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Abstract

Fine-tuning all parameters of large language
models (LLMs) necessitates substantial com-
putational power and extended time. Latest ad-
vancements in parameter-efficient fine-tuning
(PEFT) techniques, such as Adapter tuning and
LoRA, allow for adjustments to only a minor
fraction of the parameters of these LLMs. Con-
currently, it has been noted that the issue of
over-smoothing diminishes the effectiveness of
these Transformer-based LLMs, resulting in
suboptimal performances in downstream tasks.
In this paper, we present SIBO, which is a
SImple BOoster to enhance PEFT, by injecting
an initial residual. SIBO is straightforward and
readily extensible to a range of state-of-the-art
PEFT techniques to alleviate over-smoothing
and enhance performance. Extensive experi-
ments on 22 benchmark datasets demonstrate
that SIBO significantly enhances the perfor-
mance of various strong baselines, achieving up
to 15.7% and 23.5% improvement over existing
PEFT methods on the arithmetic and common-
sense reasoning tasks, respectively.

1 Introduction

Many Transformer-based large language models
(LLMs) exhibit significant depth, e.g., BERT-large
(Devlin et al., 2019) has 24 layers, LLaMA-7B
(Touvron et al., 2023) has 32 layers, and LLaMA-
65B has 80 layers. Yet, this depth presents a chal-
lenge (Zhou et al., 2021; Gong et al., 2021): Deep
Transformers tend to encounter the over-smoothing
problem. This issue, as detailed by Brunner et al.
(2019), manifests in the deeper layers of Trans-
formers, where token representations increasingly
converge toward uniformity. The over-smoothness
not only impedes the scalability of Transformer
training, particularly in terms of depth, but also
limits the efficacy of scaling up the model size.
Consequently, expanding the model often results in
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marginal enhancements or, in some cases, reduced
accuracy (Xue et al., 2023).

Meanwhile, a significant drawback of full-model
fine-tuning for LLMs is that it requires updating all
the parameters of the original model. While this
constitutes a relatively minor limitation for models
like BERT-large (Devlin et al., 2019) or RoBERTa-
large (Liu et al., 2019), it escalates into a major
obstacle for larger models such as LLaMA (Tou-
vron et al., 2023), which contain billions of train-
able parameters. Many approaches (Houlsby et al.,
2019; Hu et al., 2022; Li and Liang, 2021; Lester
et al., 2021) have been explored to address this is-
sue by updating only a subset of the parameters
or lightweight external modules tailored for new
tasks. Such strategies require storing and loading
a relatively small number of task-specific parame-
ters alongside the pre-trained model for each task.
These compelling alternatives to full-model fine-
tuning are called parameter-efficient fine-tuning
(PEFT) (Houlsby et al., 2019), which significantly
enhances the feasibility of deploying LLMs.

Although some approaches have been proposed
to deal with the over-smoothing problem, such as
adding specifically designed regularization to avoid
“uniform tokens” (Zhou et al., 2021; Gong et al.,
2021) and fusing the representations from all layers
(Shi et al., 2022), no PEFT method has yet been pro-
posed to alleviate the over-smoothing issue. In the
era of LLMs, when internal modifications to mod-
els are infeasible for most use cases, addressing
the over-smoothing issue through PEFT techniques
becomes critical.

Challenge and present work. Given that existing
solutions to over-smoothing involve changes to the
model architecture and are hence not parameter-
efficient, the question arises: How can over-
smoothing be effectively addressed for PEFT tech-
niques? Two primary factors may contribute to the
over-smoothing problem: 1) redundancy within the
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model’s encoding layers, and 2) a suboptimal train-
ing process that hinders the effective optimization
of the deeper layers. To address the first issue, a
straightforward and logical solution is to reduce
the number of layers in the encoder. However, this
approach can result in a decline in performance
(Chen et al., 2023). To address the second issue,
previous approaches (Gong et al., 2021; Zhou et al.,
2021; Shi et al., 2022) are not parameter-efficient,
thereby limiting their application to LLMs.

To devise a flexible yet simple plug-and-play
framework for alleviating over-smoothing with ex-
isting PEFT techniques, our idea boils down to
injecting an initial residual into the PEFT input.
This initial residual connection ensures that the fi-
nal representation of each token preserves at least
a minimum portion of the input layer’s features,
aiming to reduce the uniformity of the final token
representations. We name the novel framework
SIBO, a SImple BOoster to enhance PEFT tech-
niques designed for LLMs, most notably Adapter
(Houlsby et al., 2019) and LoRA (Hu et al., 2022).

Empirically, on the arithmetic reasoning task,
SIBO outperforms Adapter and LoRA by up to
15.7% and 13.6%, respectively. On the common-
sense reasoning task, the improvement is up to
7.6% over Adapter, and 23.5% over LoRA.

2 Preliminaries

In the following, we present a summary of two
popular lines of PEFT techniques: adapters and
reparametrization-based methods.
Adapters. Adapters fall into two distinct cat-
egories: parallel and serial adapters. Parallel
adapters (He et al., 2021) integrate additional learn-
able modules alongside various layers of the core
model. In contrast, series adapters (Houlsby et al.,
2019) insert these modules sequentially between
specific layers, e.g., adding fully connected net-
works after both the attention and feed forward
layers in the Transformer model. In this work, we
focus on the classical serial adapter, which has the
following general formulation:

h← h+ f(hWdown)Wup, (1)

where h ∈ R1×d represents the output of the pre-
ceding layer, after which the adapter is inserted.
Consequently, h serves as the input to the adapter.
It first undergoes a down-projection to a lower di-
mension r via Wdown ∈ Rd×r, followed by an
up-projection back to its original dimension d via

Wup ∈ Rr×d. The function f(·) represents a non-
linear function.
Reparameterization-based methods. These
methods are designed to modify network weights
through a low-rank strategy. This technique effec-
tively reduces the number of tunable parameters
without compromising performance. For exam-
ple, Low-Rank Adaptation (LoRA) approximates
the update ∆W to a pre-trained weight matrix
W ∈ Rd×d through a low-rank decomposition:

h← h(W + s ·WdownWup), (2)

where h ∈ Rd is the output of the preceding layer,
and W ∈ Rd×d is a pre-trained weight matrix, e.g.,
for multilayer perceptron (MLP) or attention layers.
The matrices Wdown ∈ Rd×r and Wup ∈ Rr×d

are lower-rank matrices to approximate the update,
i.e., ∆W ≈WdownWup. Here, r ≪ d serves as a
crucial hyperparameter for LoRA, while the scalar
s ≥ 1 is an adjustable hyperparameter.

3 Methodology

In this section, we first analyze the over-smoothing
issue in PEFT techniques, and subsequently present
our proposed framework, SIBO.

3.1 Over-smoothing in PEFT
Originating from graph neural networks, the term
over-smoothing denotes a decline in performance
attributed to the increasing homogeneity of node
representations (Li et al., 2018; Xu et al., 2018;
Huang et al., 2020), stemming from the repetitive
use of the same adjacency matrix in successive
aggregation layers. Shi et al. (2022) have since
identified an over-smoothing phenomenon in lan-
guage models as well, wherein distinct tokens in an
input sentence exhibit increasingly similar repre-
sentations as more layers are stacked, diminishing
the effectiveness of deep Transformer models.

While several strategies have been proposed to
mitigate over-smoothing (Zhou et al., 2021; Gong
et al., 2021; Shi et al., 2022), they are not designed
for PEFT techniques, making them less practical
for LLMs. In particular, we also observe over-
smoothing in widely adopted PEFT techniques in-
cluding adapters and LoRA, especially with deep
layers, through quantitative analysis. In our anal-
ysis, over-smoothing can be detected by assessing
the similarity among tokens in the same sentence,
known as token-wise cosine similarity. Given a
sentence consisting of m tokens, represented by
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Figure 1: Over-smoothing in PEFT. The results are the
averaged token-wise similarity of sentences in the test
sets of the corpora in the GLUE benchmark (Wang et al.,
2018), with BERT-large as the backbone.
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Figure 2: Over-smoothing in PEFT. The results are the
averaged token-wise similarity of sentences in the test
sets of MAWPS (Koncel-Kedziorski et al., 2016) and
SVAMP (Patel et al., 2021), with LLaMA (13B) as the
backbone.

(h1,h2, . . . ,hm), its token-wise cosine similarity
is computed as

1

m(m− 1)

∑

i ̸=j

h⊤
i hj

∥hi∥2∥hj∥2
, (3)

where ∥ · ∥2 is the Euclidean norm. As shown in
Figs. 1 and 2, with both adepters and LoRA, an in-
crease in token-wise similarity is noted consistently
as the layer depth in the backbone language model
increases. Hence, the issue of over-smoothing also
persists in pre-trained language models that have
undergone adaptation via PEFT techniques. There-
fore, it is imperative to devise a general frame-
work that eases over-smoothing for PEFT methods,
while retaining their efficiency.

3.2 Initial residual integration

To achieve a universal plug-and-play enhancement
for PEFT, we start with the input to the PEFT mod-
ule, and inject an initial residual into the input at
each layer of the pre-trained model.

Let the initial token representation serving as
input to the pre-trained model be denoted by h0 ∈
Rd. Integrating an initial residual from h0 guar-
antees that the final representation of each token
preserves at least a λ portion of the information

h
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Figure 3: Proposed framework SIBO, applying to two
popular PEFT methods: (a) Adapter, and (b) LoRA.

from the input layer. Here, 0 < λ < 1 is a crucial
factor when multiple layers are involved. Practi-
cally, we treat λ as a hyperparameter, and setting it
to a reasonable value, such as 0.2, ensures that the
final token representation incorporates a substantial
part of the input token feature, thereby reducing
over-smoothness throughout the layers. We present
a theoretical analysis in Appendix A. In the fol-
lowing, we illustrate how our proposed framework,
SIBO, can be applied to Adapter and LoRA, two
most popular PEFT techniques.

Adapter-SIBO. Implementing the initial residual
injection for adapters is straightforward. As illus-
trated in Fig. 3(a), SIBO adds the initial token rep-
resentation h0 to a hidden state h at the entry point
of the adapter (i.e., output from the preceding layer
and input to the adapter), within each Transformer
layer. This process is executed through a basic
vector addition operation as follows.

h←h̃+ f(h̃Wdown)Wup

s.t. h̃ = (1− λ)h+ λh0, (4)

where 0 < λ < 1 is a hyper-parameter used to
control the strength of the initial residual.

LoRA-SIBO. In each LoRA module at every Trans-
former layer, the input to its update, ∆W, is solely
the hidden state h from the preceding layer, with
∆W being approximated by low-rank matrices. In
LoRA-SIBO, we introduce a modification to the
input to ∆W, which becomes a combination of h
and h0, as follows.

h←hW + s · h̃WdownWup

s.t. h̃ = (1− λ)h+ λh0. (5)

4 Experiments

In this section, we perform extensive experiments
across various benchmarks and language models.
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4.1 Datasets

Our study encompasses a thorough empirical ex-
amination of 22 benchmark datasets, categorized
into three distinct problem areas as follows.

Arithmetic reasoning. (1) GSM8K (Cobbe et al.,
2021): linguistically varied grade-school math
word problems created by skilled problem writ-
ers. (2) AQuA (Ling et al., 2017): algebraic word
problems with natural language explanations. (3)
MAWPS (Koncel-Kedziorski et al., 2016): a va-
riety of arithmetic and algebra word problems of
different complexities. (4) SVAMP (Patel et al.,
2021): arithmetic word problems aimed at students
up to the 4th grade, derived by making minor mod-
ifications to an existing problem set. PEFT tech-
niques adopt a supervised fine-tuning (SFT) setting
(Ouyang et al., 2022), where the supervision is
derived from Math10K (Hu et al., 2023), which
comprises the training sets of GSM8K, AQuA, and
MAWPS. The pre-trained model is fine-tuned on
the examples in Math10K to replicate their styles
and characteristics.

Commonsense reasoning. (1) BoolQ (Clark et al.,
2019): Yes/no questions, originating from natural,
unrestricted environments. (2) PIQA (Bisk et al.,
2020): Questions requiring physical commonsense
for resolving two possible solutions. (3) SIQA (Sap
et al., 2019): Questions focusing on the understand-
ing the social implications of human actions. (4)
HellaSwag: Commonsense natural language infer-
ence questions with various endings to complete a
given context. (5) WinoGrande (Sakaguchi et al.,
2021): A fill-in-the-blank task with binary choices,
demanding commonsense reasoning to select the
appropriate option. (6) ARC-c and (7) ARC-e
(Clark et al., 2018): The Challenge and Easy sets
of the ARC dataset, featuring genuine grade-school
level science questions in multiple-choice format.
(8) OBQA: Questions that necessitate multi-step
reasoning, additional common and commonsense
knowledge, and comprehensive text understanding.
To perform SFT, we employ a training set named
Commonsense170K (Hu et al., 2023), which is
tailored for enhancing commonsense reasoning ca-
pabilities. It includes the training sets from the
above eight commonsense reasoning datasets.

A summary of the datasets on arithmetic and
commonsense reasoning is presented in Table 1.

GLUE. The General Language Understanding
Evaluation Benchmark (Wang et al., 2018) encom-
passes eight corpora for various natural language

Dataset Domain # train # test Answer

GSM8K Math 8.8K 1,319 Number
AQuA Math 100K 254 Option

MAWPS Math 1.9k 238 Number
SVAMP Math - 1,000 Number
BoolQ CS 9.4K 3,270 Yes/No
PIQA CS 16.1K 1,838 Option
SIQA CS 33.4K 1,954 Option

HellaSwag CS 39.9K 10,042 Option
WinoGrande CS 63.2K 1,267 Option

ARC-e CS 1.1K 2,376 Option
ARC-c CS 2.3K 1,172 Option
OBQA CS 5.0K 500 Option

Table 1: Datasets on arithmetic reasoning (Math) or
commonsense reasoning (CS).

understanding tasks: CoLA, SST-2, MRPC, STS-B,
QQP, MNLI, QNLI, and RTE.

4.2 Implementations

Arithmetic and commonsense reasoning. We
use LLaMA (7B, 13B) (Touvron et al., 2023) and
GPT-J (6B) (Wang and Komatsuzaki, 2021) as
the foundational models, which are designed for
natural language generation tasks. We choose
Adapter (Houlsby et al., 2019) and LoRA (Hu
et al., 2022) as baselines, and follow previous
work (Hu et al., 2023) for the experimental setup
and hyperparameters. In particular, for Adapter,
we integrate it into the feed-forward layers with
a bottleneck size of 256; for LoRA, we incorpo-
rate it into both the multi-head attention and feed-
forward layers with rank 32. For Adapter-SIBO
and LoRA-SIBO, we inject the initial residual into
the modules at the feed-forward layers only, and
choose λ ∈ {0.1, 0.2, 0.3} empirically while re-
taining other settings in the vanilla Adapter and
LoRA. More details on the experimental setup can
be found in Appendix D.

GLUE. We use BERT-large (Devlin et al., 2019) as
the backbone. While larger models have recently
surpassed BERT on the GLUE benchmark, BERT
continues to be favored for its efficiency. More-
over, it is relatively easy to perform full-model fine-
tuning (FT) on BERT, enabling a direct comparison
between FT and PEFT techniques. For Adapter,
we apply the typical setting (Houlsby et al., 2019)
where adapter layers are added after the multi-head
attention and feed-forward layers; for LoRA, we
follow previous work (Hu et al., 2022) and apply
to weights Wq and Wv with rank 8. For Adapter-
SIBO, we inject the initial residual to the adapter
modules after the self-attention layers; for LoRA-
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PLM PEFT method # Params. tuned GSM8K AQuA MAWPS SVAMP Overall Improv.
GPT-3.5 (175B)∗ − − 56.4 38.9 87.4 69.9 63.2 −

GPT-J (6B)

Adapter∗ 112M 14.3 20.5 62.2 38.1 33.8 −
Adapter-SIBO 112M 19.0 18.9 72.7 45.9 39.1 15.7%
LoRA∗ 35M 17.4 21.3 70.2 41.0 37.5 −
LoRA-SIBO 35M 22.4 20.5 77.7 49.7 42.6 13.6%

LLaMA (7B)

Adapter∗ 128M 33.3 15.0 77.7 52.3 44.6 −
Adapter-SIBO 128M 33.1 18.9 80.3 48.0 45.1 1.1%
LoRA∗ 40M 37.5 18.9 79.0 52.1 46.9 −
LoRA-SIBO 40M 37.8 18.5 82.8 50.7 47.5 1.3%

LLaMA (13B)

Adapter∗ 200M 44.0 22.0 78.6 50.8 48.9 −
Adapter-SIBO 200M 43.2 22.4 82.4 52.9 50.2 2.7%
LoRA∗ 62.5M 47.5 18.5 83.6 54.6 51.1 −
LoRA-SIBO 62.5M 47.0 20.5 84.0 57.6 52.3 2.3%

Table 2: Performance of LLMs with different PEFT methods on arithmetic reasoning, using GPT-3.5 with zero-shot
CoT as a reference point. ∗ indicates results from prior work by Hu et al. (2023), where the exact same experimental
setup and evaluation protocols are adopted. Improvement is calculated relative to the counterpart without SIBO.

Method BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Overall Improv.
Adapter∗ 62.1 63.5 72.3 30.6 68.0 63.9 48.1 63.8 59.0 −
Adapter-SIBO 62.2 73.0 73.0 48.7 67.8 65.5 51.9 65.6 63.5 7.6%
LoRA∗ 62.4 68.6 49.5 43.1 57.3 43.4 31.0 46.6 50.2 −
LoRA-SIBO 63.9 70.3 71.0 47.8 67.2 63.3 48.7 63.8 62.0 23.5%

Table 3: Performance of GPT-J (6B) with different PEFT methods on commonsense reasoning. ∗ indicates results
from prior work (Hu et al., 2023), where the exact same experimental setup and evaluation protocols are adopted.

SIBO, we inject the initial residual to all LoRA
modules. For both SIBO approaches, we choose
λ ∈ {0.1, 0.2, . . . , 0.7} empirically while follow-
ing previous work (Houlsby et al., 2019; Hu et al.,
2022) to set other hyperparameters.

4.3 Performance comparison

We evaluate the performance of SIBO in compari-
son to baselines across the three problem areas.

Arithmetic reasoning. We compare the perfor-
mance of Adapter and LoRA with or without SIBO,
by performing PEFT on the pre-trained LLaMA
and GPT-J models using the Math10K dataset. We
then test the fine-tuned models across the test set
of the four math reasoning datasets. As a standard
reference (Hu et al., 2023), we further compare
to the GPT-3.5 model (text-Davinci-003 version),
which employs zero-shot Chain of Thought (CoT)
(Kojima et al., 2022).

As reported in Table 2, the 175B-parameter
GPT-3.5 model demonstrates superior accuracy
over other LLMs. Despite this, LoRA-SIBO ap-
plied on LLaMA (13B) has reached a performance
level comparable to that of GPT-3.5 with only a
small gap. Compared to the counterparts without
SIBO, SIBO has achieved notable improvements:
2.3%–2.7% on LLaMA (13B), and 1.1%–1.3% on
LLaMA (7B). The smaller improvements on the
7B model can be attributed to the less pronounced

over-smoothing issue in smaller models with fewer
layers, indirectly underscoring the necessity to ad-
dress over-smoothing in deeper models. Mean-
while, SIBO achieves up to 15.7% improvement on
the weaker GPT-J, significantly reducing the gap
from LLaMA (7B).

Moreover, we observe enhancements by SIBO
in both in- and out-of-distribution scenarios. The
dataset utilized for fine-tuning, Math10K, encom-
passes the training sets from GSM8K, AQuA, and
MAWPS, excluding SVAMP. It can be observed
that SIBO not only enhances the performance of
PEFT methods on the first three datasets in an in-
distribution setting, but also extends the improve-
ments to SVAMP, an out-of-distribution scenario,
demonstrating the robustness and generalizability
of our methodology.

Commonsense reasoning. Next, we investigate
the performance of SIBO for commonsense reason-
ing tasks. Table 3 presents a comparative analysis
of the PEFT methods applied to GPT-J (6B). It
is evident that SIBO consistently and significantly
enhances the performance of Adapter and LoRA
across eight diverse corpora/tasks, with average
improvements ranging between 7.6% and 23.5%.

GLUE. Lastly, we present the results on the GLUE
benchmark in Table 4, using BERT-large as the
backbone model. SIBO consistently outperforms
the vanilla PEFT methods across eight diverse
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Method # Params. tuned CoLA SST-2 MRPC STS-B QQP MNLI QNLI RTE Overall
FT∗ 340.0M 62.8 94.1 91.9 89.8 87.6 86.5 93.5 71.8 84.8
Adapter 6.0M 62.1±1.1 93.7±0.2 90.4±0.5 90.2±0.2 88.3±0.3 85.9±0.1 92.2±0.2 71.5±2.4 84.3
Adapter-SIBO 6.0M 63.1±1.2 94.6±0.2 90.9±0.1 90.2±0.1 88.3±0.2 86.0±0.1 92.4±0.3 73.2±1.1 84.8
LoRA 0.8M 60.1±1.0 93.6±0.3 90.3±0.3 89.6±0.1 87.8±0.1 85.5±0.1 92.1±0.3 71.1±0.8 83.8
LoRA-SIBO 0.8M 61.6±0.8 93.8±0.2 90.8±0.1 89.9±0.1 87.7±0.2 85.6±0.2 92.2±0.2 71.8±1.8 84.2

Table 4: Performance of BERT-large with different PEFT methods on the GLUE benchmark. ∗ indicates results
from prior work (Zaken et al., 2022), where the exact same experimental setup and evaluation protocols are adopted.
We report mean (and standard deviation) of the performance over three different runs.

datasets/tasks. Notably, the effectiveness of the
Adapter-SIBO even matches that of full-model fine-
tuning (FT). More experimental results using an
alternative pre-trained model, RoBERTa-large, are
in Appendix B.

4.4 Analyses

In this section, we first analyze the optimal place-
ment of the initial residual for Adapter and LoRA.
Following that, we examine the effect of the sole
hyperparameter λ we introduced. Then, we ex-
plore the overhead incurred by SIBO. Finally, we
visualize the role of the initial residual in mitigat-
ing the over-smoothing issue, and present a case
study. In these studies, we employ BERT-large as
the backbone on the CoLA and STS-B datasets.

Placement. In this section, we investigate the
placement of initial residual for PEFT modules.

For Adapter, each Transformer layer employs
two adapter modules, positioned respectively af-
ter the attention layer (ATT) and the feed-forward
layer (FFN). The question arises: which position is
more suitable for the injection of the initial resid-
ual? As shown in Table 5, injecting the initial
residual solely at the ATT position achieves almost
identical performance to that at the FFN position.
However, injecting initial residuals at both ATT
and FFN results in a slight decline in performance.
This suggests that injecting the initial residual once
per Transformer layer is sufficient, as excessive
injections can introduce noises.

For LoRA, each module involves two types of pa-
rameters: frozen pre-trained weights and learnable
low-rank matrices. We explore whether it is neces-
sary to inject the initial residual into both or solely
into the low-rank matrices. Table 6 reveals that
injecting the initial residual only into the learnable
low-rank matrices yields better results. A potential
reason is that frozen weights do not integrate well
with the layer’s hidden state and the initial residual.

Impact of λ. SIBO only introduces one new hyper-
parameter, λ, which balances the trade-off between

Placement CoLA STS-B Average
ATT 63.1±1.2 90.2±0.2 76.7
FFN 63.3±0.6 90.1±0.1 76.7
Both 61.8±1.5 90.0±0.1 75.9

Table 5: Initial residual placement for Adapter.

‘ Placement CoLA STS-B Average
Low-rank matrices 61.6±0.8 89.9±0.1 75.8

+ Pre-trained weights 61.0±0.8 89.7±0.3 75.1

Table 6: Initial residual placement for LoRA.

the hidden state and the initial residual. The selec-
tion of λ also guarantees the minimum portion of
input features preserved in the final token represen-
tation, directly mitigating the over-smoothing issue.
Hence, we investigate the optimal value for λ, vary-
ing it between 0.1 and 0.7. As illustrated in Fig. 4,
for Adapter, a lower λ value, such as 0.2, is gen-
erally more effective. While it is crucial to ensure
that the final representation of each token maintains
a minimum portion of λ from the input layer across
multiple stacked layers, this proportion should not
be excessively large to avoid compromising the
learning capacity of Adapter. For LoRA, the hid-
den state is fed to both the pre-trained weights and
the low-rank matrices, implying that the effect of
λ ratio is naturally “halved”. In other words, a λ
value of 0.6 for LoRA is roughly equivalent to a
λ value of 0.3 for Adapter. Therefore, the opti-
mal value of λ in LoRA is larger than in Adapter,
occurring around 0.6–0.7.

Despite the effort to select λ, our approach
remains pragmatic and resource-conscious. For
smaller models like BERT, extensive tuning over a
large range of values for λ is feasible. In the context
of larger models, such as LLaMA (13B), a smaller
range of values λ ∈ {0.1, 0.2, 0.3} have been con-
sidered in our tuning, which still yields significant
improvements across various tasks, as shown in
Tables 7 and 8. Notably, many non-optimal values
of λ could still result in significant performance
gains, underscoring the efficacy and robustness of
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Figure 4: Impact of initial residual portion λ.

Methods GSM8k AQuA MAWPS SVAMP Avg.
Adapter 44.0 22.0 78.6 50.8 48.9

SIBO (λ = 0.1) 42.7 17.3 83.6 55.9 49.9
SIBO (λ = 0.2) 42.3 20.1 81.9 55.3 49.9
SIBO (λ = 0.3) 43.2 22.4 82.4 52.9 50.2

Table 7: Impact of λ, with LLaMA (13B) as the back-
bone, and adapter as the PEFT method.

SIBO without extensive hyperparameter tuning.

Complexity. SIBO is remarkably efficient, in-
volving only an additional summation operation
with the initial residual vector at each Transformer
layer, without introducing any extra parameter. To
demonstrate its efficiency, we compare the number
of floating point operations (FLOPs) and the wall-
clock time for fine-tuning and testing. As shown in
Table 9, the overhead of summing the initial resid-
ual vector only marginally increases the FLOPs.
Moreover, the wall-clock time is almost identical
to that of the vanilla PEFT methods, which does
not include the initial residual, highlighting the
simplicity and efficiency of SIBO.

Visualizations of over-smoothing. The thesis of
the work is to employ the initial residual to alle-
viate over-smoothing. To examine whether SIBO
effectively reduces over-smoothing, we conduct
experiments comparing the token-wise cosine simi-
larity, as defined in Eq. 3, in the last five layers of
the language model after applying PEFT methods
with or without SIBO. As observed in Figs. 5 and 6,
the token-wise similarity generally decreases when
SIBO is applied alongside Adapter and LoRA. In
essence, SIBO has lessened the degree of over-
smoothing, leading to better task performance.

Qualitative case study. Finally, we supplement
our quantitative findings with qualitative analysis in
a case study. Table 10 presents a question sampled
from SVAMP, showcasing responses from Chat-
GPT 3.5, as well as LLaMA (13B) using various
PEFT methods. While ChatGPT is generally ro-
bust, it is not infallible and has provided an incor-
rect answer in this instance. Similarly, the answers
generated by Adapter and LoRA were found to be

Methods GSM8k AQuA MAWPS SVAMP Avg.
LoRA 47.5 18.5 83.6 54.6 51.1

SIBO (λ = 0.1) 47.0 20.5 84.0 57.6 52.3
SIBO (λ = 0.2) 46.6 19.3 84.0 57.8 51.9
SIBO (λ = 0.3) 47.8 21.3 83.2 52.9 51.3

Table 8: Impact of λ, with LLaMA (13B) as the back-
bone, and LoRA as the PEFT method.

Methods # FLOPs CoLA STS-B
Params. Time (s) Time (s)

Adapter 6.0M 6,291,456 108.3±0.9 82.7±0.6

Adapter-SIBO 6.0M 6,389,760 110.0±1.0 80.7±1.5

LoRA 0.8M 835,584 86.3±0.6 55.7±0.5

LoRA-SIBO 0.8M 884,736 90.0±1.0 52.7±7.5

Table 9: Complexity analysis. Time includes fine-tuning
one epoch and then testing, averaged over three runs.

erroneous, mainly due to their initial confusion be-
tween the related concepts of cracker and snack.

In contrast, LoRA-SIBO shows an improvement
by correctly distinguishing between the two con-
cepts at least in the initial phase of reasoning.
Adapter-SIBO outperforms all by maintaining clar-
ity on the two concepts throughout, leading to the
correct answer. This improvement underscores the
benefit of addressing over-smoothness, which en-
hances word discrimination and thus provides a
clearer distinction between closely related concepts
such as cracker and snack, improving overall per-
formance. Moreover, the responses from Adapter-
SIBO and LoRA-SIBO appear more detailed and of
higher quality than those from the vanilla Adapter
and LoRA. Further qualitative examples are pre-
sented in Appendix C.

5 Related work

We focus on the discussion of parameter-efficient
fine-tuning (PEFT) of pre-trained language mod-
els. There exists three main categories of meth-
ods, including prompt-based learning, adapters,
and reparametrization methods. However, none
of the existing approaches is designed to alleviate
the over-smoothing issue.

Prompt-based learning extends the identification
of the ideal discrete (hard) prompt into the opti-
mization of a continuous (soft) prompt instead.
Lester et al. (2021) have introduced the idea of
prompt tuning, which involves attaching a train-
able tensor as a prefix to the input embeddings.
Similarly, Li and Liang (2021) have developed an
independent method known as prefix tuning, which
integrates soft prompts into the hidden states across
all layers. Another technique, Intrinsic Prompt Tun-
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Question Matthew gave equal numbers of crackers and cakes to his 4 friends. If he had 32 crackers
and 98 cakes initially. How many crackers did each person eat?

ChatGPT∗

To calculate the number of crackers each person ate, we need to find the number of crackers
that each friend received initially and subtract it from the total number of crackers
Matthew had.
Here are the steps:
1. Divide the total number of crackers by the number of friends (4) to find the number of
crackers each friend received initially: 32 / 4 = 8 crackers per friend.
2. Since we want to find the number of crackers each person ate, we need to subtract
the initial number of crackers per friend from the total number of crackers: 32 - 8 = 24
crackers.

LLaMA (13B)
1. Divide the total number of crackers by the number of friends: 32 / 4 = 8
2. Divide the total number of cakes by the number of friends: 98 / 4 = 24

+ Adapter∗ 3. Add the number of crackers and cakes each friend received: 8 + 24 = 32
4. Therefore, each person ate 32 crackers and 24 cakes.
Answer: Each person ate 32 crackers.

LLaMA (13B)
1. Find the total number of crackers and cakes: 32 + 98 = 130
2. Divide the total number of crackers by the number of friends: 32 ÷ 4 = 8
3. Divide the total number of cakes by the number of friends: 98 ÷ 4 = 22

+ Adapter-SIBO 4. Since Matthew gave equal numbers of crackers and cakes, each friend ate the same number
of crackers and cakes.
5. Therefore, each person ate 8 crackers and 22 cakes.
Therefore, each person ate 8 crackers.

LLaMA (13B)
1. Divide the total number of crackers by the number of friends: 32 / 4 = 8
2. Divide the total number of cakes by the number of friends: 98 / 4 = 24

+ LoRA∗ 3. Add the number of crackers and cakes each person received: 8 + 24 = 32

LLaMA (13B)

1. Find the total number of friends Matthew gave crackers and cakes to: 4 friends
2. Find the total number of crackers and cakes Matthew gave away: 32 crackers + 98 cakes
= 130 snacks

+ LoRA-SIBO 3. Divide the total number of snacks by the number of friends: 130 snacks ÷ 4 friends =
32.5 snacks per person
4. Round down to the nearest whole number since Matthew can’t give away a fraction of a
cracker: 32 crackers per person
Therefore, each person ate 32 crackers.

Table 10: An example question from SVAMP, with the ground-truth answer 8. We show the output of ChatGPT and
various PEFT methods on LLaMA (13B). ∗ indicates results from prior work (Hu et al., 2023).
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Figure 5: Token-wise similarity in last five layers com-
puted from PEFT methods, with and without SIBO.

ing (Qin et al., 2021), utilizes an autoencoder to
both compress and decompress the soft prompt at
the cost of limiting the sequence length.

Adapters exist in parallel and serial forms. Par-
allel adapters (He et al., 2021) integrate additional
learnable modules alongside various layers of the
core model. A different strategy, termed Ladder
Side-Tuning (Sung et al., 2022), focuses on devel-
oping a streamlined auxiliary network akin to a lad-
der. This auxiliary network receives intermediate
activations from the main network via direct short-
cut pathways, referred to as ladders. In contrast,
serial adapters insert these modules sequentially
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Figure 6: Heatmap of token-wise similarity in the last
layer computed from LoRA and LoRA-SIBO, on a sen-
tence randomly sampled from the test set of CoLA.

between specific layers. Houlsby et al. (2019) add
fully connected networks after both the attention
and feed-forward layers in the Transformer model.
Pfeiffer et al. (2020) have demonstrated that insert-
ing an adapter only after the self-attention layer
can yield performance comparable to using two
adapters per transformer block, whereas AdaMix
Wang et al. (2022) employs multiple serial adapters
in a mixture-of-experts approach. To further re-
duce computational complexity while preserving
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performance, Compacter (Karimi Mahabadi et al.,
2021) leverages the Kronecker product, low-rank
matrices, and parameter sharing across layers for
adapter weight generation.

Finally, reparametrization-based methods are de-
signed to modify network weights through a low-
rank approximation. This technique effectively
minimizes the number of trainable parameters with-
out compromising the representational capacity of
high-dimensional matrices. The work on Intrin-
sic SAID (Aghajanyan et al., 2021) examines the
essential dimensionality of fine-tuning within a
low-rank framework. On the other hand, LoRA
(Hu et al., 2022) models its update to a pre-trained
weight matrix through a low-rank decomposition.
Building on this, Edalati et al. (2022) enhance the
matrix decomposition feature of LoRA by incorpo-
rating the Kronecker product into their method.

6 Conclusion

We present a novel framework SIBO, a SImple
BOoster to enhance parameter-efficient fine-tuning
(PEFT) techniques for large pre-trained language
models. Our core idea revolves around mitigat-
ing the over-smoothing issue, which is achieved
by injecting an initial residual into various PEFT
modules at specific positions within the pre-trained
models. SIBO is straightforward and readily exten-
sible to various state-of-the-art PEFT methods in-
cluding Adapter and LoRA. Extensive experiments
on 22 benchmark datasets across three problem
areas demonstrate that SIBO effectively mitigate
over-smoothing and significantly improves the per-
formance of existing PEFT techniques.

7 Limitations

Our method is straightforward and effective, yet
it has one limitation: selecting the optimal value
for the hyperparameter λ requires time and compu-
tational resources. This cost is manageable given
that we only introduced one new hyperparameter,
especially for medium-sized models. However, it
may become prohibitive for very large models. A
viable solution is to transform this hyperparame-
ter into a continuous learnable parameter, allowing
the model to autonomously determine the optimal
weight for the initial residual.

Acknowledgements

This research is supported by the Agency for Sci-
ence, Technology and Research (A*STAR) un-

der its AME Programmatic Funds (Grant No.
A20H6b0151). The authors wish to thank Dr. Lei
Wang from Singapore Management University and
Mr. Zhiqiang Hu from the Singapore University of
Technology and Design for their valuable support
of this work.

References
Armen Aghajanyan, Sonal Gupta, and Luke Zettle-

moyer. 2021. Intrinsic dimensionality explains the
effectiveness of language model fine-tuning. In An-
nual Meeting of the Association for Computational
Linguistics and International Joint Conference on
Natural Language Processing (ACL-IJCNLP), pages
7319–7328.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi,
et al. 2020. Piqa: Reasoning about physical common-
sense in natural language. In AAAI Conference on
Artificial Intelligence, pages 7432–7439.

Gino Brunner, Yang Liu, Damian Pascual, Oliver
Richter, Massimiliano Ciaramita, and Roger Wat-
tenhofer. 2019. On identifiability in transformers. In
International Conference on Learning Representa-
tions (ICLR).

Nuo Chen, Linjun Shou, Ming Gong, Jian Pei, Bowen
Cao, Jianhui Chang, Daxin Jiang, and Jia Li. 2023.
Alleviating over-smoothing for unsupervised sen-
tence representation. In Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL), pages
3552–3566.

Christopher Clark, Kenton Lee, Ming-Wei Chang,
Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. 2019. Boolq: Exploring the surprising
difficulty of natural yes/no questions. In Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies (NAACL-HLT), pages 2924–2936.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? Try ARC, the AI2 Reasoning Challenge.
arXiv preprint arXiv:1803.05457.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In Conference of the North American Chap-
ter of the Association for Computational Linguis-
tics: Human Language Technologies (NAACL-HLT),
pages 4171–4186.

1249



Ali Edalati, Marzieh Tahaei, Ivan Kobyzev, Vahid Par-
tovi Nia, James J Clark, and Mehdi Rezagholizadeh.
2022. KronA: Parameter efficient tuning with Kro-
necker adapter. arXiv preprint arXiv:2212.10650.

Chengyue Gong, Dilin Wang, Meng Li, Vikas Chandra,
and Qiang Liu. 2021. Vision transformers with patch
diversification. arXiv preprint arXiv:2104.12753.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-
Kirkpatrick, and Graham Neubig. 2021. Towards a
unified view of parameter-efficient transfer learning.
In International Conference on Learning Representa-
tions (ICLR).

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for nlp. In Inter-
national Conference on Machine Learning (ICML),
pages 2790–2799.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. LoRA: Low-rank adaptation of
large language models. In International Conference
on Learning Representations (ICLR).

Zhiqiang Hu, Yihuai Lan, Lei Wang, Wanyu Xu, Ee-
Peng Lim, Roy Ka-Wei Lee, Lidong Bing, and Sou-
janya Poria. 2023. Llm-adapters: An adapter family
for parameter-efficient fine-tuning of large language
models. arXiv preprint arXiv:2304.01933.

Wenbing Huang, Yu Rong, Tingyang Xu, Fuchun Sun,
and Junzhou Huang. 2020. Tackling over-smoothing
for general graph convolutional networks. arXiv
preprint arXiv:2008.09864.

Rabeeh Karimi Mahabadi, James Henderson, and Se-
bastian Ruder. 2021. Compacter: Efficient low-rank
hypercomplex adapter layers. Advances in Neural
Information Processing Systems (NeurIPS), 34:1022–
1035.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. Advances in
Neural Information Processing Systems (NeurIPS),
35:22199–22213.

Rik Koncel-Kedziorski, Subhro Roy, Aida Amini, Nate
Kushman, and Hannaneh Hajishirzi. 2016. Mawps:
A math word problem repository. In Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies (NAACL-HLT), pages 1152–1157.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. In Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 3045–
3059.

Qimai Li, Zhichao Han, and Xiao-Ming Wu. 2018.
Deeper insights into graph convolutional networks
for semi-supervised learning. In AAAI conference on
Artificial Intelligence, pages 3538–3545.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
Annual Meeting of the Association for Computational
Linguistics and International Joint Conference on
Natural Language Processing (ACL-IJCNLP), pages
4582–4597.

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blun-
som. 2017. Program induction by rationale genera-
tion: Learning to solve and explain algebraic word
problems. In Annual Meeting of the Association for
Computational Linguistics (ACL), pages 158–167.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A robustly optimized BERT pretraining
approach. arXiv preprint arXiv:1907.11692.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in Neural In-
formation Processing Systems (NeurIPS), 35:27730–
27744.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal.
2021. Are nlp models really able to solve simple
math word problems? In Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies
(NAACL-HLT), pages 2080–2094.
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Appendices

A Theoretical analysis

To theoretically analyze that SIBO preserves a por-
tion of the original token information and mitigates
the tendency of the token vectors becoming simi-
lar across Transformer layers, let us delve into the
mathematical details.
Theorem: Preservation of token uniqueness in
Transformer layers via initial residual connections.

Given: Assume the following conditions. (1) A
Transformer model with L layers, each performing
a self-attention mechanism followed by a position-
wise feedforward network. (2) An initial token
representation h0 ∈ Rd for any token in the input
sequence. (3) An initial residual connection that
injects h0 at each layer of the Transformer, modu-
lated by a parameter λ ∈ (0, 1], ensuring that each
layer’s output includes at least λ proportion of h0.
Claim: For any layer l, 1 ≤ l ≤ L, the output
representation hl ∈ Rd of any token satisfies the
following condition:

hl = λh0 + (1− λ)Fl(h0,Hl−1),

where Hl−1 ∈ Rn×d represents the matrix of token
vectors at layer l − 1 and Fl denotes the transfor-
mation function of layer l, which includes self-
attention and feed-forward network operations.
Proof Sketch:

1. Base Case: For l = 1, the claim trivially
holds by the definition of the initial residual
connection.

2. Inductive Step: Assume the claim holds for
layer l−1. Then, for layer l, by the properties
of linear transformations in self-attention and
feedforward networks, along with the Fourier
Transform’s linearity, we can represent Fl as
a combination of these operations applied to
h0 and the residual information from Hl−1.

Since the self-attention mechanism aggregates
information across tokens modulated by at-
tention weights and the feedforward network
applies position-wise transformations, the out-
put of layer l can be represented as a linear
combination of the input and transformations
applied up to that layer, weighted by λ and
1− λ respectively.

3. Fourier perspective: The Fourier transform
of the token representations facilitates the

analysis of how frequency components are
preserved or altered through layers. The mod-
ulation by λ ensures that a minimum portion
of the original frequency spectrum of h0 is
preserved in each layer’s output, mitigating
the over-smoothing effect observed as L in-
creases.

4. Conclusion: By induction, we conclude that
each layer’s output preserves at least a λ por-
tion of the initial token representation h0, in
addition to contributions from the transforma-
tions applied within the Transformer network.

Implications. This theorem demonstrates that
through the use of initial residual connections mod-
ulated by λ, it is possible to quantitatively ensure
that each token’s representation in a Transformer
model retains a significant portion of its original
unique information, thereby reducing the tendency
of token vectors to become overly similar across
layers. This approach offers a theoretical founda-
tion for mitigating the over-smoothing problem in
deep Transformer models, supporting the preserva-
tion of information diversity and richness in token
representations through the network’s depth.

B Using RoBERTa as backbone on GLUE

In the GLUE benchmark, to investigate the gen-
eralization ability and robustness of our model,
we have also experimented with another popular
backbone, RoBERTa. As shown in Table 11, our
approach consistently enhances the performance
of the PEFT method across different backbones,
demonstrating the robustness of our method.

C Qualitative results

Regarding the qualitative results, we present not
only outcomes related to a randomly selected ques-
tion from SVAMP but also results for several ques-
tions randomly chosen from MAWPS. These find-
ings are detailed in Tables 12, 13, and 14.

D Environment and settings

Our experimental environment utilizes servers
equipped with A40 GPUs and AMD EPYC 7543
CPUs, running PyTorch version 2.0.0. Both our
training and inference processes are conducted on
a single GPU.

Detailed hyperparameter settings are shown in
Tables 15, 16, 17, 18, and 19.
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Method # Param. CoLA SST-2 MRPC STS-B QQP MNLI QNLI RTE Overall
FT∗ 355.0M 68.0 96.4 90.9 92.4 92.2 90.2 94.7 86.6 88.9

Adapter∗ 6.0M 66.5 96.2 88.7 91.0 92.1 89.9 94.7 83.4 87.8
Adapter-SIBO 6.0M 67.1±0.7 96.6±0.1 90.8±0.1 92.1±0.1 91.9±1.4 89.9±0.1 94.8±0.1 84.8±0.4 88.5

LoRA∗ 0.8M 68.2 96.2 90.2 92.3 91.6 90.6 94.8 85.2 88.6
LoRA-SIBO 0.8M 68.5±1.6 96.4±0.1 90.4±0.6 92.4±0.2 91.6±0.2 90.5±0.3 95.0±0.2 85.2±0.3 88.7

Table 11: Performance of RoBERTa-large with different PEFT methods on the GLUE benchmark. ∗ indicates
results from prior work (Hu et al., 2022), where the exact same experimental setup and evaluation protocols are
adopted. We report mean (and standard deviation) of the performance over three different runs.

Question There are 7 crayons in the drawer. Mary took 3 crayons out of the drawer. How many crayons
are there now?

ChatGPT∗
To calculate the number of crayons remaining in the drawer after Mary took some out, follow
these steps: Subtract the number of crayons Mary took from the total number of crayons in
the drawer: 7 - 3 = 4 crayons.
Therefore, there are now 4 crayons remaining in the drawer.

LLaMA (13B)
1. Start with the initial number of crayons in the drawer: 7
2. Subtract the number of crayons Mary took out: 3

+ Adapter∗ 3. Perform the subtraction: 7 - 3 = 4
4. Therefore, there are now 4 crayons in the drawer.
Answer: There are now 4 crayons in the drawer.

LLaMA (13B)
1. Start with the initial number of crayons in the drawer: 7
2. Subtract the number of crayons Mary took out: 3

+ Adapter-SIBO 3. Perform the subtraction: 7 - 3 = 4
Therefore, there are now 4 crayons in the drawer. The answer in Arabic numerals is 4.

LLaMA (13B)
1. Start with the initial number of crayons: 7
2. Subtract the number of crayons Mary took out: 7 - 3 = 4

+ LoRA∗ 3. The final answer is 4 crayons.
Therefore, there are now 4 crayons in the drawer.

LLaMA (13B)
1. Start with the initial number of crayons in the drawer: 7
2. Subtract the number of crayons Mary took out: 3

+ LoRA-SIBO 3. Perform the subtraction: 7 - 3 = 4
4. The final answer is 4 crayons.
Therefore, there are now 4 crayons in the drawer.

Table 12: An example question from MAWPS, with the ground-truth answer 4. We show the output of ChatGPT
and various PEFT methods on LLaMA (13B). ∗ indicates results from prior work (Hu et al., 2023).

Question At the schools book fair Sam bought 13 adventure books and 17 mystery books. If 15 of the
books were used, how many new books did he buy?

ChatGPT∗

To calculate the number of mosaic tiles needed to cover two-thirds of Mr. Boarden’s 36
square foot bathroom, follow these steps:
Find two-thirds of 36: Multiply 36 by 2/3.
(36 * 2/3) = 24 square feet
Determine the number of mosaic tiles needed per square foot: Given that Mr. Boarden needs
24 mosaic tiles per square foot, multiply the result from step 1 by 24.
(24 * 24) = 576 mosaic tiles
Therefore, Mr. Boarden would need 576 mosaic tiles to cover two-thirds of his 36 square
foot bathroom.

LLaMA (13B)
1. Find the total number of books Sam bought: 13 + 17 = 30
2. Subtract the number of used books from the total number of books: 30 - 15 = 15

+ Adapter∗ 3. Therefore, Sam bought 15 new books.
Answer: 15

LLaMA (13B)
1. Find the total number of books Sam bought: 13 + 17 = 30
2. Subtract the number of used books from the total: 30 - 15 = 15

+ Adapter-SIBO 3. Therefore, Sam bought 15 new books.
Answer: 15 new books.

LLaMA (13B)
1. Find the total number of books Sam bought: 13 + 17 = 30
2. Subtract the number of used books from the total number of books: 30 - 15 = 15

+ LoRA∗ 3. Therefore, Sam bought 15 new books.
Answer: 15

LLaMA (13B)
1. Find the total number of books Sam bought:
13 + 17 = 30

+ LoRA-SIBO 2. Subtract the number of used books from the total number of books:
30 - 15 = 15
Therefore, Sam bought 15 new books.

Table 13: An example question from MAWPS, with the ground-truth answer 15. We show the output of ChatGPT
and various PEFT methods on LLaMA (13B). ∗ indicates results from prior work (Hu et al., 2023).
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Question Oceanside Bike Rental Shop charges 17 dollars plus 7 dollars an hour for renting a bike.
Tom paid 80 dollars to rent a bike. How many hours did he pay to have the bike checked
out?

ChatGPT∗

To calculate the number of hours Tom paid to have the bike checked out, follow these steps:
1. Subtract the base charge from the total amount Tom paid: 80 - 17 = 63 dollars.
2. Divide the remaining amount by the hourly rate to find the number of hours: 63 / 7 = 9
hours.
Therefore, Tom paid to have the bike checked out for 9 hours.
Note: It’s important to note that the result represents the whole number of hours. If
there were any partial hours, they would not be reflected in the calculation.

LLaMA (13B)
1. Find the total cost of renting the bike:
$17 + $7/hour = $24/hour
$80 ÷ $24/hour = 3.33 hours

+ Adapter∗ 3. Round up to the nearest whole number since you can’t rent a bike for a fraction of an
hour:
3 hours
Therefore, Tom paid to have the bike checked out for 3 hours.

LLaMA (13B)
1. Subtract the initial charge of $17 from the total cost of $80: $80 - $17 = $63
2. Divide the remaining cost by the hourly rate of $7: $63 ÷ $7 = 9

+ Adapter-SIBO Therefore, Tom paid to have the bike checked out for 9 hours. The answer in Arabic numerals
is 9.

LLaMA (13B)

1. Let x be the number of hours Tom paid to have the bike checked out.
2. The cost of renting the bike for x hours is 7x dollars.
3. The total cost of renting the bike for x hours is 17 + 7x dollars.

+ LoRA∗ 4. We know that Tom paid 80 dollars to rent the bike, so we can set up an equation: 17 +
7x = 80
5. Solving for x, we can subtract 17 from both sides: 7x = 63
6. Dividing both sides by 7, we get x = 9
Therefore, Tom paid to have the bike checked out for 9 hours.

LLaMA (13B)
1. Start with the total amount Tom paid for renting the bike: 80 dollars
2. Subtract the initial charge of 17 dollars: 80 - 17 = 63 dollars
3. Divide the remaining amount by the hourly rate of 7 dollars: 63 ÷ 7 = 9

+ LoRA-SIBO 4. The answer is 9, which represents the number of hours Tom paid to have the bike checked
out.
Therefore, Tom paid to have the bike checked out for 9 hours.

Table 14: An example question from MAWPS, with the ground-truth answer 9. We show the output of ChatGPT
and various PEFT methods on LLaMA (13B). ∗ indicates results from prior work (Hu et al., 2023).
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Method Dataset GSM8K AQuA MAWPS SVAMP
Optimizer AdamW

Warmup Ratio 0.06
LR Schedule Linear

Adapter

Batch Size 16
Micro batch size 4

# Epochs 3
Learning Rate 3e-4
Bottleneck r 256

Max Seq. Len. 256

Adapter-SIBO

Batch Size 16
Micro batch size 4

# Epochs 3
Learning Rate 3e-4
Bottleneck r 256

Max Seq. Len. 256
λ 0.1

LoRA

Batch Size 16
Micro batch size 4

# Epochs 3
Learning Rate 3e-4
LoRA Config. rq = rk = rv = 32

LoRA α 64
Max Seq. Len. 256

LoRA-SIBO

Batch Size 16
Micro batch size 4

# Epochs 3
Learning Rate 3e-4
LoRA Config. rq = rk = rv = 32

LoRA α 64
Max Seq. Len. 256

λ 0.1

Table 15: Hyperparameters for the arithmetic reasoning experiments, using GPT-J (6B) as the pre-trained model.

Method Dataset GSM8K AQuA MAWPS SVAMP
Optimizer AdamW

Warmup Ratio 0.06
LR Schedule Linear

Adapter

Batch Size 16
Micro batch size 4

# Epochs 3
Learning Rate 3e-4
Bottleneck r 256

Max Seq. Len. 256

Adapter-SIBO

Batch Size 16
Micro batch size 4

# Epochs 3
Learning Rate 3e-4
Bottleneck r 256

Max Seq. Len. 256
λ 0.1

LoRA

Batch Size 16
Micro batch size 4

# Epochs 3
Learning Rate 3e-4
LoRA Config. rq = rk = rv = 32

LoRA α 64
Max Seq. Len. 256

LoRA-SIBO

Batch Size 16
Micro batch size 4

# Epochs 3
Learning Rate 3e-4
LoRA Config. rq = rk = rv = 32

LoRA α 64
Max Seq. Len. 256

λ 0.2

Table 16: Hyperparameters for the arithmetic reasoning experiments, using LLaMA (7B) as the pre-trained model.
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Method Dataset GSM8K AQuA MAWPS SVAMP
Optimizer AdamW

Warmup Ratio 0.06
LR Schedule Linear

Adapter

Batch Size 16
Micro batch size 4

# Epochs 3
Learning Rate 3e-4
Bottleneck r 256

Max Seq. Len. 256

Adapter-SIBO

Batch Size 16
Micro batch size 4

# Epochs 3
Learning Rate 3e-4
Bottleneck r 256

Max Seq. Len. 256
λ 0.3

LoRA

Batch Size 16
Micro batch size 4

# Epochs 3
Learning Rate 3e-4
LoRA Config. rq = rk = rv = 32

LoRA α 64
Max Seq. Len. 256

LoRA-SIBO

Batch Size 16
Micro batch size 4

# Epochs 3
Learning Rate 3e-4
LoRA Config. rq = rk = rv = 32

LoRA α 64
Max Seq. Len. 256

λ 0.1

Table 17: Hyperparameters for the arithmetic reasoning experiments, using LLaMA (13B) as the pre-trained model.

Method Dataset BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA
Optimizer AdamW

Warmup Ratio 0.06
LR Schedule Linear

Adapter

Batch Size 16
Micro batch size 4

# Epochs 3
Learning Rate 3e-4
Bottleneck r 256

Max Seq.Len. 256

Adapter-SIBO

Batch Size 16
Micro batch size 4

# Epochs 3
Learning Rate 3e-4
Bottleneck r 256

Max Seq.Len. 256
λ 0.1

LoRA

Batch Size 16
Micro batch size 4

# Epochs 3
Learning Rate 3e-4
LoRA Config. rq = rk = rv = 32

LoRA α 64
Max Seq.Len. 256

LoRA-SIBO

Batch Size 16
Micro batch size 4

# Epochs 3
Learning Rate 3e-4
LoRA Config. rq = rk = rv = 32

LoRA α 64
Max Seq.Len. 256

λ 0.3

Table 18: Hyperparameters for the commonsense reasoning experiments, using GPT-J (6B) as the pre-trained model.
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Method Dataset CoLA SST-2 MRPC STS-B QQP MNLI QNLI RTE
Optimizer AdamW

Warmup Ratio 0.06
LR Schedule Linear

Adapter

Batch Size 32
# Epochs 20 10 20 10 20 10 10 20

Learning Rate 2e-4 4e-4 3e-4 2e-4 3e-4 3e-4 2e-4 4e-4
Bottleneck r 64

Max Seq. Len. 128 128 128 128 128 128 128 64

Adapter-SIBO

Batch Size 32
# Epochs 20 10 20 10 20 10 10 20

Learning Rate 2e-4 4e-4 3e-4 2e-4 3e-4 3e-4 2e-4 4e-4
Bottleneck r 64

Max Seq.Len. 128
λ 0.1 0.1 0.1 0.3 0.1 0.2 0.2 0.3

LoRA

Batch Size 32
# Epochs 20 10 20 10 20 10 10 20

Learning Rate 2e-4 4e-4 3e-4 2e-4 3e-4 3e-4 2e-4 4e-4
LoRA Config. rq = rv = 8

LoRA α 16
Max Seq. Len. 128

LoRA-SIBO

Batch Size 32
# Epochs 20 10 20 10 20 10 10 20

Learning Rate 2e-4 4e-4 3e-4 2e-4 3e-4 3e-4 2e-4 4e-4
LoRA Config. rq = rv = 8

LoRA α 16
Max Seq. Len. 128

λ 0.7 0.4 0.5 0.6 0.1 0.1 0.1 0.3

Table 19: Hyperparameters for the GLUE benchmark experiments, using BERT-large as the pre-trained model.
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