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Abstract

Evaluation of text simplification currently fo-
cuses on the difference between a source text
and its simplified variant. Datasets for this eval-
uation base on a specific topic and group of
readers for which is simplified. The broad ap-
plicability of text simplification and specifics
that come with intended target audiences (e.g.,
children compared to adult non-experts) are
disregarded. An explainable assessment of the
overall simplicity of text is missing.

This work is BenchmArking Text Simplicity
(BATS): we provide an explainable method to
assess practical and concrete rules from litera-
ture describing features of simplicity and com-
plexity of text. Our experiments on 15 datasets
for text simplification highlight differences in
features that are important in different domains
of text and for different intended target audi-
ences.

1 Introduction

Text simplification aims to reduce a text’s difficulty
and adapt it to a reader’s abilities (Arfe et al., 2018).
Difficulties in fully grasping information excludes
individuals from actively participating in society,
such as politics, education, or choosing between
healthcare options (Štajner et al., 2022). Simplify-
ing text can help overcome this obstacle.

Different groups of people (target audiences,
short TAs) can profit from text simplification,
such as children (Štajner et al., 2020b) or non-
experts (Kintsch, 1994). These different groups
have distinct needs for text in order to be consid-
ered simple (Xu et al., 2015). The domain (short D)
of the text that is simplified influences the factors
that constitute good simplification (Štajner et al.,
2020b, 2022). For example, when simplifying news
articles, reducing the level of detail might be help-
ful as long as the general message stays the same.
In contrast, in other domains (e.g., medical texts),

preserving all information is imperative (Shardlow
and Nawaz, 2019).

Historically, text simplification was performed
by schooled experts. However, advances in com-
puter technology, such as the introduction of
(transformer-based) large language models, have
enabled the development of highly effective auto-
mated text simplification (Engelmann et al., 2023)
that can compete with manual efforts. Automation
and reduced cost, expertise- and time requirements
allow for a much broader application of text sim-
plification (Štajner et al., 2022).

Evaluating the quality of simplified text is a task
coinciding with the introduction of automation of
text simplification. Aside from manual evaluation,
text can be automatically evaluated by either bench-
marking against reference simplifications or using
metrics or models. Readability scores such as the
Flesch Reading Ease (Flesch, 1948) are often de-
scribed as unsuitable for quantifying the level of
simplicity of a text as the measure does not take
into account sufficient aspects of what constitutes
simplicity. While manual evaluation is labor in-
tensive, metrics often lack precision and poorly
approximate human judgments (Heineman et al.,
2023; Alva-Manchego et al., 2021). Recent auto-
matic evaluation approaches using elaborate lan-
guage models better correlate with human judg-
ments on texts’ simplification level but require a
high-quality dataset of labeled simplifications for
best training results (Maddela et al., 2023; Heine-
man et al., 2023).

Current datasets for evaluating metrics do not in-
dicate if a text is simple. Instead, they quantify how
much more accessible a text has become by it being
simplified compared to its complex form (Sulem
et al., 2018; Alva-Manchego et al., 2020; Alva-
Manchego et al., 2021; Scialom et al., 2021; Mad-
dela et al., 2023). Therefore, metrics correlating
to the human labels from these datasets do not in-
dicate the overall simplicity of a text but rather its
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degree of simplification. All these datasets belong
to the same domain and thus potentially ignore
specificities found only in certain areas.

This work focuses on BenchmArking Text
Simplicity (BATS). We present a reference-free
and explainable method to identify characteristics
indicating simplicity and complexity of text. Our
approach does not directly quantify simplicity but
rather provides insights into what properties might
make a text simple or complex. These characteris-
tics relate to features of simple text which can be
found in the literature. BATS is target audience-
and domain-independent. Using BATS, we evalu-
ate three research questions:

RQ1 Which characteristics from literature reflect
the simplicity or complexity of texts?

RQ2 Which dataset-specific, target audience-
specific, and domain-specific characteristics
can be found regarding simplicity?

RQ3 Can BATS be used to quantify simplicity
effectively?

Our code and data are publicly available at
GitHub1 under MIT license.

2 Text Simplification Evaluation

2.1 Criteria for Simple Text
A prerequisite for simplifying text and evaluating
it is being able to differentiate between complex
and simple text (Gooding, 2022). Few studies in-
vestigate aspects that constitute simple language.
Štajner et al. (2015) explore the correlations be-
tween readability measures and linguistic features.
In a more theoretically-driven approach, Arfe et al.
(2018) describe linguistic aspects of texts account-
ing for the readability of informational texts.

What makes text simple cannot be universally de-
fined. While expert readers can connect new infor-
mation to prior knowledge via several routes, infor-
mation in text not containing context retrieval cues
(e.g., definitions of technical terms) stays unavail-
able for low-knowledge readers (Kintsch, 1994).
A straightforward linguistic structure is not help-
ful for poor readers, but very poor readers need
it (Arfe et al., 2018). For language learners, read-
ability and understandability of text depend on their
native language and proficiency level of a learned
language (Štajner et al., 2022).

1github.com/bjoernengelmann/BATS

2.2 Domain and Target Audience

Aspects which are essential for developing and eval-
uating text simplification depend on the domain
(e.g., medical (Van et al., 2020), news (Vajjala and
Lučić, 2018), legislation (Scarton et al., 2018)) and
the intended target audience (e.g., children (Barzi-
lay and Elhadad, 2003), non-experts (Kauchak
et al., 2022), language learners (Vajjala and Lučić,
2018), persons with language or intellectual impair-
ments (Štajner et al., 2020b)) for which is simpli-
fied (Xu et al., 2015; Siddharthan, 2014; Feng et al.,
2009). Most text simplification approaches do not
consider either (Gooding, 2022).

Domain. The distribution of values of quantifi-
able features of texts of comparable complexity sig-
nificantly differs depending on a text’s genre (Shee-
han, 2013), e.g., preserving the meaning of texts is
crucial for medical texts (Shardlow and Nawaz,
2019). However, Shardlow and Nawaz (2019)
found that nearly 25 percent of critical informa-
tion from clinical texts is lost when simplified
by automated text simplification. Sheehan et al.
(2014) compare 43 textual features across two gen-
res. They found significant differences in measures
of academic vocabulary, argumentation, concrete-
ness, lexical cohesion, conversational style, and
degree of narrativity between domains.

Target Audience. There are differences in de-
sired properties of simplified text depending on the
recipient, e.g., non-native speakers require the sim-
plification of specific words (Štajner et al., 2020b,
2022) whereas children and language-learners re-
quire short sentences (Štajner and Hulpus, 2018).
For business-oriented readers searching for infor-
mation, oversimplification is no problem, whereas
for children or non-native speakers, oversimplifi-
cation might lead to disengagement (Štajner et al.,
2020b). Feng et al. (2009) consider adults with
intellectual disabilities as target audience. They
define a list of features of text simplified for this
audience. Using datasets with children as the target
audience, they calculate the values for the features
for simplified and source texts to determine fea-
tures with significant differences.

2.3 Evaluating Text Simplification

Datasets. Currently, text simplification ap-
proaches are only evaluated on very limited data
with human labels: simplification-acl (Sulem et al.,
2018), ASSET (Alva-Manchego et al., 2020),
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METAeval (Alva-Manchego et al., 2021), QuestE-
val (Scialom et al., 2021) as well as SimpEvalPast

and SimpEval2022 (Maddela et al., 2023). All
(transitively) base on TurkCorpus (Xu et al., 2015,
2016a) or Wikipedia directly. The human labels
have been constructed in pairwise comparisons of
complex source texts and their simplified versions.
Annotators rated if the simplified text is easier to
understand than the original text. Therefore, the
datasets do not provide scores indicating the over-
all simplicity of text but rather describe the degree
of simplification that has been performed between
the original and simplified version.

TurkCorpus contains text from English
Wikipedia and Simple English Wikipedia, as well
as manually generated simplifications. Its domain
is general knowledge and encyclopedia; the target
audiences are the general population, children, and
language learners.

Measures and Approaches. Human evaluation
would be the most desirable assessment to ensure
quality of text simplification approaches but cannot
be performed at scale. Current automatic mea-
sures for text simplification approximate different
aspects of human judgments of the degree of sim-
plification between an original and a modified ver-
sion of text: SARI (Xu et al., 2016b) describes
the overlap between a modified text (e.g., system-
simplified text) with its original (e.g., complex text)
and ideal modifications (e.g., gold simplifications).
The token-based measure considers added, deleted
and kept tokens. While it serves as a decent mea-
sure of the quality of the simplification, especially
if a larger number of ideal texts is provided, it tends
to perform worse when the modified text is vastly
different from the original one (Alva-Manchego
et al., 2020). BERTscore (Zhang et al., 2020) cap-
tures the semantic similarity between an original
and a modified text. Here, grammar or correctness
of text are not considered. LENS (Maddela et al.,
2023) quantifies the semantic similarity and per-
formed edits between a modified text, its original
and ideal modifications. Its correlation to human
judgments is better than SARI and BERTscore.
LENS-SALSA (Heineman et al., 2023) extends
LENS to an edit-level reference-free simplification
metric. SALSA is an evaluation framework based
on edit types between original and modified texts.

Several approaches quantify simplicity or com-
plexity of text: TextEvaluator (Sheehan et al.,
2014) considers 43 features quantifying complex-
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Figure 1: Simplified overview of our approach.

ity and additional ones indicating the genre of a
text. CoCo (Štajner et al., 2020a) uses a knowledge
graph (here DBpedia Spotlight) to simulate con-
cepts activating neighboring concepts in a reader’s
working memory following the ideas of Kintsch
and van Dijk (1978) and produces a value indicat-
ing the text’s conceptual complexity. The approach
assumes that text is less conceptionally complex
and more accessible if more of the text’s concepts
are activated. Lexile Analyzer2 is closed-source
software describing the reading demand and com-
plexity of texts through a score.

With our approach, we provide another way of
assessing the simplicity or complexity of text, fos-
tering characteristics of simple text described in
the literature. Our method does not require ideal
simplifications or annotated corpora to be used; it
can be applied to arbitrary texts.

3 BATS

Figure 1 gives a simplified overview of our ap-
proach. We implement rules from literature via
Snorkel (Ratner et al., 2017) to determine if these
rules appear in a dataset consisting of texts. The
rules express heuristics that linguistic experts con-
sider to be salient characteristics of the measure
of text simplicity. After applying these rules, bi-
nary vectors are obtained. These vectors combined
with simplicity scores of texts can then be used to
prune the rules to only keep those highly indicative
of simplicity and complexity (BATS model). We
can construct BATS vectors for any text with these
pruned rules. These vectors indicate which charac-
teristics of simplicity or complexity are satisfied.

2https://hub.lexile.com/analyzer
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3.1 Data Programming Approach

The data programming paradigm makes it possi-
ble to develop a model for a given classification
task that does not require any training data by in-
tegrating domain knowledge. Instead of generat-
ing labels with great effort, this approach defines
heuristics that map domain knowledge and use
characteristics of the instances to be classified to
contribute signals to the classification (Ratner et al.,
2016). The definition is made via a so-called la-
beling functions and integrates the basis for the
heuristic decision. E.g., heuristics for detecting
spam emails could check whether a candidate email
contains suspicious words, many grammatical er-
rors, or generic greetings. Individual heuristics of
this type alone would not allow satisfactory dis-
crimination. However, combining such partially
overlapping heuristics and weighting them leads to
better results.

We use Snorkel to define heuristics that distin-
guish simple from non-simple texts. In our case,
the outputs of a single labeling function are ei-
ther simple and abstain or not simple and abstain.
Therefore, a single labeling function can only pro-
vide a signal for either simple or not simple. The
output of a function is 1 if a characteristic was rec-
ognized in the text and 0 if not. The intuition here
is that a vote should only be given for a class if
a particular characteristic appears in the text. In
this way, it is possible to create an explainable
model that represents signals of the heuristics of
texts with a binary vector. Each vector dimension
then represents whether or not a predefined label-
ing function has recognized a characteristic in the
text. Dimensions can be combined into groups of
similar meaning. Instead of classifying texts based
on these vectors, we use this type of modeling as
a feature extraction step in texts. This ensures the
traceability of the representations and allows for
the possibility of integrating knowledge from the
literature.

3.2 Characteristics of Simple Text

The literature states numerous rules or guidelines
that could indicate the simplicity of a text. We fo-
cused on the 37 features mentioned in Table 1. The
opposite of the given features could also be seen as
an indicator of complexity, i.e., if a text does not
have short sentences, it could be complex. Except
for the case of few words containing more than
eight characters, the literature usually does not de-

average lexical richness (Štajner et al., 2020a)
average number of words before the main verb (Sheehan
et al., 2014)
few cases with max distance between 2 appearances of
same entity (Štajner et al., 2020b)
few content words (Scarton et al., 2018)
few infrequent words (Štajner and Hulpus, 2018)
few long words (Arfe et al., 2018)
few modifiers (Narayan and Gardent, 2014)
few negations (Sheehan et al., 2014)
few noun phrases (Arfe et al., 2018)
few past perfect verbs (Sheehan et al., 2014)
few past tense aspect verbs (Sheehan et al., 2014)
few punctuation marks (Saggion et al., 2015)
few relative-clauses (Arfe et al., 2018)
few sentences (Arfe et al., 2018)
few third person singular pronouns (Sheehan et al., 2014)
few unique entities (Štajner et al., 2020b)
few words containing more than eight characters (Sheehan
et al., 2014)
few words from academic word list (Sheehan et al., 2014)
few words per sentence (Scarton et al., 2018)
grammatical correctness (Xu et al., 2015)
high average distance between consecutive entities (Šta-
jner et al., 2020b)
high concreteness (Scarton et al., 2018)
high Flesch reading ease (Scarton et al., 2018)
high imageability (Scarton et al., 2018)
high percentage of vocabulary learned in initial stages of
foreign language learning (Tanaka et al., 2013)
low age of acquisition (Scarton et al., 2018)
low average number of unique entities (Štajner et al.,
2020b)
low avg distance between all pairs of same entities (Štajner
et al., 2020b)
low depth of the syntactic tree (Štajner et al., 2020a)
low entity to token ratio (Štajner et al., 2020b)
low Flesch-Kincaid Grade Level Index (Narayan and Gar-
dent, 2014)
low unique entities to total number of entities ratio (Štajner
et al., 2020b)
no appositions (Narayan and Gardent, 2014)
no conditional clauses (Arfe et al., 2018)
no conjunctions (Arfe et al., 2018)
no passive voice (Arfe et al., 2018)
short sentences (Arfe et al., 2018)

Table 1: Simplicity-inducing features for BATS.

scribe how a feature should be interpreted. For
example, short sentences could refer to the num-
ber of characters, syllables, or words in a sentence.
Therefore, we consider multiple interpretations
of these features to indicate texts possessing char-
acteristics of simplicity and complexity. In total,
we consider 135 interpretations of these features.
Additionally, an exact parametrization of features
is mostly missing; short could mean less than five,
ten, or twenty words. To compensate for this, we
consider different thresholds, some relying on num-
bers found in literature (see Appendix A.1) others
shaped through discussion in the development team,
resulting in 1,249 parametrizations (560 to identify

11971



complex texts, 689 to identify simple texts).
Our 37 features describe rules text might follow

to be considered simple. We relate these rules to
general rules for writing controlled English by con-
sidering the descriptions of categories provided by
O’Brien (2003). Two annotators assigned our fea-
tures together to the four categories lexical, struc-
tural, syntactic, and pragmatic with their respective
sub-categories if applicable. They discussed each
feature until they agreed on a category. Table 4
holds our complete list of features, (sub-)categories,
and interpretations; the parametrizations can be
found in our code in the supplementary material.

3.3 From Vectors to BATS Vectors
Thus, our vectors resulting from the Snorkel step
are 1,249-dimensional binary vectors. Each di-
mension indicates whether the associated labeling
function (indicating simplicity or complexity of
text) detected the characteristics implemented in
the parametrization or not. The features we built
our parametrizations upon stem from literature pos-
sibly focusing on specific target groups (e.g., a low
number of sentences would be helpful for people
with an intellectual disability (Arfe et al., 2018)),
our parametrizations contain quasi-arbitrary values
(e.g., defining the complexity indicating variant
of the simplicity-indicating few sentences as texts
having five or more sentences).

A pruning then gathers the rules, which are im-
portant and worth further consideration. It filters
out niche rules and ones that do not discriminate
simple from complex texts. We suggest pruning by
utilizing a dataset with simplicity scores for texts3

and excluding all dimensions that are not at least
weakly correlated with simplicity quantification of
text. The resulting dimensions compose the BATS
model. We additionally have a mapping of dimen-
sions from one representation to all others, e.g., we
know which parametrizations are implementing a
specific feature from the literature.

4 Evaluation

We evaluate the overall research questions RQ1−3,
described in the introduction.

4.1 Datasets, Pruning, BATS Vectors
For our evaluation, we use the 15 publicly avail-
able datasets containing English texts described4

3Alternative ways of pruning are discussed in the Appendix
in Section A.4.

4More details are in the Appendix in Section A.5.

Dataset # texts Target Audiences (TA) Domains (D)
ASSET 4718
AutoMeTS 6994 medical
BenchLS 1856
Britannica 926 children encyclopedia
EW-SEW-Turk 1000 encyclopedia
HutSSF 652 news
METAeval 604 encyclopedia
MTurkSF 126 non-experts medical
NNSeval 478 language learners encyclopedia
OneStopEnglish 4144 language learners news
QuestEval 282 encyclopedia
SemEval_2007 598
SimPA 2204 language learners administrative
SimpEval 324 encyclopedia
TurkCorpus 4718 children, language learners encyclopedia

Table 2: Datasets’ number of texts, target audiences,
and domains other than general. Info on audiences and
domains stems from datasets themselves.

in Table 2. We only selected datasets with con-
firmed availability such as OneStopEnglish, for
other datasets where access had to be requested
we were not able to confirm availability or even
acquire them (e.g., Newsela).

All datasets consist of pairs of complex texts and
their simplified versions. We consider two target
audiences: children (represented by Britannica and
TurkCorpus) and language learners (represented
by NNSeval, OneStopEnglish, SimPA and Turk-
Corpus). We consider two domains: news (repre-
sented by HutSSF and OneStopEnglish) and en-
cyclopedia (represented by Britannica, EW-SEW-
Turk, METAeval, NNSeval, QuestEval, SimpEval,
TurkCorpus and Wiki-Manual). When experiment-
ing with target audiences or domains, we use a
merged form of the respective datasets, which con-
tain 200 random simple and the corresponding 200
complex texts of each dataset.

The ARTS datasets5 (Engelmann et al., 2024)
capture humans’ and ChatGPT’s perceptions of
simplicity in the form of ARTS scores. Scores
are derived from votes on the simpler texts out of
pairs of two unrelated texts. ARTS datasets consist
of texts from 26 datasets from different domains
for different target audiences with a numeric de-
scription of their simplicity between 0 (simple)
and 1 (complex). The simplicity scores are cal-
culated through an Elo-based algorithm. We use
three datasets: ARTS94 contains 94 texts and sim-
plicity scores given by humans, ARTS300 contains
300 texts and scores resulting from assessment by
ChatGPT 4, ARTS3000 holds 3000 texts and ratings
from ChatGPT 4.

We prune our 1,249-dimensional vectors with
ARTS3000. We set the minimal threshold for cor-
relation between found characteristics of simplic-

5See Appendix A.6.
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ity/complexity contained in the initial vector and
simplicity scores to 0.256. This step resulted in
98 dimensions indicating simplicity and 120 di-
mensions indicating the complexity of texts. We
construct BATS vectors for all (merged) datasets.

4.2 RQ1: From Literature to Practice
We investigate the importance of characteristics
indicating simplicity or complexity of texts in the
four levels described in Section 3.2: parameteriza-
tions, interpretations, features, and categories. We
observe the correlation between the occurrences
of characteristics in texts and their real simplicity
score using ARTS.

Setting. We identify the most important
parametrizations, interpretations, features, and
categories that indicate simplicity or complexity by
observing BATS vectors for texts combined with
their real simplicity ratings contained in ARTS.
ARTS depicts a cross-section over all domains
and target audiences and is thus a suitable way
to observe which characteristics might reflect
simplicity or complexity. High ARTS scores
indicate complexity, low ARTS scores indicate
simplicity. High values in BATS vectors indicate
simplicity (analogous: complexity), if encountered
in a dimension describing a simplicity-inducing
(analogous: complexity-inducing) parametrization.
We expect positive (analogous: negative) corre-
lations between ARTS scores and dimensions of
BATS vectors indicating complexity (analogous:
simplicity). The more pronounced the correlations,
the more important the dimension. In higher
levels - for interpretations, features, and categories
- we observe the average of the correlations of
the respective parametrizations belonging to the
respective interpretation, feature, and category.
Thus, we define importance as correlation or
average correlation scores.

Results. In general, we find numerous
parametrizations, interpretations, and features
focusing on the same characteristic from opposing
sides being the most important ones per level7.
E.g. for all datasets, the feature short sentences is
important in simplicity (so, actually, few sentences

6−0.25 for simplicity-inducing dimensions as a high
ARTS score indicates complexity.

7Figure 4 and Figure 5 in the Appendix show correlation
of ARTS scores and average values for the different levels.
Table 5, Table 6 and Table 7 hold parametrizations, interpreta-
tions, and features with most prominent correlations to ARTS
scores per dataset.

per text) and complexity (the complex variant of
the feature describes the opposite - many sentences
per text).

We seem to have found parametrizations for dis-
tinguishing between simple and complex texts -
the maximum number of words in sentences be-
ing lower than 20 indicates simplicity, and higher
than 22 indicates complexity. In the case of fea-
tures, in addition to the length of sentences, we also
encounter the Flesch-Kincaid Grade Level being
important, which considers the number of words,
sentences, and syllables.

Discussion. As the most important parametriza-
tions, interpretations, and features, we found tra-
ditional characteristics, such as the length of sen-
tences, being preferable to reflect the simplicity
or complexity of texts over possibly newer or less
straightforward characteristics, such as the num-
ber of entities in a text or the imageability of text.
Additionally, we encountered the need for a high
resolution of characteristics in order to analyze the
data meaningfully. Only observing categories (see
Figure 5 in the Appendix) does not clearly high-
light essential characteristics. The level of interpre-
tations offered a good balance between detail and
generalizability. By answering this RQ, we show
the explainability of BATS.

4.3 RQ2: Characteristics of Simplicity

Following insights from RQ1 we observe the level
of interpretations across datasets, target audiences,
and domains. We analyze which interpretations
are the most different in terms of text containing
characteristics between texts from sources and sim-
plified parts of datasets.

Setting. We use BATS vectors to calculate how
often a characteristic is found for source and sim-
plified texts of parallel corpora. The larger the
difference in occurrences between source and sim-
plified text, the more selective a characteristic is.
We observe selectivities for all 15 datasets, target
audiences, and domains.

Results. Figure 2 depicts the selectivities of all
datasets separated by characteristics identifying
simplicity and complexity. There are vast differ-
ences between datasets. While several datasets
(BenchLS, EW-SEW-Turk, MTurkSF, NNSeval,
SemEval_2007) do not seem to differ much be-
tween texts in the source and simplified part, a
closer look into the specifics of these datasets (see
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Figure 2: Average difference between source and sim-
plified texts in parametrizations from different interpre-
tations.

Table 4) reveals them to be datasets where source
texts were simplified by substituting one difficult
word for another. Among the most important char-
acteristics of complexity in these cases is the maxi-
mum age of acquisition of a word. When replacing
a complex word, possibly the most difficult one in
a text, it makes sense for the replacement to have
a lower age of acquisition. This would, in turn,
result in the simplified text having a lower maxi-
mum age of acquisition. SimPA shows similarities
to these aforementioned datasets. Here, several
words were replaced between complex and sim-
plified texts. Some datasets show a more notable
difference between source and simplified texts (Au-
toMeTS, Britannica, HutSSF, SimpEval). In these
datasets, humans wrote both versions, which can
be the case in encyclopedias, where simpler ver-
sions of some articles exist. The sentence length,
FKG/FKRE score, and the number of unique lem-
mas seem to be the most selective characteristics
overall.

Figure 3 depicts the selectivities for our two tar-
get audiences and domains. There are vast differ-
ences. Texts simplified for children seem different
in sentence length and the number of infrequent
words compared to the respective source texts. For
language learners, the maximum age of acquisition

Figure 3: Average difference between source and sim-
plified texts in parametrizations from different interpre-
tations of TAs and Ds.

seems to be important, while sentence length does
not considerably change between the two settings.
We found the most differences in the news domain.
Simplified text in this domain seems to be highly
different from its source texts in multiple perspec-
tives, such as sentence length, punctuation, number
of used unique lemmas, FKRE, and, again, maxi-
mum age of acquisition of words. Contrasting this,
we did not find major differences between source
and simplified texts for the encyclopedia domain.

Discussion. In the observation of dataset-specific,
target audience-specific and domain-specific char-
acteristics regarding simplicity (RQ2) we again
found the traditional characteristics identified in
RQ1 being a discriminating factor between source
and simplified texts.

Additionally, we found considerable differences
between datasets (potentially stemming from their
construction), target audiences, and domains. The
seemingly low differences between texts in the do-
main of encyclopedias could stem from the hetero-
geneous datasets that are part of the domain. In
addition to datasets with pronounced differences
between source and simplified texts, there are other
datasets from this domain where sources differ only
in one word from simplified texts.

4.4 RQ3: Representation of Simplicity

To assess BATS vectors’ suitability to capture dis-
criminating factors useful in quantifying the sim-
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MSE (lower values are better) R2 (higher values are better)
RF GB RF GB

Train Predict BATS OAI BATS OAI FRE BATS OAI BATS OAI FRE
ARTS94 ARTS300 .068 .073 .08 .078 .078 .188 .133 .045 .074 .075
ARTS94 ARTS3000 .059 .076 .067 .081 .086 .296 .089 .192 .029 -.026
ARTS300 ARTS94 .052 .068 .059 .061 .065 .393 .203 .313 .282 .236
ARTS300 ARTS3000 .055 .07 .06 .07 .086 .336 .164 .286 .155 -.026
ARTS3000 ARTS94 .044 .06 .039 .055 .065 .485 .297 .541 .354 .236
ARTS3000 ARTS300 .048 .057 .047 .052 .078 .426 .325 .435 .378 .075

Table 3: Regression (Random Forest (RF) and Gradient Boosting (GB)) performance using BATS vectors or OpenAI
embeddings (OAI) and ARTS scores. We report FRE as a baseline.

plicity of text, we compare using them to the cur-
rent state of the art (OpenAI embeddings).

Setting. We use the three ARTS datasets in this
experiment. Two types of regressors (random forest
and gradient boosting with unchanged hyperparam-
eters) are trained on either BATS vectors or Ope-
nAI embeddings of ARTS texts and ARTS scores.
The state-of-the-art text embeddings are generated
using the OpenAI embeddings client8 with the text-
embedding-3-small model. The maximum number
of input tokens is 8,191, and the length of the em-
bedding vectors is 1,536.

The trained regressors then predict simplicity
scores for unseen data (vectors/embeddings of texts
from a different ARTS dataset). We compare these
predicted scores against the real simplicity (ARTS)
scores. We report the mean squared error (MSE)
over the mean absolute error for an increased pe-
nalization of larger errors between predicted and
actual simplicity scores. In our case, the predicted
scores do not matter as much (is a text’s simplicity
0.342 or 0.37), but the scores should instead indi-
cate if a text can be considered simple or complex
and should not be vastly different. We report R2

to quantify how well a regressor predicts the ac-
tual data. R2 gives the proportion of the variance
for the complexity score that the input vectors or
embeddings can explain.

As a baseline, we additionally report the MSE
and R2 of the Flesch Reading Ease (FRE) score of
texts from ARTS. Since the FRE score is mapped
on a scale from 0 to 100 and a high score indi-
cates high simplicity, we transform it to make it
comparable with the ARTS score. We achieve this
by applying a MinMax-Scaler9 and calculating the
difference to 1 so that the transformed score is in
[0, 1] and small scores indicate high simplicity.

8https://platform.openai.com/docs/guides/
embeddings/embedding-models

9https://scikit-learn.org/stable/modules/
generated/sklearn.preprocessing.MinMaxScaler

Results. Table 3 shows the outcome of the ex-
periment; values in rows need to be compared to
each other. Using BATS vectors outperforms using
OpenAI embeddings and FRE in all rows. Row 5
holds the most important setting: a model trained
on the most available data and tested on the least
amount of available data.

Discussion. BATS vectors outperform OpenAI
embeddings for training a regressor to predict
ARTS scores. We conclude that BATS vectors
are highly suitable for capturing characteristics of
simplicity or complexity10. Thus, we showed the
effectivity of BATS vectors for quantification of
simplicity (RQ3).

5 Conclusion

We presented BATS, a method to evaluate straight-
forward and concrete rules that can be used in quan-
tifying the simplicity or complexity of text. Our
approach is inherently explainable. The potential
of BATS vectors becomes apparent in their com-
parison to the state of the art in text representa-
tion (OpenAI textual embeddings). Through our
evaluations we showed the possibility for nuanced
evaluation of text simplification for different target
audiences or domains while shedding light on their
different needs in properties of simplified text.

Future work should focus on the incorporation of
more features into BATS and in-depth evaluations
of simplification approaches and more datasets. As
a direct consequence of our findings, simplification
of text should be evaluated in a target audience-
and domain-specific manner. Here, datasets which
contain simplifications that differ in more than one
word only from the source texts would be desirable.

10More general applications of BATS vectors in practice
are discussed in the Appendix in Section A.8.

11975

https://platform.openai.com/docs/guides/embeddings/embedding-models
https://platform.openai.com/docs/guides/embeddings/embedding-models
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler


6 Limitations

Even though we started out with 1,249 parametriza-
tions, we cannot ensure having utilized the most
meaningful parameters for interpretations or the
most suitable interpretations for features. Addition-
ally, even though we chose 37 features describing
the simplicity of text in the literature, there might
be other and more important features that we dis-
regarded in this analysis. Independent of features,
interpretations, and parametrizations, our approach
holds, is extensible and applicable. By utilizing
a multi-domain, multi-target audience dataset for
pruning the labeling functions, we ensure that rules
that are not discriminatory or too niche are filtered
out. Text simplification, in general, lacks a fo-
cus on meaning preservation. Our parametriza-
tions currently do not capture this aspect (e.g., via
BERTscore (Zhang et al., 2020)).

Our approach is currently limited by the litera-
ture in that we only implement well-known charac-
teristics of simplicity or complexity.

In our evaluation of the characteristics in dif-
ferent datasets, TAs, and Ds, we used datasets
of heterogeneous quality. Even though we used
15 datasets in total, the datasets became compara-
bly small after excluding duplicates such that each
source text was only combined with one simpli-
fication. In our analysis of TAs and Ds, we only
compared two of each.

Currently, pruned labeling functions are chosen
in a data-driven way, and the seed set of our la-
beling functions can be applied to parallel corpora
from different languages. In general, the approach
is extensible to other languages by adding new
features/functions for language-specific aspects or
implementing features in a language-independent
fashion, e.g., by using a multi-lingual embedding
of n-grams for imaginability, but this requires ad-
ditional work. It remains open to investigate how
simplicity might have different contributing aspects
for different languages and if language-specific as-
pects still hold for other languages from the same
language family.

Aside from ARTS, there is a lack of datasets
quantifying the simplicity of text. It would be de-
sirable to test our approach with another type of
simplicity score to ensure generalizability.

We use pruning to identify only the dimen-
sions that are important, excluding nonsensical
parametrizations or ill-fitting interpretations of fea-
tures. It is unclear if our method of pruning di-

mensions from vectors produces optimal results.
We offer alternatives for pruning labeling functions
in our discussion of additional methods in the Ap-
pendix (Section A.4).
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A Appendix

A.1 Example Parametrization
With the average length of words in English being 4.79 (Norvig) characters, words with more, so e.g.,
5, 6, 7, 8, 9 letters could be regarded as long or complex words. Words with less characters could
be considered short or simple words as the length of words can be a burden to readers (Sigurd et al.,
2004). Goldhahn et al. (2012)’s analysis of corpora gives an average English sentence length as 117.542
characters. Together this would mean an average English sentence would consist out of around 20 words
(117.542 characters / (4.79 characters + 1 blank symbol) = 20.3) when only containing shorter than average
words. Another perspective could be introduced by Lindholm and Vanhatalo (2021), who describe long or
harder sentence as those with at least 15 words. Combined this would lead to sentences with at least 87
characters (15 words * (4.79 characters + 1 blank symbol) = 86.85) being considered as complex. These
numbers could be used in the parametrization of the labeling function short sentences (Arfe et al., 2018)
in implementations either deciding on complexity of a text based on its number of words or characters.

A.2 Factors Characterizing Simplicity of Text
This work considers 37 descriptions of features from the literature. Table 4 gives an overview of the
features as well as their (sub) categorization following O’Brien (2003) and our 135 interpretations of
features.

Feature C Sub C Interpretations
average lexical richness (Štajner
et al., 2020a)

L VU/Sy num_unique_lemmas_label=NS_thresh=θ,
num_unique_lemmas_label=S_thresh=θ,
num_unique_lemmas_norm_label=NS_thresh=θ,
num_unique_lemmas_norm_label=S_thresh=θ

average number of words before
the main verb (Sheehan et al.,
2014)

St IS avg_num_words_before_main_verb_label=NS_thresh=θ,
avg_num_words_before_main_verb_label=S_thresh=θ

few content words (Scarton
et al., 2018)

L VU lf_content_ratio_thresh=θ_label=NS,
lf_content_ratio_thresh=θ_label=S

few infrequent words (Štajner
and Hulpus, 2018)

L VU lf_infrequent_words_cnt=θ_$animal_NS,
lf_infrequent_words_cnt=θ_$animal_S,
lf_infrequent_words_per_sentence=θ_$animal_NS,
lf_infrequent_words_per_sentence=θ_$animal_S

few long words (Arfe et al.,
2018)

L VU low_prop_long_words_syllables_long=θ_prop=η_label=S,
low_prop_long_words_letters_long=θ_prop=η_label=S

few modifiers (Narayan and Gar-
dent, 2014)

Sy MU few_modifiers_thres=θ_label=NS, few_modifiers_thres=θ_label=S,
low_modifier_ratio_thres=θ_label=NS,
low_modifier_ratio_thres=θ_label=S

few negations (Sheehan et al.,
2014)

L Ne freq_negations_label=S_thresh=θ, freq_negations_label=NS_thresh=θ,
freq_negations_ratio_label=NS_thresh=θ,
freq_negations_ratio_label=S_thresh=θ

few noun phrases (Arfe et al.,
2018)

Sy NC few_noun_phrases_ratio_thres=θ_label=NS,
few_noun_phrases_ratio_thres=θ_label=S,
few_noun_phrases_thres=θ_label=NS,
few_noun_phrases_thres=θ_label=S

few past perfect verbs (Sheehan
et al., 2014)

Sy Tense num_past_perfect_label=NS_thresh=θ,
num_past_perfect_label=S_thresh=θ,
perc_past_perfect_label=NS_thresh=θ,
perc_past_perfect_label=S_thresh=θ

few past tense aspect
verbs (Sheehan et al., 2014)

Sy Tense num_past_tense_label=NS_thresh=θ,
num_past_tense_label=S_thresh=θ, perc_past_tense_label=NS_thresh=θ,
perc_past_tense_label=S_thresh=θ

few punctuation marks(Saggion
et al., 2015)

Sy Pn avg_num_punctuation_text_label=NS_thresh=θ,
avg_num_punctuation_text_label=S_thresh=θ
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few relative-clauses (Arfe et al.,
2018)

L PU low_relative_clauses_ratio_label=NS_thresh=θ,
low_relative_clauses_ratio_label=S_thresh=θ,
no_relative_clauses_label=S_thresh=θ,
no_relative_clauses_label=NS_thresh=θ,
low_relative_sub_clauses_label=NS_thresh=θ,
low_relative_sub_clauses_ratio_label=NS_thresh=θ,
low_relative_sub_clauses_label=S_thresh=θ,
low_relative_sub_clauses_ratio_label=S_thresh=θ,
no_relative_sub_clauses_label=S_thresh=θ,
no_relative_sub_clauses_label=NS_thresh=θ

few sentences (Arfe et al., 2018) St SL num_sents_num_thres=θ_label=NS, num_sents_num_thres=θ_label=S
few third person singular pro-
nouns (Sheehan et al., 2014)

L PU freq_third_person_singular_pronouns_label=S_thresh=θ,
freq_third_person_singular_pronouns_label=NS_thresh=θ,
freq_third_person_singular_pronouns_ratio_label=NS_thresh=θ,
freq_third_person_singular_pronouns_ratio_label=S_thresh=θ

few unique entities (Štajner
et al., 2020b)

St IL unique_entities_text_label=NS_thresh=θ,
unique_entities_text_label=S_thresh=θ,
unique_entities_text_ratio_label=NS_thresh=θ,
unique_entities_text_ratio_label=S_thresh=θ

few words containing more than
eight characters (Sheehan et al.,
2014)

L VU perc_more_than_8_characters_label=NS_thresh=θ,
perc_more_than_8_characters_label=S_thresh=θ

few words from academic word
list (Sheehan et al., 2014)11

L VU/DU ratio_academic_word_list_label=NS_thresh=θ,
ratio_academic_word_list_label=S_thresh=θ

few words per sentence (Scarton
et al., 2018)

St SL/PL lf_words_cnt_wcount=θ_NS, lf_words_cnt_wcount=θ_S

grammatical correctness (Xu
et al., 2015)

Sy few_gram_errors_ratio_thres=θ_label=NS,
few_gram_errors_ratio_thres=θ_label=S, thresh=θ_label=NS,
thresh=θ_label=S

high average distance between
consecutive entities (Štajner
et al., 2020b)

St IS avarage_distance_entities_para_consec_θ_S,
avarage_distance_entities_para_same_θ_S,
avarage_distance_entities_sent_consec_θ_S,
avarage_distance_entities_sent_same_θ_S

high concreteness (Scarton et al.,
2018)

P SI lf_avg_concreteness=θ_NS, lf_avg_concreteness=θ_S,
lf_max_concreteness=θ_NS, lf_max_concreteness=θ_S,
lf_median_concreteness=θ_NS, lf_median_concreteness=θ_S

high Flesch reading ease (Scar-
ton et al., 2018)

St IL high_fkre_threshold=θ_NS, high_fkre_threshold=θ_S

high imageability (Scarton et al.,
2018)

L DU lf_avg_imageability=θ_NS, lf_avg_imageability=θ_S,
lf_min_imageability=θ_NS, lf_min_imageability=θ_S,
lf_med_imageability=θ_NS, lf_med_imageability=θ_S

high percentage of vocabulary
learned in initial stages of for-
eign language learning (Tanaka
et al., 2013)

L VU/DU perc_vocab_initial_forLang_learn_label=NS_thresh=θ,
perc_vocab_initial_forLang_learn_label=S_thresh=θ

low age of acquisition (Scarton
et al., 2018)

L VU lf_avg_age_of_acquisition=θ_NS, lf_avg_age_of_acquisition=θ_S,
lf_max_age_of_acquisition=θ_NS, lf_max_age_of_acquisition=θ_S,
lf_median_age_of_acquisition=θ_NS,
lf_median_age_of_acquisition=θ_S

low average number of unique
entities (Štajner et al., 2020b)

St IL average_entities_paragraph_label=NS_thresh=θ,
average_entities_paragraph_label=S_thresh=θ,
average_entities_sentence_label=NS_thresh=θ,
average_entities_sentence_label=S_thresh=θ

low avg distance between all
pairs of same entities (Štajner
et al., 2020b)

St IS avarage_distance_appearance_same_entities_paragraph-
_label=NS_thresh=θ, avarage_distance_appearance_same-
_entities_label=S_thresh=θ, avarage_distance_appearance-
_same_entities_sentence_label=NS_thresh=θ,
avarage_distance_appearance_same_entities_sentence-
_label=S_thresh=θ

low depth of the syntactic
tree (Štajner et al., 2020a)

St IL depth_of_syntactic_tree_label=NS_thresh=θ,
depth_of_syntactic_tree_label=S_thresh=θ

low entity to token ratio (Štajner
et al., 2020b)

St IL entity_token_ratio_text_label=NS_thresh=θ,
entity_token_ratio_text_label=S_thresh=θ,
entity_token_ratio_paragraph_label=NS_thresh=θ,
entity_token_ratio_paragraph_label=S_thresh=θ,
entity_token_ratio_sentence_label=NS_thresh=θ,
entity_token_ratio_sentence_label=S_thresh=θ

11https://www.eapfoundation.com/vocab/academic/awllists/
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low Flesch-Kincaid Grade Level
Index (Narayan and Gardent,
2014)

St IL low_thresh=θ_NS, low_thresh=θ_S

low number of cases with max
distance between 2 appearances
of same entity (Štajner et al.,
2020b)

St IS distance_appearance_same_entities_sentence_dist_label=S-
_thresh_dist=θ_numη, distance_appearance_same_entities-
_paragraph_dist_label=S_thresh_dist=θ_numη

low unique entities to total num-
ber of entities ratio (Štajner
et al., 2020b)

St IL unique_entity_total_entity_ratio_text_label=NS_thresh=θ,
unique_entity_total_entity_ratio_text_label=S_thresh=θ,
unique_entity_total_entity_ratio_paragraph_label=NS_thres=θ,
unique_entity_total_entity_ratio_paragraph_label=S_thres=θ,
unique_entity_total_entity_ratio_sentence_thresh=θ_label=NS,
unique_entity_total_entity_ratio_sentence_thresh=θ_label=S

no appositions (Narayan and
Gardent, 2014)

Sy Ap no_apposition, percentage_appositions=θ_NS,
percentage_appositions=θ_S

no conditional clauses (Arfe
et al., 2018)

Sy Co no_conditional, percentage_conditional=θ_NS,
percentage_conditional=θ_S

no conjunctions (Arfe et al.,
2018)

L CU few_conjunctions_thres=θ_label=NS,
few_conjunctions_thres=θ_label=S, few_conjunctions_ratio_thres=-
θ_label=NS, few_conjunctions_ratio_thres=θ_label=S

no passive voice (Arfe et al.,
2018)

Sy Voice no_passive_voice, percentage_passive_voice=θ_NS,
percentage_passive_voice=θ_S

short sentences (Arfe et al.,
2018)

St SL low_num_words_in_sents_avg_thres=θ_label=NS,
low_num_words_in_sents_avg_thres=θ_label=S,
low_num_words_in_sents_max_thres=θ_label=NS,
low_num_words_in_sents_max_thres=θ_label=S

Table 4: Features from literature, Clusters (C), Sub cluster and interpretations of labeling functions. Clusters:
Lexical (L), Structural (St), Syntactic (Sy), Pragmatic (P). Sub cluster: Vocabulary Usage (VC), Dictionary Usage
(DU), Synonymy (Sy), Information Structure (IS), Noun Cluster (NC), Pronoun Usage (PU), Modifier Usage (MU),
Sentence Length (SL), PL (PL), Specificity of Information (SI), Negation (Ne), Apposition (Ap), Coordination (Co),
Information Load (IL), Punctuation (Pn), Conjunction Usage (CU). Abbreviations in interpretations: NOT_SIMPLE
(NS), SIMPLE (S); variables: thresholds (θ, η), $ animal.

A.3 Used Python Packages
In our implementation, we utilize the following packages:

• allennlp (Gardner et al., 2017)

• bs4 (https://www.crummy.com/software/BeautifulSoup/)

• dotenv (https://saurabh-kumar.com/python-dotenv/)

• language_tool_python (https://pypi.org/project/language-tool-python/)

• Levenshtein (https://rapidfuzz.github.io/Levenshtein/)

• matplotlob (Hunter, 2007)

• numpy (Harris et al., 2020)

• openai (https://platform.openai.com/docs/api-reference?lang=python)

• pandas (Wes McKinney, 2010; pandas development team, 2020)

• PassivePy (Sepehri et al., 2023)

• py7zr (https://py7zr.readthedocs.io/en/latest/index.html)

• requests (https://requests.readthedocs.io/en/latest/)

• scipy (Virtanen et al., 2020)

• seaborn (Waskom, 2021)
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• sklearn (Pedregosa et al., 2011)

• snorkel (Ratner et al., 2017)

• spacy (Honnibal and Montani, 2017)

• textstat (https://github.com/textstat)

• tqdm (Da Costa-Luis et al., 2020)

• wortfreq (Speer, 2022)

A.4 Alternatives for Pruning Dimensions
We assume not all dimensions in vectors contribute meaningfully when assessing if the text should be
considered simple or complex. A pruning of dimensions can be performed in multiple ways, we present
four different methods for selecting the dimensions to compose the BATS model: A naive approach
would be using those dimensions with the highest difference in the percentage of texts from source and
simplified origins to contain a feature. Another method of determining the kept dimensions is selecting
the best ones with a chi2 test. A third method is the selection of the top n dimensions, which have the
highest average permutation importance (see sklearn12). Lastly, a random choice could also identify the
kept dimensions.

A.5 Description of Datasets
This work considers the following 15 publicly available parallel corpora in the English language:

• ASSET (Alva-Manchego et al., 2020) is based on TurkCorpus (Xu et al., 2015, 2016a) and is a
dataset specifically constructed for text simplification. It contains 2,000 validation and 359 test
source sentences with ten simplifications each, so 23,590 pairs in total. Texts are primarily single
sentences. Sources are, on average, 116.77 characters, while simplifications are, on average, 98.52
characters. The dataset was published under CC BY-NC license.

• AutoMeTS (Van et al., 2020) is based on EW-SWE. It contains single sentences and 4,280 pairs
of texts in total. Sources are, on average, 205.14 characters, while simplifications are, on average,
154.07 characters. The dataset was published under an MIT license.

• BenchLS (Paetzold and Specia, 2016a) is based on sources from LexMTurk and LSeval. It contains
929 source sentences with multiple simplifications. Simplifications differ in one word from the
sources. Human annotators gave the substitutions for complex words. Sources are, on average,
152.76 characters, while simplifications are, on average, 150.08 characters. The dataset was published
under a CC BY-SA 4.0 license.

• Britannica (Barzilay and Elhadad, 2003) is based on Encyclopedia Britannica and Britannica
Elementary. We consider the non-empty sentences from the training and test set annotated by
humans. This leaves us with 6,846 pairs of texts. Sources are, on average, 88.15 characters, while
simplifications are, on average, 147.35 characters. For the dataset, no license was specified.

• EW-SEW-Turk (Horn et al., 2014) is based on EW-SEW. Source sentences each have multiple
simplifications, which differ in one word from the original ones. This produces 7,330 pairs of texts.
Sources are, on average, 146.97 characters, while simplifications are, on average, 147.29 characters.
For the dataset, no license was specified.

• HutSSF (Schwarzer et al., 2021) is based on news. The data is split into train, development, and
test sets. There are 5,245 pairs of texts in total. Sources are, on average, 88.15 characters, while
simplifications are, on average, 147.35 characters. For the dataset, no license was specified.

12https://scikit-learn.org/stable/modules/generated/sklearn.inspection.permutation_importance.html
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• METAeval (Alva-Manchego et al., 2021) is based on TurkCorpus (Xu et al., 2015, 2016a). It
contains sentence pairs with simplifications from six systems using the TurkCorpus (Xu et al., 2015,
2016a) dataset: PBMT-R, Hybrid, SBMT-SARI, Dress-Ls, DMASS-DCSS, ACCESS. It contains
302 original source sentences and 600 pairs in total. Sources are, on average, 161.89 characters,
while simplifications are, on average, 136.43 characters. The dataset was published under a CC
BY-NC-SA 4.0 license.

• MTurkSF (Kauchak et al., 2022) is based on Wikipedia. It contains sentence pairs where the
simplification differs in one word from the source. We only consider pairs, where the replacement
words in sentences were rated as good substitutes by MTurkers, resulting in 221 pairs of texts.
Sources are, on average, 168.26 characters, while simplifications are, on average, 171.24 characters.
For the dataset, no license was specified.

• NNSeval (Paetzold and Specia, 2016b) is based on Wikipedia. It contains 239 source sentences with
multiple simplifications, each differing in one word from the sources that stem from LSeval and
LexMTurk. Substitution suggestions are from LEXenstein and vetoed by human annotators. In total,
there are 1,791 pairs of texts. Sources are, on average, 145.27 characters, while simplifications are,
on average, 143.54 characters. The dataset was published under a CC BY-SA 4.0 license.

• OneStopEnglish (Vajjala and Lučić, 2018) is based on the website onestopenglish.com. It contains
2,107 human-written triples of advanced (close to its source’s complexity), intermediate, and ele-
mentary simplifications of texts on 189 topics from the English language learning resource website.
Considering advanced-intermediate, advanced-elementary, and intermediate-elementary pairings
produced 6,321 pairs of source-simplified texts. Sources are, on average, 241.11 characters, while
simplifications are, on average, 285.96 characters. The dataset was published under a CC BY-SA 4.0
license.

• QuestEval (Scialom et al., 2021) is based on a subset of ASSET (Alva-Manchego et al., 2020) but
contains more simplifications. There are 366 pairs in total in the dataset. Sources are, on average,
116.55 characters, while simplifications are, on average, 93.08 characters. For the dataset, no license
was specified.

• SemEval-2007 (McCarthy and Navigli, 2007) is based on the English Internet Corpus of English. In
this, base sentences were crawled from the web; annotators suggested simpler replacement words for
complex ones. The dataset contains 1,208 pairs of texts. Sources are, on average, 150.6 characters,
while simplifications are, on average, 153.42 characters. For the dataset, no license was specified.

• SimPA (Scarton et al., 2018) is based on the Sheffield City Council website and contains 6,600 pairs
of complex-simplified text pairs. Sources are, on average, 165.76 characters, while simplifications
are, on average, 160.5 characters. For the dataset, no license was specified.

• SimpEval (Maddela et al., 2023) consists of four parts. It is partially based on Wikipedia entries
from revisions or new entries between October and November 2022 and on TurkCorpus (Xu et al.,
2015, 2016a). Combined, the four parts contain 2,570 pairs of texts. Sources are, on average, 155.85
characters, while simplifications are, on average, 135.17 characters. For the dataset, no license was
specified.

• TurkCorpus (Xu et al., 2015, 2016a) is based on PPDB. It contains 2,359 sentence pairs from
English Wikipedia and Simple English Wikipedia. Each source sentence also contains eight simplified
versions from Amazon Mechanical Turkers, so there are 21,231 pairs in total. Simplifications are
lowercase. Sources are, on average, 118 characters, while simplifications are, on average, 110.98
characters. The dataset was published under a GPL 3.0 license.

From all datasets, we only consider non-duplicated texts, so each complex text is only included once,
meaning if a source text has multiple simplifications, we only consider one of the simplifications.
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ARTS Simple Parametrizations
∩ low_num_words_in_sents_max_thres=20_label=0
94 ∩, low_num_words_in_sents_avg_thres=20_label=0, lf_words_cnt_wcount=20_SIMPLE,

lf_words_cnt_wcount=17_SIMPLE, lf_words_cnt_wcount=19_SIMPLE
300 ∩, low_num_words_in_sents_max_thres=24_label=0, low_num_words_in_sents_avg_-

thres=22_label=0, lf_words_cnt_wcount=22_SIMPLE, low_num_words_in_sents_max_-
thres=22_label=0

3000 ∩, low_num_words_in_sents_max_thres=17_label=0, low_num_words_in_sents_max_-
thres=24_label=0, low_num_words_in_sents_max_thres=26_label=0,
low_num_words_in_sents_max_thres=22_label=0

ARTS Complex Parametrizations
∩ low_num_words_in_sents_max_thres=22_label=1
94 ∩, lf_words_cnt_wcount=20_NOT_SIMPLE, lf_words_cnt_wcount=17-

_NOT_SIMPLE, low_num_words_in_sents_avg_thres=20_label=1,
lf_words_cnt_wcount=19_NOT_SIMPLE

300 ∩, low_num_words_in_sents_max_thres=22_label=1, lf_words_cnt_wcount=22_NOT_-
SIMPLE, low_num_words_in_sents_max_thres=24_label=1,
low_num_words_in_sents_avg_thres=22_label=1

3000 ∩, low_num_words_in_sents_max_thres=22_label=1, low_num_words_in_sents_max_-
thres=24_label=1, low_num_words_in_sents_max_thres=26_label=1,
low_num_words_in_sents_max_thres=28_label=1

Table 5: Five most important simple and complex parametrizations in ARTS, ∩ indicates the parametrizations,
which are present in all three versions of ARTS: ARTS94, ARTS300, and ARTS3000.

A.6 ARTS: Assessing Readability & Text Simplicity

To evaluate our BATS approach we require a dataset consisting of texts and their numeric simplicity
indication to prune our binary vectors to obtain the BATS model. All existing datasets used for evaluating
simplicity evaluation measures quantify the difference of a source text and a simplified version of the same
text (i.e., „how much simpler has a text gotten compared to the original version?“) instead of quantifying
the simplicity of text without comparison to its original version (i.e., „how simple is text?“). Datasets
estimating the first question cannot be used in our case to prune dimensions as there is only one value
for a combination of two texts. If we intend to correlate values in our vectors with simplicity scores we
require a dataset consisting of single texts and their simplicity

The ARTS dataset (Engelmann et al., 2024) provides texts with an associated simplicity score. This
score, on a scale from 0 to 1, indicates how simple a text is. ARTS is based on the idea that annotators can
easily decide which of two given texts is easier. Based on 394 consecutive decisions, an order was formed
concerning simplicity. This ordering results from applying the Elo algorithm used in chess (Good, 1955).
Judging that one text is more complex than another is analogous to winning a chess game. Each text is
assigned a score based on the order of the texts. Therefore, the text rated as the most difficult has a score
of 1, and the easiest one has a score of 0. This way, high-reliable simplicity scores can be assessed for
a given set of texts. Based on five annotators, the result scores achieved an average rank correlation of
0.82 with the majority vote. This dataset was also automated by replacing the annotators with GPT4. The
GPT-based scores exhibit a high rank correlation (0.80) with the human annotations.

A.7 Additional Material related to RQ1

Figure 4 depicts the correlations of BATS vectors with ARTS scores while Figure 5 holds correlations of
BATS vectors with ARTS scores in higher levels: interpretations, features, and categories.

Table 5, Table 6 and Table 7 describe the most important parametrizations, interpretations and features
indicating simple and complex text.
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ARTS Simple Interpretations
∩ word_cnt_lfs_simple, lfs_low_fkg_simple, lfs_low_length_sents_max
94 ∩, lfs_low_length_sents_avg, num_unique_lemmas_lfs
300 ∩, lfs_low_length_sents_avg, num_unique_lemmas_lfs
3000 ∩, lfs_make_min_imageability_lf_simple, lfs_few_noun_phrases
ARTS Complex Interpretations
∩ -
94 num_unique_lemmas_complex, word_cnt_lfs_complex,

lfs_low_length_sents_avg_complex, lfs_low_fkg_complex,
infrequent_words_per_sentence_lfs_complex

300 num_unique_lemmas_complex, lfs_make_min_imageability_lf_complex,
word_cnt_lfs_complex, lfs_low_length_sents_avg_complex,
lfs_low_length_sents_max_complex

3000 max_aoa_lfs_complex, infrequent_words_lfs_complex, lfs_low_length_sents_max_complex,
lfs_few_noun_phrases_complex, lfs_low_fkg_complex

Table 6: Five most important simple and complex interpretations in ARTS, ∩ indicates the interpretations, which are
present in all three versions of ARTS: ARTS94, ARTS300, and ARTS3000. Interpretations marked in bold indicate
cases where corresponding ones were important for simplicity and complexity.

ARTS Simple Features
∩ few words per sentence, short sentences, low Flesch-Kincaid Grade Level Index
94 ∩, high Flesch reading ease, average lexical richness
300 ∩, high imageability, average lexical richness
3000 ∩, few noun phrases, high imageability
ARTS Complex Features
∩ few words per sentence, short sentences, low Flesch-Kincaid Grade Level Index
94 ∩, few infrequent words, average lexical richness
300 ∩, high imageability, average lexical richness
3000 ∩, few noun phrases, low age of acquisition

Table 7: Five most important simple and complex features in ARTS, ∩ indicates the features, which are present in
all three versions of ARTS: ARTS94, ARTS300, and ARTS3000. Features marked in bold are important for both
simplicity and complexity.

A.8 Description of Example Applications

Case 1: Evaluating Text Simplification Approaches. Consider the case of evaluating text simplification.
To evaluate if texts that have been simplified can be considered simpler compared to the original ones, we
can analyze the difference in the specificity of found characteristics. We construct BATS vectors on both
types of texts (original and simplified). If more characteristics indicating simplicity are found in BATS
vectors constructed from simplified texts, the simplification seems to have been successful.

In this scenario, it would also make sense to compare two different ways of simplifying text to identify
the text simplification method out of several implementations. Here, one would consider the simplification
method as better, for which more characteristics indicating simplicity can be found.

By having a pre-selection of potentially good simplifications conducted automatically the workload of
human annotators could be reduced.

Case 2: Building a Text Simplification Approach. Consider the case of composing a text simplifica-
tion approach, e.g., by using LLMs via prompting. Here the outcome of the text simplification needs to
be assessed in order to modify the current prompt. Constructing BATS vectors for the text indicates the
parametrizations and thus rules for simplicity, which the text satisfies and ones that are still hinting at
complexity. These found characteristics of complex text can be considered as untapped potential, which
can be also included in the approach.
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Another perspective could be the application of BATS for in-context learning. Asides from evaluation,
scores such as SARI (Xu et al., 2016b) or the compression ratio between a source and a simplified text can
be used to select the best pairs of examples for text simplification approaches via LLMs (Vadlamannati and
Şahin, 2023). Our approach could provide an option to select single texts instead of pairs to demonstrate
what a text fulfilling requirements for a specific domain or target audience could look like.

Case 3: Assisted Text Simplification. The BATS model can help with the targeted simplification of a
given text. If a person wants to simplify a text for a specific target audience, the BATS model can assist
with the various interpretations. The explainability of the BATS model supports people in their work and
enables them to make informed changes to the text with respect to their specific needs.
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Figure 4: Correlation analysis with the color bars indicating the correlation of dimensions in BATS vectors with
ARTS scores for the three datasets in parametrization. The more the correlation deviates from 0, the more intense
the color.
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Figure 5: Correlation analysis with the color bars indicating the average correlation of interpretations, features, and
categories in BATS vectors with ARTS scores for the three datasets in parametrizations. The more the correlation
deviates from 0, the more intense the color.
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