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Abstract

While supervised fine-tuning (SFT) has been a
straightforward approach for tailoring the out-
put of foundation large language model (LLM)
to specific preferences, concerns have been
raised about the depth of this alignment, with
some critiques suggesting it is merely “super-
ficial”. We critically examine this hypothesis
within the scope of cross-lingual generation
tasks, proposing that the effectiveness of SFT
may be constrained by its reliance on prior to-
kens to guide cross-lingual generation. Based
on this crucial insight, and in response to the
challenges posed by the costly and limited avail-
ability of non-English data for SFT, we intro-
duce a novel training-free alignment method
named PRETTY, which employs minimal task-
related prior tokens to bridge the foundation
LLM and the SFT LLM, achieving comparable
performance without training. Experiments on
machine translation and part-of-speech tagging
across eight languages demonstrate the efficacy
of PRETTY in cross-lingual settings. Remark-
ably, by initiating the decoding process with
only one or two prior tokens, foundation LLMs
can achieve performance comparable to their
SFT counterparts. This method presents a cost-
effective alternative to SFT and advances the
democratization of multilingual LLMs'.

1 Introduction

Supervised fine-tuning (SFT) refines large lan-
guage models (LLMs) using task-specific instruc-
tion data to enhance their capability to follow in-
structions (Touvron et al., 2023; Peng et al., 2023)
and to align their outputs with human preferences
and safety considerations (Ouyang et al., 2022;
Rafailov et al., 2023; Dong et al., 2023b; Yuan

*Work was done during a visit to Westlake University.
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"The code and data are available at: https://github.
com/NLP2CT/PrettyAlign

et al., 2023; Lan et al., 2024). This process is of-
ten termed “alignment”, signifying the tailoring of
model outputs to conform to specific downstream
requirements. Nevertheless, current research casts
doubt on the necessity and potential adverse im-
pacts of SFT. But the alignment achieved through
SFT is often considered to be “superficial”, with the
process potentially repurposing pre-existing knowl-
edge from pre-training to merely reshape outputs to
meet specific criteria (Zhou et al., 2023; Lin et al.,
2023). It has been observed that even a small-scale
SFT training dataset can produce significant align-
ment effects (Liu et al., 2023; Xia et al., 2024). On
the other hand, recent empirical studies (Luo et al.,
2023; Dong et al., 2023a) have raised concerns that
SFT might hurt the knowledge acquired during its
pre-training phase, leading to serious consequences
like catastrophic forgetting.

Not only is there no definitive consensus on the
necessity of SFT, but the majority of these stud-
ies also focus on monolingual tasks. LLMs still
encounter challenges in handling complex cross-
lingual generation tasks (Schioppa et al., 2023;
Wang et al., 2023). Current research on cross-
lingual alignment primarily seeks to extrapolate
or align English capabilities to other languages us-
ing the SFT paradigm (Zhang et al., 2023; Chai
et al., 2024; Xu et al., 2024), yet there remains a
gap in exploring the specific impacts of SFT-based
cross-lingual alignment. Furthermore, given the
potential risk of SFT leading to the forgetting of
pre-training knowledge, the question of how to
achieve cross-lingual alignment without training
remains underexplored.

To bridge these gaps, our study conducts an in-
depth examination of the impact of SFT on cross-
lingual generation. We investigate the influence of
SFT on the decoding patterns of foundation models
in cross-lingual contexts, hypothesizing that the
success of SFT largely hinges on the selection of
initial prior tokens that are critical for eliciting task-
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Instruction: Translate the following sentence from English to Ukrainian: “We

now have 4-month-old mice that are non-diabetic that used to be diabetic,” he added.
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method for non-English tasks.

Figure 1: Illustration of our research question and proposed Prefix TexT as a Yarn (PRETTY) framework.

specific generation in the target language. Further-
more, the observed decoding similarities between
foundation and SFT models support the extension
of the superficial alignment hypothesis to cross-
lingual scenarios. Responding to these insights, we
introduce a training-free alignment method named
“PRETTY” for cross-lingual and non-English tasks.
The Prefix TexTs act as a Yarn (PRETTY) linking
the foundation LLM and the SFT LLM, eliciting
the foundation LLM to exhibit near-SFT perfor-
mance levels. Specifically, we augment the origi-
nal input with a few tokens that serve as decoding
priors, and then prompt the foundation LLM to re-
sume decoding based on this modified input. In
most cases, only one or two task-related prior to-
kens are needed, and the method for constructing
these prior tokens is flexible across various kinds of
language resources, fostering the democratization
of multilingual LLMs.

We conducted experiments on machine transla-
tion (Goyal et al., 2022), cross-lingual summariza-
tion (Bhattacharjee et al., 2023) and non-English
part-of-speech (POS) tagging (Liang et al., 2020)
tasks across eight languages. These tasks exem-
plify cross-lingual generation and multilingual lan-
guage understanding, and they provide ample non-
English test data to evaluate effectiveness across
varying levels of resource availability. The exper-
imental results demonstrate that PRETTY can ef-

fectively align the foundation model to match SFT
model’s performance without training, by merely
adding two prior tokens in the decoding.

2 Iceberg Model of SFT

2.1 Preliminaries

Pre-training The pre-training (PT) of LLMs is
primarily conducted through language modeling
tasks on large-scale unlabeled data (Touvron et al.,
2023; Achiam et al., 2023). During this phase,
given a sequence Xpt of length /V and a context
window k, the optimization objective is maximiz-
ing the joint probability P g as:

N
Poy(Xer) = [[ P@ilzicic) (D)
i=1

which encourages the model to generate text that
naturally follows from the preceding context. How-
ever, this “text completion” behavior can become
a bottleneck when models are prompted to switch
languages or follow specific instructions of cross-
lingual generation. It is frequently observed that
when prompted with English input and instructed to
produce text in a different language, as illustrated
in the upper example of Figure 1, the foundation
model often continues to decode in English.

SFT SFT leverages labeled data pair (Xi,s,Y)
to empower models with the ability to follow in-
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structions. This stage aims to maximize the proba-
bility of the expected answer Y conditioned on the
input text Xins, where X, consists of the task
instruction and task input.

T

PSFT(Y‘Xins.) = H P(yj|yl:j—la Xins.) (2)
j=1

SFT is crucial for aligning foundation models to
perform task-specific instructions, effectively trans-
forming a general-purpose LLM into an instruction-
following assistant. However, data quality, training
costs, and the imbalance of multilingual data hin-
der the democratization of assistant LLM. As men-
tioned before, SFT may be harmful to pre-training
knowledge. Thus, it is meaningful and important
to understand the underlying mechanism of SFT-
based alignment and propose a more efficient align-
ment method.

2.2 Beneath the SFT-based Alignment

Prior Knowledge Hypothesis It is worth noting
that pre-training corpora also contain sequences
that naturally express task-specific information,
which imparts certain capabilities to the foundation
LLMs. For example, the presence of semantically
equivalent expressions in the pre-training text may
enable LLM acquire machine translation ability
during pre-training stage (Radford et al., 2019).

Despite its extensive prior knowledge, the foun-
dation LLM still struggles with complex cross-
lingual generation tasks. Beyond existing studies,
we provide more concrete insights into this issue by
prompting foundation LLMs with various instruc-
tions (Bawden and Yvon, 2023). Notably, only
31.8% of these prompts successfully elicit transla-
tion capability from the foundation LLMs?.

This deficiency may stem from two main fac-
tors: First, the proportion of text with the afore-
mentioned characteristics in the pre-training cor-
pus Xpr is still relatively small, and most of it is
far from resembling human instruction text Xjg .
Consequently, the model is more likely to predict
tokens suitable for completing formal texts than
those required for task-specific instructions. As a
result, the foundation LLM often fails to produce
tokens y € Yp.r in the intended target language.
Secondly, the predominance of English in the pre-
training data skews the token generation probabili-
ties of foundation LLM. Given a cross-lingual con-
text, the model favors predicting tokens in English,

2For detailed information, please refer to Appendix C.3.
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Figure 2: The agreement between the SFT model and
the foundation model in terms of the selection of the
next token. Once the Prior Token is provided, the token
chosen by the SFT model is also can be found within
the Top-K candidate words of foundation model.

while the token probabilities for other languages re-
main comparatively low. For example, English data
comprises up to 90% of the Llama2 pre-training
data (Touvron et al., 2023), which may lead models
to generate text with an English-centric bias.

The above hypothesis might be reasonable when
we revisit Equation (1) and Equation (2). The prob-
ability Py (Xpr) of the next token prediction for
the foundation model is conditioned on the distri-
bution of the pre-training text Xpr. SFT narrows
the probability space for token selection, adjusting
the parameters to better align with the distribution,
i.e., the probability Pspr(y|Xins.) is conditioned
on the distribution of the instruction text Xjys. .

Experimental Settings To validate the aforemen-
tioned hypothesis, we selected the representative
cross-lingual task of machine translation as our
analytical testbed. The main research method in-
volved quantifying the differences and similarities
in the decision space and token selection behavior
between the foundation LLM and the SFT-aligned
LLM. For the model selection, we chose the foun-
dation Llama2 7B model and conducted supervised
fine-tuning on it using the Alpaca dataset®(Taori
et al., 2023). The optimization was carried out us-
ing a cosine learning rate scheduler, with the maxi-
mum learning rate set to 2e — 5 and a warmup ratio
of 0.03. Training was performed on two Nvidia-
H800 GPUs using LoRA parameter-efficient fine-
tuning (Hu et al., 2022) technique, with a cumu-
lative batch size of 64. Other hyper-parameters
follow those of the original Alpaca settings.

3https://github.com/tatsu-1lab/stanford_alpaca
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Figure 4: The divergence in probability distributions
across the entire vocabulary during decoding. Prior
Token significantly reduces the discrepancy between the
foundation model and the SFT model.

A Prior Token Elicits Silent Majority Inspired
by the categorization of token shifts by Lin et al.
(2023), we propose to quantify the agreement of
token selection between foundation LLM 6p1 and
SFT LLM 6sprt. Given the same prefix input X,
we aim to measure whether the next token selected
by the SFT LLM, yspr, is among the top-K to-
kens, ypr, with the highest probabilities in the
decision space of the foundation LL.M, which can
be formally expressed as follows:

ysrr = argmax P(y|X; Ospr)
yev

ypr = {y|argtopK P(y[f(; Opr)}
yev

L
1
Aggrement = I Z 1ycpreypr 3)
I=1

where V' is the vocabulary shared by two models,
and L is the length of the dataset.

We compare the agreement of the token selection
made by the models under the same prefix text X in
two different experimental setups. The first setup
uses the instruction text as the prefix, i.e., X =
Xins.; the second takes the first token decoded by
the SFT model as a prior token, appending it to the
original instruction prefix, i.e., X = [Xins,, yélF)T].
For the SFT model, the second setup is equivalent
to continuing its own decoding behavior, whereas
for the foundation model, it becomes decoding with
the addition of a prior token.

Figure 2 illustrates the agreement between the
foundation model’s predictions and those of the
SFT model regarding the selection of the next to-
ken, given an identical text prefix. Across the entire
translation data, it is observed that after incorporat-
ing merely one prior token, the foundation model
exhibits a high degree of agreement with the SFT
model in terms of token selection. This demon-
strates that the alignment effect of SFT in cross-
lingual generation tasks is also somewhat superfi-
cial. Even in instances where the token with the
highest probability differs between the two models,
90.8% of the tokens chosen by the SFT model are
present within the “silent majority” in the decision
space of the foundation model, specifically, among
the top 20 most probable token choices.

Lens of Distribution Instead of focusing on the
coverage of token selection outcomes, we also ob-
serve the decision dynamics and similarities from
the perspective of the overall probability distribu-
tion, with the data settings consistent with the previ-
ous setup. First, as shown in Figure 3, after adding
a prior token, the probability of the next tokens
chosen by both models have closely aligned dis-
tributions. The reason that the foundation model
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exhibits a high probability given the instruction
text as a prefix lies in a preference for choosing to
continue the instruction text rather than completing
the cross-linguistic semantic transformation. Ad-
ditionally, we quantify the distribution disparities
between the two models through the probability dis-
tribution of the vocabulary. The disparity metrics
used include Kullback-Leibler (KL) divergence,
Jensen-Shannon (JS) divergence, and cross-entropy
(Kullback, 1997). As depicted in Figure 4, the dis-
parity of decision space of the foundation model
significantly decreases after adding the prior token,
aligning more closely with the SFT model.

These findings indicate that such prior tokens
serve a dual function: they not only steer the foun-
dation model towards generating tokens pertinent
to cross-lingual generation but also modulate the
decision space to align more closely with the task-
specific distribution.

3 Pretty: Prefix TexT as a Yarn

3.1 Motivation

The observations discussed earlier confirm that SFT
effectively narrows the decision space of the foun-
dation model during text generation that is condi-
tioned on instruction text. The disparity in token
selection between the foundation LLM and the SFT
LLM, however, might not be reduced by a training-
based transfer methodology. By appending a prior
token into the instruction text, the choices of the
next token between the two models tend to be-
come largely consistent, and in the vast majority
of cases, the tokens chosen by SFT model are also
found within the high-probability candidate words
of foundation model. These phenomena show that
the alignment elicited by SFT is somewhat superfi-
cial in cross-lingual generation tasks and motivate
us to propose a training-free alignment method by
leveraging these prior tokens.

3.2 Formulation

Upon revisiting Equation (1) and Equation (2),
the goal of proposing a training-free approach is
to enable the conditional decoding probability of
foundation model to approximate those of SFT
model. Therefore, ideally, the selected prior tokens
Xpri. = {@pri.} may satisfy the following criteria:

P(yp1| [ Xins., Xpri] ; 0p1)
~ P(ysrr|Xins.; OsFT) “)

where ypt and yspr represent the outputs of the
foundation and the SFT models, respectively. It is
important to note that a single prior token may not
serve as an optimal solution due to its non-derivable
characteristic. Hence, we extend our methodolog-
ical approach to include appending multiple prior
tokens, grouping them to form a prefix text.

3.3 Construction of Prior Tokens

To ensure that the proposed method is applicable
to a wide array of languages, we propose three
construction strategies based on the availability of
language resources, aiming to guarantee the univer-
sality of our approach.

SFT Prior represents an ideal scenario where
the first few tokens generated by a SFT model are
used as priors. This method is theoretically ra-
tional when the SFT model is derived from the
same foundation model because it directly approx-
imates Equation (4) by sampling zpi. ~ {yspr}.
In practical applications, this might be suitable for
high-resource languages due to the imbalanced lan-
guage capabilities of other languages. Additionally,
SFT could potentially degrade the knowledge and
abilities that the foundation model has already ac-
quired. In such cases, using prior tokens from the
SFT model can contribute to generating better re-
sults. This situation will be discussed further in the
subsequent section.

Refined Prior is more readily accessible for most
languages and tasks. We can utilize the output
tokens generated by a smaller model trained for
specific downstream tasks and use them as prior
tokens to achieve weak-to-strong generalization
(Burns et al., 2023).

Pseudo Prior For extremely low-resource lan-
guage pairs, where there is no labeled data for
downstream tasks, both SFT and Refined priors are
difficult to obtain. For cross-lingual tasks, we can
create pseudo labels in target language as prior to-
kens. For instance, in machine translation tasks, we
might use bilingual dictionaries to acquire pseudo
prior tokens. However, the quality and accuracy of
pseudo labels remain uncertain, and the extent of
their impact on the generative performance of the
foundation LLM is not yet clear. We will explore
this problem further in the context of experimental
results discussed later in the paper.
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4 Experiments

We examine the effectiveness of our proposed
training-free alignment method on two distinct
tasks: machine translation, cross-lingual summa-
rization and non-English POS tagging. Machine
translation serves as a prototypical cross-lingual
generation task, entailing the transformation of a se-
quence from a source language to a target language
(Bahdanau et al., 2015; Vaswani et al., 2017; Zhan
et al., 2023; Pang et al., 2024). As for cross-lingual
summarization, it requires the model to generate a
summary of an article in a different language (Bhat-
tacharjee et al., 2023; Chen et al., 2023). Although
POS tagging (Manning, 2011; Nivre et al., 2017;
Chiche and Yitagesu, 2022) primarily assesses the
model’s ability to understand monolingual text, we
include it as multilingual experiments to show the
universality of our methods.

4.1 Experimental Settings

Data We use Flores-101 (Goyal et al., 2022),
CrossSum (Bhattacharjee et al., 2023) as bench-
marks for machine translation and cross-lingual
summarization tasks, respectively. For POS tag-
ging tasks, we choose the POS test split from the
XGLUE benchmark (Liang et al., 2020), which
is derived from the Universal Dependencies Tree-
bank v2.5. To investigate the performance across
various resource languages, we carefully selected
eight languages based on the pre-training data pro-
portions disclosed in the Llama2 technical report
(Touvron et al., 2023). These languages are French,
German, Chinese, Russian, Ukrainian, Portuguese,
Hindi and Arabic. Among these, the first four
languages account for more than 0.1% of the pre-
training data of Llama2, while Ukrainian and Por-
tuguese fall below 0.1%, Hindi and Arabic is below
0.05%. For the Llama2 model, we can categorize
these three types of languages into high-resource
languages, low-resource languages, and extremely
low-resource languages, respectively.

Models and Baselines The settings of Llama2
foundation model and the SFT model are consistent
with those described in Section 2.1. To further
demonstrate the generality of our proposed method,
we incorporated the Mistral-7B LLM family (Jiang
et al., 2023) into our experiments, covering both
out-of-the-box SFT and foundation models.

In the machine translation task, the Llama2 foun-
dation model does not tend to generate transla-
tions when given explicit translation instructions.

While this is a normal phenomenon according to
our previous discussion, to ensure a fair compari-
son, we also searched for a better prompts for the
foundation model. This prompting approach is re-
ferred to as “Llama2-7Bpgrompring 10 SUbsequent
sections. For POS tagging, we experimented with
various instructions and selected one that consis-
tently prompts both the foundation model and the
SFT model to reliably generate classification re-
sults in text. Although we report the zero-shot per-
formance for the aforementioned tasks, we found
that even out-of-the-box SFT models cannot pro-
duce stable output for cross-lingual summarization
task. Hence, we prepend a constant demonstration
before the input to also assess the effectiveness of
our proposed method under the in-context learning
paradigm (Dong et al., 2023c).

Sources of Prior Token The sources of crafting
prior tokens include:

* SFT Prior: We took the first k tokens of out-
put produced by SFT model as the prior to-
kens. For multiple SFT models, we select the
model that demonstrates better performance.

* Refined Prior: We use downstream task
models with smaller parameter sizes as the
source of refined priors. For the different
tasks, we utilized the distilled 600M vari-
ant of NLLB-200 translation model*(Costa-
jussa et al., 2022), mT5 cross-lingual sum-
marization model’ and the Unicoder-NLU
model®(Huang et al., 2019), respectively.

* Pseudo Prior: The pseudo prior is applied
to two cross-lingual tasks since it can utilize
cross-lingual language resources. We create
pseudo prior tokens for machine translation
task by referencing dictionary ’ entries. For
cross-lingual summarization, we initially ex-
tract keywords from each passage using Key-
BERT (Grootendorst, 2020) and then perform
word-by-word translation. However, not all
initial sentence tokens will be covered by the
dictionary. To handle such instances, a back-
off strategy is implemented, where the target
language equivalent of the first available dic-
tionary token is used as the prior token.

4https ://huggingface.co/facebook/
nllb-200-distilled-600M

5https: //hf.co/csebuetnlp/mT5_m2m_crossSum

6https: //github.com/microsoft/Unicoder/

"Please refer to Appendix C.4 for dictionary information.
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English-Centric

Models En-Zh En-Uk Zh-En Uk-En Avg. %SFT.
spBL. CoM. spBL. CoM. spBL. CoM. spBL. CoM. spBL. CoM. All
Llama2-7B
Llama2-7B-Alpaca 136 809 240 833 235 85.1 344 855 239 837 -
 Llama2-7B-Chat 78 672 181 710 185 813 304 833 187 757 -
Llama2-7Bpromprine 59 64.1 11.0 609 243 848 342 850 189 737 80.4
Mama2-7B 77 720 02 324 120 744 93  ¥2 73 595 525
+PRETTY (SFT Prior) 133 80.0 230 83.1 237 849 336 83 234 833 98.8
+PRETTY (Pseudo Prior) 12.0  75.7 18.1  74.1 169 803 272 783 18.6 77.1 85.4
+PRETTY (Refined Prior) 142 80.5 241 838 240 849 346 856 242 837 1009
Mistral-7B
_ Mistral-7B-Instruct 6.6 646 203 782 205 82 329 848 201 777 -
 Mistral-78 =] 12 426 03 308 199 77.0 215 694 107 550 462
+PRETTY (SFT Prior) 13.8  78.1 23.1 792 200 823 321 833 223 80.7 117.2
+PRETTY (Pseudo Prior) 133 758  20.1 757 16,5 797 249 713 18.7  77.1 107.2
+PRETTY (Refined Prior) 159 813 249 8.9 215 830 323 839 237 827 124.6
Non-English-Centric
Models De-Fr Fr-De Zh-Pt Pt-Zh Avg. % SF'T.
spBL. CoM. spBL. CoM. spBL. CoM. spBL. CoM. spBL. CoM. All
Llama2-7B
Llama2-7B-Alpaca 29.8 815 24.1 80.9 16.6 814 113 786 205 80.6 -
 Llama2-7B-Chat ¢ 6.2 680 73 645 30 678 62 666 57 667 -
Llama2-7Bprompring 22 774 154 733 144 789 4.4 64.1 14.1 73.4 78.5
Dlama2-78 10 Shh 32 540 09 614 73 700 31 591 476
+PRETTY (SFT Prior) 282 806 230 804 163  81.1 105 774 195 799 972
+PRETTY (Pseudo Prior) 18.3  68.9 173 722 11.6 704 5.0 65.6 13.1 69.3 73.9
+PRETTY (Refined Prior) 29.1 814 229 804 171 811 122 794 203 806 1004
Mistral-7B
_Mistral-7B-Instruct. 221761 204 759 105 748 33 602 141 718 . -
 Mistral-78 =] 12 461 16 406 1.0 528 04 436 LI 458 365
+PRETTY (SFT Prior) 20.1 733  20.7 75.1 11.0 747 6.8 67.3 147 726 113.8
+PRETTY (Pseudo Prior) 18.1  66.4 173 704 5.9 65.6 3.7 59.4 11.3 655 87.7
+PRETTY (Refined Prior) 283 788 223 785 142 786 136 806 196 791 1538

Table 1: Translation performance of different models on Flores-101 subsets. Bold values indicate that the best
performance among foundation models. The overall best results are underlined. “%SFT.” denotes the relative
performance compared to the best SFT model of each family.

For two cross-lingual task, the first £ = 2 tokens
are chosen as the prior tokens. This helps to avoid
inadequate guidance from single non-informative
tokens like punctuation or numbers. In the case of
the pseudo prior, due to the back-off strategy, only
one token is used for fair comparison. For POS
tagging task, the strategy is more straightforward
with only the first & = 1 label considered as the
prior token.

4.2 Evaluation

To ensure the integrity of the output data from all
models, we standardized the output by cleaning
it in accordance with the specific output style of
each model. Subsequently, we conducted a manual
inspection to guarantee that only the required labels

were retained.

Task-specific Metrics We use two metrics to
evaluate the performance of translation quality:
spBLEU® (Goyal et al., 2022) and COMET? (Rei
et al., 2020). We employed the ROUGE (Lin, 2004)
and LaSE (Bhattacharjee et al., 2023) metrics for
the evaluation of summarization quality. For the
POS tagging task, we report both the precision
score and F; score.

Relative Performance We further compute the
ratio of the performance scores of the foundation
model to the scores of the SFT model with the
application of different strategies. This ratio serves

8https: //github.com/mjpost/sacrebleu/
*https://github.com/Unbabel/COMET
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Models En-Zh En-Hi Uk-Pt Ar-Ru Avg. %SF'T.
R2 RL LS R2 RL LS R2 RL LS R2 RL LS R2 RL LS All
Llama2-7B w/ Constant 1-Shot Demonstration
Llama2-7B-Alpaca 70 124 119 17 107 173 15 61 58 01 05 13 26 74 9.l -
_Llama2-7B-Chat = _ 63 _ 16 87 15 117 271 25 83 71 00 _03 02 26 80 107 -
Llama2-7B 93 166 292 16 102 153 08 40 15 06 41 155 31 76 121 2624
+PRETTY (SFT Prior) 7.4 139 259 15 97 129 19 67 98 01 04 08 27 67 98 106.3
+PRETTY (Pseudo Prior) 8.0 145 29.1 14 99 145 25 91 136 12 59 235 33 85 154 3875
+PRETTY (Refined Prior) 11.2 19.0 326 1.6 108 159 34 105 113 15 79 301 44 105 175 490.6
Mistral-7B w/ Constant 1-Shot Demonstration
_Mistral-7B-Instruct 59 122 172 10 103 234 15 62 177 04 26 128 22 78 178 = -
Mistral-7B 123 209 445 16 106 176 48 129 277 18 65 233 51 112 216 206.1
+PRETTY (SFT Prior) 9.7 17.6 407 14 100 170 23 79 175 02 1.1 32 34 80 150 1145
+PRETTY (Pseudo Prior) 9.9 175 410 14 99 174 3.1 116 351 1.7 79 329 40 102 235 1958
+PRETTY (Refined Prior) 15.0 24.1 49.6 18 113 197 55 165 469 2.6 109 420 6.2 138 29.7 275.6

Table 2: Summarization performance of different models on CrossSum subsets. “R2/L” and “LS” refer to the
ROUGE and LaSE score, respectively. Bold values indicate that the best performance among foundation models.
The overall best results are underlined. “%SFT.” denotes the relative performance compared to the best SFT model.

Fr Zh Pt Ru Ar Avg.  %SFT.
Models
Precc. F; Precc F; Precc. F; Prec. F; Prec. F; Prec All
_Llama2-7B-Alpaca 482 428 386 363 407 359 423 367 344 308 387 = -
(Llama2-7B . 450 379 398 362 398 332 425 338 365 321 377 974
+PRETTY (SFT Prior) 54.8 50.0 38.0 335 49.1 453 497 441 351 31.1 43.1 111
+PRETTY (Refined Prior) 59.3 54.8 43.0 388 545 50.6 553 492 44.0 39.6 489 126

Table 3: POS tagging performance of different Llama2 models on XGLUE subsets. Bold values indicate that the
best performance among foundation models. The overall best results are underlined. “%SFT.” denotes the relative

performance compared to Alpaca model.

as a metric for assessing the extent to which the
foundation model approximates the SFT model’s
performance when different strategies are applied.

4.3 Main Results

Machine Translation As shown in Table 1, for
the machine translation task, we use up to two prior
tokens as decoding guidance, allowing the base
model to achieve performance comparable to that
of a model after SFT. Moreover, in some language
pairs, the translation performance outperforms SFT
model when guided by Refined Prior tokens from
a smaller model. For Llama2 model family, the
prior tokens provided by the SFT model, although
slightly less effective, still allow the foundation
model to achieve 98% of the performance of SFT
model. On the other hand, the use of pseudo labels
derived from a dictionary exhibits the least effec-
tiveness, yet this strategy still surpasses the results
achieved through costly prompt engineering.

Cross-lingual Summarization The results pre-
sented in Table 2 indicate that the foundation
model exhibited superior performance compared

to the SFT model in this in-context learning sce-
nario. For prior-guided decoding, the performance
of the foundation model was degraded when us-
ing prefix tokens from the SFT model, and the
small performance gap in this setting suggests that
the alignment achieved by the SFT model is rela-
tively “superficial”. Notably, the performance of
Llama?2 foundation model significantly improved
when other priors were provided, even when using
translated keywords as pseudo labels.

Non-English POS tagging The performance re-
sults of POS tagging task are presented in Table 3.
These results align with the insights gleaned from
the machine translation task, specifically regard-
ing the strategy of prior token construction. No-
tably, for POS tagging task, the performance of
SFT model on most language pairs falls short of
the foundation model, suggesting that SFT detri-
mentally affect the knowledge learned at the pre-
training stage. Encouragingly, when the founda-
tion model empowered by auxiliary prior token sur-
passes the performance of SFT model as well as the
prompting results of itself, highlighting the poten-
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tial of our proposed method in mitigating the catas-
trophic forgetting problem associated with SFT.

5 Analysis and Discussion

5.1 Quality of Prior Tokens

To investigate the quality of prior tokens from dif-
ferent sources and how they impact the final per-
formance, we further analyze why the prior tokens
given by the SFT model are less effective than those
from external auxiliary models in POS tagging task.
Unlike the machine translation task, the positional
result for the POS task is definite, so we are able
to verify whether it corresponds to a ground truth
label. The results in Table 4 confirm two points.
First, even if the prior tokens provided by the SFT
model are of low quality, the foundation model
does not suffer from severe error propagation. Sec-
ondly, the final performance of proposed method
is still associated with the quality of prior tokens.
This suggests that prior tokens closely aligned with
the ground truth can steer the foundation model to-
wards a more accurate decision trajectory, thereby
yielding superior performance.

Fr Zh Pt Ru Ar

183 183 374 163 12.1
88.9 88.9 8854 87.7 79.6

SFT Prior
Refined Prior

Table 4: Accuracy of prior tokens used in POS tagging
task. SFT prior tokens are of inferior quality.

5.2 Choice of Prior Tokens

Based on the findings from the previous section, if
incorrect labels used as prior tokens can still elicit
the ability of foundation model, then could random
prior tokens in the target language trigger cross-
lingual generative capabilities? To investigate this,
we attempted to use random tokens of different
parts of speech as the prior tokens in the English-
Chinese machine translation task. For instance,
“Modal Prior” refers to the use of randomly picked
modal verb in Chinese as the initial token.

The results shown in Table 5 indicate that the
model could not be aligned to a better decision tra-
jectory by these random prior tokens, whether they
were function words or tokens with actual meaning.
This supports the validity of our proposed methods
for constructing prior tokens and also supplements
previous findings. From this, we can summarize
some rules about prior tokens: they can be of low

quality but should not be completely unrelated to
the target sequence.

spBLEU COMET BLEU

Llama2-78 U 7201 161
+ Modal Prior 8.0 68.29 16.0
+ Adverb Prior 6.4 63.72 13.1
+ Random Prior 6.2 57.11 11.5

Table 5: Comparison of translation performance using
three types of random prior tokens.

5.3 Number of Prior Tokens

Figure 5 depicts the relationship between the num-
ber of preceding tokens provided and the resulting
changes in translation performance. It becomes
apparent that performance generally improves with
the addition of more tokens. Additionally, we note
that introducing two prior tokens appears to be a
performance inflection point, which may be due to
instances where the initial token is a punctuation
mark or a number.

110
[
5100 |
R En-Zh
De-Fr
90 |- Pt-Zh
g5 Zh-Pt
1 2 3 4 5

Number of Prior Tokens

Figure 5: Impact of incrementally adding refined prior
tokens on performance across Flores-101 subsets.

6 Conclusions

In this paper, we investigate and analyze the
decision-making discrepancies between the foun-
dation model and the SFT model within cross-
lingual generation contexts. Drawing from our
analysis, we introduce a novel cross-lingual align-
ment method that requires no additional training
and is resource-efficient. The proposed method
aligns the foundation LLM to perform compara-
bly with the SFT model solely by utilizing prefix
text as priors during generation. In the future, we
aim to broaden our research to encompass addi-
tional alignment scenarios, such as those involving
reinforcement learning from human feedback.
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Limitations

The primary limitations of our study stem from the
scope of model validation. Our research is limited
to 7B models. Future endeavors should aim to ex-
tend the validation to a broader scope of models
and incorporate various parameter scales to support
the universality of our findings. Furthermore, the
availability of language resources is still a practical
problem, particularly for low-resource languages
where access to Prior Token and Refined Token
sources is limited. Despite these challenges, our ex-
perimental results indicate that Pseudo Prior tokens
still exhibits promising potential. It is important to
note, however, that the development of pseudo tags
may require a dedicated investigation into the lin-
guistic rules specific to each downstream task. This
process is time-intensive and resource-demanding.
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A Related Work

Data-Efficient Alignment The “superficial
alignment hypothesis” proposed by Zhou et al.
(2023) claims that SFT is a process that repurposes
pre-training knowledge and reshapes outputs to
satisfy specific criteria. Consequently, various
studies have explored data-efficient alignment in
the context of SFT (Liu et al., 2023). Among these,
model-centric approaches (Kung et al., 2023; Xia
et al., 2024; Li et al., 2024) leverage either the
LLM itself or external models as scorers to select
high-quality SFT data from the data store. The
heuristic methods (Lu et al., 2023; Wei et al., 2023)
carefully choose desired SFT data based on a set
of scorers or metrics. The goal of data-efficient
alignment methods is to reduce the number of SFT
samples. However, for low-resource languages
or tasks, the quality and scale of the data pool
may not be sufficient to perform effective data
selection.

Self-Alignment in LLM  According to superfi-
cial alignment hypothesis, pre-training data may
encompass task-specific knowledge, making it fea-
sible to align LLMs with themselves. Sun et al.
(2023) presented an alignment pipeline that mini-
mizes the cost of human annotations, demonstrat-
ing the possibility of “self-alignment”. Li et al.
(2023) introduced a multi-round rewindable infer-
ence framework for identifying the optimal gen-
eration results of unaligned LLM, showcasing the
extensive potential of the LLM’s decision space.
Lin et al. (2023) further revealed the connections
between base LLM and SFT-ed LLM on general-
purpose tasks and introduced an in-context align-
ment approach for base LLM without the need for
re-training. These studies primarily focus on mono-
lingual tasks, overlooking the impact of SFT on
the effectiveness of non-English and cross-lingual
alignment. This area remains ripe for exploration.

B Latest Benchmark

The composition of the pre-training corpus for
Llama? is indeed unclear as Meta Al has not dis-
closed specifics in their technical report (Touvron
et al., 2023). Consequently, we cannot confirm the
inclusion of Flores-101 datasets in the pre-training
phase. To mitigate this uncertainty, we conducted
additional experiments using the WMT23 machine
translation benchmark. Since Llama2 was released
on July 18, 2023, and the WMT23 News Shared

Task submission'? deadline was July 20, 2023, with
the reference translations released on October 10,
2023, it is highly unlikely that WMT?23 data influ-
enced Llama2’s pre-training.

For these experiments, we used conventional
BLEU as our evaluation metric because the Flores-
101 benchmark introduces a specialized BLEU
score variant known as spBLEU, which diverges
from the conventional BLEU by adopting the sen-
tencepiece model (Kudo and Richardson, 2018) for
tokenization. As shown in Table 6, the experimen-
tal results indicate a consistent trend and support
similar conclusions to those obtained from previous
benchmarks.

C Detailed Setup
C.1 Llama2 Alpaca

To avoid the need of fine-tuning for Llama2 family,
we initially considered using Llama2-Chat. How-
ever, it is important to note that Llama2-Chat is a
version that has been fine-tuned using both SFT
and Reinforcement Learning with Human Feed-
back (RLHF; Christiano et al. 2017), as it has been
aligned with human preferences for helpfulness and
safety. In practice, we observed that the Llama2-
Chat model sometimes overly prioritizes safety,
leading to instances where it refrains from gener-
ating responses due to its strict safety protocols.
Consequently, we opted for a SFT model that was
fine-tuned using Alpaca dataset to ensure more con-
sistent outputs and used it as a source of obtaining
SFT priors.

Hyper-parameters The hyper-parameter set-
tings are presented in Table 7. This experiment
was conducted using the DeepZero 2.
C.2 Prompting Strategies
Machine Translation

* Normal: Translate the following sentences

from {Source Language} to {Target Lan-
guage). {Source Text}

* Prompting: {Source Language}: {Source
Text}) \n{Target Language)} Translation:

Cross-lingual Summary

* Please write a concise summary of the text,
return your responses with one line that cover

10https://wwa.statmt.org/wmt23/
translation-task.html
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En-Uk En-Zh En-He Avg. % SF'T.
Models
BL. CoM. BL. CoM. BL. CoM. BL. CoM. All
Llama2-7B

. Llama2-7B-Alpaca . 128 1O 259 776 23 463 137 331 = -

Llama2-7B . 02 348 101 653 03 412 35 362 595
+PRETTY (SFT Prior) 12.1 703 247 764 13 434 1277 50.7 94.9
+PRETTY (Pseudo Prior) 94 639 228 724 0.7 407 11 47 86.8
+PRETTY (Refined Prior) 12.5 723 247 768 23 483 132 526 98.5

Table 6: Translation performance of different models on WMT23 subsets. Bold values indicate that the best
performance among foundation models. The overall best results are underlined. “%SFT.” denotes the relative

performance compared to Alpaca model.

Hyper-Parameters Settings
Learning Rate 2e-5

LR Scheduler Cosine
Epoches 3

Seed 42
Warmup Ratio 0.03
Weight Decay 0
Cumulative Batch Size 64
LoRA Alpha 64
LoRA Rank 128
LoRA Dropout 0.05
Trainable Modules q_proj,v_proj,k_proj0_proj,

gate_proj,down_proj,up_proj

Table 7: Settings used for fine-tuning Llama2-7B foun-
dation model with Alpaca data.

the key points of the text\n Input: {Source
Text} \n Output: {Target Language} Summary:

POS tagging

* Please provide the POS tags for each word
in the input sentence. The input will be a
list of words from the sentence. The output
format should be a JSON array, where each
key-value pair includes a word from the input
list and its corresponding POS tag from the set
of labels: [{PoS Tags}\nNote: Your response
should include only a JSON array, presented
in the order that the words appear in the input
sentence. Each key-value pair should contain
the word and its POS label.

C.3 Success Rate of Vanilla Prompting

We randomly selected 500 sentences from the
Flores-101 benchmark for four translation direc-
tions and randomly used ten diverse prompts for the
corresponding translations. In addition to prompts

proposed by Bawden and Yvon (2023), the used
prompts are as follows:

» Translate the following sentences from
{Source Language} to {Target Language).

* Can you help me translate this sentence from
{Source Language) to { Target Language}?

» What is the translation of sentence in {Target
Language)}? {Source Text}

o Infill in {Target Language): {Source Text}

* Please provide machine translation text for
men{Source Language)}: {Source Text/\n
{Target Language):

To determine whether a translation was generated
(regardless of its translation quality), we employed
automated tools'! and then checked the results by
human. We then calculated the success rate of
translation requests. The results, which will be
detailed in table below, indicate that foundation
LLMs exhibit considerable instability in generating
the target language when presented with different
prompts. In most cases, the LLMs failed to produce
the desired language output.

En-Zh En-Uk Zh-Pt De-Fr

Success Rate T 28.6% 21.6% 39.6% 37.4%

Table 8: Success Rate of translation prompting with
different instructions.

"https://github.com/Mimino666/langdetect
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C.4 Pseudo Labels

We collected lexical data from various sources,
including Wiktionary'?, MUSE!'3(Lample et al.,
2018), and PanLex ', and merge their entries into
one dictionary. Table 9 presents the detailed infor-
mation of compiled dictionaries.

Languages # Entries Source
En-Zh 31,443 Wiktionary, MUSE
Zh-En 13,667 MUSE
En-Uk 32,685 MUSE
Uk-En 34,888 MUSE
De-Fr 61,527 Wiktionary, MUSE
Pt-Zh 322,987 PanLex

Table 9: The detailed statistical information of the dic-
tionary used for constructing Pseudo Priors.

Phttps://www.wiktionary.org/

13https://github.com/facebookresearch/MUSE#
ground-truth-bilingual-dictionaries

“https://panlex.org/source-list/
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