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Abstract

Event extraction (EE) is a critical task in natural
language processing, yet deploying a practical
EE system remains challenging. On one hand,
powerful large language models (LLMs) cur-
rently show poor performance because EE task
is more complex than other tasks. On the other
hand, state-of-the-art (SOTA) small language
models (SLMs) for EE tasks are typically devel-
oped through fine-tuning, lack flexibility, and
have considerable room for improvement. We
propose an approach, LLMs-as-Corrector for
Event Extraction (LC4EE), aiming to leverage
the superior extraction capability of SLMs and
the instruction-following ability of LLMs to
construct a robust and highly available EE sys-
tem. By utilizing LLMs to identify and correct
errors of SLMs predictions based on automati-
cally generated feedback information, EE per-
formances can be improved significantly. Ex-
perimental results on the representative datasets
ACE2005 and MAVEN-Arg for Event Detec-
tion (ED) and EE tasks validated the effective-
ness of our method.

1 Introduction

Events are basic units of human activities and inter-
actions, containing rich information which is vital
for downstream applications (Huang et al., 2019;
Wang et al., 2021a). Event extraction is the pro-
cess of identifying and extracting structured event
information from unstructured text. It includes:
1) Event Detection, which detects event triggers
and classifies them into pre-defined event types. 2)
Event Argument Extraction, which extracts rele-
vant arguments associated with each event.

However, developing a highly practical and flexi-
ble EE system remains challenging (Lu et al., 2022).
Current best performance of EE task on the most
commonly used dataset ACE 2005 only reaches
57.9% (Lu et al., 2023), far from meeting practical
requirements.

†Corresponding authors.

One approach to overcoming this challenge is
to explore the utilization of powerful LLMs, and
there have been some attempts (Li et al., 2023; Guo
et al., 2023; Pang et al., 2023). These methods have
exhibited promising performance of LLMs in EE
tasks, yet they still fall short compared to SLMs
(Wang et al., 2021b). Although SLMs have supe-
rior performances, they mainly complete EE tasks
through fine-tuning, which is not flexible enough
to adjust predictions based on user feedback, and
there is still significant room for improvement in
performance. Existing research has demonstrated
that LLMs can effectively adjust their responses
based on feedback information, which is beneficial
for improving task performance(Gao et al., 2023;
Yin et al., 2023; Huang et al., 2023).

Therefore, we aim to combine the advantages
of LLMs and SLMs, fully utilizing the instruction-
following ability and feedback understanding ca-
pability of LLMs, along with the superior event
extraction ability of SLMs. By correcting predic-
tion errors of SLMs based on error feedback, we
seek to enhance the performance of EE tasks and
build a robust, highly available EE system.

We developed a method, LC4EE, which used
LLMs as corrector to correct SLMs prediction er-
rors for EE task based on automatically generated
error feedback information. Our method consists of
two main components: 1) Rules Inducer for Feed-
back Generation. By guiding LLMs to analyze
training set samples and summarize rules to gener-
ate feedback information automatically for identi-
fication and correction of SLMs prediction errors.
Human feedback combined with annotation guide-
lines are provided to refine the rules, leading to the
formation of a rule repository for feedback gener-
ation after validation on the valid set. 2) LLMs
corrector. According to retrieved rules from the
rule repository for Feedback Generation, LLMs
are guided to verify predictions and generate error
feedback information for incorrect samples, finally
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making corrections based on these information.
Our contributions are summarized as follows:
1. We validated that LLMs can learn from error

feedback well through experiments in Section 2.
2. We designed LC4EE to identify and correct

errors in SLMs predictions based on automatically
generated error feedback in Section 3, which can
fully utilize the rich information in errors and max-
imizes advantages of both SLMs and LLMs.

3. We conducted experiments for ED and EE
tasks on ACE2005 and MAVEN-Arg based on
some mainstream SLMs and completed corrections
with advanced LLMs, GPT-3.5 and GPT-4. Ex-
perimental results show that LC4EE could bring
effective performance improvements.

2 Preliminary Study

In this section, we validated the ability of the LLMs
to correct errors based on the error feedback infor-
mation under the oracle setting (i.e., only conduct
corrections based on incorrect samples) first of all.
To thoroughly explore this ability, we designed
four granularity levels of feedback information and
compared their performance differences.

2.1 Experiment setting
Our method does not rely on specific EE models
and schema. Hence structured EE outputs will
work with our method. We refer to current main-
stream research in EE task (Peng et al., 2023; Wang
et al., 2023; Hsu et al., 2022) to select datasets, met-
rics, and related models to validate our method.

Dataset and Metrics. Datasets we selected are
ACE 2005 (Christopher et al., 2006) and MAVEN-
Arg (Wang et al., 2023), which are representative
datasets in EE task. Dataset details are shown in
Appendix A. Following mainstream research, Preci-
sion, Recall, and F1 scores are used for evaluation.

Small Language Models. We selected some
of the most advanced EE models, including:
1) EEQA (Du and Cardie, 2020), which trans-
forms EE task into a question-answering task. 2)
TEXT2EVENT (Lu et al., 2021), which unifies the
entire EE process within a neural network-based
sequence-to-structure architecture. 3) CLEVE
(Wang et al., 2021b), which completes EE based
on a contrastive pre-training framework. Training
details of these models can be seen in Appendix B.

Large Language Models. The performance of
prompt engineering methods largely depends on

the capabilities of the chosen LLMs (Brown et al.,
2020). Therefore, we choose to use the currently
most advanced LLMs, GPT-3.5 (OpenAI, 2022)
and GPT-4 (OpenAI, 2023), to explore the bound-
aries of LLMs error correction capabilities.

2.2 Feedback for Error Correction

To obtain more effective and accurate error feed-
back, we conducted error analysis on the SLMs
predictions and summarized error types. Detailed
information can be seen in Appendix C.

Based on the error analysis results, we obtained
error feedback for each sample by automatically
comparing prediction with label information. To
explore the impact of error feedback on the LLMs
error correction capabilities, we designed four dif-
ferent granularity levels of error feedback and rel-
evant correct rules. The granularity of feedback
is progressively refined, including: L1: simply
“incorrect”, L2: error types information with cor-
responding quantities, L3: incorrect elements, L4:
specific error information. Detailed definitions and
examples are provided in Appendix D.

2.3 Experimental results and analysis

We sampled 100 instances with prediction errors
from SLMs predictions on the test set. Results can
be seen in Figure 1 and Appendix E.

According to the experimental results, it can be
seen that except for the EE task on MAVEN-Arg,
all other tasks have very obvious improvement,
with the F1 score showing an increase up to more
than 50%, and the finer the feedback granularity,
the more obvious the performance improvement.
As for EE task on MAVEN-Arg, since the dataset
itself has more event types, finer classification, and
more complex text, which is much more difficult
compared to ACE 2005, a finer granularity feed-
back may be needed. But overall, the results can
verify that based on the detailed error feedback
information, LLMs can correct errors well.

3 LC4EE

Preliminary Study in Section 2 has validated that
LLMs possesses strong capabilities for error cor-
rection, with significant improvements when de-
tailed error information is available. However, in
practical applications, obtaining a large volume of
detailed error feedback is not feasible.

Therefore, in this section, we will explore the
ability of LLMs to provide as fine as possible er-
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Figure 1: Results of Preliminary Study which compares different performances with 4 granularity level feedback
information. “-” represents the origin performance of SLMs before correction.

ror feedback automatically and then make correc-
tions based on feedback for incorrect samples. The
model LC4EE we designed is illustrated in Figure
2, which consists of two main components: a Rules
Inducer for Feedback Generation and a LLMs Cor-
rector. Rules Inducer for Feedback Generation is
used to summarize rules based on incorrect sam-
ples for error feedback generation. These rules will
be retrieved in LLMs Corrector, then corrections
are made based on the generated feedback. We will
describe these two components in detail as follows.

3.1 Rules Inducer for Feedback Generation

To generate error feedback information as finer and
accurate as possible, we guide the LLMs to induce
rules for prediction errors identification and gener-
ate feedback according to these rules. These rules
are iteratively refined in conjunction with human
feedback and annotation guidelines information.

To facilitate rules induction by LLMs, we cate-
gorize samples according to event types. For event
types with high frequencies of errors in the error
analysis, we sampled SLMs predictions from the
training set, providing both prediction results and
label information, instructing GPT-4 to analyze
samples to summarize rules to identify prediction
errors and generate feedback for incorrect samples,
along with corresponding demonstrations. Humans
provide feedback combined with annotation guide-
lines information by pointing out inaccuracies or
improprieties of rules, thus guiding LLMs to refine
rules iteratively, enhancing understanding of event
schema. Examples can be seen in Appendix F.

We validated rules approved by humans on the
valid set. When ∆F1 > 0, it indicates that the F1
score has been improved and the rule is effective.
We retain such rules and establish a rule repository.
Rules details are shown in Appendix G.

3.2 LLMs Corrector based on Feedback

With several high-quality feedback generation rules
available, we designed LLMs Corrector consisting
of Retriever, Verifier and Corrector. Retriever is
used to retrieve suitable rules for feedback gener-
ation. Verifier is used to identify incorrect predic-
tions and generate feedback. Corrector is used to
correct errors according to feedback. We provided
an example in Appendix H.

Rules Retriever: Firstly, to better identify incor-
rect samples and generate more accurate feedback,
we aim to find the most appropriate rules. By an-
alyzing data from the training set, we have built a
dictionary of candidate triggers corresponding to
event types which serves as a keyword list. Lever-
aging superior keyword matching capabilities of
LLMs, we obtained candidate triggers of the sam-
ple. Rules corresponding to event type associated
with candidate triggers and event types in the pre-
dictions can be retrieved from the rule repository.

Verifier: Based on the feedback generation rules
retrieved by the Retriever according to event types
in the predicted result and candidate triggers ex-
tracted from the sample text, we instruct LLMs to
evaluate each sample combined with semantic in-
formation and generate feedback information, sim-
ilar to the L4 granularity mentioned in Section 2.
If any rule is not met, the sample is verified as an
incorrect sample. Utilizing the Verifier, we filter
out incorrect samples and obtain error feedback
information.

Corrector: Corrector is used to make corrections
on the incorrect predictions based on error feedback
information provided by Verifier and correction
rules mentioned in Section 2. We retain original
correct predictions, ultimately obtaining the final
prediction results corrected by LLMs.
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Figure 2: Overview of LC4EE, which consists of a Rules Inducer for Feedback Generation and a LLMs corrector.

model
Event Detection Event Extraction

ACE2005 MAVEN-Arg ACE2005 MAVEN-Arg
P R F1 P R F1 P R F1 P R F1

TEXT2EVENT 66.7 70.0 68.3 74.5 20.5 32.2 45.9 52.6 49.0 41.8 29.4 34.5
+GPT-3.5 66.1 73.7 69.7 71.1 20.0 31.2 46.3 52.9 49.4 42.1 29.8 34.9
+GPT-4 68.1 74.5 71.2 71.8 20.5 31.9 46.8 53.6 50.0 42.5 30.3 35.4

EEQA 71.9 67.2 69.5 69.1 71.2 70.1 47.1 41.3 44.0 40.1 31.9 35.5
+GPT-3.5 71.7 72.5 72.1 70.2 71.7 71.0 48.2 42.4 45.1 41.1 32.5 36.3
+GPT-4 72.7 72.7 72.7 71.3 72.1 71.7 49.1 43.3 46.0 41.9 33.1 37.0

CLEVE 72.4 78.1 75.1 68.1 37.7 48.5 48.0 61.0 53.7 47.4 19.1 27.2
+GPT-3.5 74.8 78.7 76.7 68.6 39.5 50.1 48.4 61.7 54.2 47.6 19.8 28.0
+GPT-4 75.2 79.4 77.2 70.5 40.1 51.1 49.1 62.3 54.9 48.3 21.5 29.8

Table 1: Results obtained by LC4EE which completed correction based on automatically generated feedback.

3.3 Results and Analysis of LC4EE

Correction results of LC4EE are shown in Table 1,
which validate the effectiveness of our method and
the capability of LLMs for error identification and
correction. Detailed analysis is as follows.

Overall results. Through experimental results, it
was found that feedback generated by LLMs based
on a few limited rules led to significant improve-
ments in almost all performances. Particularly, the
best performance was observed on the relatively
simpler ACE 2005 dataset for the ED task, with an
average improvement of 2.7%. The LLMs require
relatively less analysis and can produce higher-
quality feedback. However, the performance on EE
tasks was less impressive compared to ED tasks.
An important factor is error propagation from ED
tasks which has been revealed in error analysis
mentioned in Appendix C. Furthermore, EE tasks
are inherently more complex, demanding LLMs
have a more comprehensive semantic understand-
ing of context, but noticeable improvements were
still achieved. Results obtained from Maven-Arg

were also inferior to those from ACE2005. This
is because the Maven-Arg dataset itself is more
complex, with a notably higher proportion of in-
correct samples in the SLMs predictions, making it
significantly more challenging for LLMs.

Analysis of Verifier. We evaluate the Verifier
from two dimensions: error identification ability
and quality of generated feedback. The average
error identification rate based on retrieved rules of
Verifier is 92.4%, indicating that the model has a
good ability to identify errors. We sampled 100
feedback information for manual inspection, with
87% of them meeting human criteria.

Analysis of Corrector. The accuracy of the cor-
rection based on feedback information which repre-
sents the proportion of correctly corrected samples
among all modified samples is 72.4% overall. It
indicates that although the LLMs inevitably makes
some corrections that turn correct answers into er-
rors, the benefit of correcting errors obviously out-
weighs the cost of introducing new errors.

For more comprehensive analysis, we comple-
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mented details of the corrections based on the sam-
pled data in Table 3 in Appendix I.

4 Conclusions and Future Work

We proposed the LC4EE model, which combined
the superior EE capabilities of SLMs with the
powerful semantic understanding and instruction-
following abilities of LLMs. In this way, LLMs are
used to correct prediction errors of SLMs based on
automatically generated feedback information. Our
model not only effectively improves EE task per-
formances but also establishes a more flexible and
practical EE system. We have validated the effec-
tiveness of our method through some experiments.
In our future work, we plan to extend LC4EE to
more tasks, models, and datasets. In addition, we
will increase the number of feedback generation
rules and enhance their quality to further improve
EE task performance.
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Limitations

As our primary goal is to validate the effectiveness
of our method, there are still some limitations in
the current work. The major limitations of LC4EE
are twofold: 1) In order to guarantee the proportion
of incorrect samples, we choose the most complex
task, Event Extraction task, performance of which
still has significant room to improve. The models,
tasks and datasets that we chose are limited. In
the future, we plan to conduct more experiments
to extend our method. 2) To improve correction
efficiency and save cost, we just inducted rules
for event types which have high frequencies of
prediction errors. In this way, performance can be
improved more obviously. In our future work, we
will increase the number of rules and optimise our
rules to further improve EE performance.

Ethical Considerations

We will discuss the ethical considerations and
broader impact of this work here: (1) Intellectual
property. LC4EE adhere to the original licenses
for all datasets and models used. Regarding the
issue of data copyright, we do not provide the origi-
nal data and we will only provide processing scripts

for the original data and relevant prompts. (2) In-
tended Use. LC4EE can be utilized to provide
event understanding services for users, and it can
also serve as an important reference for the design
of methods for other tasks. (3) Misuse risks. The
output of LC4EE is determined by the input text
and should not be used to process and analyze sen-
sitive or uncopyrighted data and should not be used
to support political claims. (4) Environmental
Impact. The experiments are conducted on the
RTX4090 GPUs and consume approximately 100
GPU hours in total. This results in some carbon
emissions, which incurs a negative influence on our
environment.

References
Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie

Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners.

Walker Christopher, Strassel Stephanie, Medero Julie,
and Maeda Kazuaki. 2006. Ace 2005 multilin-
gual training corpus. https://catalog.ldc.
upenn.edu/LDC2006T06.

Xinya Du and Claire Cardie. 2020. Event extraction by
answering (almost) natural questions. In Proceedings
of the 2020 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 671–683,
Online. Association for Computational Linguistics.

Ge Gao, Hung-Ting Chen, Yoav Artzi, and Eunsol Choi.
2023. Continually improving extractive qa via hu-
man feedback.

Yucan Guo, Zixuan Li, Xiaolong Jin, Yantao Liu, Yutao
Zeng, Wenxuan Liu, Xiang Li, Pan Yang, Long Bai,
Jiafeng Guo, and Xueqi Cheng. 2023. Retrieval-
augmented code generation for universal information
extraction.

I-Hung Hsu, Kuan-Hao Huang, Elizabeth Boschee,
Scott Miller, Prem Natarajan, Kai-Wei Chang, and
Nanyun Peng. 2022. Degree: A data-efficient
generation-based event extraction model.

Lifu Huang, Ronan Le Bras, Chandra Bhagavatula, and
Yejin Choi. 2019. Cosmos QA: Machine reading
comprehension with contextual commonsense rea-
soning. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing

12032

http://arxiv.org/abs/2005.14165
https://catalog.ldc.upenn.edu/LDC2006T06
https://catalog.ldc.upenn.edu/LDC2006T06
https://doi.org/10.18653/v1/2020.emnlp-main.49
https://doi.org/10.18653/v1/2020.emnlp-main.49
http://arxiv.org/abs/2305.12473
http://arxiv.org/abs/2305.12473
http://arxiv.org/abs/2311.02962
http://arxiv.org/abs/2311.02962
http://arxiv.org/abs/2311.02962
http://arxiv.org/abs/2108.12724
http://arxiv.org/abs/2108.12724
https://doi.org/10.18653/v1/D19-1243
https://doi.org/10.18653/v1/D19-1243
https://doi.org/10.18653/v1/D19-1243


and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
2391–2401, Hong Kong, China. Association for Com-
putational Linguistics.

Zixian Huang, Jiaying Zhou, Gengyang Xiao, and Gong
Cheng. 2023. Enhancing in-context learning with
answer feedback for multi-span question answering.

Peng Li, Tianxiang Sun, Qiong Tang, Hang Yan, Yuan-
bin Wu, Xuanjing Huang, and Xipeng Qiu. 2023.
Codeie: Large code generation models are better few-
shot information extractors.

Di Lu, Shihao Ran, Joel Tetreault, and Alejandro Jaimes.
2023. Event extraction as question generation and
answering. In Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 1666–1688, Toronto,
Canada. Association for Computational Linguistics.

Yaojie Lu, Hongyu Lin, Jin Xu, Xianpei Han, Jialong
Tang, Annan Li, Le Sun, Meng Liao, and Shaoyi
Chen. 2021. Text2event: Controllable sequence-to-
structure generation for end-to-end event extraction.

Yaojie Lu, Qing Liu, Dai Dai, Xinyan Xiao, Hongyu
Lin, Xianpei Han, Le Sun, and Hua Wu. 2022. Uni-
fied structure generation for universal information
extraction. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 5755–5772, Dublin,
Ireland. Association for Computational Linguistics.

OpenAI. 2022. Introducing chatgpt.

OpenAI. 2023. Gpt-4 technical report.

Chaoxu Pang, Yixuan Cao, Qiang Ding, and Ping Luo.
2023. Guideline learning for in-context information
extraction.

Hao Peng, Xiaozhi Wang, Feng Yao, Zimu Wang,
Chuzhao Zhu, Kaisheng Zeng, Lei Hou, and Juanzi
Li. 2023. Omnievent: A comprehensive, fair, and
easy-to-use toolkit for event understanding.

Shichao Wang, Xiangrui Cai, HongBin Wang, and Xi-
aojie Yuan. 2021a. Incorporating circumstances into
narrative event prediction. In Findings of the Associ-
ation for Computational Linguistics: EMNLP 2021,
pages 4840–4849, Punta Cana, Dominican Republic.
Association for Computational Linguistics.

Xiaozhi Wang, Hao Peng, Yong Guan, Kaisheng Zeng,
Jianhui Chen, Lei Hou, Xu Han, Yankai Lin, Zhiyuan
Liu, Ruobing Xie, Jie Zhou, and Juanzi Li. 2023.
Maven-arg: Completing the puzzle of all-in-one
event understanding dataset with event argument an-
notation.

Ziqi Wang, Xiaozhi Wang, Xu Han, Yankai Lin, Lei
Hou, Zhiyuan Liu, Peng Li, Juanzi Li, and Jie Zhou.
2021b. CLEVE: Contrastive Pre-training for Event
Extraction. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics

Dataset Docs Events Triggers Args
ACE 2005 599 4, 090 5, 349 9, 683
MAVEN-Arg 4, 480 98, 591 107, 507 290, 613

Table 2: Details of ACE 2005 and MAVEN-Arg.

and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 6283–6297, Online. Association for Computa-
tional Linguistics.

Wenpeng Yin, Qinyuan Ye, Pengfei Liu, Xiang Ren,
and Hinrich Schütze. 2023. LLM-driven instruction
following: Progresses and concerns. In Proceedings
of the 2023 Conference on Empirical Methods in Nat-
ural Language Processing: Tutorial Abstracts, pages
19–25, Singapore. Association for Computational
Linguistics.

A Dataset Details

Dataset details are shown in Table 2. Data split and
preprocessing approach for ACE2005 is consistent
with Du and Cardie (2020). Those for MAVEN-
Arg followed Wang et al. (2023). MAVEN-Arg
is significantly more challenging compared to
ACE2005 due to its document-based annotation,
much longer text, greater variety of event types,
finer classification, and more comprehensive event
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We reproduced all models on Nvidia RTX 4090
GPUs and kept the parameters the same as their
source codes. Because the focus of our approach is
not on the performances of SLMs, but to validate
the effectiveness of our method, LC4EE, we did not
seek to maintain full consistency with their orginal
results. The details of the training are as follows.

EEQA1 was trained for 6 epochs with batch-
size of 8, learning-rate of 4e-5. TEXT2EVENT2
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For ease of elaboration in this section, we use
data from the event extraction task completed by
the EEQA model on the ACE 2005 dataset as an
example. The data and methods for other datasets
are similar.

We sampled 2,000 instances from the predicted
results on the training set, which included 179 error
samples in the event detection task and 249 error
samples in the event extraction task. We define
an error sample as the instance where any mistake
occurs in the prediction.

Several error types are summarized after analyz-
ing these error samples. The definition and propor-
tion of error types can be seen in Table 3.

D Description of different granularity
levels

In this section, definitions of different granularity
levels error feedback are specified with the example
of the ED task, which is similar to the EAE task.

Sentence: “After years of intense war, diplo-
matic talks finally began, but sadly, many soldiers
died before peace could be achieved.” The orig-
inal predicted result of SLMs is [[“talks”, “Con-
tact.Meet”]. Label information is [[“war”, “Con-
flict.Attact”], [“died”, “Life.Die”]].

Comparing the orginal predicted result with the
label information, we can obtain error information.
In order to fully explore the correction ability of
LLMs based on error feedback, we designed 4 dif-
ferent granularity levels.

L1: Error feedback information is simply “in-
correct”

This level of feedback indicates the prediction is
incorrect but does not specify how. Given this, we
know a correction is needed but lack detailed guid-
ance. The correction relies heavily on the semantic
comprehension ability of LLMs.

L2: Error feedback information consists of
Error Types and relevant Quantities

For example, {“Prediction omission”: 2, “Pre-
diction redundancy”: 1}. This indicates that two
events were omitted from the predictions, and
one event was redundantly predicted. In this
case, we omitted “Conflict.Attack” for “war” and
“Life.Die” for “died”, and redundantly predicted
“Contact.Meet” for “talks”.

L3: Error feedback information provides in-
correct Element information

Element errors indicate incorrect triggers or argu-
ments information, e.g., [[“war”, “Prediction omis-

sion”], [“died”, “Prediction omission”], [“talks”,
“Prediction redundancy”]].

L4: Error feedback information provides Spe-
cific Errors. This level provides detailed errors in
the predictions, e.g., [[[“war”, “Conflict.Attack”],
“Prediction omission”], [[“died”, “Life.Die”], “Pre-
diction omission”], [[“talks”, “Contact.Meet”],
“Prediction redundancy”]].

Correction:
Based on L4 feedback, which provides the most

detailed information:
The word “war” should trigger a “Con-

flict.Attack” event, but it was omitted.
The word “died” should indicate a “Life.Die”

event, but it was also omitted.
The word “talks” was incorrectly predicted as

“Contact.Meet”, but given the context, this pre-
diction might be considered redundant because it
does not align with the definition of “Contact.Meet”
which emphasizes communicating face-to-face.

Corrected Prediction: To correct the prediction
according to the L4 feedback:

Add [[“war”, “Conflict.Attack”]] to capture the
event of intense war. Add [[“died”, “Life.Die”]]
to reflect the consequence that many soldiers
died. Evaluate the relevance of [[“talks”, “Con-
tact.Meet”]] in the context; if it aligns with the
definition of “Contact.Meet”, it may be retained;
otherwise, it should be removed from the predicted
result.

This correction process highlights the impor-
tance of detailed error feedback in refining pre-
dictions for event extraction tasks, ensuring more
accurate and comprehensive correction of event
extraction information from text.

E Specific results of Preliminary Study

Specific results of the preliminary study can be
seen in Table 4.

F An example of Rules Inducer

Figure 3 is an example of the Rules Inducer Process
for ED task on "Contact.Meet" event type.

According to error analysis, we found that in ED
task, predictions of “Contact.Meet” have a high fre-
quency of errors. We selected 8 samples from train-
ing set predictions, including correct samples and
incorrect samples. Combined with the definition
of “Contact.Meet” in the annotation guidelines, we
instruct GPT-4 to analyze error reasons and summa-
rizes some rules to generate feedback information.
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error type Event Detection error type Event Extraction
ACE2005 MAVEN-Arg ACE2005 MAVEN-Arg

event type error 5.8% 12.1% role error 1.0% 0.4%
event trigger error 1.2% 3.0% argument error 13.7% 28.3%
prediction omission 46.1% 25.8% argument omission 23.2% 31.2%
prediction redundancy 45.7% 45.3% argument redundancy 24.8% 11.5%
multi-times omission 1.2% 13.8% event type redundancy 14.1% 13.9%
– – – event type omission 23.2% 14.6%

Table 3: Error analysis results of predictions from EEQA based on ACE2005.

An example of Rules Induction process
There are some examples about Contact.Meet, some of them are correct but some of them are incorrect. In the 
annotation guidelines, the definition of Contact.Meet is that the event occurs whenever two or more entities come 
together at a single location and interact with one another face-to-face. Please try to tell me why some examples ar e 
incor rect and summar ize some rules to tell me how can I find these errors in the predictions. I hope your response is 
concise.
1. Sentence: Israeli Foreign Minister Silvan Shalom on Wednesday stressed Qatar's role in the Middle East peace process 
during talks with his Qatari counterpart Sheikh Hamad bin Jassem bin Jabr al - Thani in Paris. Predicted result is [[’talks’, 
‘Contact.Meet’]]. Label is [[’talks’, ‘Contact.Meet’]]. It is correct.
......
4. Sentence: The Hong Kong Jockey Club is in talks about buying out the horse racing club in neighboring Macau, a 
newspaper reported Tuesday. Predicted result is [[’talks’, ‘Contact.Meet’]]. Label is [ ]. It is incorrect.
......

To identify cor rect Contact.Meet events:

1. Ensure face-to-face interaction is explicitly described.
2. Ver ify the presence of a specific location for the meeting.
3. Confirm multiple entities are involved.
4. Contextualize ' talks'  to ensure they refer to physical gatherings.

Errors typically arise from vague interactions, lack of location, ambiguous entity involvement, or misuse of 'talks'.

I want you to generate a prompt based on the above rules to determine if the prediction omits the "Contact.Meet" event 
and if the existing "Contact.Meet" event in the prediction is correct. In the prompt, you are identified as an experienced 
linguist who is well skilled in the task of event detection.  The prompt you generate should contain some demonstrations, 
so please use your prompt to analyse the samples above to form demonstrations.

[{
      "role": "system",
      "content": "You are a senior linguist expert in event detection tasks, particularly skilled in identifying 'Contact.Meet' 
events from sentences. Your expertise enables you to meticulously analyze sentences to determine if a 'Contact.Meet' 
event is present and correctly predicted. The 'Contact.Meet' event is accurately identified when two or more entities 
interact face-to-face at a specific location. Your task involves scrutinizing predicted results to confirm the presence of 
this event and ensuring its accuracy based on syntactic and semantic cues. Remember, the key aspects are face-to-face 
interaction, specific location, and involvement of multiple entities. Please provide a concise analysis for the following 
examples, explaining why a prediction is correct or incorrect, based on the guidelines."
},
{
  "role": "user",
  "content": "The Hong Kong Jockey Club is in talks about buying out the horse racing club in neighboring Macau, a 
newspaper reported Tuesday. Predicted result is [['talks', 'Contact.Meet']]."
},
{
  "role": "assistant",
  "content": "{'explanation': 'This prediction is incorrect. Although the sentence mentions 'talks', it lacks explicit mention 
of a face-to-face meeting or a specific location where this interaction occurs. The context suggests the talks could be 
metaphorical or not in person, thus not meeting the 'Contact.Meet' event criteria.', 'answer': [ ]}"
},...]

......

Figure 3: An example of Rules Induction.
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In this process, we will give feedback to GPT-4 by
pointing out improprieties and inaccuracies of the
summarized rules as well as proposing our practical
requirements to refine rules iteratively.

In the process of practical application, we found
that GPT-4 is able to generate rules for feedback
generation and corresponding prompts well, requir-
ing less human interaction and corrections, which
reduces the burden on humans.

G Rules for corrector

In this section, after categorizing the rules, we se-
lected a few examples for illustration.

G.1 Rules for ED task
Rules examples for ED task are as follows.

Rule Type 1: Correction for common triggers.
Some event types, due to their inherent specificity,
have very typical triggers that require minimal or
straightforward judgment to complete the event de-
tection task. However, these types, which are quite
simple for human annotators, still frequently result
in prediction omissions in current SLMs predic-
tions. Moreover, common triggers are more intu-
itive and easier to understand than the definitions
of event types, making judgments by LLMs easier.
For example, the word “marriage”, when used as
an independent noun and not as part of a proper
noun like “Marriage Law”, typically triggers the
“Life.Marry” event. We instruct LLMs to generate
prompts to perform keyword matching based on
the typical triggers of these event types and then de-
termine if the matched word aligns with the event
definition according to semantic information.

Rule Type 2: Correction combining key entity
information and event type definitions. Similar
to Rule 1, some event types also have key trig-
gers that are easily identified, but these triggers do
not always trigger events and require careful judg-
ment in combination with contextual information.
Entity information associated with the event can
help the LLMs in better understanding semantic
information, thereby identifying these events. For
example, words derived from “become” and “be-
gin” can trigger “Personnel.Start-Position” event,
but it is essential to note that: 1) the subject of the
event must be a Person; 2) there must be explicit
Position information.

Rule Type 3: Corrections based on the condi-
tions that trigger events. Certain words trigger

events under specific conditions, and many pre-
diction results do not meet these conditions. For
instance, word derived from “talk” has strict con-
ditions for triggering “Contact.Meet” events, as
summarized from the analysis of the annotation
guidelines and dataset: 1) the text must explicitly
mention two or more entities; 2) the communi-
cation must be face-to-face, and the presence of
explicit location information in the text can also
indicate that the communication is face-to-face.

G.2 Rules for EE task

Rules examples for EE task are as follows.

Rule Type 1: Correction based on event type in-
formation corrected in ED task. Firstly, in order
to exclude the effects of event type errors, we elimi-
nate a large number of event type redundancy errors
in argument extraction based on the corrected event
type information in ED task. Then, in response to
event type omission errors, we instruct LLMs to
generate prompts to find suitable arguments from
the text according to the corresponding roles list
of the corrected event type defined in the event
schema.

Rule Type 2: Correction combined with entity
information. During the error analysis process,
we found that several roles with high frequent er-
rors in their predicted results. Considering the supe-
rior performance of LLMs on Named Entity Recog-
nition (NER) tasks, we guide LLMs to make cor-
rections based on certain entity information. For in-
stance, arguments for role “Destination” of “Move-
ment.Transport” events frequently commits mis-
takes. Therefore, we instruct LLMs to generate
prompts to pay particular attention to “Location”,
“Geo-Political” and “Facility” entity information in
the sentence and to judge whether the “Location”
entity is the “Destination” information of the event
based on semantic information.

Rule Type 3: Correction based on syntax anal-
ysis result. Guiding the LLMs to analyze the
syntactic structure of sentences around triggers is
crucial for argument extraction. The syntactic com-
ponents of words aid in enhancing the understand-
ing of semantic information, allowing for better
determination of candidate arguments and their
corresponding roles. For instance, in the extrac-
tion results, arguments for role “Person” and “En-
tity” or similar roles of certain event types such
as “Personnel.Start-Position” are often confused
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model level
Event Detection Event Extraction

ACE2005 MAVEN-Arg ACE2005 MAVEN-Arg
P R F1 P R F1 P R F1 P R F1

text2event – 35.5 43.1 38.9 74.8 19.8 31.3 35.5 44.2 39.4 41.1 32.1 36.1

+GPT-3.5

L1 55.9 21.8 31.4 21.0 64.5 31.6 23.6 31.5 27.0 33.8 9.4 14.7
L2 55.9 42.5 48.3 22.9 52.0 31.7 35.0 31.5 33.2 41.8 22.8 29.5
L3 81.4 78.3 79.8 28.3 54.0 37.1 41.1 50.3 45.2 33.9 9.5 14.8
L4 84.3 89.6 86.9 59.2 91.4 71.8 69.0 75.6 72.2 60.0 28.6 38.7

EEQA – 40.0 34.2 36.9 68.2 70.8 69.0 43.0 37.1 39.8 40.5 33.6 36.7

+GPT-3.5

L1 50.4 20.6 29.3 69.9 65.6 67.6 25.3 28.6 26.8 37.6 17.4 23.8
L2 50.4 41.3 45.4 68.1 65.8 66.9 33.8 35.3 34.5 39.5 27.1 32.1
L3 82.1 80.7 81.4 72.5 69.0 70.7 54.0 56.7 55.3 35.7 14.5 20.7
L4 90.6 89.1 89.8 80.9 73.0 76.7 76.2 75.9 76.1 56.0 31.8 40.6

CLEVE – 46.7 57.9 51.7 69.8 44.0 53.9 43.5 56.1 49.0 55.1 29.5 38.4

+GPT-3.5

L1 58.6 30.4 40.0 35.9 57.9 44.3 47.8 41.2 44.2 49.4 13.1 20.7
L2 69.9 60.4 64.8 41.2 47.9 44.3 44.7 39.2 41.8 54.9 24.3 33.7
L3 85.0 79.0 81.9 52.0 62.9 56.9 52.1 51.1 51.6 53.6 12.5 20.2
L4 85.0 90.0 87.2 78.8 85.7 82.1 76.2 82.4 79.0 71.9 30.2 42.5

Table 4: Specific Results of Preliminary Study on EE tasks with different granularity level feedback information.

Jimmy founded a new company and became the CEO, recently engaged in talks 
with Peter from the competitor company.

Rule 1:  Words 'launch', 'establish', 'build', 'create', etc. and 
w o r d s  d e r i v e d  f r o m  t h e m  a r e  t y p i c a l  t r i g g e r s  f o r 
'Business.Star t -Or g' when they are used to represent the 
creation of an organization. The condition for these words to 
trigger the event is that the object which is created must be an 
organzaition.

Prediction Label

founded Business.Start-Org founded Business.Start-Org

talks Contace.Meet became Personnel.Start-Position

Key words matching to obtain candidate triggers and relevant event types.

Key word matching result ( Candidate triggers ):
Jimmy founded a new company and became the CEO, recently engaged in talks 
with Peter from the competitor company.

Retrieved Rules:
1. Rules for Business.Start-Org
2. Rules for Personnel.Start-Position
3. Rules for Contace.Meet

Retriever

Rule 2:  Words 'become', 'begin', 'start',  etc. and words derived 
from them are typical triggers for 'Per sonnel.Star t-Position' 
event when they are used to represent that a person starts 
working for an organization. There are 3 conditions for these 
words to trigger the event: 1) The keyword corresponds to a 
person as the subject. 2) The keyword relates to a job or 
position as the object. 3) Semantically, it must signify the start 
of the individual working for an organization, that is, the start 
of the work.

Rule 3: If triggers for 'Contact.Meet ' is word derived from 
'talk', only when  4 conditions are met, it can actually trigger 
the event. Conditions are: 1) Ensure face-to-face interaction. 2) 
Verify the presence of a specific location in the sentence. 3) 
Confirm multiple entities are involved. 4) Contextualize 'talks' 
to ensure they refer to physical gatherings.

1. The candidate trigger founded is used to represent the creation of a 
new company which is an organization...
2. The candidate trigger became is used to represent  that Jimmy starts 
working as CEO...
3. The candidate trigger talks is used to represent negotiations between 
Jimmy and Peter, but there is no explicit location information...Corrector Remove relevant information of talks and keep other event 

information unchanged.

Verifier Verify the sample according to retrieved rules and generate 
feedback information.

Figure 4: An example of LLMs Corrector.

or commit mistakes. Through syntactic structure
analysis, obtaining the subject and object compo-
nents associated with the trigger, allows for more
accurate extraction of arguments.

H An example of LLMs Corrector

In this section, we chose a simple example for il-
lustrating how LLMs Corrector works.

An example of correction on ED task is shown
in Figure 4. Detailed description is as follows.

Firstly, based on the input sentence and the candi-

12037



error type Event Detection error type Event Extraction
origin correction origin correction

event type error 5.8% - role error 1.0% -
event trigger error 1.2% - argument error 13.7% 1.6% (↓0.1%)
prediction omission 46.1% 3.4% (↓0.8%) argument omission 23.2% 2.7% (↓0.2%)
prediction redundancy 45.7% 3.7% (↓0.4%) argument redundancy 24.8% 3.0% (↓0.1%)
multi-times omission 1.2% 0.1% (↓0.1%) event type redundancy 14.1% 1.1% (↓0.7%)
– – – event type omission 23.2% 2.8% (↓0.1%)

Table 5: Correction details for LC4EE on ACE 2005 based on EEQA. “Origin” indicates the proportion of incorrect
samples relevant to the error type among all samples. “Correction” indicates the proportion after correction by
LC4EE, with the percentage decrease shown in parentheses.

date triggers dictionary analyzed from the training
set, LLMs are used to perform keyword matching
tasks to obtain the candidate triggers and their cor-
responding event types. The results obtained are
[“founded”, “Business.Start_Org”], [“talks”, “Con-
tact.Meet”]] and the candidate trigger is “became”.
Then, using the Retriever, the rules correspond-
ing to the event types of the candidate triggers
and the event types in the predicted results are re-
trieved from the rule repository. If retrieval fails,
the predicted results are assumed to be correct by
default and keep unchanged. Next, using the Veri-
fier, the retrieved rules are used to verify whether
the predicted results are correct and generate cor-
responding feedback information. In the example,
“founded” and its corresponding event type “Busi-
ness.Start_Org” meet the rule which is used to rep-
resent the creation of a new company, indicating the
prediction is correct. “became” and its correspond-
ing event type “Personnel.Start_Position” meet the
rule, suggesting the start of a person’s work, but it
is not in the predicted results, indicating an omis-
sion in the prediction that should be added. “talks”
does not meet the rule because it is unclear whether
the conversation is face-to-face, but the relevant in-
formation is in the predicted results, so it should be
removed. Finally, the Corrector is used to correct
predicted results based on the feedback information.
The final corrected prediction results corrected by
LLMss are [[“founded”, “Business.Start_Org”],
[“became”, “Personnel.Start_Position”]].

I Correction details

The correction details for samples used in Table 3
can be seen in Table 5.
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