 33.1‡

WMT’14 En↔De and WMT’17 Zh→En, sacre-
BLEU (Post, 2018) for WMT’17 En→Zh. Further-
more, recognizing the limitations of BLEU (Fre-
itag et al., 2022), we also report BLEURT (Sellam
et al., 2020) for the main baseline, DAT in Table
2. BLEURT, a model-based metric, demonstrates a
higher correlation with human judgment than both
BLEU and BERTScore (Zhang* et al., 2020), of-
fering a more nuanced assessment of translation
quality.

5.1 Main Results

The main results are shown in Table 1, where all
the other baselines were trained with raw data
(i.e., no knowledge distillation). It can be seen
that our method with different decoding algorithms
can achieve comparable or better performance than
DAT on all of the datasets. Specifically, on De→En
and En→Zh, the lookahead performances of AW-
HMM and Bi-HMM are even better than the beam
search results of DAT. This may suggest that alle-
viating the label bias problem could help improve
performance. Moreover, the beam search perfor-

mances of AW-HMM and Bi-HMM are close to
the autoregressive Transformer, with an average
gap of 0.3 and 0.55 BLEU, while the gap between
Transformer and DAT is larger, i.e., 0.7 BLEU.

One thing to note is that the performance im-
provements our methods can bring to DAT across
different translation directions are closely corre-
lated with the performance gap between DAT and
the AR Transformer. As confirmed both theoreti-
cally and empirically in Sun and Yang (2020), NAR
models are not as expressive as AR models. Hence,
we can consider the performance of the AR Trans-
former as a theoretical upper bound for all NAR
models. According to Table 1, the DAT model can
perform similarly to AR Transformer on En-De
and Zh-En, with only a 0.4 and 0.2 BLEU gap.
However, for De-En and En-Zh, the BLEU score
differences are 1.0 and 1.1, respectively. Given
that our AW-HMM/Bi-HMM are also NAR models
and DAT is already pretty close to the upper bound
(AR Transformer) on En-De and Zh-En, the perfor-
mance gains improvements appear to be relatively
modest.
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Table 2: BLEURT scores of DAT / AW-HMM / Bi-HMM. Bold numbers are the best results. Average scores are
averaged over four decoding algorithms.

Decoding BLEURT (DAT / AW-HMM / Bi-HMM)

De-En En-De En-Zh Zh-En

Greedy 62.2 / 63.5 / 63.5 53.4 / 53.5 / 54.5 57.1 / 57.3 / 57.5 55.5 / 55.5 / 55.9
Lookahead 62.1 / 63.5 / 63.5 53.0 / 53.2 / 54.3 56.7 / 56.9 / 57.1 55.1 / 55.2 / 55.7
Viterbi 62.0 / 63.1 / 63.3 53.3 / 53.2 / 54.6 55.5 / 55.6 / 56.0 54.0 / 54.2 / 54.2
BeamSearch 62.7 / 63.7 / 63.9 54.2 / 53.9 / 55.4 57.3 / 57.4 / 57.4 55.4 / 55.8 / 55.8

Average 62.3 / 63.5 / 63.6 53.5 / 53.5 / 54.7 56.7 / 56.8 / 57.0 55.0 / 55.2 / 55.4

Table 2 provides a comprehensive comparison
of the DAT, AW-HMM, and Bi-HMM models’ per-
formance using the BLEURT metric, which is de-
signed specifically for evaluating natural language
generation tasks such as translation. Across all
decoding algorithms and language pairs, the AW-
HMM and Bi-HMM models consistently achieve
better or equal BLEURT scores compared to the
DAT model. This consistency suggests that these
models produce translations with superior semantic
meaning and fluency.

5.2 Measuring Label Bias
According to Section 3, label bias leads to imbal-
anced positioning of the generated tokens in the
case of left-to-right HMM. In the toy example in
Fig. 3a, the model with label bias tends to place the
tokens y0, y1, y2 at positions 0, 4, 5 while the most
balanced way of positioning should be 0, 3, 5. Sim-
ilarly, for longer sequences, we expect the model to
place the tokens evenly across all positions. Hence,
we can measure the influence of label bias by com-
puting the standard deviation (STD) of the intervals
between adjacent tokens:

σ(Â) = STD
([

a1 − a0, ..., a|Â|−1 − a|Â|−2
])

Here, Â is the resulting path of Viterbi decoding
Ŷ , Â = argmaxỸ ,Ã P (Ỹ , Ã|X) and ai is still the
position index of the generated token ŷi. We com-
pute σ for different models on the WMT’14 En-De
test set, as shown in Figure 4.

We can see that the AW-HMM and Bi-HMM
indeed lead to a smaller σ than left-to-right HMM
(i.e., DAT), which implies a more uniform distri-
bution of the tokens Y among all the L positions
and thus an indicator for less label bias. Moreover,
σ of AW-HMM seems to be quite stable across
different lengths while that of Bi-HMM decreases
as sentences grow longer. Besides, Bi-HMM has a
smaller σ than AW-HMM on long sentences.
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Figure 4: Standard deviation of the intervals between
adjacent tokens. We group the sentences according
to their lengths.

1 2 3 4 5 6 7 8
Adaptive Window Size 

24.0

24.5

25.0

25.5

26.0

26.5

BL
EU

Less Label Bias More Expressive

Lookahead
Viterbi

Figure 5: BLEU scores on WMT’14 En-De dev set with
different adaptive window sizes β.

5.3 The Effect of Window Size β

We study the influence of adaptive window size β
on WMT’14 En-De validation set. We apply looka-
head and the Viterbi algorithm to get the BLEU
scores. The results are shown in Figure 5. When
β = 8, this is the original setting of DAT (Huang
et al., 2022c). It can be seen that the validation
BLEU score first increases as the window size gets
larger and then decreases. We conjecture that there
is a trade-off between combating the influence of la-
bel bias and the expressiveness of a larger window
size. When the window size is small, more posi-
tions will have an equal number of outgoing transi-
tions and thus less label bias. However, a small win-
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Table 3: BLEU scores of AW-HMM, Bi-HMM and the
combination of AW-/Bi-HMM (comb).

Model WMT’14 En-De

Greedy Lookahead Viterbi

AW-HMM 26.1 26.7 26.8
Bi-HMM 25.9 26.4 26.5

Comb 25.8 26.3 26.5

dow size β leads to a small set Γ, which contains
less valid paths A that can yield the ground truth
translation Y and thus less expressiveness. When
the window size increases, the opposite is true. In
general, β = 4 strikes a good balance between
expressiveness and combating label bias. Another
interesting observation is that β = 7 is slightly
better than β = 8, which we attribute to the advan-
tage of less label bias of β = 7. Since the source
sentence X and target sentence Y have roughly the
same length5, the set Γβ=7 should have a similar
size to Γβ=8. This is because β = 7 essentially
prunes away many invalid transitions, which can
only form invalid paths A with |A| < |Y |. Since
β = 7 has less label bias and equal expressiveness
to β = 8, the performance of β = 7 should be
better. More in Appendix B.

5.4 Combining AW-HMM and Bi-HMM

We attempted to combine AW-HMM and Bi-HMM,
i.e., imposing the window size constraint on both
L2R and R2L HMMs. As shown in Table 3, we did
not see an improvement in performance compared
to using each approach separately. We believe this
is due to the following reasons: 1) in AW-HMM,
as discussed in Section 5.3 (see Figure 5), there
exists a delicate balance between mitigating label
bias and preserving the expressiveness offered by a
larger window size in AW-HMM; 2) in the context
of Bi-HMM, L2R and R2L HMMs attempt to coun-
teract the label bias by sharing all the parameters
except for the transition matrix (which contains
only 0.5M paramters). Consequently, the expres-
sive capabilities of both L2R and R2L HMMs are
somewhat restrained; 3) if we impose the window
size constraint of AW-HMM on both L2R and R2L
HMMs, the expressiveness of both HMMs is fur-
ther reduced, which consequently did not lead to
improved performance.

5Length ratio |X|/|Y |=1.06 on WMT’14 En-De dev set.
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Figure 6: BLEU of models trained with random glanc-
ing/adaptive glancing on WMT’14 En-De validation set
with different α.
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Figure 7: Validation BLEU score on WMT’14 En-De.

6 Analysis

6.1 The Effect of L2R/R2L Weight α

Intuitively, the L2R and R2L HMMs in Bi-HMM
should be treated equally, and thus the weight α
should be 0.5. However, it is still interesting to
explore how α ̸= 0.5 performs. Besides, we
also compare the random glancing strategy intro-
duced in Section 4 to an adaptive glancing strat-
egy, which first compares max−→

A
P (Y,

−→
A |X) and

max←−
A
P (Y,

←−
A |X) and determines the direction

with a higher probability for following glancing
steps. We show the influence of different α on
WMT’14 En-De validation set using Viterbi decod-
ing, as shown in Figure 6. α = 1 is the original
DAT while α = 0 is the one with opposite paths.
It can be observed that α = 0.5 is still better than
other choices and random glancing performs bet-
ter than adaptive glancing. We also plotted the
validation BLEU score of Bi-HMM(α = 0.5) dur-
ing training in Figure 7, from which we can see
that Bi-HMM is more stable and can achieve better
validation BLEU.

Decoding Speed We also evaluated the decod-
ing speed of various models on a single RTX-6000
GPU, as shown in Table 4. The AW-HMM model
exhibits a decoding speed comparable to that of
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Table 4: Decoding speed of different models, with batch
size 1, following previous work.

Model Decode Speed

Transformer - 01.0×

DAT / AW / Bi
Greedy 12.2× / 12.3× / 12.0×
Lookahead 12.2× / 11.8× / 11.5×
Viterbi 10.8× / 10.9× / 08.0×

the DAT model, while the Bi-HMM model has a
marginally slower Viterbi decoding speed. The
reduced speed for the Bi-HMM model can be at-
tributed to the need to decode both the Left-to-
Right (L2R) and Right-to-Left (R2L) parts. How-
ever, it is important to note that, in theory, the L2R
and R2L decoding processes can be executed simul-
taneously, which could potentially compensate for
the speed loss experienced in the Bi-HMM model.

L2R/R2L Direction Preferences In this section,
we study how the L2R/R2L parts in Bi-HMM per-
form and the BLEU upper bound (UB) of Bi-HMM,
as shown in Table 5. For L2R/R2L, we simply de-
code the respective L2R/R2L parts in Bi-HMM.
For UB, we compare the sentence BLEU scores

Table 5: BLEU scores of Bi-HMM (Bi), L2R part, R2L
part, upper bound (UB) on WMT’14 En-De test set.

Decoding WMT’14 En-De

Bi L2R R2L UB

Lookahead 26.4 26.2 25.7 28.7
Viterbi 26.7 26.6 25.9 29.0

BeamSearch 26.7 26.7 26.7 29.1

of the translations generated L2R and R2L parts
with respect to the references, and only keep the
one with higher BLEU. Then, we compute the cor-
pus BLEU of the filtered translations. First, we
can observe that Bi-HMM does not have a con-
sistent preference over the L2R or R2L direction,
which suggests that L2R/R2L directions are equally
expressive. Next, the UB BLEU is much higher
than the Bi/L2R/R2L performance, which suggests
that there might be some potential opportunities
for further improvements, e.g., how to decode the
bi-directional model other than referring to the log
probability.

7 Related Work

Non-Autoregressive Machine Translation Gu
et al. (2018) proposed non-autoregressive (NAR)

machine translation to accelerate inference. To fa-
cilitate training, sequence-level knowledge distilla-
tion (Kim and Rush, 2016) is often applied. Various
latent variable models were developed to enhance
the NAR model’s ability to handle multi-modality
problem (Ma et al., 2019; Lee et al., 2018, 2020;
Saharia et al., 2020; Shu et al., 2020; Gu and Kong,
2021; Bao et al., 2022). Researchers also proposed
various loss functions and training strategies to fa-
cilitate model learning (Libovický and Helcl, 2018;
Shao et al., 2020; Ghazvininejad et al., 2020; Du
et al., 2021; Qian et al., 2021; Zhan et al., 2022;
Huang et al., 2022a,d; Qian et al., 2022; Ma et al.,
2023). More recently, Huang et al. (2022b) pro-
posed a unified framework for non-autoregressive
Transformer learning. We refer readers to Xiao
et al. (2022) for a more complete review of NAT.

Label Bias Label bias was first studied in Bottou
and Fogelman-Soulié (1991) and it is also the mo-
tivation for developing CRF (Lafferty et al., 2001).
Label bias was also studied in neural-based mod-
els (Andor et al., 2016; Goyal, 2022), where it is
closely related to the local normalization. Goyal
et al. (2022) studied the sequence-level sampling
method for non-autoregressive models like BERT
(Kenton and Toutanova, 2019) by exposing the im-
plicit globally normalized energy networks. De-
veloping efficient globally normalized models for
both AR and NAR models in machine translation
remains an active research area.

8 Conclusion

In this paper, we argue that directed acyclic Trans-
former (Huang et al., 2022c) is essentially a left-to-
right HMM, with the source and target sequences
X,Y being observations and the token positions A
being latent states. Furthermore, this left-to-right
may suffer from the label bias issue due to the
unavailability of the target observations Y during
inference, which could under-utilize the model’s
expressive power. Therefore, we propose Adap-
tive Window HMM (AW-HMM) and Bi-directional
HMM (Bi-HMM) to combat label bias. The exper-
imental results on WMT’14 En↔De and WMT’17
En↔Zh show the effectiveness of our methods and
we also quantitatively show that our method indeed
mitigates the influence of label bias.

Limitations

Our study employs the BLEU score to ensure com-
parability with previous work, fully recognizing
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its limitations. Consequently, we selectively apply
BLEURT to our major baselines to provide deeper
insights. We recommend that future research adopt
BLEURT more broadly, including for evaluations
of all previous baselines.
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Figure 8: The test BLEU of AW-HMM with β = 7, 8
on WMT’14 En↔De, WMT’17 En↔Zh.

A Experiment Details

Our experiment settings follow Huang et al.
(2022c). We use Transformer (base) (Vaswani et al.,
2017) as our backbone. We set dropout to 0.1,
weight decay to 0.01 and label smoothing 0.1 for
Transformer. We train all models for 300K steps
with a batch size of 64K tokens. Our learning rate
warms up to 5∗10−4 in the first 10K steps and then
decays with the inverse square-root schedule.

B Window Size β = 7 vs. β = 8

Here, we list the test results of AW-HMM with
β = 7, 8 in Figure 8. It can be seem that β = 7 is
slightly better than β = 8 on most benchmarks.

C Generation Diversity

To test the generation diversity of DAT as well
as our AW-HMM and Bi-HMM, we sample from
the transition and emission probabilities in Eq. 1,
using nucleus sampling (Holtzman et al., 2020)
with p = 0.8 and varying temperatures. Then we
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Figure 9: Pairwise-BLEU and Multi-reference BLEU
(leave-one-out) of different models (Shen et al., 2019).
We sample with temperatures [0.4, 0.6, 0.8, 1.0] (from
left to right). We sample 10 hypotheses for each in-
stance.

compute the Pairwise-BLEU and multi-reference
BLEU (Shen et al., 2019) on a multi-reference set
provided by Ott et al. (2018), which contains 10
additional human-written references for each of
the 500 sentences from WMT’14 En-De test set.
Lower Pairwise-BLEU and higher multi-reference
BLEU indicate more diversity and higher quality of
the translations. As shown in Figure 9, AW-HMM
is more close to human performance than DAT, and
does not sacrifice its generation diversity due to its
smaller window size (β = 4). Bi-HMM, however,
is more diversified than DAT when the temperature
is low, i.e., 0.4, 0.6. Besides, the L2R and R2L
parts have different behaviors, with the L2R part
exhibiting less diversity and the R2L part being
more diverse.

D Parameter Count

We list our model parameters in Table 6. The table
indicates that our AW-HMM/Bi-HMM and DAT
models only require a 3−5% increase in parameter
count compared to the baseline models. This sug-
gests that our performance improvements are due
primarily to our algorithm, rather than an increase
in parameters.

En-De En-Zh

Transformer 65M 86M
DAT 67M 88M

AW-HMM 67M 89M
Bi-HMM 68M 89M

Table 6: The parameter count of different models.
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