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Abstract

Maximizing the likelihood of the next token
is an established, statistically sound objective
for pre-training language models. In this paper
we show that we can train better models faster
by pre-aggregating the corpus with a collapsed
n-gram distribution. Previous studies have pro-
posed corpus-level n-gram statistics as a regu-
larizer; however, the construction and querying
of such n-grams, if done naively, prove to be
costly and significantly impede training speed,
thereby limiting their application in modern
large language model pre-training.

We introduce an alternative compact represen-
tation of the next token distribution that, in
expectation, aligns with the complete n-gram
distribution while markedly reducing variance
across mini-batches compared to the standard
next-token loss. Empirically, we demonstrate
that both the n-gram regularized model and our
approximation yield substantial improvements
in model quality and convergence rate com-
pared to existing methods. Furthermore, our
approximation facilitates scalability of gains
to larger datasets and models compared to the
straightforward n-gram regularization method.

1 Introduction

Since the advent of the first neural language models
(NLM) (Bengio et al., 2003; Mikolov et al., 2013),
a standard approach to training NLMs has been
to maximize the likelihood of the next token (NT)
given the preceding tokens in randomly sampled
token sequence from the dataset. In this paper we
show that LLM pre-training can be made signifi-
cantly more efficient by supervising with a distri-
bution over multiple possible next tokens, instead
of a single next token. Earlier studies (Neubig and
Dyer, 2016; Zhao et al., 2017; Yang et al., 2019)
have explored using corpus-level n-gram statistics
to improve the quality of RNN based language mod-
els. This can also be thought of as label-smoothing
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Figure 1: Comparison of various training methods.
Standard next-token likelihood reads inputs as well
as targets from the disk. n-gram augmented methods
(AllNTs) obtain targets (yall

i ) by querying an n-gram
model which can be slow during training. Our proposed
method, CoCoNTs, truncates and approximates the yall

i

and stores the preprocessed distribution (yCC
i ) along

with the dataset itself for faster retrieval during training.

(Szegedy et al., 2016; Müller et al., 2019) with
n-gram estimated distribution.

In this paper we show that regularizing with cor-
pus level n-gram statistics continues to be benefi-
cial even on current language models, both when
pre-training from scratch or fine-tuning. However,
a major hurdle is scaling up such techniques to
today’s corpus and model size. We address these
challenges by (1) proposing a compact representa-
tion of the next token distribution while continuing
to be statistically consistent. and (2) designing data
structures to efficiently make use of these distribu-
tions without stalling throughput-optimized linear
algebra accelerators (XLA devices) such as TPUs.
In particular, we find that our proposed data han-
dling strategy and objective (named “CoCoNTs”,
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pronounced “coconuts”) often matches the perfor-
mance of n-gram models with full (non-truncated)
distribution (Sec. 5.2). Notably, while the prior
n-gram augmented methods use storage propor-
tional to the size of training dataset, our storage
overheads are constant with respect to size of the
training dataset (Sec. 5.3). We also find that n-
gram augmented training methods (prior works as
well as CoCoNTs) can reach the same validation
perplexity as the NTL objective in nearly 50% less
optimization steps (Sec. 5.3). Our proposal is use-
ful for improving model quality in both pre-training
(Sec. 5.6) as well as fine-tuning – all parameter
(Sec. 5.2) or parameter efficient (Sec. 5.5).

Our key contributions can be summarized as: (1)
We highlight the usefulness of training with n-gram
statistics for faster convergence of language mod-
els, and propose a statistically consistent truncation
strategy of making their implementation scalable
and practical for current data and model sizes (Sec.
4). (2) We show how this truncated distribution can
be efficiently retrieved during training time without
slowing down XLA devices (Sec. 4.1, Sec. 4.2).
(3) We discuss practical strategies and their effects
on model performance of scaling this strategy to
potentially very large scale datasets via sharding
(Sec. 5.3). (4) We thoroughly test our proposal
through ablation studies, comparisons with prior
works on both fine-tuning as well as pre-training
of language models (Sec. 5).

2 Related Work

Language modeling. Early neural language mod-
els proposed in (Bengio et al., 2003) and (Mikolov
et al., 2013) were trained to maximize the likeli-
hood of the next token in randomly sampled train-
ing batches. While the Transformer architecture
(Vaswani et al., 2017) has been the powerhouse
of modern LLMs (Black et al., 2022; Zhang et al.,
2022; Touvron et al., 2023), the key training objec-
tive has remained the same. Several studies have
explored alternate objectives such as unlikelihood
training (Welleck et al., 2020) or contrastive loss
(Su et al., 2022; Jain et al., 2023) to improve text
generation from these LMs. However, these objec-
tives are not statistically consistent, and have not
been adopted in large scale pre-training.

Augmenting language model training. Some
prior work (Mikolov et al., 2011; Chelba et al.,
2014; Jozefowicz et al., 2016) have proposed ex-
tending RNN based LMs (Bengio et al., 2003;

Mikolov et al., 2013) with KN smoothed n-gram
LMs, and shown that these result in a better lan-
guage model. This sparked interest (Neubig and
Dyer, 2016; Zhao et al., 2017; Yang et al., 2019)
to introduce corpus level n-gram statistics into an
otherwise local training procedure. Frydenlund
et al. (2022) replaced the standard cross-entropy
loss with a ranking based loss for which they used
n-grams as a weak teacher to obtain “gold” rank-
ings. Li et al. (2020) explore additional KL di-
vergence penalty similar to Yang et al. (2019) and
our work. However, they obtain ground truth dis-
tribution by similarity between word embeddings
trained on the corpus.

Our work is closest to the n-gram regularized
loss of Yang et al. (2019) but we propose a modified
compact supervision that scales to large corpus. We
also compare our models against (Li et al., 2020)
to study whether KL divergence from learned word
vectors can serve as a better proxy for relatively
expensive count based n-gram models.

3 Language Modeling

Let V denote a vocabulary of tokens. Given a token
sequence t : t1, t2 . . . , ti where each tj in an inte-
ger index into the vocabulary V , a language model
Pθ(t|t1 . . . tn) ∈ R|V| assigns a multinomial distri-
bution of the probability of the possible next token
that could follow t. The size of the token sequence
t is limited to a maximum length L. For training θ
we are given a corpus Dtrain = x1, . . . , xN where
N is typically very large N ≫ L.

A standard method of training is to maximize the
likelihood of the next token (NTL or NT) given the
preceding tokens in a randomly sampled snippet
of length L from Dtrain. Let xj , . . . , xj+L denote
such a snippet sampled at position j of Dtrain. The
training objective then becomes

θ̂D = argmaxθ

L∑

n=1

logPθ(xj+n+1|xj , . . . , xj+n)

(1)
When a prefix xj:n = xj , . . . , xj+n has multiple
occurrences in the corpus, then for the same context
depending on the sampling position j, the target
may be different. But the model Pθ needs to con-
verge to a consistent distribution. For example, a
prefix “The United” could occur multiple times
within a corpus with different possible next tokens
as shown in Figure 1. If t = t1, . . . , tn denotes the
tokens in such a prefix, it can be seen that at conver-
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gence, the next token likelihood Pθ(t|t1, . . . , tn)
for a token sequence is expected to be equal to the
empirical distribution of tokens following t over
the entire corpus Dtrain. Let yall

t denote the frac-
tional frequency of the occurrence of tokens of V
following all different positions where t appears in
the corpus Dtrain. At convergence we expect:

Pθ̂D
(t|t) −→ yall

t , where,

yall
t [w] =

∑
j∈D δ(xj:n = t, xj+n+1 = w)∑

j∈D δ(xj:n = t)

(2)

In this paper we investigate if the above conver-
gence to the corpus-level next-token distribution
can be sped up via changing the training objective
to directly match the target distribution yall

t . For
long prefixes t we do not expect too much repeti-
tion, and also maintaining the yall

t proportions for
all possible prefixes may incur too much overhead.
So, we fix a maximum prefix length k, and instead
optimize for a mixture of these two objectives.

The AllNTs objective.

min
θ

L∑

n=k+1

− logPθ(xj+n+1|xj:n)

+

k∑

n=1

KL (yall
xj:n

;Pθ(·|xj:n))

(3)

The above loss is reminiscent of the use of the
corpus-level n-gram statistics to regularize LM
training (Yang et al., 2019; Neubig and Dyer, 2016).
The second term goes over all n-grams t of length
from 1 to k, and attempts to match the learned
model distribution to the observed fraction of next
tokens in the corpus following that n-gram t.

Benefits of AllNTs. When we supervise the model
to match empirical distribution on all possible next
tokens after a prefix, the convergence of the model
is expected to be faster. In the empirical section
we will show that training with even small n-grams
(k = 4), gives rise to much lower perplexity for the
same computation budget than the original training
only for next token likelihood (Eq 1).

Overheads of AllNTs. For imposing the AllNTs
loss we need to create a data structure like a trie,
which for each possible prefix can provide the dis-
tribution of next tokens (Heafield, 2011; Heafield
et al., 2013). Querying the trie for every sampled
mini-batch is inefficient. These inefficiencies are
especially noticeable (Sec. 5.3) when scaling to

larger datasets (>1B tokens) as the batch creation
(which includes trie lookup) on CPU is slow. In
the next section we show an alternative method for
supervising the next token distribution that signifi-
cantly reduces these overheads.

4 Compact and Consistent Next Tokens:
CoCoNTs

We propose to approximate the full empirical next
token distribution yall

xj:n
with a more compact and

consistent supervision yCC
xj:n

at each sampled prefix
xj:n. Unlike yall

xj:n
which can be of size as large as

the vocabulary size, the alternative we propose is
of size at most r + 1 where r is a chosen hyper-
parameter, like 4 or 8 in our experiments. We
design yCC

xj:n
so that in expectation over the mini-

batches, yCC
xj:n

matches the AllNTs supervision but
where the variance across loss terms is significantly
smaller than via the supervision in the NT objec-
tive.

Let ytopr
xj:n denote a truncation of the yall

xj:n
where

only the top r largest fractions are retained and the
rest of the truncated to zero. Let 1V(ti) be one-hot
encoding of size |V| with component for ti as 1.
We approximate yall

xj:n
with yCC

xj:n
as follows:

yCC
xj:n

=

{
vy

topr
xj:n if xj+n+1 ∈ y

topr
xj:n

uy
topr
xj:n + 1V(xj+n+1) otherwise

(4)

Choosing u, v. We choose u, v such that
E(yCC

xj:n
) ≈ yall

xj:n
and |yCC

xj:n
−yall

xj:n
| is minimized.

Let p =
∑

t y
topr[t] denote the total probability

mass covered by the top-r highest probability to-
kens. An example appears in Figure 1. For a token
t ∈ V that is outside the top-r tokens in yall

xj:n
, it

is clear that E(yCC
xj:n

)[t] = yall
xj:n

[t]. Now consider
a token t in the top-r set. We want to determine
values of u, v s.t. E(yCC

xj:n
)[t] = yall

xj:n
[t]

E(yCC
xj:n

[t]) = ytopr[t](vp+ u(1− p)) = ytopr[t]

=⇒ v =
1− (1− p)u

p

This shows that we are "stealing" some probability
mass from the top-r token positions and assigning
them to the rare token positions, so that across all
repetitions of the prefix we have consistent super-
vision on the next token distribution. By choosing
u carefully we can control this consistency. The
value of u has to be in the range [0, 1/(1− p)] for
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yCC to be non-zero for all positions. The distance
|yCC

xj:n
− yall

xj:n
| can be computed as

|yCC
xj:n

−yall
xj:n

|
{
= (1− p)u if xj+n+1 ∈ y

topr
xj:n

≤ 2− up otherwise

As u increases from zero, the supervision at the
rare token positions is made closer to the ideal,
but at the cost of the frequent token positions. We
define a hyper-parameter γ > 1, and choose u =
1

γ−p . While p varies with prefixes xj:n and datasets,
we found that a value of γ = 1.5 performs well
across diverse settings. We show effectiveness of
the approximation via an example in Appendix A.2.

4.1 Pre-enriching the dataset with yCC

The above design of yCC allows us to tackle the
core computational inefficiency of AllNTs. Instead
of incurring the CPU overheads of trie-lookups dur-
ing training, we propose to pre-enrich the training
corpus with the compact yCC distributions stored
along with the corpus. The total storage cost be-
comes only (L+2kr)/L times the original storage
cost but we avoid the expensive trie lookup opera-
tions during training. Also, we can build the entire
trie in-memory only once during the pre-processing
phase and discard after the data enrichment phase.

We implement our trie in C, similar to Heafield
(2011); Heafield et al. (2013). Each TrieNode con-
sists of the count and a HashMap where key is the
next token ID and value is a pointer to the next
TrieNode. The HashMap is implemented using an
AVL tree. We implement a Top-r query method
which returns Top-r token IDs and Top-r probabil-
ities for a given prefix of upto k tokens using Eq.
2.Concretely, we first construct the trie by reading
sequences of k tokens from the dataset and insert-
ing it in the trie. At every level i, we increment
the count by 1 to implicitly record prefix [t1 . . . ti].
Once the trie is constructed, we start reading (dis-
joint) sequences of L tokens from the dataset and
writing the “enriched” sequence back to disk. To
“enrich” a sequence xj , . . . , xj+L, we first look up
the prefix in the trie and get pointers to k nodes
i.e. one at each level. At each of these nodes, the
HashMap is storing yall. We can efficiently traverse
this HashMap in descending order of fractions to
get ytopr. Once we get Top-r(yall

j:i) ∀i ∈ [0, k), we
can write the “enriched” sequence to disk. Note
that, this operation still requires disk storage of
(L+ (L+ 2kr))×N tokens where N is the total

number of sequences. We present additional discus-
sion and a sample walkthrough of this procedure
for more clarity in Appendix A.3.

4.2 Building the mini-batch with yCC
i

To build the mini-batch of size B in standard NTL,
one simply reads sequences of L tokens B times
and concatenates them. In standard NTL, the se-
quence of L tokens itself is both input and target
but in CoCoNTs, we have 2 targets that need to
be built. In CoCoNTs we need to read sequence
of L + 2kr tokens from the disk and use the first
L tokens to form x,y similar to NTL. Next 2r
“tokens” correspond to ytopr where the first token
is the actual token ID and the next token is really
the count of that token appearing after prefix [t1].
The 2r tokens following this would correspond to
Top-r(yall

2 ) which encodes counts and tokens ap-
pearing after prefix [t1, t2]. This would repeat for k
times to give k distributions as targets for KL diver-
gence in Eq. 3. We provide additional discussion
on memory footprint in Appendix A.4.

5 Experiments

Through the experiments, we empirically validate
the effectiveness of our approximation (Sec. 5.2)
along with the ablation studies on various hyperpa-
rameters. We also evaluate the training efficiency
of CoCoNTs in Sec. 5.3. Finally, we present two
case studies on CoCoNTs in pre-training (Sec. 5.6)
and parameter-efficient fine-tuning (Sec. 5.5) to
further demonstrate the usefulness and relevance
of CoCoNTs even in modern LLM usecases. Hy-
perparameters for all the experiments are presented
in Appendix A.1.

5.1 Datasets, Baselines and Metrics

We explore the effectiveness of CoCoNTs in fine-
tuning existing models on WikiText-103 (Merity
et al., 2017), MiniPile (Kaddour, 2023; Gao et al.,
2020) and a subset of PubMed-Abstracts (Luo et al.,
2022). The WikiText-103 training split consists of
≈ 114M tokens while MiniPile and PubMed splits
consist of ≈ 1.6B and 2.6B tokens respectively.

For our full fine-tuning experiments, we com-
pare CoCoNTs against AllNTs (Yang et al., 2019)
and NTL objectives on WikiText-103. We com-
pare against D2GPO baseline (Li et al., 2020) as
well since they also use a KL divergence based
augmentation of training loss.

Since Su and Collier (2023) raised concerns
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about isotropy of the base gpt2-125m (Radford
et al., 2019) model, we also study effects of Co-
CoNTs objective on gpt-neo-125m (Black et al.,
2021) and opt-125m, opt-1.3B (Zhang et al., 2022).

Metrics. Following (Su et al., 2022), we evaluate
each fine-tuning method several on model quality
and text quality metrics.
• Perplexity (ppl) of the model on the test set.
• Prediction accuracy (acc) of the model. Given

a sample with inputs [x1 . . .xL] and labels
[y1 . . .yL] from the test set, we take argmax
of each of the L predicted distribution at time
step t to get top-1 predicted token and match it
against yt to calculate the prediction accuracy.

• Repetition (rep) measures the fraction of top-1
next-token predictions that occur in the prefix.

• Expected calibration error (ECE) measures how
over/underconfident is the model when making
correct/incorrect predictions. Lower ECE indi-
cates better calibrated models.

• MAUVE (MVE) (Pillutla et al., 2021) measures
the similarity between the generated text and
reference text using the embeddings of another
large pretrained model.

• Repetition within a generated single text se-
quence: (rep-n) 100× (1− |unique n-grams|

|total n-grams| ).
• Diversity (div.) measures repetition at different
n-gram levels:

∏4
n=2(1− rep-n

100 ).
• Number of unique bigrams (#uniq) in the gener-

ated text.
We also compare the Zipf coefficient of the gen-

erated text to gold text as suggested by (Meister
et al., 2023). For generating text, we either use
greedy decoding or nucleus (Holtzman et al., 2020)
sampling. To compare training efficiency, we use
following metrics:
• Number of optimization steps (steps-to-ppl)

taken to reach NTL’s perplexity on the val set.
• Total wall clock time (TWT) to finish the entire

training. We exclude the time for preprocessing
(trie building and storage) as the preprocessing
is a one-time operation which many times did
not take very long. Additionally, one could al-
ways start with datasets that are preprocessed by
someone else. We do include the time it takes to
load the trie and training time retrieval as these
operations will often stall the XLA devices.

• Total disk usage (disk) required for training (in-
cludes storage of prefix trie).

• Maximum CPU RAM (max-RAM) used for pre-
training i.e. loading and using the trie.

5.2 Model performance

CoCoNTs is comparable to AllNTs and better
than NTL. In Table 1, we compare performance of
CoCoNTs with various other objectives. We find
that CoCoNTs is able to provide consistent gains
over the NTL baseline. We also notice that Co-
CoNTs outperforms D2GPO (Li et al., 2020) which
indicates that count based conditional n-gram mod-
els are able to provide a stronger training signal
as compared to word embedding similarity. Maxi-
mum gains with CoCoNTs are observed on gpt2-
125m, however this could be related to isotropy
of gpt2-125m checkpoint as discussed by (Su and
Collier, 2023). Across all metrics and models, All-
NTs is generally the best performing model while
CoCoNTs comes close to it. CoCoNTs offers gains
(albeit modest as compared to small models) to
larger models (opt-1.3B) as well.

5.3 Training efficiency

CoCoNTs is significantly more efficient than
AllNTs. Figure 2 compares our training effi-
ciency metrics across various training methods
on WikiText-103 and PubMed datasets. AllNTs
uses Python’s defaultdict 1 to implement the
trie HashMap while CoCoNTs uses our efficient
implementation of HashMap as described in Sec.
4.1. AllNTs serializes the resultant trie to disk us-
ing the Python’s pickle2 library. We also explore
using an existing n-gram implementation (Heafield,
2011) with Python FFI as denoted by AllNTs-CFFI.
Because AllNTs stores the n-gram model on disk
for later retrieval, its disk overhead grows with the
size of the dataset as opposed CoCoNTs’s constant
(dependant on k, r only) disk overhead. Measuring
the total wall clock time, we find that CoCoNTs
(k = 4) is faster than AllNTs (k = 2) which high-
lights the benefits of our approximation and pre-
enriching of the dataset.

Results on PubMed demonstrate challenges in
scaling up vanilla AllNTs to large datasets. On
our machine with 256GB RAM, the prefix trie for
k = 8 with vanilla AllNTs did not fit in memory.
It is possible that AllNTs-CFFI is able to fit ev-
erything in memory similar to CoCoNTs but we
could not explore in depth since our n-gram imple-
mentation (Heafield, 2011) kept crashing on our
system. While AllNTs-CFFI saves disk and RAM,

1
https://docs.python.org/3/library/collections.html#collections.

defaultdict
2
https://docs.python.org/3/library/pickle.html
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Model Model Quality Generations [greedy] Generations [nucleus]

PPL Acc. Rep. ECE Div. #Uniq Zipf Div. #Uniq Zipf MVE

gpt2-125m
NTL 24.279 39.667 52.597 0.075 14.051 87756 0.990 94.504 112768 0.952 0.708
D2GPO 22.151 42.540 52.270 0.068 14.823 93563 0.945 95.289 122590 0.866 0.774
AllNTs 20.634 44.170 48.922 0.068 30.678 127266 0.958 99.415 161138 0.911 0.900
CoCoNTs 20.717 42.192 50.300 0.069 30.030 121498 0.959 95.751 156432 0.932 0.863

gpt-neo-125m
NTL 22.746 43.528 49.843 0.055 28.937 99326 0.956 96.809 118061 0.976 0.636
AllNTs 20.188 46.308 47.632 0.049 32.603 101725 0.927 96.066 121729 0.910 0.685
CoCoNTs 20.208 44.147 49.014 0.051 31.178 99080 0.950 96.919 120084 0.942 0.699

opt-125m
NTL 19.374 44.583 51.707 0.067 26.789 90484 1.022 94.771 114472 0.978 0.648
AllNTs 19.371 49.282 50.027 0.054 33.767 95887 0.994 97.690 135104 0.951 0.670
CoCoNTs 18.558 49.059 50.071 0.052 34.722 99168 0.972 95.111 141256 0.934 0.703

opt-1.3B
NTL 16.554 49.686 45.617 0.052 29.137 101649 0.939 97.723 164789 0.912 0.861
CoCoNTs 15.679 50.010 45.617 0.051 29.866 102492 0.941 98.111 166846 0.941 0.869

Gold 89.036 171076 0.925 89.036 171076 0.925 1.000

Table 1: Results on WikiText-103. We find that CoCoNTs is competitive with far more expensive (as we show in
Sec. 5.3) AllNTs objective. For both AllNTs and CoCoNTs, k = 8 was used to build the prefix trie. CoCoNTs
additionally used r = 8. Best results are highlighted with green while second-best are highlighted with yellow.

it still is not as efficient as CoCoNTs on WikiText-
103. Moreover, the trie loading time as well as
the (somewhat) slow CFFI interface serialization
overheads significantly increase total wall time of
AllNTs-CFFI over CoCoNTs.
Effects of sharding. As compared to datasets used
in this work, modern LLMs (Black et al., 2022; Tou-
vron et al., 2023; Groeneveld et al., 2024) are often
trained on far bigger web corpora (Gao et al., 2020;
Together Computer, 2023; Soldaini et al., 2024) for
which building an n-gram model in-memory may
not be feasible. In such cases, we show that such
datasets can be sharded into multiple small datasets
of several few billion tokens with each shard being
enriched with its own n-gram index. We study the
effect of sharding by simulating it on MiniPile and
PubMed datasets and seeing effect on perplexity
as shown in Fig. 3. We find that after a certain
threshold of shards, the number of tokens per shard
decreases so much that KL penalty can become
overly optimistic and result in worse perplexity. In
general, we found that having more than billion to-
kens per shard was sufficient to get results close to
AllNTs while still using modest amount of RAM.

5.4 Understanding CoCoNTs

Ablation studies on k and r. By default we choose
k = 8, r = 8. We report ablations on these values
when fine-tuning gpt2-125m on WikiText-103 and

compare using validation perplexity. As indicated
by trends in Fig. 4, we find that increasing k and r
leads to predictable improvements in perplexity as
compared to the NTL baseline. We do notice a sig-
nificant difference in perplexities between AllNTs
and CoCoNTs for lower values of k. This could be
potentially due to poorer yCC

i approximation since
the fan-out is expected to be significantly higher
for initial few tokens. Empirically, in the first few
levels of the trie, the branching factor is the highest
often leading to yall

i that has a support size much
larger than r. This is further supported by the sig-
nificant improvement observed when going from
r = 2 to r = 4 for a fixed k. Moreover, as k
increases, the support of yall

i naturally decreases.
In fact for k > 2, the average support size is less
than 4 on WikiText-103. This implies that p = 1 in
Eq. 4 leading to v = 1 which effectively reduces
CoCoNTs to AllNTs objective.

Using larger/domain specific data sources to
build n-gram models can help. We show that
using n-gram statistics from alternative corpus is
also useful. To study this, we augmented our exist-
ing WikiText-103 n-gram trie with n-grams from
MiniPile and PubMed datasets independently. As
shown in Table 2, model trained with WikiText-
103 + MiniPile index improves perplexity on both
WikiText-103 and MiniPile. On the other hand, if
the augmenting dataset (PubMed) is both large and

12056



21 22 23

k

0.5

0.6

0.7

0.8

0.9

1.0
S

te
p

s
to

P
P

L

0.87

0.55

0.49

0.91

0.53 0.51

0.87

0.55

0.49

21 22 23

k

0

10

20

30

40

D
is

k
ov

er
h

ea
d

11

23

43

1.125 1.25 1.5

8

19.5

37

21 22 23

k

0

50

100

150

200

250

M
ax

E
xt

ra
R

A
M

(G
B

)

3.95
22.75

245

3.75 8.75

36.5

3.55 10.35

162.45

21 22 23

k

1.0

1.1

1.2

1.3

T
ot

al
W

al
l

T
im

e

1.1

1.29

1.35

1.02
1.05

1.091.08

1.19

1.25

21 22 23

k

0.7

0.8

0.9

1.0

S
te

p
s

to
P

P
L

0.79

0.71

OOM

0.94

0.8

0.72

21 22 23

k

0

10

20

30

40

D
is

k
ov

er
h

ea
d

15

27

OOM

1.125 1.25 1.5

21 22 23

k

0

100

200

300

400

500

M
ax

E
xt

ra
R

A
M

(G
B

)

32.25

239.5

OOM

19.5
42.75

211.5

21 22 23

k

1.0

1.2

1.4

1.6

1.8

2.0

T
ot

al
W

al
l

T
im

e

1.35
1.41

OOM

1.19 1.23 1.25

Baseline (NTL) AllNTs CoCoNTs AllNTs (C+FFI)

Figure 2: Comparison of training efficiency on WikiText-103 (top) and PubMed (bottom). AllNTs with higher
values of k can easily go out of memory from a naive implementation. Both AllNTs and CoCoNTs converge faster
to NTL’s validation perplexity as compared to NTL. The total wall time (TWT) to finish the entire training is also
significantly lower with CoCoNTs as compared to AllNTs due to lack of any n-gram querying during training.
gpt2-125m model is used for all experiments with r = 8 for CoCoNTs.
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Figure 3: Effect of sharded Co-
CoNTs on large datasets. Over-
sharding can make the n-gram
distribution unreasonably sparse.
This can lead to overly optimistic
approximation and KL penalty
which can hurt the performance on
extremely small indices.

Wiki-103 MiniPile PubMed

gpt2-125m 24.279 43.456 37.819
AllNTs 20.634 41.261 38.538
CoCoNTs 20.717 42.486 39.016

+MiniPile 20.223 36.899 38.564
+PubMed 20.926 39.432 36.175

Table 2: Perplexity improvements when augmenting
n-gram index with larger/domain specific data. Each
model (row) is trained on WikiText-103 and evaluated
on validation splits of (column) WikiText-103, MiniPile
and PubMed. CoCoNTs with indices built on additional
MiniPile or PubMed data improves performance on
respective datasets.

domain specific, the resultant model improves on
augmenting dataset at the cost of performance on
the original (WikiText-103) dataset.

Perplexity reduction as a function of prefix
length. We show that even though we impose the

CoCoNTs loss only in a small prefix of an overall
sequence of length 256, the improvement in model
quality is throughout the length of the sequence.
For this, we measure the negative log-likelihood
(NLL) separately at each position from 1 to 256 in
the test data and show our findings in Figure 5.We
observe that we reduce NLL at all sequence posi-
tions over the two existing methods. This suggests
that in today’s NLM architectures with shared pa-
rameters, enforcing the correct loss in only a subset
of the positions is sufficient for overall gains.

Effect of longer pretraining. We study that pre-
training for more steps flattens the benefits of Co-
CoNTs slightly but not completely. We continued
pretraining of gpt-neo-125m from our experiments
(Sec. 5) for 20k more steps (50% more than orig-
inal pretraining steps) and report our findings in
Table 3. Looking at the validation perplexities, we
do see that the difference between baseline and Co-
CoNTs perplexities does decrease from 2.5 to 2.3
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Figure 5: Perplexity as a function of position in se-
quence. Both AllNTs and CoCoNTs show smooth
changes in perplexity despite applying loss to only a
small k token prefix.

Method Pretraining Step

10k 20k 30k 40k 50k 60k

NTL 26.3 23.9 23.0 22.7 22.5 22.4
AllNTs 25.5 22.4 21.2 20.2 20.2 20.0
CoCoNTs 25.9 22.6 21.3 20.2 20.2 20.1

Table 3: Effect of pretraining for more steps on val-
idation perplexity. Both AllNTs and CoCoNTs use
k = 8. CoCoNTs also uses r = 8. The difference in
CoCoNTs and the baseline slightly reduces but does not
become completely zero.

over the 20k additional steps. To correctly assess
if this difference goes to zero, significantly longer
training is required.

5.5 Case Study: PEFT Domain Adaptation

Parameter efficient fine-tuning (PEFT) of LLMs
(Hu et al., 2022; Dettmers et al., 2023) has be-
come a popular method to adapt general purpose
LLMs such as LLaMA-2 (Touvron et al., 2023) on
a specific domain. To study benefits of CoCoNTs
objective in this direction, we first train a LoRA
(Hu et al., 2022) to fine-tune LLaMA-2-7B on our

PubMedQA MedQA TWT

NTL 56.025 36.911 1x

AllNTs 56.976 38.343 1.57x
CoCoNTs 56.251 37.732 1.32x

Table 4: Results with LoRA domain adaptation. The
base LLM (LLaMA-2-7B) is finetuned on PubMed ab-
stracts and subsequently finetuned on each of the QA
tasks with LoRA. CoCoNTs continues to outperform
NTL while staying close to AllNTs. The Total Wall-
clock Time (TWT) of AllNTs is much higher than ours.

CoLA MRPC RTE TWT
(MCC) (F1) (Acc)

NTL 0.288 0.735 0.591 1x

AllNTs 0.347 0.771 0.629 1.35x
CoCoNTs 0.339 0.742 0.621 1.19x

Table 5: Results on the BabyLM Strict Challenge.
The base model (opt-125m) trained with CoCoNTs per-
forms similar to AllNTs while being significantly faster
than AllNTs, as measured by the Total Wallclock Time
(TWT). Both methods are better than NTL on quality.

split of the PubMed dataset using each of the fine-
tuning method. Both AllNTs and CoCoNTs use
k = 4 while CoCoNTs uses r = 8. With this
LoRA as the starting point, we fine-tune the resul-
tant (Medical LLaMA) model on 2 medical QA
(PubMedQA (Jin et al., 2019) and MedQA (Jin
et al., 2021)) tasks independently. As summarized
by accuracy of these QA tasks in Table 4, we find
results similar to full fine-tuning i.e. CoCoNTs
performs better than NTL but worse than AllNTs.
However, AllNTs incurs an almost 60% increase in
pre-training time, whereas our methods reduces the
overheads by half as seen by the last total wallclock
time (TWT) column in the table.
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5.6 Case Study: The BabyLM Challenge

Can CoCoNTs be used to pre-train a better lan-
guage model for downstream tasks? We pre-train
an opt-125m architecture model from scratch on
the data from the BabyLM challenge (Warstadt
et al., 2023). We use the nearly 100M word data
from the “strict” track with standard preprocess-
ing. Once all (NTL, AllNTs, CoCoNTs) the mod-
els are pre-trained, we finetune each on 3 down-
stream tasks (with recommended hyperparameters)
from the evaluation suite – CoLA (Warstadt et al.,
2019), MRPC (Dolan and Brockett, 2005) and RTE
(Dzikovska et al., 2013) which are subsets of the
SuperGLUE benchmark (Wang et al., 2019b,a) for
the BabyLM challenge. Task specific fine-tuning
does not use any custom objective. Table 5 show
metrics on respective tasks. Both AllNTs and Co-
CoNTs trained base LMs show significant improve-
ment over standard NTL in CoLA which is about
linguistic acceptability. This could be due to gram-
matically incorrect sentences/completions automat-
ically being suppressed in the n-gram index. On
other downstream tasks such as paraphrase detec-
tion (MRPC) or entailment (RTE), the performance
of all models is much closer in comparison. Also,
observe that the total wall clock time (TWT) for
AllNTs is 35% higher than baseline, and CoCoNTs
reduces the overhead down to 19%.

6 Conclusion

In this work, we revisited the benefits of regular-
izing language model training with corpus-level
n-gram statistics, and proposed ways to scale up
their implementation on current scales of data and
model sizes. Our proposal truncates the n-gram
estimated next-token distribution and introduces a
novel method of mixing with occurrences of fre-
quent and rare tokens so as to provide low-variance
supervision of the distribution of next tokens. The
distributions are designed to be compact and can
be stored with the corpus so that their retrieval
is as simple as a disk read operation. We empir-
ically show that CoCoNTs performs comparable
to AllNTs objective but is significantly more ef-
ficient than AllNTs. Notably, while the AllNTs
storage costs scale with dataset, CoCoNTs stor-
age costs depend only on the hyperparameters k
and r. Our fine-tuning experiments suggest that
CoCoNTs based training benefits smaller models
the most with larger models seeing only modest
improvements. We also observe that imposing All-

NTs or CoCoNTs loss only on a small k token
prefix was sufficient to improve the overall model
performance. Case study on the BabyLM chal-
lenge highlights that CoCoNTs trained base LMs
are better than standard NTL trained base LMs on
downstream tasks as well.

Limitations and Future Work

In this section, we discuss the limitations of Co-
CoNTs objective and provide insights into potential
challenges and areas for improvement. The one-
time preprocessing step required by our method
for very large-scale datasets requires sharding. Ef-
fects of such sharding on social biases of the model
must be studied carefully. When applying our
method to very large datasets like C4 or The Pile,
the implementation of the prefix-trie using bet-
ter optimized libraries as discussed in (Jurafsky
and Martin, 2023) may become necessary. This
could require significant engineering efforts to op-
timize access times and ensure efficient training.
To address scalability concerns further, a possi-
ble suggestion in addition to sharding would be to
“sparsify” the trie for such large-scale datasets. By
pruning branches with low counts, we can signifi-
cantly reduce the overall memory footprint while
still maintaining the essence of (idea of “heavy
hitters” (Misra and Gries, 1982; Woodruff, 2016;
Braverman et al., 2017)) the next token distribution.

When applying our method to very large datasets
like C4 or The Pile, the implementation of the
prefix-trie using better optimized libraries as dis-
cussed in (Jurafsky and Martin, 2023) may become
necessary. This could require significant engineer-
ing efforts to optimize access times and ensure effi-
cient training. To address scalability concerns fur-
ther, a possible suggestion in addition to sharding
would be to “sparsify” the trie for such large-scale
datasets. By pruning branches with low counts,
we can significantly reduce the overall memory
footprint while still maintaining the essence of the
empirical next token.

Furthermore, it is important to acknowledge that
our CoCoNTs objective aims to match the empir-
ical next-token distribution, and thus inherits any
biases present in the training data. However, an
advantage of our approach is that the prefix trie
allows for detailed exploration and identification of
these biases. If such biases are observed, it should
be possible to edit the prefix trie to mitigate their
influence. Our experimental setup included the

12059



largest models and datasets that could run comfort-
ably on our compute resources. Future work can
explore effectiveness of CoCoNTs on even larger
datasets (e.g. ThePile (Gao et al., 2020), RedPa-
jama (Together Computer, 2023), Dolma (Soldaini
et al., 2024) etc.) and larger scale models such as
LLaMA2 (Touvron et al., 2023).

Ethics Statement

We acknowledge that our objective entails prepro-
cessing and handling large-scale datasets for creat-
ing the prefix trie. This necessitates careful atten-
tion to privacy concerns and the implementation of
robust data protection measures. It is vital to thor-
oughly examine and mitigate any biases that may
emerge in the training data prior to the application
of our proposed objective.

Moreover, given the improved text generation
capabilities demonstrated by our approach, it is
imperative to address ethical considerations regard-
ing the responsible use of language models trained
using our proposed objective. In this context, we
underscore the significance of ensuring that the
deployment and utilization of such models align
with ethical standards, including but not limited to
mitigating the potential for malicious use, promot-
ing fairness in algorithmic decision-making, and
safeguarding user privacy.
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A Appendix

A.1 Hyperparameters

Most of our experiments are performed on a single
TPUv2-8 core VM with TPU VM architecture. We
also sometimes used 4x NVIDIA A100 GPUs with
FlashAttention for a fraction of all experiments.

For fine-tuning experiments (Sec. 5.2), we
start with publicly available checkpoints for gpt2-
125m3, gpt-neo-125m4, opt-125m5 and opt-1.3B6.
Each 125m parameter model is trained for 40k
steps with AdamW (Loshchilov and Hutter, 2019)
optimizer with effective batch size of 192. The
maximum learning rate was set to 10−4 with 10%
of maximum steps as warmup followed by cosine
decay to zero. For the 1.3B parameter model, we
set the maximum steps to 10k and reduce the batch
size to 32. Each fine-tuning run took roughly 5-6
hours on TPUs and 8-10 hours on GPUs.

For pre-training on the BabyLM challenge (Sec.
5.6), we set the batch size, optimizer and learning
rate schedule similar to fine-tuning and trained for
total of 5 epochs. For downstream tasks, we use
the hyperparameters mentioned in the BabyLM
evaluation pipeline7. The pre-training took 5.5 hrs
on TPUs while fine-tuning on downstream tasks
took 1-1.5hrs each.

For parameter-efficient fine-tuning of LLaMA
(Sec. 5.5), we set the batch size to 32 and fine-
tune on PubMed with hyperparameters similar to
WikiText-103 fine-tuning. We use the same param-
eters as BabyLM downstream tasks for LLaMA
PEFT downstream tasks as well. The pre-training
took close to 6 hours on TPUs while fine-tuning on
downstream tasks took 2-2.5hrs each.

A.2 Effectiveness of yCC

Example. We show a simple example to illus-
trate how yCC manages to reduce variance in
the next-token distribution across sampled mini-
batches. Assume vocab size is 5, and yall

t =
[0.6, 0.3, 0.1, 0.05, 0.05]. Let r = 2. Assume
γ = 1.5. For this case we have p = 0.9, u =
1.66, v = 0.5. Everytime we sample a mini-batch
where next token is from the top-2 set: {1, 2}, we
supervise with yCC = v[0.6, 0.3, 0, 0, 0] which has
a distance of 0.166 from yall. Whereas, when we

3
https://huggingface.co/gpt2

4
https://huggingface.co/EleutherAI/gpt-neo-125m

5
https://huggingface.co/facebook/opt-125m

6
https://huggingface.co/facebook/opt-1.3B

7
https://github.com/babylm/evaluation-pipeline
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Figure 6: Studying convergence rates of our approxi-
mation when learning a single 10-class multinomial.
The trajectories are averaged over 10 independent runs
for all methods. Higher values of r yield better approxi-
mations as well as convergence rates.

sample the last three tokens we are at most 0.51
from yall. Contrast this to the baseline NT case
where for rare token the distance to yall could be
as high as 1-0.05=0.95! With yCC we reduce this
distance to 0.51. Even for frequent tokens the dis-
tance has been reduced from a maximum of 0.7 to
0.166.

Effect of r. A crucial hyperparameter in our ap-
proximation is r. While we see the effects of r
on overall model quality in Sec. 5.4, we study the
effect of r in a more controlled way when learning
a single 10-class multinomial. By increasing r, as
shown in Fig. 6, we find that both convergence
rate as well as KL divergence between learned and
actual multinomial consistently improves.

A.3 Additional Discussion on Pre-enriching
the Dataset

In this section, we provide a step-by-step walk-
through of Pre-enriching process for the dataset.

First, we assume that the prefix-trie is already
created and available in-memory for k = 2. This
trie has a crucial property: the “count” attribute
(64 bit unsigned integer in our implementation) of
each node Ni indicates how many times the pre-
fix, which corresponds to the path from the root to
Ni, appears in the training dataset Dtrain. The root
node stores the count of total prefixes in the dataset.
Figure 7 shows an example trie, where the node
associated with the token “United” has a count of
1000, while the root node has a count of 40000.
This means that there are 1000 sequences in total
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United
(1000)

<root>
(40000)

States
(526)

of
(230)

Kingdom
(206)

Nations
(67)

...
(201)

Air
(87)

Navy
(87)

...
(122)

Prefix being looked up in the trie

Figure 7: Example of trie lookup for prefix “United
States”. The number in the paranthesis denotes the
“count” property of the TrieNode as described earlier.
Notice the denominator terms of yCC

1 ,yCC
2 carefully.

These will be truncated to only include Top-r values.

that begin with the word “United”. Additionally,
the child node “States” has a count of 526, indi-
cating that there are 526 sequences that start with
“United States”.

Let’s assume that a block (length L) beginning
with "United States of America . . . ” is selected
in the pre-enriching second pass over the dataset.
Since k = 2, we retrieve from the prefix trie with
prefix “United States” as shown in Figure 7. At
every level (i.e. highlighted Ni), first yall

i will be
created in floating point representation with the
same bitwidth as token IDs. In our case, this was
fp16. Then, we sort the distribution to get top r
token IDs and top r probability values. Storing
these on disk will require space equivalent to 2kr
more tokens.

After a block of L tokens is read from the input
file, it is immediately written as is to the output file.
Then we find top r token IDs and probabilities for
each k and sequentially write these values to the
output file. After all k such distributions are written,
we would have written equivalent of L+2kr tokens
to the output file.

A.4 Additional Discussion on Minibatch
building with yCC

i

Since we know that the maximum support of all
the yCC

i distributions is r+1, we can ideally easily
pass them as key-value pairs to the training loop
and calculate KL divergence more efficiently. This
causes only O(kr) increase in memory footprint of
a batch. However, this can be slightly inefficient
since we need to run “gather” operation to obtain
correct components of the predicted distribution

Pθ(yi) based on token indices. “gather” opera-
tion is often slow8 on TPU/XLA devices which
rely on a predictable dataflow in order to optimize
their compute graph. Prior works such as BigBird
(Zaheer et al., 2020) have resorted to special re-
sizing and converted the operation to continuous
memory access.

Such tricks are harder to implement here with-
out ascertaining an upper bound on the maximum
token ID in the support of yCC

i . Ideally, obtaining
such bounds may be useful and possible since the
tokenizer (such as WordPiece or BPE) are expected
to assign lower token IDs (earlier “merges”) to fre-
quent tokens anyway. In our implementation, we
initialize a k × |V| size zero vector and use the
“scatter” 9 operation to populate counts at cor-
rect places. While the “scatter” operation is also
slow, we perform it during batch creation on CPU
which is latency optimized as opposed to previ-
ous proposal which was doing “gather” operation
on accelerators which are throughput optimized.
While this increases the memory footprint of the
batch by O(k|V|), we found that using such dense
vectors for KL divergence resulted in the model
running slightly faster on both TPUs and GPUs.

Since we pack the [yCC
1 , . . . ,yCC

k ] directly into
the batch as |V|-dimensional vectors, the memory
used by the labels in the CoCoNTs objective is con-
siderably higher than in the baseline. Despite this,
we occupy only 0.5% of the total TPU/GPU RAM
used by the trainer. The baseline (NT) method takes
only 128 × 256 × 2 = 64KB of memory to store
labels for a sequence length of 256 and a batch
size of 128, assuming16-bit integer token IDs. In
the CoCoNTs objective, we provide additional k
distributions. Assuming each number in the dis-
tribution is a 16-bit float, and considering k = 8
and GPT2’s vocabulary size of 50257, we occupy
approximately 128×8×50257×2 = 98.16MB of
additional GPU/TPU RAM per batch during train-
ing. On our GPUs, the NT objective utilizes around
72GB of RAM out of the total available 80GB, leav-
ing more than enough room to accommodate all the
k = 8 extra distributions per sequence per batch.

8
https://github.com/pytorch/xla/issues/898, https://github.com/

pytorch/xla/issues/3587
9
https://pytorch.org/docs/stable/generated/torch.scatter.html
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