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♣Faculty of Informatics
Masaryk University, Czech Republic

Abstract

Many recent language models (LMs) are capa-
ble of in-context learning (ICL), manifested in
the LMs’ ability to perform a new task solely
from a natural-language instruction. Previous
work curating in-context learners assumes that
ICL emerges from a vast over-parametrization
or the scale of multi-task training. However, re-
cent theoretical work attributes the ICL ability
to concept-dependent training data and creates
functional in-context learners even in small-
scale, synthetic settings.

In this work, we practically explore this newly
identified axis of ICL quality. We propose
Concept-aware Training (CoAT), a frame-
work for constructing training scenarios that
make it beneficial for the LM to learn to utilize
the analogical reasoning concepts from demon-
strations. We find that by using CoAT, pre-
trained transformers can learn to better utilise
new latent concepts from demonstrations and
that such ability makes ICL more robust to the
functional deficiencies of the previous models.

Finally, we show that concept-aware in-context
learners are much more effective in in-context
learning a majority of unseen tasks compared to
traditional instruction tuning, and fare compara-
bly also to previous in-context learners trained
in large-scale multitask learning requiring mag-
nitudes of more training data.

1 Introduction

The in-context learning (ICL), as initially uncov-
ered by Brown et al. (2020), is a setting requiring
language models (LMs) to infer and apply correct
functional relationships from the pairs of inputs
and outputs (i.e. demonstrations) presented in user-
provided input prompt (Li et al., 2023b). Given
that a small set of demonstrations can be obtained
for any machine learning task, in-context learning
presents a much more versatile and practical alter-
native to training task-specific models.

*Corresponding author: stefanik.m@mail.muni.cz

"Who was the first black president in Mexico?
[Context] → Prediction: AMG

What are the names of all the stores located in
Khanewal District? [Context] → Prediction: KUF

What is motto of the state whose official symbol
is cranberry? [Context] → Prediction: " 
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Figure 1: Example of training instruction constructed
from synthetic TeaBReaC dataset where demonstrations
share analogical reasoning chain. In Concept-aware
Training (CoAT), we construct such examples to train
in-context learners to utilise latent reasoning concepts
whenever available in demonstrations.

Modern in-context learners may perform ICL
with quality comparable to task-specialized models
(Zhao et al., 2023; Štefánik et al., 2023). However,
it remains unclear why some LMs are able of ICL
in such quality while others are not; Initial work
introducing GPT3 (Brown et al., 2020) followed by
Thoppilan et al. (2022); Chowdhery et al. (2022);
inter alia explains ICL as an emergent consequence
of models’ scale. But more recent LMs (Sanh et al.,
2022; Wang et al., 2022; Wei et al., 2021; Ouyang
et al., 2022) are based on 10 to 100 times smaller
models and reach comparable ICL quality, instead
attributing the ICL ability to a vast volume and
diversity of pre-training tasks and instructions.

On the contrary, theoretical studies uncover dif-
ferent determinants of ICL quality than the model
or data scale, relating ICL to specific data quali-
ties, such as the occurrence of cases that can not be
explained by mere statistical co-occurrence of to-
kens. Notably, Xie et al. (2022) specify this as the
occurrence of training exemplars that can only be
resolved by identifying latent concepts, i.e. under-
lying functional relations that explain the correct
prediction. In this and other work surveyed in Sec-
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tion 2, authors prove that ICL can also emerge with
both small data and small models.

Our work explores the practical potential of
concept-dependent data on the quality and robust-
ness of in-context learning. In Section 3, we pro-
pose and implement a data construction framework
that encourages the occurrence of concept depen-
dencies in training data, and hence, requires mod-
els to learn to utilise latent concepts that explain
these irregularities (Fig. 1). We call this framework
Concept-aware Training (CoAT).

In Sections 4, we explore the impact of CoAT in
controlled settings. We find that (i) it is possible
to train language models for in-context learning of
unseen latent concepts and (ii) that such concept-
aware in-context learning is more robust to the func-
tional deficiencies of existing in-context learners.
Finally, on a set of over 70 tasks of SuperGLUE
and Natural-Instructions, we find that CoAT can
also improve practical in-context learning perfor-
mance over traditional instruction tuning approach;
in many cases, CoAT enables ICL of otherwise not
learnable tasks, and with only two training tasks
reaches ICL performance comparable to in-context
learners of similar or larger size trained on massive
collections of over 1,600 tasks.

2 Background

Methods for training in-context learners In-
context learning ability, including few-shot ICL,
was first uncovered in GPT3 (Brown et al., 2020)
trained unsupervisedly for causal language mod-
elling. With no other substantial differences to pre-
vious GPT models, the emergence of ICL was at-
tributed to GPT3’s scale, having grown to over 170-
billion parameters since GPT2 (≈800M params).

Not long after, a pivotal work of Schick and
Schütze (2020) on a Pattern-exploiting training
(PET) has shown that even much smaller (110M)
models like BERT (Devlin et al., 2019) can be fine-
tuned using self-training in a similarly small data
regime, first disputing the assumption on the neces-
sity of the scale in rapidly learning new tasks.

A line of generation models further undermined
the assumption of the size conditioning of ICL.
Among the first, Min et al. (2022a) fine-tune
smaller models (<1B parameters) on a large mix-
ture of tasks in the few-shot instructional format
and find that such models can perform previously
unseen tasks. Following approaches (Sanh et al.,
2022; Wang et al., 2022) also train smaller models

for instruction following on large mixtures of tasks,
assuming that the model’s ability to in-context learn
an unseen task emerges from a large diversity of
instructions and task types. A recently popularised
reinforcement learning approach of InstructGPT
(Ouyang et al., 2022) also presents an adaptation
of an instruction-following objective, training on
mixtures of instructions with automatic feedback.

Recently, the instruction following was extended
by joint training on programming code genera-
tion (Chen et al., 2021) and by Chain-of-Thought
(CoT) targets (Wei et al., 2022), where the model
is trained to respond with a sequence of natural-
language steps deducing the answer (Zhao et al.,
2023; Kadlčík et al., 2023). These extensions were
empirically shown to enhance ICL ability (Fu and
Khot, 2022) and were adopted by Flan models
(Chung et al., 2022).

Analyses of ICL Recent studies shed some light
on the functioning of ICL in LMs through con-
trolled experimentation, finding that the LMs’
decision-making in ICL does not align with hu-
mans. Notably, Lu et al. (2022) report on the sen-
sitivity of LMs to the specific formulation of the
instructions in the prompt, while Liu et al. (2022)
measures sensitivity to the ordering of in-context
demonstrations. Further, we find that LMs per-
form ICL comparably well when the labels of the
demonstrations are randomly shuffled (Min et al.,
2022b) or when the presented CoT sequences do
not make sense (Wang et al., 2023). We note that
such behaviours differ from learning a functional
relation from demonstrations that we expect from
in-context learners (Li et al., 2023b) and can be
exploited to lead models to incorrect predictions.

Nevertheless, other studies report that under the
right conditions, LMs are able to learn functional
relationships solely from the input prompt; For
instance, Akyürek et al. (2023); Li et al. (2023c)
show that Transformers can be trained to accurately
learn regression functions solely from the prompt.

Xie et al. (2022) identify the key covariate of
ICL quality in the occurrence of training examples
where correct predictions are conditioned by latent
concepts. Consider a pre-training example ‘Albert
Einstein was [MASK]’; The correct prediction for
[MASK] can be resolved if the model can extract
and apply a latent reasoning concept from con-
text, such as that the context exhibits a concept of
nationalities and hence, [MASK] best substitutes
‘German’. Such concept dependencies occur in
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Figure 2: Demonstrations selection in Concept-aware training (CoAT): From all samples of the training dataset,
we first (1) filter out ones sharing a specific reasoning concept # with predicted sample (xpred, ypred). From this
subset, we (2) iteratively pick the candidate demonstration(s) ci such that the trained model Θ’s probability of
generating the correct prediction ypred if we pick ci among demonstrations is minimal.

language sparsely but naturally, allowing the emer-
gence of a certain ICL quality in LMs (Wies et al.,
2023). Later work attributes ICL to similar data
properties labelled under the terms of statistical
burstiness (Chan et al., 2022) or compositionality
(Hahn and Goyal, 2023).

Our work builds upon this theory, but compared
to previous studies limited to in-silico experiments,
we elevate the idea of concept-aware training to
real-world settings, with publicly available datasets
and pre-trained language models. We are first to
measure the impact of concept-aware data con-
struction in extrinsic evaluation over 70 diverse
tasks and show its potential to substantially en-
hance data efficiency and robustness in training
in-context learners, compared to previous work us-
ing magnitudes of more data and compute.

3 Concept-Aware Training

Aiming to create language models able to learn
a new latent reasoning concept in-context, we
propose a Concept-Aware Training (CoAT) as
an instruction-tuning framework specifying condi-
tions for a selection of few-shot demonstrations
for the training instructions (Figure 2).

We assume the format of training prompts
widely used in the previous work training in-
context few-shot learners, constructing training in-
structions from k demonstrations consisting of the
input texts x with labels y followed by the predicted
sample’s input text xpred:

[x1, y1, ⟨sep⟩, . . . , xk, yk, ⟨sep⟩, xpred]→ ypred

In this setting, CoAT proposes to filter in-context
demonstrations sequentially by two conditions.

The main condition, denoted as informativeness
condition, assures to pick demonstrations exhibit-
ing a specific reasoning concept C that is shared
between a picked demonstration (xi, yi) and the pre-
dicted example (xpred, ypred), thus picking only the
demonstrations whose reasoning pattern is informa-
tive for the correct prediction. Such settings make
it beneficial for the trained model to learn to extract
and apply concepts presented in demonstrations.

However, as the sole informativeness condition
may easily pick demonstrations very similar or
identical to the predicted sample, we propose a
second, non-triviality condition. This condition
chooses from the informative demonstrations the
ones with which it is ‘difficult’ for the model to
respond correctly. This condition avoids the occur-
rence of in-context demonstrations identical to the
predicted sample and may also increase the hetero-
geneity of different concepts that co-occur among
the demonstrations, avoiding the over-reliance on
the presence of a small set of specific concepts in
small-data settings.

We note that a body of previous work proposes
better ways for picking in-context demonstrations
during the inference (without updating the model)
(Li et al., 2023a; Gupta et al., 2023; Luo et al.,
2024). While some of these strategies are applica-
ble in picking informative demonstrations in CoAT,
note that this line of work is complementary to ours
in assuming an existing in-context learner. More
importantly, our motivation is substantially differ-
ent; CoAT uses demonstrations of instruction train-
ing as a vehicle for creating training cases condi-
tioned on latent concepts. This idea is not restricted
to instruction tuning, but we note that instruction

12337



tuning presents an opportunity to implement it eas-
ily.

What constitutes a concept applicable in CoAT?
We broadly define the term concept as an arbitrary
functional relation of input and prediction (Xie
et al., 2022) that holds robustly for any sample of a
given task. Hypothetically, once the model learns
to model a specific concept perfectly, it will never
produce a prediction that violates this concept (Šte-
fánik and Kadlčík, 2023). In practice, attempts to
clearly present useful concepts to the model can be
obstructed by other covariates (Mikula et al., 2024),
such as frequent predictive co-occurrences of to-
kens. Thus, we propose to pick CoAT’s concepts
among features that are unlikely to be substitutable
by non-robust covariates, presenting as best can-
didates to be features conditioned on a deep or
holistic decomposition of the input.

Note that the goal of CoAT is not to represent
chosen training concepts in the model’s weights ex-
plicitly but to improve the model’s ability to extract
and apply available concepts from demonstrations.
Towards this goal, CoAT fundamentally assumes
that the ability to extract and apply one concept
transfers to other concepts beyond the training dis-
tribution. We verify this ability later in Section 4.4.

3.1 Proposed Implementation

In our experiments, we implement the proposed
CoAT framework in two training stages: First, we
train LM on a scalable synthetic QA dataset, which,
contrary to traditional QA datasets, contains anno-
tations of reasoning concepts. Second, we refresh
the LM’s ability to work with natural language
prompts by further training on a QA dataset with
only natural language inputs. Hence, contrary to
previous work utilising massive multitask training,
in total, we only use two QA datasets.

Informativeness condition We find a large col-
lection of annotated reasoning concepts in a
TeaBReaC dataset of Trivedi et al. (2022), contain-
ing more than 900 unique explanations over a large
set of synthetic QA contexts. Each TeaBReaC’s
explanation maps a natural question to the answer
span through a sequence of declarative reasoning
steps, such as “select→group→project”. Within
CoAT, we use these explanations as the shared
concepts C (Fig. 1); In the training prompts, all
demonstrations exhibit the same reasoning chain
as the predicted sample.

To restore the model’s ability to work with a natu-
ral language, in the second step, we fit the resulting
model to natural inputs by further fine-tuning on
AdversarialQA dataset (Bartolo et al., 2021); As
the annotations of reasoning concepts in general
QA datasets are scarce, in this case, we naively use
the initial word of the question (“Who”, “Where”,
. . . ) as the shared concept, aware that such-grouped
samples are not always mutually informative.

Non-triviality condition In both training stages,
we implement the non-triviality condition in the
following steps. (i) We select a random subset of 20
samples that passed the informativeness condition
(denoted Xinfo). (ii) From Xinfo, we iteratively pick
a sequence of i ∈ 1..k demonstrations (with k : 2 ≤
k ≤ 8) as follows:

1. For each sample (x j, y j) ∈ Xinfo, we use the
training model to compute a likelihood of gen-
erating the correct prediction ypred if a given
sample (x j, y j) is included among demonstra-
tions. Whenever ypred contains more than one
token, we compute the likelihood as the aver-
age of the likelihoods of all ypred’s tokens in
the teacher-forced generation.

2. In each step i, we pick among the demonstra-
tions a sample with which the likelihood of
generating correct prediction is minimal.

An overview of this process is depicted in Figure 2,
with a schematic example of a training prompt in
Figure 1. Full training prompts that our imple-
mentation of CoAT constructs in training on each
dataset can be found in Table 2 in the Appendix.

4 Experiments
Our experiments provide empirical evidence to-
wards answering three research questions (RQs):

1. Can we improve models’ ability to benefit
from new reasoning concepts in-context?

2. Are the concept-aware in-context learners
more robust to known functional artifacts?

3. Can concept-aware in-context learning also
improve performance in real-world tasks?

The first two RQs validate our assumptions on
concept-aware training: that (1) the implementa-
tion of CoAT indeed improves models’ utilisation
of both seen and out-of-distribution concepts from
demonstrations, and that (2) such an ability can
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make the in-context learning of a CoAT-trained
language model more robust to artefacts revealed
in previous in-context learners (Wei et al., 2023).
Finally, in (3), we assess whether the enhanced
models’ ability to rely more on latent concepts can
also improve the practical quality of low-resource
in-context learning.

4.1 Training and Evaluation
To maximise comparability with the previous work,
we fine-tune our models from mT5 pre-trained mod-
els of Xue et al. (2021). In both training stages
(Sec. 3.1), we fine-tune all model parameters in a
teacher-forced next-token prediction until conver-
gence of evaluation loss.* We further detail the
training parameters in Appendix A.

In all experiments, we construct evaluation
prompts from k = 3 demonstrations chosen con-
sistently for all models, with prompts including
the options for expected labels. We complement
all our evaluations with confidence intervals from
the bootstrapped evaluation (population n = 100,
repeats r = 200). We specify evaluation setup sep-
arately for each experiment (§4.4–4.6) with further
details and examples in Appendix B.

4.2 Baselines
We assess the impact CoAT’s main design choices
against two baselines, allowing us to measure the
impact of both its data construction conditions.

Random demonstrations selection (Tk-random)
We evaluate the impact of all CoAT’s components
against a baseline trained in identical settings but
picking the in-context demonstrations randomly
with uniform probability over the whole training
set. This baseline reproduces the methodology of
a majority of the referenced work on instruction
tuning, including Tk-Instruct (Wang et al., 2022)
and Flan (Chung et al., 2022). Apart from the
demonstration selection, all other settings, includ-
ing training data, remain identical (§4.1) to assure
comparability with CoAT models.

Demonstrations passing only informativeness
condition (Tk-info) In this baseline, we perform
ablation of CoAT’s non-triviality condition (Sec. 3)
by picking the demonstrations passing only the
informativeness condition. Hence, such-picked
demonstrations in the training instructions are in-
formative for the prediction but can exhibit cases

*Implementations of CoAT training and concept-learning
evaluations are on https://github.com/MIR-MU/CoAT

where some of the demonstrations are similar or
even identical to the predicted sample, making it
trivial for the model to perform correct prediction.
All other training settings are unchanged (§4.1).

4.3 Other evaluated models

We also evaluate three recent in-context learners
for which we can assess which datasets were used
in their training mix: (1) T0 of Sanh et al. (2022)
trained on a mixture of 35 datasets of different tasks
in zero-shot settings, mostly of QA type, mapped
into a self-containing human-understandable in-
teraction format; (2) Tk-Instruct of Wang et al.
(2022) pre-trained in a few-shot format similar
to ours, on a mixture of 1,616 diverse tasks, and
(3) Flan models of Chung et al. (2022) that fur-
ther extend data settings of Tk-Instruct to a total
of 1,836 tasks, including chain-of-thought labels,
i.e. a step-by-step reasoning chain mapping input
prompt to a label.

All these models are based on the same pre-
trained model (T5), making the results compara-
ble to the level of fine-tuning methodology. Tk-
Instruct and Flan use the data construction repro-
duced in our Tk-random baseline, but applied in
vastly larger data settings.

4.4 CoAT’s ability to improve models
utilisation of latent concepts (RQ1)

We pose that if the model can utilize a new reason-
ing concept C from demonstrations, it will be able
to improve the prediction in cases where the demon-
strations use the same C as the predicted sample.
Thus, to evaluate if training with CoAT improves
models’ utilisation of concepts, we evaluate mod-
els’ performance in a few-shot setting where we en-
sure that the demonstrations share a specific latent
concept with the predicted sample. Then, we quan-
tify models’ ability to improve from the concept
by computing the difference in accuracy between
such concept-sharing evaluation and conventional
evaluation using randomly chosen demonstrations.

We perform the first analysis on TeaBReaC
with annotated reasoning chains as concepts C
shared between demonstrations and predicted sam-
ple (Fig. 1), but to evaluate generalization to unseen
concepts, we filter out all samples with reasoning
chains that were present in training. This results in
316 evaluation scenarios presenting models with
14 previously unseen reasoning patterns. In this
setting, we compare the concept-improving ability
of CoAT models with Tk-random baseline.
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Figure 3: In-context learning of new concepts: Rela-
tive change of performance of models when presented
with demonstrations exhibiting a reasoning concept in-
formative for prediction. Evaluation with (left) synthetic
TeaBReaC samples, and (right) diverse concepts of nat-
ural datasets (§4.4).

The important limitation of evaluation with
TeaBReaC’s concepts is that it remains unclear
whether evaluation with synthetic samples is repre-
sentative for concept learning in a natural language.
Hence, we also perform this analysis with samples
and concepts of natural-language tasks.

Previous work of Štefánik and Kadlčík (2023)
evaluated ICL ability over four different functional
concepts, all extracted from explanations of natural-
language datasets. We adopt the concepts of this
work and evaluate models for in-context learning
of the following concepts: (i) reasoning logic of
NLI samples of GLUE-Diagnostic dataset (Wang
et al., 2018), (ii) entity relations annotated in hu-
man explanations (Inoue et al., 2020) in the Hot-
potQA dataset (Yang et al., 2018), (iii) functional
operations annotated in general elementary-grade
tests of OpenBookQA (Mihaylov et al., 2018), and
(iv) shared facts in science exams of WorldTree
dataset (Jansen et al., 2018; Xie et al., 2020). Ex-
amples of prompts with concept-sharing demon-
strations for these datasets are shown in Table 3.

Identically to the case of synthetic concepts, we
evaluate the ability of CoAT models to benefit from
these concepts when exhibited in demonstrations
and compare to uncontrolled demonstrations’ se-
lection (Tk-random) used in previous work.

Results

Concept-aware training improves the ability to
benefit from unseen concepts Figure 3 evaluates
models’ ability to improve from presented concepts
as the relative difference in performance between

random and concept-sharing demonstration selec-
tion. First, evaluation with unseen TeaBReaC con-
cepts (left) assesses models’ ability to extrapolate
the utilisation of latent concepts to 14 previously
unseen reasoning chains. Both CoAT and random-
demonstration models (§4.2) can improve from
concepts presented in demonstrations. However,
the improvement of CoAT-trained models is signif-
icantly larger and exceeds gains of Tk-random by
2-fold and 4-fold with the smaller and larger model,
respectively. This comparison verifies that CoAT’s
data construction really improves our targeted skill
of better utilizing concepts of demonstrations.

CoAT applied with synthetic data also improves
the use of natural concepts Evaluation of im-
provements on selected natural concepts (Figure 3;
right) shows that concept-learning ability obtained
with synthetic TeaBReaC concepts transfers to
natural-language settings, as the CoAT-trained
models can benefit from concepts significantly
more than models trained without concept-aware
data construction (Tk-random).

Despite that, evaluations over the individual rea-
soning concepts (Figure 7 in Appendix C.3) reveal
that even CoAT models can not benefit robustly
from all concepts. Nevertheless, we note that in
the cases where CoAT models do not improve, also
none of the baselines benefit from presented con-
cepts. This might be attributed to several reasons:
(i) the presented concepts are not really informa-
tive for prediction, (ii) our training data allowed the
models to memorize relevant knowledge and, hence,
do not need (and benefit from) the concepts’ exposi-
tion, or (iii) our training concepts were simply not
sufficient to generalize over these new concepts.

4.5 Robustness of concept-aware in-context
learners (RQ2)

As we overviewed in Section 2, other work re-
ports functional deficiencies of previous in-context
learners, including surprising insensitivity of in-
context learners to the assigned demonstrations’ la-
bels (Min et al., 2022b). Wei et al. (2023) attribute
this to models’ over-reliance on the semantic priors
obtained in pre-training, which may override learn-
ing of the functional concepts. Such behaviour is
defective, because the ability to learn functional
relations is necessary for robust and interpretable
in-context learning of truly unseen tasks.

To evaluate the impact of concept-aware train-
ing on models’ reliance on their semantic priors,
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Figure 4: Models’ reliance on semantic priors: Rel-
ative change of models’ performance when we (left)
replace labels with ‘non-sensical’ tokens with no cor-
respondence to the semantics of the task, such as ‘foo’,
‘bar’, etc.; and (right) flip the original labels, so that
e.g. ‘negative’ label corresponds to a positive-sentiment
sample. CoAT models can in-context learn the input-
output mapping similarly well with non-sensical labels
and rely on the labels’ semantics significantly less than
previous in-context learners (in grey).

we follow the setup of Wei et al. (2023) and as-
sess reliance on labels’ semantics in a standard
few-shot evaluation (§4.1), with one of the two
modifications; (i) We change the labels to tokens
with irrelevant meaning for the prediction task,
such as ‘Foo’, ‘Bar’ etc. (ii) We shuffle the labels
so that semantically incorrect labels are assigned
in the demonstrations, but the input-label mapping
remains consistent. In both settings, the task’s func-
tional relation can still be recovered from demon-
strations, but the sole reliance on semantics will
either not help or will mislead the model.

In this setting, we evaluate three model types:
(i) CoAT-trained models, (ii) models with uncon-
trolled data construction (Tk-random & previous
work), and (iii) models with uncontrolled data con-
struction, but fine-tuned only on a natural QA
dataset (denoted Tk-QA). We perform the evalua-
tion over 8 SuperGLUE tasks with discrete labels.

Results Figure 4 shows the results. Evaluation
with non-sensical labels (left) reveals that all mod-
els pre-trained on a synthetic TeaBReaC dataset
(Tk-random, and Tk-CoAT) are more robust to
the labels’ semantics than our natural-language
baseline (Tk-QA). However, a comparison of Tk-
random and Tk-CoAT suggests that Tk-CoAT’s
preference for learning functional relations is a
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Figure 5: Effectiveness of Concept-aware training:
Natural-Instructions: Win rate of models utilising
Concept-aware training (CoAT; §3) and traditional in-
struction tuning (Tk-Random; §4.2) evaluated on (top)
all and (bottom) reasoning tasks of Natural-Instructions
collection. Values indicate the number of tasks where
the referenced model reaches significantly higher accu-
racy than the other. For the similar tasks, the difference
in models’ performance is not statistically significant.

composition of both using a synthetic dataset in
pre-training and CoAT’s data construction.

A comparison to previous models reveals that
all multitask models experience substantially larger
decay in performance than our models. We sus-
pect this feature could be a bias specific to massive
multi-task learning emerging when label seman-
tics can explain a large portion of training data.
This result is consistent with Wei et al. (2023), but
contrary to their conclusions, we show that ICL
robust to semantic distractions does not emerge
exclusively with very large (≥ 100B) model scale.

Nevertheless, we note that the smaller CoAT
model still relies on labels’ semantics when rec-
ognizable (Flipped labels; Fig. 4 right), less than
previous models, but comparable to our baselines.

4.6 Practical effectiveness of concept-aware
in-context learners (RQ3)

Finally, we assess the practical quality of concept-
aware ICL on previously unseen tasks in a sim-
ulated low-resource application with only three
randomly-chosen demonstrations. We evaluate on
samples from two collections of tasks: (i) Super-
GLUE (Wang et al., 2019) consisting of 10 tasks
requiring a variety of reasoning skills, and (ii) a
test split of Natural-Instructions (Wang et al., 2022)
from which we pick 60 extractive tasks. For Super-
GLUE tasks, we verbalize both the demonstrations
and predicted sample using all available templates
within PromptSource library (Bach et al., 2022)
and report results for the best-performing template
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AxG Ax-b WSC CB RTE WiC ReCoRD BoolQ COPA MultiRC
Tk-random-1B 49.4±5.2 43.6±4.8 52.7±5.1 21.8±3.9 29.3±4.6 18.0±4.0 15.3±3.8 34.0±5.0 74.7±3.4 5.1±2.4

Tk-random-3B 50.2±5.4 57.5±4.8 52.0±5.5 47.8±5.1 48.9±4.8 50.1±4.4 16.3±7.3 62.8±4.6 75.5±2.8 2.1±1.5

Tk-info-1B 50.0±4.2 42.6±5.7 52.0±4.3 47.2±3.9 49.2±4.8 53.2±4.5 15.5±4.0 19.6±2.3 61.5±2.3 3.2±1.2

Tk-info-3B 50.8±4.6 57.2±4.9 53.5±4.8 47.3±5.4 54.7±4.9 53.6±4.7 22.6±4.5 64.4±4.8 76.3±3.0 2.7±2.1

Tk-CoAT-1B 50.4±5.3 52.7±4.6 53.6±5.2 46.9±4.9 53.7±4.9 53.5±5.3 17.0±3.5 63.8±5.4 76.1±3.2 11.4±2.6

Tk-CoAT-3B 57.9±4.9 57.2±4.8 53.6±4.5 60.4±4.8 52.0±5.4 56.9±5.0 23.1±3.8 63.6±4.3 81.3±3.3 56.9±3.6

Table 1: Effectiveness of concept-aware training: SuperGLUE: ROUGE-L scores of ICL models evaluated in
few-shot setting on SuperGLUE tasks (Wang et al., 2019), trained using (i) random demonstrations sampling used
in previous work, (ii) informative demonstrations sampling (§4.2) and (iii) informative+non-trivial sampling (CoAT;
§3). Underlined are the best results per each task and model size. See Table 5 for a comparison to previous models.

for each model. For Natural-Instructions tasks,
we prefix the demonstrations with the instruction
provided with each task. To maximise evaluation
reliability over all models, we analyse the error
cases and choose to report the results in ROUGE-L
for SuperGLUE, and in a standard accuracy for
Natural-Instructions. We specify the metrics se-
lection analysis and other evaluation details in Ap-
pendix B, with prompt examples in Table 4.

As a primary reference point, we again compare
the results of CoAT-trained models to Tk-random,
where we can make sure that all other training con-
figurations except for the data construction method
are identical. Further, we compare to Tk-info (with-
out Non-triviality condition; §4.2) to also evaluate
the importance of the non-triviality condition. Fi-
nally, to provide additional context to our results,
we also compare the performance of CoAT-trained
models to previous in-context learners (§4.3).

Results Figure 5 compares the accuracy of CoAT-
trained models to our baselines: (i) without sys-
tematic demonstrations selection (Tk-Random) and
(ii) without the non-triviality condition (Tk-Info),
over 60 tasks of NaturalInstructions collection. In
comparison to Tk-Random, CoAT models reach
significantly higher accuracy on 41 and 45 of 60
tasks, with comparable performance on a majority
(13 and 14) of other tasks. The difference is fur-
ther magnified on reasoning tasks, which we argue
might better evaluate models’ ability to in-context
learn a functional relation of the new task. A com-
parison of Tk-Info with Tk-Random shows that the
performance on reasoning tasks is mainly fostered
by the CoAT’s informativeness condition, but in
a full task collection, Tk-CoAT still outperforms
Tk-Info in 19 out of 60 tasks. Evaluations on other
task segments can be found in Appendix C.2.

In the evaluation over the tasks of SuperGLUE
collection (Table 1), we additionally report the
specific values of ROUGE-L that our baselines

and CoAT models achieve. With a single excep-
tion, models utilising a concept-based selection
of demonstrations (Tk-CoAT and Tk-Info) consis-
tently reach higher scores than Tk-Random. Our
analyses of models’ predictions reveal that in 7 out
of 20 evaluations, Tk-Randommodels fail to follow
the task’s instruction, consequentially responding
out of valid label space. Tk-CoAT is shown to
mitigate this issue in all cases except for a smaller
CoAT-trained model on MultiRC. A comparison
of Tk-CoAT with Tk-Info shows that non-triviality
condition is more substantial for a smaller model,
but the models of both sizes benefit similarly from
the concept-sharing selection of demonstrations.

Comparison to multitask learners Figure 6
contextualizes the performance of CoAT models
trained on two datasets of a single (QA) task with
existing instructional models trained on massive
mixtures of 35–1,836 tasks. Over all the NI tasks
(Fig. 6; top), CoAT models outperform multitask
learners on a majority of tasks in 3 of 6 compe-
titions. CoAT models are outperformed by Flan
models but perform at least similarly for the major-
ity of the tasks in 5 out of 6 competitions. The eval-
uation on reasoning tasks (Fig. 6; middle) supports
our hypothesis that CoAT particularly promotes im-
provements in in-context learning of new reasoning
abilities, winning on reasoning tasks over Flan and
Tk-Instruct in a comparable number of cases than
the opponents.

Finally, we look at a few tasks with unseen la-
bels for both Tk-Instruct and Flan models (Fig. 6;
bottom) where multitask learners can not rely on
shortcuts based on unseen tasks’ labels. Here, the
results of competition between CoAT with Flan
models turns over, with CoAT models perform-
ing significantly better on 4 out of 6 tasks. While
this sole segment is not big enough for robust con-
clusions, the results further support our claim that
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Figure 6: Performance comparison to previous work:
Natural-Instructions collection: Win rate of CoAT
models trained using two (2) tasks and previous in-
context learners trained on mixtures of 35 (T0), 1,616
(Tk-Instruct) and 1,836 tasks (Tk-Flan). Values denote
the number of tasks where the model reaches signifi-
cantly better accuracy. Evaluations over (top) all tasks,
(middle) reasoning tasks, (bottom) tasks with labels not
present in the training mix of Tk-Instruct and Tk-Flan.

concept-based ICL is more robust to semantic dis-
tractions (RQ2).

Table 5 in Appendix C details models’ scores
on SuperGLUE tasks, providing further evidence
on overall comparability of CoAT models to mul-
titask learners. For instance, a comparison with
Tk-Instruct reveals that CoAT’s 1B and 3B mod-
els reach higher absolute scores on 3 and 5 out of
the 7 Tk-Instruct’s unseen tasks.

5 Conclusion

Inspired by data-centric theories on emergence of
in-context learning, we propose and implement a
Concept-aware Training framework for construct-
ing training scenarios that challenge language mod-
els to learn to utilise latent concepts from in-context
prompts. We show that language models can be
trained to benefit from unseen concepts (RQ1),
and that such ICL is more robust in learning func-
tional relations of a new task from demonstrations
(RQ2). Finally, in extrinsic evaluation over 70
tasks, we demonstrate the practical efficiency of
concept-dependent training data, with CoAT mod-

els bringing significant improvements on 41 and
45 out of 60 Natural-Instructions tasks, or 6 and
5 of 10 SuperGLUE tasks (RQ3), while reaching
a performance comparable to multitask learning
requiring magnitudes of more data.

More broadly, our work pioneers an alternative
direction for scaling the quality of in-context learn-
ing to the previously explored model and data scale
axes. We wish towards inspire future work to a
more proactive approach to refining training data
properties so that fitting such data necessitates the
emergence of the specific, robust abilities of the
models, such as the concept-learning ability.

Specifically, future work can build upon our
findings in researching ways to upscale concept-
dependent data in unsupervised settings, allowing
for pre-training more robust language models with
a fraction of data and computing budget.

Limitations

Although our main objective is to assess the effi-
ciency of concept-aware training, we acknowledge
the limitations of our comparison to the previous
work, where several aspects convolute the represen-
tative comparison of different in-context learners:
(i) each of the multitask learners was trained on a
different, yet massive set of tasks, making it dif-
ficult to find a broader collection that is new for
multiple models; For this purpose, we surveyed
three standard collections used for few-shot eval-
uation: CLUES (Mukherjee et al., 2021), RAFT
(Alex et al., 2021) and FLEX (Bragg et al., 2021),
but found in total only three tasks unseen by the
multitask learners of previous work, all of the same
type (classification). Therefore, in our evaluations,
we use (a) Tk-Instruct’s own evaluation set and (b)
SuperGLUE, which significantly overlaps with the
training tasks of previous work. (ii) many aspects
make it “easier” for the model to improve, includ-
ing the domain of labels or prompt format matching
the training distribution (relevant to Tk-Instruct
and Flan evaluated on Natural-Instructions).

Another aspect that we neglect in our experi-
ments in favour of more in-depth analyses is the
impact of pretraining projected into the properties
of the foundation model that we use. We pick T5 as
a base model to maximise comparability with pre-
vious work. While we do not identify any concrete
reason to assume that CoAT would perform worse
with other base models, one should note that our
results do not provide any evidence in this respect.
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Finally, we note that the applicability of CoAT
is conditioned by the availability of the annotated
concepts C in the training datasets, which might
be difficult to obtain for natural-language datasets.
Our implementation circumvents this issue by us-
ing a synthetically curated dataset. Hence, we
simultaneously show that concept-aware abilities
can also be obtained in the restrictive settings of
synthetic-dataset pre-training, where we note that
the volume and variability of the synthetic dataset
can be scaled further much easier than the natural
dataset(s) (Trivedi et al., 2022). Nevertheless, our
experiments do not provide any empirical evidence
for answering to what extent could further exten-
sion of synthetically-generated datasets, possibly
covering even more complex concepts, scale to
further performance gains.

Ethical Considerations & Broader Impact

The primary motivation of our work is to minimise
the computing demands for the creation of accurate
in-context learners by deepening our understand-
ing of the covariates of the resulting quality. We
believe that our presented method, as well as the
future data-efficient methods improving our under-
standing of in-context learning, will enable the de-
mocratization of the creation of robust and accurate
in-context learning models for both research and
industry.

Finally, we note that data-efficient methods for
training ICLs (as opposed to multitask training)
might open possibilities for creating more accu-
rate ICLs specialized to languages outside English,
where training datasets are scarce. We look forward
for the future work that will explore the potential of
data-efficient instruction tuning specifically on the
target-language datasets, creating in-context learn-
ers specially tailored for target languages outside
English.
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A Training details

Table 2 shows a full training example for each stage
of training: (1) TeaBReaC with synthetic contexts
(top) and (2) AdversarialQA with natural-language
contexts (bottom). In all our training setups, we
fine-tune all model parameters for teacher-forced
next-token prediction, conventionally used in train-
ing sequence-to-sequence language models. In
the two training stages (TeaBReaC and Adversar-
ialQA), we use a learning rate of 5e−5 and 2e−5,
respectively. Other parameters remain identical be-
tween stages: effective batch size = 30 samples
and early stopping with the patience of 2,000 up-
dates based on evaluation loss on a standardized
validation set of each dataset. We do not report the
absolute values of evaluation loss as these are not
directly comparable. In CoAT training, we use a
random subsample of 20 informative examples as
a candidate set for a selection of non-trivial demon-
strations.

Other parameters of training configuration de-
fault to Training Arguments of Transformers library
(Wolf et al., 2020) in version 4.19.1. For readability,
we implement the relatively complex demonstra-
tions’ selection as a new objective of the Adaptor
library (Štefánik et al., 2022). The picked demon-
strations are encoded into a format consistent with
the evaluation.

B Evaluation details

Tables 3 shows an example of an instruction for
each evaluation that we perform within the concept-
learning evaluation. For readability, we only
shorten the examples of HotpotQA, where we omit
some sources of data available for the model. In
the case of TeaBReaC not shown in this table, the
evaluation prompt format is the same as in training
(Table 2), whereas we make sure that the reason-
ing chains of evaluation samples differ from the
training.

SuperGLUE Evaluation format As mentioned
in Section 4.1, we verbalize both the demonstra-
tions and predicted sample using all available tem-
plates of PromptSource library (Bach et al., 2022),
obtaining prompts for each demonstration prompt
xi and its label yi in a free-text form. The prompts
commonly contain the full-text match of the possi-
ble labels as options for the model.

Following the example of Wang et al. (2022),
we additionally prepend the demonstrations and

labels with keywords “Input” and “Prediction” and
separate demonstrations with new lines. Thus, the
resulting input→output pairs in evaluation take this
format:

“Input: x1 Prediction: y1 <newline>
Input: x2 Prediction: y2 <newline>
Input: x3 Prediction: y3 <newline>
Input: xpred Prediction: ” → “ypred”

where demonstrations (xi, yi) are picked randomly
but consistently between all evaluated models.

Natural-Instructions Evaluation format In the
evaluations on Natural-Instructions, we closely fol-
low the example of Wang et al. (2022) and addi-
tionally prepend the sequence of demonstrations
with an instruction provided for each task:

“<task instruction> <newline>
Input: x1 Prediction: y1 <newline>
Input: x2 Prediction: y2 <newline>
Input: x3 Prediction: y3 <newline>
Input: xpred Prediction: ” → “ypred”

where the <task instruction> contains the instruc-
tion as would be given to the annotators of the eval-
uation task, usually spanning between 3–6 longer
sentences. The demonstrations are again picked
randomly but consistently between models.

Examples of evaluation prompts for both Super-
GLUE and Natural-Instructions can be found in
Table 4.

Evaluation metrics selection Previous work
training in-context few-shot learners is not consis-
tent in the use of evaluation metrics, and the choice
usually boils down to either using the exact-match
accuracy (Sanh et al., 2022; Chung et al., 2022) or
ROUGE-L of Lin (2004) (Wang et al., 2022), eval-
uating the longest common sequence of tokens. We
investigate these two options with the aim of not
penalising the models for minor discrepancies in
the output format (in the accuracy case) but avoid-
ing false positive evaluations in predictions that are
obviously incorrect (in the ROUGE case).

Investigation of the models’ predictions reveals
that the selection of the metric makes a large dif-
ference only in the case of Tk-Instruct models,
where the situation differs between SuperGLUE
and Natural-Instructions, likely due to the charac-
ter of the evaluation prompts.

(1) On SuperGlue, e.g. on MultiRC task, for the
evaluation prompt: "Does answer sound like a valid
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Dataset Concept Training instruction Target

TeaBReaC Exactly-matching
reasoning chain
["select"→
"maximum"→
"list"→
"maximum"→
"sum"]

“Input: how many points did the Monte Vesuvio" score in their two highest scoring matches? Context:
scores of games of Pentagon". 99 scores of games of monte vesuvio". 67 scores of games of Pentagon".
6 scores of games of monte vesuvio". 76 scores of games of Pentagon". 37 scores of games of monte
vesuvio". 56 scores of games of Pentagon". 8 scores of games of Pentagon". 90 scores of games of
Pentagon". 20 Answer: Prediction: 143 [2 more examples] Input: how many points did the Bell 212
score in their two highest scoring games? Context: scores of games of bell 212. 90 scores of games of
S-50. 54 scores of games of bell 212. 41 scores of games of bell 212. 36 scores of games of S-50. 23
scores of games of bell 212. 6 scores of games of bell 212. 2 scores of games of S-50. Prediction: ”

“131”

AdversarialQA Matching
question-word
“Who”

“Input: Who was the Speaker in 1909? Context: Second, Democrats have always elevated their
minority floor leader to the speakership upon reclaiming majority status. Republicans have not always
followed this leadership succession pattern. In 1919, for instance, Republicans bypassed James R. Mann,
R-IL, who had been minority leader for eight years, and elected Frederick Gillett, R-MA, to be Speaker.
Mann "had angered many Republicans by objecting to their private bills on the floor;" also he was a
protégé of autocratic Speaker Joseph Cannon, R-IL (1903–1911), and many Members "suspected that
he would try to re-centralize power in his hands if elected Speaker." More recently, although Robert H.
Michel was the Minority Leader in 1994 when the Republicans regained control of the House in the
1994 midterm elections, he had already announced his retirement and had little or no involvement in
the campaign, including the Contract with America which was unveiled six weeks before voting day.
Prediction: Joseph Cannon, R-IL. [2 more examples] Input: Who created the legal system still in use
in Florida? Context: As a result of these initiatives northeastern Florida prospered economically in a
way it never did under Spanish rule. Furthermore, the British governors were directed to call general
assemblies as soon as possible in order to make laws for the Floridas and in the meantime they were,
with the advice of councils, to establish courts. This would be the first introduction of much of the
English-derived legal system which Florida still has today including trial by jury, habeas corpus and
county-based government. Neither East Florida nor West Florida would send any representatives to
Philadelphia to draft the Declaration of Independence. Florida would remain a Loyalist stronghold for
the duration of the American Revolution. Prediction: ”

“British”

Table 2: Examples of training instructions with expected outputs, for both our datasets applied in training. Note
that the shared reasoning concept is not a part of the model’s input.

answer to the question: question", Tk-Instruct-3B
in our evaluation predicts "Yes." or "Yes it is" (in-
stead of "Yes"), or "No not at all" (instead of "No"),
likely due to the resemblance with the format of
training outputs. As we do not wish to penalize
these cases, we use ROUGE-L over all SuperGLUE
evaluations.

(2) In Natural-Instructions evaluation, we find
that Tk-Instruct often predicts longer extracts
from the input prompt. This is problematic with
ROUGE-L in the cases where the extract contains
all possible answers, such as in the Tk-Instruct-
1B’s prediction: “yes or no” to the prompt whose
instruction ends with “Please answer in the form
of yes or no.”. As we encounter this behaviour in a
large portion of Natural-Instructions tasks, we eval-
uate all models on Natural-Instructions for exact-
match accuracy after the normalization of the cas-
ing and the removal of non-alphabetic symbols.
To make sure that the model is presented with the
exact-matching answer option, we exclude from
evaluation the tasks where the correct answer is not
presented in the task’s instruction. The reference
to the list of Natural-Instructions evaluation tasks
can be found in Appendix C.4.

For the reported evaluations of the Reasoning
tasks, we pick from the list of evaluation tasks the

GLUE-Diag
(reasoning logic)

OpenBookQA
(operations)

HotpotQA
(relations)

WorldTree
(facts)
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Figure 7: In-context learning of natural concepts
for each dataset: While CoAT improves the ability to
benefit from reasoning concepts on average (Fig. 3),
per-concept evaluation reveals that this ability is not
consistently robust.

ones concerned with the reasoning task by simply
matching the tasks with ‘reasoning’ in their name,
resulting in the collection of 20 evaluation tasks.

C Further evaluations

C.1 SuperGLUE evaluations of other models

Table 5 compares the performance over the tasks
of SuperGLUE collection (Wang et al., 2019) for
CoAT models trained on two tasks of the same
(QA) type with in-context learners trained on 35–
1,836 tasks of the comparable size. Despite the
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Dataset Concept Model instruction Expected
output

GLUE NLI Diag. Double negation “Input: I will say that she stole my money. Question: I won’t say that she didn’t steal
my money. True, False, or Neither? Prediction: Neither Input: I won’t say that she
didn’t steal my money. Question: I will say that she stole my money. True, False, or
Neither? Prediction: Neither Input: A rabbi is at this wedding, standing right there
standing behind that tree. Question: It’s not the case that there is no rabbi at this wedding;
he is right there standing behind that tree. True, False, or Neither? Prediction: True
Input: Even after now finding out that it’s animal feed, I won’t ever stop being addicted
to Flamin’ Hot Cheetos. Question: Even after now finding out that it’s animal feed, I will
never stop being addicted to Flamin’ Hot Cheetos. True, False, or Neither? Prediction: ”

“True”

OpenBookQA Shared facts: {"Earth is
greater in mass than
Mars", "gravity means
gravitational pull;
gravitational force;
gravitational attraction",
"as the force of gravity
increases, the weight of
objects will increase."}

“Facts: a decrease is a kind of change. increase means more. as mass of a planet; of a
celestial body increases, the force of gravity on that planet will increase. to change means
to become different. an animal is a kind of living thing. the gravitational force of a planet;
of a celestial object does not change the mass of an object on that planet or celestial body.
an increase is the opposite of a decrease. an astronaut is a kind of human. massive means
great in mass. the Mars Rover is a kind of vehicle. a living thing is a kind of object.
Earth is greater in mass than Mars. gravity means gravitational pull; gravitational energy;
gravitational force; gravitational attraction. greater means higher; more in value. stay the
same means not changing. a moon is a kind of celestial object; body. an increase is a
kind of change. Earth is a kind of planet. as the force of gravity increases, the weight
of objects will increase. less is similar to decrease. Mars is a kind of planet. Input: An
object has a weight of 10 kg on the surface of Earth. If the same object were transported
to the surface of Mars, the object would have a weight of 3.8 kg. Which best explains
why the weight of the object changed when transported from Earth to Mars? (A) The
density of the object is greater on Earth than it is on Mars. (B) The volume of the object
is greater on Earth than it is on Mars. (C) Gravitational force is greater on Earth than it
is on Mars. (D) Atmospheric pressure is less on Earth than it is on Mars. Prediction:
Gravitational force is greater on Earth than it is on Mars [two more examples] Input:
When astronauts walked on the Moon, they used weighted boots to help them walk due
to the lower gravitational pull. What difference between Earth and the Moon accounts for
the difference in gravity? (A) density (B) diameter (C) mass (D) volume. Prediction: ”

“mass”

HotpotQA Shared relation in
reasoning: “X is a genus”

“Input: Are Broughtonia and Laeliocattleya both orchids? Hint: use the information
from the paragraphs below to answer the question. Otaara, abbreviated Otr. in the
horticultural trade, is an intergeneric hybrid of orchids, with "Brassavola", "Broughtonia",
"Cattleya", "Laelia" and "Sophronitis" as parent genera. Paracaleana commonly known
as duck orchids, is a genus of flowering plants in the orchid family, Orchidaceae that
is found in Australia and New Zealand. Duck orchids have a single leaf and one or a
few, dull-coloured, inconspicuous flowers. (...) Prediction: yes [two more examples]
Input: Are both Parodia and Thalictrum flowering plants? Hint: use the information
from the paragraphs below to answer the question. - Thalictrum ( ) is a genus of 120-200
species of herbaceous perennial flowering plants in the Ranunculaceae (buttercup) family
native mostly to temperate regions. Meadow-rue is a common name for plants in this
genus. - Parodia is a genus of flowering plants in the cactus family Cactaceae, native to
the uplands of Argentina, Peru, Bolivia, Brazil, Colombia and Uruguay. This genus has
about 50 species, many of which have been transferred from "Eriocactus", "Notocactus"
and "Wigginsia". They range from small globose plants to 1 m tall columnar cacti. All are
deeply ribbed and spiny, with single flowers at or near the crown. Some species produce
offsets at the base. They are popular in cultivation, but must be grown indoors where
temperatures fall below 10 degrees. Prediction: ”

“yes”

WorldTree Relation of objects:
"generate"

“Input: Despite what some think, instead around themselves, our planet spins around...
Choices: pluto, the moon, the milky way, the sun. Prediction: the sun Input: In a
single year, a giant globe will do this to a giant star. Choices: fight, burn, circle, explode.
Prediction: circle Input: The earth revolves around... Choices: a heat source, the Milky
Way, a neighboring planet, the moon. Prediction: a heat source Input: the central object
of our solar system is also... Choices: the smallest object in the solar system, the coldest
heavenly body, the farthest star from us, the closest star from us. Prediction: ”

“the closest
star from
us”

Table 3: Examples of evaluation instructions with expected outputs, for each dataset used in evaluation of in-
context learning of new concepts (RQ1). Note that the demonstrations within the instructions share the annotated
Concept with the following predicted sample.
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Dataset Concept Model instruction Expected
output

SuperGLUE - “Input: The soldiers were concealed in the brush. Select the most plausible cause: - They were armed
with rifles. - They wore camouflage uniforms. Prediction: They wore camouflage uniforms. Input: The
print on the brochure was tiny. Select the most plausible effect: - The man put his glasses on. - The man
retrieved a pen from his pocket. Prediction: The man put his glasses on. Input: I excused myself from
the group. Select the most plausible cause: - I turned off my phone. - My phone rang. Prediction: My
phone rang. Input: My body cast a shadow over the grass. Select the most plausible cause: - The sun
was rising. - The grass was cut. Prediction:”

“The sun
was rising.”

Natural-Instructions - “Indicate with ‘Yes‘ if the given question involves the provided reasoning ‘Category‘. Indicate with ‘No‘,
otherwise. We define five categories of temporal reasoning. First: "event duration" which is defined as
the understanding of how long events last. For example, "brushing teeth", usually takes few minutes.
Second: "transient v. stationary" events. This category is based on the understanding of whether an event
will change over time or not. For example, the sentence "he was born in the U.S." contains a stationary
event since it will last forever; however, "he is hungry" contains a transient event since it will remain
true for a short period of time. Third: "event ordering" which is the understanding of how events are
usually ordered in nature. For example, "earning money" usually comes before "spending money". The
fourth one is "absolute timepoint". This category deals with the understanding of when events usually
happen. For example, "going to school" usually happens during the day (not at 2 A.M). The last category
is "frequency" which refers to how often an event is likely to be repeated. For example, "taking showers"
typically occurs 5 times a week, "going to Saturday market" usually happens every few weeks/months,
etc. Input: Sentence: Jack played basketball after school, after which he was very tired. Question: How
long did Jack play basketball? Category: Event Duration. Prediction: Yes Input: Sentence: He was
born in China, so he went to the Embassy to apply for a U.S. Visa. Question: How often does he apply
a Visa? Category: Frequency. Prediction: Yes Input: Sentence: Jack played basketball after school,
after which he was very tired. Question: Was Jack still tired the next day? Category: Event Duration.
Prediction: No Input: Sentence: It refers to a woman who is dangerously attractive, and lures men
to their downfall with her sexual attractiveness. Question: How long does it take to lure men to their
downfall? Category: Event Duration. Prediction: ”

“Yes”

Table 4: Examples of evaluation instructions with expected outputs, for selected tasks of SuperGLUE and Natural-
Instructions (RQ3). Displayed samples are from CoPA and MCTato Temporal Reasoning tasks, respectively. Note
that in these evaluations, demonstrations are picked randomly, regardless of their concepts.

significantly smaller volumes and complexity of
the training dataset, CoAT-trained models show
competitive results to similar-size or even larger in-
context learners of previous work. For instance, the
1-billion-parameter Tk-CoAT performs better than
the 3-billion T0 in 3 cases (Ax-b, RTE, COPA) and
comparably in another 3 cases (WSC, CB, WiC).
In comparison with Tk-instruct of the same size,
Tk-CoAT-1B outperforms Tk-instruct in 3 out of
7 unseen tasks (WSC, CB, ReCoRD), and reaches
similar scores in most other cases, even in 2 out of
3 tasks that were included in Tk-instruct’s training
mix. Similarly, larger Tk-CoAT-3B outperforms
Tk-instruct on 4 of 7 new tasks (Ax-b, WSC, WiC,
ReCoRD), but with larger gaps on the others.

C.2 Natural-Instructions: other task types

Figure 8 evaluates the impact of CoAT’s mecha-
nism on the quality of in-context learning sepa-
rately on the English and non-English tasks. The
figure reveals that CoAT works particularly well
for non-English tasks. Our analyses found this is
mainly due to the low performance of the baseline
on the non-English tasks. We speculate that this
can be a consequence of the higher reliance of the

baseline on token semantics (Section 4.6, RQ2);
As our models are fine-tuned on an English-only
QA model, such learnt reliance is not applicable in
multilingual settings.

Figure 9 compares the performance of CoAT
models against the models of previous work, sep-
arately on the English and non-English tasks. We
can see that CoAT is slightly better at the mul-
tilingual portion of Natural-Instructions, but the
difference is not principal.

C.3 Per-concept evaluations
Figure 7 evaluates the performance gains of the
baseline models (§4.2) and CoAT-trained models
individually per each of the concepts of the natural
datasets. While the CoAT models are able to bene-
fit from concepts the largest in the relative change
of quality, they are also not consistent in the abil-
ity to benefit from all the concepts. However, as
discussed in Section 4.4, this does not imply that
CoAT is unable to utilize these concepts.

C.4 Evaluation tasks and other configurations
SuperGLUE (Wang et al., 2019) consists of the
following tasks (as ordered in our Results, §4.6):
Winogender Schema Diagnostics (AxG) (Rudinger
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# train tasks AxG Ax-b WSC CB RTE WiC ReCoRD BoolQ COPA MultiRC
Flan-1B 1,836 84.8±3.9 21.9±4.0 70.7±4.8 92.5±2.8* 92.1±3.0* 69.9±5.1* 38.9±5.2* 92.3±2.7* 97.8±1.5* 88.3±3.2*

Flan-3B 1,836 95.3±3.7 22.0±8.0 80.2±9.2 92.7±6.7* 96.0±4.0* 79.7±8.3* 62.2±9.7* 92.1±5.1* 99.3±1.6* 90.4±6.4*

Tk-Instruct-1B 1,616 51.9±4.9 57.2±5.8 49.8±4.9 46.0±5.5 55.5±4.8 53.5±5.3 13.1±3.7 63.4±3.4* 76.9±3.2* 62.2±5.1*

Tk-Instruct-3B 1,616 53.5±4.7 49.9±4.9 51.2±4.9 66.3±4.6 62.7±4.6 50.4±4.8 18.6±4.2 68.8±4.4* 73.8±3.5* 59.9±4.9*

T0-3B 35 65.0±4.5 36.1±4.6 53.5±5.2 48.0±5.4 51.3±5.2 54.0±5.0 20.5±4.0 60.1±4.9 56.8±3.6 56.2±4.4

Tk-CoAT-1B 2 50.4±5.3 52.7±4.6 53.6±5.2 46.9±4.9 53.7±4.9 53.5±5.3 17.0±3.5 63.8±5.4 76.1±3.2 11.4±2.6

Tk-CoAT-3B 2 57.9±4.9 57.2±4.8 53.6±4.5 60.4±4.8 52.0±5.4 56.9±5.0 23.1±3.8 63.6±4.3 81.3±3.3 56.9±3.6

Table 5: ICL performance: comparison to previous ICL models ROUGE-L of CoAT-trained ICL models and
models of comparable size in previous work. Evaluation setup is consistent with Table 1. In cases marked with ∗,
the task was used in the model’s training; Underlined are the best results per unseen task and model size.
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Figure 8: Impact of Concept-aware training per dif-
ferent language settings: Pairwise comparison of
models trained using selected training configurations
(§4.2) on (top) Non-English tasks and (bottom) English-
only tasks of Natural-Instructions collection. Values in
green and red bars indicate a number of tasks where the
referenced model reaches significantly higher accuracy
than the other. For the tasks denoted as similar, the
difference in performance falls within the evaluation’s
confidence intervals.

et al., 2018), Broadcoverage Diagnostics (CB),
The Winograd Schema Challenge, Commitment-
Bank (CB), Recognizing Textual Entailment (RTE),
ContextWords in Context (WiC) (Pilehvar and
Camacho-Collados, 2019), Reading Comprehen-
sion with Commonsense Reasoning (ReCoRD)
(Zhang et al., 2018), BoolQ (Clark et al., 2019),
Choice of Plausible Alternatives (COPA), Multi-
Sentence Reading Comprehension (MultiRC).

Natural-Instructions consists of a larger mixture
of tasks, which we do not enumerate here to main-
tain readability; the full list of evaluation tasks can
be found in the original work of Wang et al. (2022)
in Figures 11 and 12.

To maintain comparability of evaluations among
models, we deterministically fix the demonstration
selection procedure so that only the full prediction
prompts for all the models are the same. In the
analyses comparing the differences in performance
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Figure 9: Comparison to previous work per dif-
ferent language settings: Pairwise comparison of
CoAT models vs. the models of previous work on (top)
Non-English tasks and (bottom) English-only tasks of
Natural-Instructions collection. Values denote the num-
ber of tasks where the model reaches significantly better
accuracy. For the tasks denoted as similar, the difference
in performance falls within the evaluation’s confidence
intervals.

(§4.4; RQ1+2), we fixed the prediction samples
(xpred) between different demonstrations’ sampling
strategies to avoid perplexing our comparison with
possible data selection biases. Further details can
be found in the referenced implementation.

D Computational Requirements

We run both training and evaluation experiments
on a machine with dedicated single NVIDIA A100-
SXM-80GB, 40 GB of RAM and a single CPU
core. Hence, all our reproduction scripts can run
on this or a similar configuration. Two stages of
training in total take at most 6,600 updates and at
most 117 h of training for Tk-CoAT to converge.

12352


