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Abstract

Automated audio captioning (AAC) aims to
generate descriptions based on audio input,
attracting exploration of emerging audio lan-
guage models (ALMs). However, current
evaluation metrics only provide a single score
to assess the overall quality of captions without
characterizing the nuanced difference by sys-
tematically going through an evaluation check-
list. To this end, we propose the explainable
and multi-factor audio captioning evaluation
(X-ACE) paradigm. X-ACE identifies four
main factors that constitute the majority of
audio features, specifically sound event, source,
attribute and relation. To assess a given caption
from an ALM, it is firstly transformed into
an audio graph, where each node denotes an
entity in the caption and corresponds to a
factor. On the one hand, graph matching is
conducted from part to whole for a holistic
assessment. On the other hand, the nodes
contained within each factor are aggregated
to measure the factor-level performance. The
pros and cons of an ALM can be explicitly and
clearly demonstrated through X-ACE, pointing
out the direction for further improvements.
Experiments show that X-ACE! exhibits better
correlation with human perception and can
detect mismatches sensitively.

1 Introduction

Recognizing the pivotal role of auditory perception
in human cognition, there is a trend among multi-
modal large language models (MLLMs) (Liu et al.,
2023a; Dai et al., 2023) to broaden their scope into
the audio-language domain. It has given rise to
audio language models (ALMs) (Chu et al., 2023;
Tang et al., 2023; Huang et al., 2023b), with a
notable emphasis on automated audio captioning
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! The open-source dataset and code are available on https:
//github.com/wanggian621/X-ACE
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Figure 1: Different types of the errors in AAC task of
ALMs. On the right are the quality scores from the
different methods of metrics.

(AAC) for generating comprehensive descriptions
of provided audio clips.

With the advancement of ALMs, there is an
urgent need for a comprehensive and fine-grained
assessment of their generated captions. Since
current ALMs generally meet the requirements
for depicting salient features of audio, nuanced
yet crucial features are still ignored or misde-
scribed (Takeuchi et al., 2023). As depicted
in Figure 1, captions inferred by ALMs have
hallucinated in sound activities that do not exist
("rustling"), or confused the order of sounds
(between "man speak" and "spray hiss") (Wu et al.,
2023; Huang et al.,, 2023a), demonstrating the
significant shortcomings. Metrics used to evaluate
the quality of captions include the conventional
ones such as ROUGE (Lin, 2004), BLEU (Papineni
et al., 2002) and METEOR (Banerjee and Lavie,
2005) on word overlaps, and BERTScore (Zhang
et al., 2020) and Sentence-BERT (Reimers and
Gurevych, 2019) on semantic similarity. However,
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these metrics cannot be used to measure these
shortcomings of existing work, since only a single
score is provided to assess the overall quality
of captions, thus failing to answer the question:
"Where do mistakes commonly occur?

To this end, we explore a comprehensive direc-
tion of building an automatic evaluation paradigm
for audio caption, and propose the explainable and
multi-factor audio captioning evaluation (X-ACE)
paradigm. X-ACE consists of four factors tailored
for audio caption including sound event, source,
attribute and relation, each of which reflects the
quality of caption in terms of a specific perspective,
rather than providing a single score. To explicitly
model the association between these factors, an
audio caption to be assessed is transformed into an
audio graph, where each node denotes an entity in
the audio caption and corresponds to a designed
factor. To calculate the score for each factor, the
nodes from the audio graph corresponding to this
factor are extracted for comparison with the refer-
ence through designed graph matching. In this way,
we can assess the quality of a caption from multiple
perspectives, and enhance the interpretability of the
evaluation process.

To facilitate the proposed evaluation paradigm
and address the granularity deficiency in the current
test dataset, this paper presents a novel dataset for
assessment. As for the conventional dataset Audio-
Caps (Kim et al., 2019) widely used in assessment,
each caption includes much less information than
the audio itself, which leads to omissions of audio
characteristics. To tackle this, a dataset AudioCaps-
F is constructed based on the AudioCaps, with fine-
grained annotations from domain experts. This
dataset provides specific sound events along with
corresponding sound sources and attributes, rather
than descriptions in sentence form, promising
completeness for further evaluation.

To demonstrate the correlation of the proposed
evaluation paradigm with human judgement, X-
ACE is compared with current automatic evaluation
metrics including Sentence-BERT (Reimers and
Gurevych, 2019), BERTScore (Zhang et al., 2020),
and CIDEr (Vedantam et al., 2015). Experimental
results of pair-wise tests show that X-ACE exhibits
remarkable correlation with human subjective eval-
uation. Furthermore, extensive experiments also
show that X-ACE exhibits better ability to detect
the inconspicuous mismatches of a caption, as well
as better capability of temporal relation reasoning.

Our main contributions can be summarized

as follows: (1) An explainable and multi-factor
evaluation paradigm X-ACE is proposed for audio
captioning, demonstrating better correlation with
human judgments and mismatch detection ability.
(2) A dataset AudioCaps-F with refined annotations
is constructed to facilitate further research in
this field. (3) A comprehensive and empirical
evaluation of existing ALMs based on X-ACE has
been conducted, underscoring and analysing the
problems with current ALMs.

2 Related Work

Audio Captioning Metrics Presently, there are
three types of metrics employed in evaluating
AAC. 1) Word Overlapping Metrics: These include
ROUGE (Lin, 2004), METEOR(Banerjee and
Lavie, 2005), and BLEU (Lin, 2004), which
measure the overlap of n-gram words between
the generated caption and the reference.2) Seman-
tic Similarity Metrics: Metrics like BERTScore
(Zhang et al., 2020; Zhou et al., 2022), Sentence-
BERT (Reimers and Gurevych, 2019) assess the
semantic similarity between captions. 3) Image
Caption Metrics: CIDEr (Vedantam et al., 2015)
focuses on n-grams of TF-IDF (Jones, 2004).
SPICE (Anderson et al., 2016) transforms caption
into a scene graph, and then calculating the graph
F1 score. These metrics only offer a final score,
overlooking crucial yet elementary error.

Aspect-level Evaluations In the domains of vi-
sion and language, evaluation methods now aim to
discern performance across multiple aspects, rather
than providing a single overall score. For image
captioning, some hallucination evaluations for
MLLMs (Li et al., 2023; Zhou et al., 2023) focus on
visible object, AMBER (Wang et al., 2023) compre-
hensively assesses existence, attribute and relation
hallucination. For video captioning, COAHA
(Ullah and Mohanta, 2022) detects object and
action hallucination. FactVC (Liu and Wan, 2023)
classifies factual errors into categories (person,
adjective, etc.). X-EVAL (Liu et al., 2023b)
employs text evaluation on naturalness, coherence
aspects. These methods systematically assess
MLLMs but are inherited from visual or language
concepts, making it hard to translation to the audio
domain. Furthermore, they merely detect non-
existent entities, neglecting the critical omission.

Explainable Evaluations Recent demand for ex-
plainability in evaluation metrics has grown signifi-
cantly. INSTRUCTSCORE (Xu et al., 2023) estab-
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Figure 2: The overview of X-ACE benchmark, which is primarily composed of greedy graph matching and the
cross-modal matching. The blue/yellow/red/gray circular nodes in the audio graph represent sound event, source,

attribute, and relation respectively.

lishes a fine-grained explainable evaluation in nat-
ural language generation (NLG) task. EAPrompt
(Lu et al., 2023), AUTOMQM (Fernandes et al.,
2023) attempt to use error analysis on human-like
translation evaluation. Metrics from VIEScore (Ku
et al., 2023) explain the reason for scoring in image
systhesis evaluation. InfoMetIC (Hu et al., 2023)
reports fine-grained scores with explainable proof
with specific incorrect words or image regions.
However, they overly emphasize pinpointing the
exact issues rather than categorizing them as a
deficiency in a particular aspect. Furthermore,
these identified issues fail to full coverage modal
information, hindering the establishment of a
unified and comprehensive metric.

3 X-ACE

In this section, we commence with defining the
audio factors in Section 3.1, which are key compo-
nents of X-ACE for assessment in Section 3.2.

3.1 Audio Factors

Definition of Audio Factors As depicted in
Figure 1, errors in captions arise from different
perspectives. In this paper, four factors covering
nearly all error issues and audio information are
defined including sound event, source, attribute
and relation. First of all, sound event denotes the

specific sound activity occurring in an audio like
"crying" and "speaking". We have observed that
the most common and vital omission occurs in
sound event. Models tend to describe prominent
sounds while overlooking less significant ones
or background noises. Secondly, source denotes
the object producing the sound. By assessing
this factor, we can detect subtle yet significant
differences when the same event is emitted by dif-
ferent objects. Thirdly, attribute denotes auditory
characteristics of the sound. This factor highlights
nuanced audio features that often overlooked in
descriptions. Last but not least, relation denotes
temporal order between sounds, which is as crucial
as spatial relation in the vision domain. In this
way, four factors complement and interdepend on
each other, collectively forming a comprehensive
description of the audio content.

Definition of Audio Graph Based on audio
factors, a caption is transformed into an audio
graph, akin to scene graph (Johnson et al., 2015;
Schuster et al., 2015) in vision. The graph in the
center of Figure 2 comprises two tiers of nodes
of parent and child nodes. On the one hand, a
parent node is formed by an entity belonging to
sound event, denoted as F; representing the i-th
sound event in an audio, where ¢ = 0, .., I —1and I
denotes the number of sound events in this caption.
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On the other hand, the corresponding child nodes
include source \S; ; and attribute A; ;, representing
the j-th source/attribute of the i-th sound event, and
the child node R; ; on the edge connecting the i-th
event with the k-th event represents the temporal
relation between them.

Factor Annotation To use audio graphs as labels
and further enhance the completeness of references,
a fine-grained dataset AudioCaps-F is constructed
base on AudioCaps, which is widely used in AAC
task. We hired domain experts to meticulously
annotate entities corresponded to three factors
grounded each audio, comprising sound events
and their respective sources and attributes. Audio
was annotated with an average of three annotators
per sample. Subsequently, an automated program
and manual review were employed for checking
and refinement, the output format is shown in
Appendix A. Different from the past practice of
using only a few sentences of human descriptions
as labels, this detailed annotation is the first attempt
on the AAC task, supporting a more comprehensive
and robust evaluation. The occurrence distribution
of different audio factors are depicted in the
Figure 3. The attributes are divided into nine
subcategories for finer assessment on ALMs.

3.2 Evaluation Steps

Overview Our X-ACE pipeline, as illustrated in
Figure 2, to evaluate a given caption inferred by
an ALM, it is firstly decomposed into an audio
graph using a factor extractor, which consists of
an LLM extractor and a relation reasoner. In
the assessment computation phase, the process
diverges is divided into two streams. In one stream,

Schematic Relation Rule
before/after X occurs earlier/later than Y
X Y <> Y occurs later/earlier than X
after/before
and X and Y occur simultaneously
X Y
z Employing the intermediary Z,
X=-Y is deduced through the steps
X Y X=7Z and Z="Y.

Table 1: The types of temporal relations with their rules.

the predicted graph undergoes a greedy matching
with the reference graph. This branch provides
both factor-level and overall graph assessment.
Simultaneously, in the other stream, a cross-modal
similarity is calculated and then integrated with the
graph score to produce a holistic evaluation.

Factor Extraction. To obtain factor nodes in
our audio graph, we concatenate the given caption
with a designed prompt and a template, and feed it
into an LLM extractor. ChatGPT (GPT3.5-Turbo)
serves as the main module for factor extraction.
Furthermore, to consider user cost-effectiveness,
we also offer Llama3-8b2, which is fine-tuned
using output from ChatGPT to achieve the same
function. This process results in the structured
output of all sound events described in the caption,
along with their sources and attributes. The
details of the prompt instructions are provided in
Appendix A.

Subsequently, a relation reasoner module is em-
ployed. It firstly locates sound events and extracts
intermediate temporal relation R;;1 between

Zhttps://github.com/meta-1lama/1llama3
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adjacent events, and then extends the inference to
deduce the relation R; j, between arbitrary events.

To elaborate, we summarize relations into three
before and after

types: X — YV, X+—Y,and X — Y as
depicted in the Table 1. To deduce the relation
R; 1. between the i-th event and the k-th event, the
recursive formula follows the chain reasoning rule
outlined in the last row of Table 1 as:

Rip =G (Rp—1k Rig—1), (1)

R; ;. = <before> represents the i-th event occur-
ring before the k-th event, and

Ny(z,2) <and> € [z,z], & # x,
Gz, ) =<z T =ux,
<unknown> others.

2
Here, & represents a previously inferred relation,
and x represents the current relation between
adjacent events, N, (x, &) outputs the one between
x and & which is not equal to <and>.

Greedy Graph Matching Existing binary match-
ing method (Anderson et al., 2016) compares
predicted and reference graphs as sets of tuples,
scoring each tuple as 1/0, which may overlook
potential candidates. To address this, we propose a
matching method inspired from the greedy search
algorithm, finding the best match candidate node
for each node. We formulate matching probability
P(z) of each node, which involves computing the
maximum similarity between an anchor node x
and the candidate set Y = {yz}fi o at each level of
graph, as illustrated in the following equation:

P(x) = max S(x,y),

ma 0<P@x)<1. @)

Here, S(x,y) represents the similarity between x
and y. When calculating precision, the prediction
node is considered as x, with the reference node as
y. When calculating recall, the roles are reversed.
Contrary to previous methods (Gontier et al.,
2023; Anderson et al., 2016) that treated nodes
equally, here sources, attributes, and relations
are dependent on their respective sound events,
and their significance as child nodes relies on
their parent node. Thus, we define the matching
probability of a child node based on the matching
probability of its parent node, as follows:

P(Cij) = P(Cij, E;) = P(Cy | E;) P(E;), (4)

where E; represents the ¢-th event as a parent node,
and Cj ; (source or attribute) represents its j-th
child node. Notably, C; ; is contained within F;,
leading to P(Ci’j) = P(Ci’j, EZ)

As for the temporal relation between sound
events, the formula is as follows:

P(Rix) = P (Ri, Ei, Ey)
=P (Riy | Ei, Ey)P (E;) P (E)),
(%)

where R; ;, denotes the temporal relation between
the i-th event and the k-th event, and P(FE;) and
P(E}) are independent from each other.

Subsequently, the average matching probabilities
S tqc for each factor are summarized, with E, A,
S and R denoting the factor sets of sound events,
attributes, sources, and relations, respectively:

Stac = Avg [P(fac)], fac € [E, A, S, R]. (6)

If the input variable x in P(x) represents a
hypothesis/reference, approximate precision pfac
/recall ]%fac can replace score Sy, above. This
yields the factor-level F-value F,., which serves
as the score for the E/S/A/R-ACE metrics.

Lastly, the overall graph score Sg is calculated
leveraging the macro-Precision/Recall as follows:

1 A
Pracro = Z Z PfaCa (7)
fac
1 A
Rinacro = Z Z Rfaca (8)
fac
2 - Prgero - R
Se = Fronero = macro macro 9)

Pmacro —"_ Rmacro

Cross-modal Similarity This module is em-
ployed to identify predictions that may corre-
spond to a part of the audio but are not explicitly
mentioned in the text. The text global vector
V; € RP"™ is extracted from predicted caption
using BERT (Devlin et al., 2019), and the audio
global vector V, € RP"™ is extracted from refer-
ence audio using the HT-SAT encoder (Chen et al.,
2022). Subsequently, cross-modal similarity is
derived from the cosine similarity as follows,

Se=V,'V.. (10)
The holistic score of X-ACE is defined as:
Sx_AcE = (SG+SC)/2. (11)
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HC HI HM MM Total
Random judgement 458 457 S51.1 520 50.0
BLEU_4 (Papineni et al., 2002) 552 858 773 50.7 615
SPICE (Anderson et al., 2016) 50.7 834 765 493 59.6
CIDEr (Vedantam et al., 2015) 56.7 96.0 89.1 61.0 70.8
METEOR (Banerjee and Lavie, 2005) 66.0 964 89.1 60.2 71.7
ROUGE_L (Lin, 2004) 61.1 91.5 81.1 524 6438
BERTScore (Zhang et al., 2020) 61.1 972 912 654 743
Sentence-BERT (Reimers and Gurevych, 2019) 64.0 99.6 92.0 73.7 79.7
ChatGPT*
X-ACE 657 99.6 937 76.8 81.8
X-ACE w/o. cm 63.7 93,5 900 73.1 78.0
X-ACE w/o. anno&cm 66.7 90.2 848 742 776
Llama3-8B*
X-ACE 642 99.6 954 759 814
X-ACE w/o. cm 647 943 91.6 726 782
X-ACE w/o. anno&cm 69.7 93.1 86.1 72.7 77.8

Table 2: Correlation with human judgement on the AudioCaps dataset. The "w/o. cm" represents X-ACE without
the cross-modal similarity stream, while "anno" denotes our human annotation from AudioCaps-F. "ChatGPT*"
and "Llama3-8B*" refer to the performance of different LLMs as factor extractors.

Factor Caption Perturbation

Sound Rain and thunder occurs.

Rain and thunder occurs with blowing wind.

A woman speaks with a boy cries.
A boy speaks with a woman cries.

Source
A bird is chirping.
A buzz is chirping.

Several people are talking aloud.
Several people are talking lightly.

Attribute

An motor is operating with rhythmic
whirring.
An motor is operating followed by rhythmic
whirring.

Relation

Table 3: The samples of perturbation on gold captions.

4 Evaluation on X-ACE

4.1 Correlation with Human Judgement

In our experiment on the AudioCaps dataset, a pair-
wise comparison was employed to measure the
correlation between metrics and human judgments.
For each pair of candidate captions, humans label
which caption in the pair is closer to the given audio.
The evaluation is categorized into four splits, as
utilized in (Zhou et al., 2022): "HC": two human-
written captions matching the audio, "HI": two
human-written captions with only one matching the
audio, "HM": a matching human-written caption,
and a machine-generated caption, and "MM":

two machine-generated captions. As depicted in
Table 2, X-ACE emerges as the state-of-the-art in
correlation with human subjective judgment. X-
ACE without cross-modal similarity module and
extra annotation exhibits higher correlation in HC
split, with further analysis detailed in Appendix C.
We also offer an open-source model Llama3-8B,
trained using outputs from ChatGPT. Our X-ACE
composed of Llama3-8B as the factor extraction
component, still closely matches human subjective
perception. Interestingly, it even outperforms
system built with ChatGPT under ablation.

4.2 Mismatch Detection

To see whether our factor-level score can sen-
sitively detect types of nuanced mismatch. we
automatically introduced different perturbation to
clean captions as Table 3 to synthesize subtle
mismatch. We then compare the fluctuations in
factor-level score with other metrics before and
after the perturbations to validate their ability to
distinguish error types. To measure the degree of
fluctuations on metric scores, we employed the
Kruskal-Wallis (McKight and Najab, 2010) signifi-
cance test. The value in the Table 4 is p = —log(p),
with p denotes significance level. A smaller p value,
corresponding to a larger p, indicates a higher level
of difference. When p is less than 0.05 (p is greater
than 3), it signifies a prominent difference in scores
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Perturbated Factor | E-ACE  S-ACE  A-ACE R-ACE | BLEU_4 METEOR ROUGE_L CIDEr SPICE S-BERT
Sound Event 26.73 17.16  0.78 1.1 7.88 3.42 10.32 21.72  8.15 59.41
Source 1.78 138.92 2.88 0.43 50.66 40.42 41.24 29.25 3422  88.56
Attribute 0.43 0.94 21.21 1.48 3.87 2.24 3.09 5.99 4.32 9.64
Relation 0.02 1.2 0.07 215.32 | 13.7 8.29 13.84 10.65 0.63 4.42

Table 4: Sensitivity degree towards perturbation on factors. E/S/A/R-ACE respectively represent individual factor-
level metrics for Sound Event/Source/Attribute/Relation in X-ACE, while S-BERT denotes Sentence-BERT.
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Figure 4: The conflict rate between the metric scores
and the prior facts, the lower the value, the stronger the
temporal reasoning ability (TRA).

before and after perturbing the captions. As showed
in the Table 4, our factor-level score mostly get
the greatest sensitivity towards the corresponding
perturbation on captions, while maintaining other
scores essentially the same. In particular, along
with the change occur on the sound, the score of
source score also changes. The results demonstrate
that the factor score of X-ACE exhibits strong
capabilities in detecting subtle mismatches and
distinguishing different types of errors.

4.3 Temporal Relation Reasoning

To evaluate the temporal relation reasoning capa-
bility of metrics shown in Figure 4, individual

sound events were concatenated to form three types

of captions: X bﬂe Y (reference), X afif Y

(candidate 1), and Y af—>m X (candidate 2).

Based on prior knowledge, candidate 2 merits
a higher score for its equivalence to the reference
through reasoning. We observed the conflict rate
between the metric scores and the prior facts, the
results shows that X-ACE and R-ACE greatly
outperform others, with their conflict rates lower
than 30%. As the temporal relation reasoning
abilities of the other metrics even inferior to
random selection (50% conflict rate).

4.4 Ablation Studies

To eliminate interference of cross-modal similarity
and annotation, X-ACE w/o. cm&anno serves as

Setting HC HI HM MM Total
X-ACEpqse 66.7 90.2 84.8 742 77.6
w/o. Sound Event 65.2 75.1 72.6 712 71.2
w/o. Source 657 87.8 848 725 76.1
w/o. Attribute 63.7 90.2 819 67.5 73.1
w/o. Relation 642 914 848 709 757

Table 5: Correlation with human judgement after
ablating different factors.

Method HC HI HM MM Total
Greedy Matching 66.7 90.2 84.8 74.2 77.6
Binary Matching 60.7 87.3 79.7 49.5 62.2

Table 6: Correlation with human judgement using
different matching methods

our baseline X-ACEy,. in ablation study.

The impact of each factors The ablation anal-
ysis was conducted to investigate the impact of
removing individual factor-level scores. The results
presented in Table 5 indicate that removing any
single factor leads to a significant decrease in
correlation, suggesting that all factors are indispens-
able for correlation with human perception. The
removal of sound event leads to a notably decreased
performance, which underscores the dominance of
sound events within audio descriptions.

Greedy matching vs. binary matching We
conducted a comparative experiment to evaluate
the greedy graph matching method designed for X-
ACE against the conventional binary matching (An-
derson et al., 2016). As evident from the Table 6,
our approach results in an overall performance
improvement of 15.2%, demonstrating substantial
enhancements across all splits, especially with
24.7% improvement in the MM split.

S Evaluation of ALMs Using X-ACE

5.1 Empirical Evaluation of Current ALMs

In this section, we employed X-ACE for the first
time to systematically evaluate current ALMs in
audio captioning. We specifically analyzed the
areas in which different ALMs excel or fall short in.
The ALMs models selected for evaluation include
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Models Sound Event Source Attribute Relation Total

P R P R P R P R F
Salmonn-13b 66.86 64.52 484 4515 32.71 21.18 243 2299 39.77
Salmonn-7b  70.66 63.88 5347 47.85 2682 14.39 2423 2283 39.39
Qwen-Audio 70.23 62.3 50.82 44.68 16.66 881 21.52 1949 3584
Pengi 68.23 553 45.11 38.63 19.5 1042 17.09 1549 32.53
AudioGPT 63.35 5547 40.06 36.23 17.11 9.69 1796 16.76 31.11

Table 7: The X-ACE scores of different ALMs in AAC based on the AudioCaps-F dataset.
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Figure 5: The fine-grained A-ACE scores of different ALMs in AAC based on the AudioCaps-F dataset.

Qwen-Audio (Chu et al., 2023), SALMONN (Tang
et al., 2023), Pengi (Deshmukh et al., 2023),
and AudioGPT (Huang et al., 2023b). Extensive
experiments to assess ALMs with other metrics
and investigate the influence of certain variables on
metric assessment are shown in Appendix D.

The performance of ALMs evaluated by X-ACE
across different factors is depicted in Table 7.
Salmonn emerges as the top-performing model,
followed by Qwen-Audio, showcasing the best
overall performance. The average performance
of ALMs on the sound event factor is the highest,
while scores for other factors dropped significantly.
Notably, even if a model excels in a specific
area (e.g., Salmonn-7b performs the best in sound
events), the total score may still decrease due
to a high incidence of omissions in other factor.
Because X-ACE evaluates all factors collectively,

and the shortcomings of each factor affect the
overall evaluation. Among models, Qwen-Audio,
Pengi, and AudioGPT all exhibit subpar perfor-
mance in attributes and relations. These models
necessitate targeted enhancements grounded in
their performance in specific factors, highlighting
their inadequacy in characterizing audio attributes.

5.2 Analysis of Attribute Factor

As Table 7 clearly shows that the factor attribute
constitutes a vulnerability for the popular ALMs,
consequently, a finer evaluation of their perfor-
mance across nine subcategories of attributes was
undertaken. The examples of these subcategories
and the fine-grained calculation of the A-ACE
score can be referred in Appendix B. Figure 5
presents a comparison of precision and recall
values, revealing that the primary issue in attributes
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lies in insufficient detail rather than a high inci-
dence of incorrect descriptions or hallucination.
Pitch is mostly misdescribed, followed by tone and
volume. Most ALMs generate accurate descrip-
tions regarding the vocalization count and their
location. Among them, Pengi achieves a high
precision rate of nearly 90% in count, but it lacks
description or contains errors in pitch. There is
a noticeable inconsistency in the distribution of
strengths and weaknesses among different models,
necessitating targeted improvements.

6 Conclusion

The current assessment of ALMs only provide
an overall score, presenting challenges for model
refinement. In response, this paper introduces
explainable and multi-factor evaluation paradigm
X-ACE for AAC, defining sound event, source,
attribute, and relation as four factors tailored for
the audio description. Furthermore, we provided a
dataset AudioCaps-F to enhance evaluation gran-
ularity. X-ACE exhibits remarkable alignment
with human perception and shows a nuanced
capacity to distinguish model errors. Our analysis,
derived from outcomes of X-ACE, illuminates
substantial variances among mainstream models in
audio attribute, and temporal sequence description.
While differences are less pronounced in sound
events, considerable room for improvement exists
across factors.

Limitation

Despite achieving satisfactory performance, our X-
ACE metric also has limitations. Due to the fact
that X-ACE requires entity reasoning from LLM
during the factor extraction stage, it incurs greater
time overhead compared to other metrics that do
not rely on large models. We are also dedicated to
speeding up inference and training smaller models
to replace LLM, thereby achieving more efficient
automatic evaluation. Additionally, the cross-
modal metrics in X-ACE rely on the robustness
of the corresponding cross-modal models, and due
to cost constraints, annotations are limited to the
AudioCaps dataset. We hope to expand this to other
formats of datasets in the future.
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A Factor Construction

Annotation Construction This section provides
a detailed demonstration of the annotation process.
We engaged specialized annotators to manually
annotate structured data for the given audio, in-
cluding all sound events occurring in the audio
along with their respective sources and attributes,
as illustrated in Figure 8. We further categorize
attributes into nine major classes. Annotators can
use the attribute labels provided in Figure 9 as a
reference for annotation. On average, each sound
event is annotated with at least four attributes.

Factor extraction via LLM The prompts are
input into an LLM extractor, as shown in Table 10,
to generate structured data in JSON format. The
format of data is then checked and refined via an
automated program.

B Model Details

Encoder The text encoder and audio encoder are
trained on the audio-text retrieval task, using the
parameters provided in (Mei et al., 2023). For the
matching of each pair of entities in graph, GloVe
(Pennington et al., 2014) is used to transform
phrases into word vectors for similarity calculation.

Attribute subcategory score We conduct greedy
graph matching on anchor attributes, then semanti-
cally map them to the closest attribute labels in
the attribute tag library, categorizing them into
corresponding subcategories, thereby obtaining
scores in that subcategory.

C Experiment

Ablation Study and Analysis We analyzed
cross-modal similarity (cm) and refined annotation
(anno) through ablation study as Table 11. Poorer
performance in HC and MM splits is evident for
cm only, for it lacks of fine-grained interaction
and only distinguishes prominent differences
(e.g. in HI and HM). Particularly notable in
the HC split is that "w/o. anno" outperforms
X-ACE. As for the two candidates in HC are
reference captions of a given audio in the test data,
and the annotation based on references contains
all features extracted from these two sentences.
Consequently, a self-reference issue arises in the
evaluation process, leading to a slight decrease in
fairness and correlation with human judgement.
This issue does not impede our use of X-ACE to
evaluate sentences generated by ALMs.

0.6 : /‘\
- jP‘\ L S
i-‘ (/ \‘
/1@ S e g T S
05 AT Ty 7 “N~lJe  -@- XACE
.. - - - -
- 7.3 "‘\.r—’ A sentence-bert
o / o -®- bert-score
o —e-
0.4 .._,Lgi__f.:\ T /r \\\ ®- Bleu_ 1
@ A 5 N~ . N -®- Bleu 2
- =™ S~ ~
g ¢ 7 A id S=2, -@- Bleu_3
3 03 ’ = 2 E |
[r s s Bleu_4
TPy 3N - -e- METEOR
! - s, s - S
- ';/ AN TN ROUGE_L
. -~ ~
P G N S CIDEr
-7 peEh | et -®- SPICE
e 3T “-e
01 @ v
sl o > 02
&) A ) & ]
2% > o
& DQQ * & &9
& & &
& {,?\\ Iou v

Figure 6: Evaluation results of Metrics for ALMs.
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Figure 7: Relationship between different metric scores
and caption length

Temporal Relation Reasoning Setting We
picked sound event pairs and generated 178
samples, each formatted as shown in Table 12.

D Evaluate ALMs on Metrics

Overall Evaluations As shown in Figure 6,
Salmonn and Qwen-Audio exhibit superior per-
formance in AAC, while scores for Pengi and
AudioGPT show great fluctuations. X-ACE curve
aligns with the trend of SPICE, for they both
encompass multiple factors. However, SPICE
focuses on visible entities rather than audio charac-
teristics. Notably, X-ACE is the only one to discern
superiority of Salmonn-13b over 7b. For the 13b
model expresses more diversely, which X-ACE can
identify and match, resulting in higher scores.

Association between assessment and caption
length It can be observed in Figure 7 that for
descriptions with short lengths, such as phrases
of only two words, Sentence-BERT, BERTScore,
CIDEr, and SPICE surprisingly provide high scores.
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Audio Sound Event Source Attribute

talking man Off and on, Mid-size, Alongside, Gentle
YIq9RvAA4mqY.wav  clanking metal Several times, Softly, Die down, Nearby, Low, In the background
sizzle food, oil Continuous, Noisy, Alongside, Steady, In the background
playing music Continuous, Mid-size, Clear, Euphonious
Y7PON61TVOXE.wav  clanking glass Suddenly, once, Clear, loud, shortly, in the background, high-pitched
talk people lightly, coarse, Interrupted, in the background
talking man Off and on, Mid-size, Deep, Alongside, Gentle, Clear
Y2ABngPM3raQ.wav  croaking frog Suddenly, Noisy, repeatedly, Shrill, Die down, Alongside
tapping sound Several times, softly, Interrupted, Clear, Fast
chirping birds in the background, Off and on, Faint, In the distance
YJhGp7HmRQxg.wav  neighing horse Once, Mid-size, Suddenly, Clear
clack metal Once, softly, Muffled, In the distance
YPWIEfOKbbro.wav talk . crowd of people in thc? background, Continuous, Noisy, Low, coarse
running water Continuous, Loud, Speed up, Clear, harder

Table 8: Examples of manual annotation for AudioCaps-F.

Categories | Tag

Off and on / Intermittent / Occasional / Sparse / Briefly / Rhythmic
Duration Continuous / Successive / Frequently / Sustained / Repeatedly
Suddenly / Rapidly / Quickly / Fast / Shortly / Slowly

Big / Loud / Noisy / Strong / Powerful / Heavy
Volume Small / Lightly / Softly / Quiet / Faint / Slight
Mid-size

Muffled / Low / Deep
Pitch Sharp / High-pitched / Shrill / Searing / Piercing
Mid-pitched

Location \ On a XXX / Against XX / Outdoors / Indoors / In the background / In the foreground
Count \ Several times / X times / Once / Twice
Distance \ In the distance / Distant / Nearby / Alongside
Variation Slow down / Die down /'Interrupted / Turn off / Over

Speed up / Harder / Begins / Turn on / Goes up and down
Tone \ Formal / Casual / Serious / Excited / Gentle / Angry / Skeptical / Commanding
Other \ Synthesized / Digital / Electronic / Coarse / Clear / steady

Table 9: Attribute subcategories and its corresponding tag (for reference to annotators)

Template Please help me to extract 3 type of nodes in the audio caption: sound event (sound events be
described by caption), source (who generates the sound event), attribute (attribute of sound event).
Examplel: caption = "A man speaking as monkeys scream and dogs bark followed by birds cawing
in the distance and a loud explosion". You need to act as an audio caption extractor, to extract
dict of which keys are sound events, value are attribute list toward sounds and source (if no, list
should be replaced by None). The return demo is {"speaking":{"source":["man"],"attr":None},
"scream":{"source":["monkeys"],"attr":None },"bark": { "source":["dog"],"attr":None },

non

"cawing":{"source":["birds"],"attr":["in the distance"]},"explosion":"source":None,"attr":["loud"]}. You should
pay attention on the sound event (not sound source),e.g. "speaking","bark","cawing","explosion" should be
copied from the original caption. I'll show you the rest of the caption below, you give me a json return in the

format.You do this work in json format!!! Not show me codes.

Input Now I will give you caption: "A machine makes stitching sounds while people are talking in the background"

{ "stitching": { "source": [ "machine" ], "attr": null },
GPTS3.5 Output "talking": { "source": [ "people" ], "attr": [ "in the background"] } }

Table 10: The prompts for factor extraction.

X-ACE shows a slight increase followed by a  metrics tend to decrease, as they do not encourage
plateau in scores as the caption length increases, detailed descriptions to minimize hallucinations
with slight fluctuations. On the contrary, most other ~ or mismatches. BLEU_1 exhibits a rapid rise
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AudioCaps
HC HI HM MM Total

cm 572 992 941 674 752
X-ACE 657 99.6 937 768 81.8
w/0. cm 63.7 935 90.0 73.1 78.0
w/0. anno 67.7 99.6 91.6 750 80.8

w/o. anno&cem  66.7 90.2 84.8 742 77.6

Table 11: Ablation studies on removal of modules

x beforey, Ariver stream flows before a bell ring.
x ey A river stream flows after a bell ring.
y “tr x A bell rings after a river stream flows.

Table 12: The sample format used for temporal
reasoning, with the first row as the reference and the last
two rows as two candidates.

followed by a decline, the greatest fluctuation
indicates that it is the most influenced by caption
length. The scores of all metrics fluctuate greatly
in the range of caption length from 15 to 25, where
the metric assessments show little correlation with
caption length.

Case Studies Case studies are conducted as
shown in Fig. 8, where (a) displays sample com-
prising the ref (correctly described reference for
the given audio), along with candidate A and B
for evaluation, with blue highlighting the true
mismatches. Analyzing the first sample, candidate
A interchanged the attributes "distant" and "nearby"
associated with two sounds as a bad caption.
Candidate B only altered the sentence structure and
employed synonym substitutions without changing
the content as a good caption. As shown in (b),
our A-ACE indicates a significant decrease in the
attribute score for candidate A, while B shows a
slight decline, demonstrating the sensitivity of our
method in detecting attribute errors. Furthermore,
in (c), comparing all metrics, the bold sections
corresponding to X-ACE and A-ACE reveal results
consistent with subjective evaluation, indicating
that B outperforms A. It is worth noting that since
the current case study utilizes only one sample set
without establishing a sample library, the CIDEr
score remains at 0 throughout.
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Ref Wind blows with some nearby rustling and distant e 22:3‘;
passing traffic. °
A Wind blows with some distant rustling and nearby g *
passing traffic. X @ o
B As some nearby is rustling and passing traffic is passing
distantly, wind blows. ! ‘ i il
sound  source attribute relation
(a) Caption Samples (b) X-ACE Assessment
X-ACE A-ACE BlLeu 1 BlLeu 4 METEOR ROUGE_L CIDEr SPICE S-bert BERTScore
A 0872 0.488 0.999 0.375 0.478 0.8 0.0 0.667 0.991 0.925
B 0.947 0.772 0.615 6.57e-9 0.411 0.534 0.0 04  0.926 0.734
(c) Evaluation on Candidate A/B by different Metrics
101 cand A
Ref An animal makes squeaking noises with buzzing i cand B
background sounds, and a dog barks.
A Squeaking noises are made by an animal and buzzing % .
background sounds occur, while a dog is barking. \/ Do
B An animal makes squeaking noises with crying o || |
background sounds, and a dog gasps. X * sound source attribute relation
(a) Caption Samples (b) X-ACE Assessment
X-ACE E-ACE BlLeu_l BLeu 4 METEOR ROUGE_L CIDEr SPICE S-bert BERTScore
A 1.0 1.0 0.588  3.06e-5 0.356 0.478 0.0 0.533 0.931 0.781
B 0460 0.60 0.846 0.670 0.462 0.846 0.0 0.714 0.842 0.922

(c) Evaluation on Candidate A/B by different Metrics

Figure 8: Case study: evaluation of audio captions for two sample sets. Blue font in (a) indicates discrepancies
between reference and candidate, (b) Demonstrates scoring of candidates A and B using X-ACE factors, (c) Displays
evaluation of candidate pairs with various metrics, where bold signifies scores aligning with human perception.
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