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Abstract

Explainable AI methods facilitate the under-
standing of model behaviour, yet, small, im-
perceptible perturbations to inputs can vastly
distort explanations. As these explanations are
typically evaluated holistically, before model
deployment, it is difficult to assess when a par-
ticular explanation is trustworthy. Some studies
have tried to create confidence estimators for
explanations, but none have investigated an ex-
isting link between uncertainty and explanation
quality. We artificially simulate epistemic un-
certainty in text input by introducing noise at
inference time. In this large-scale empirical
study, we insert different levels of noise pertur-
bations and measure the effect on the output of
pre-trained language models and different un-
certainty metrics. Realistic perturbations have
minimal effect on performance and explana-
tions, yet masking has a drastic effect. We find
that high uncertainty doesn’t necessarily im-
ply low explanation plausibility; the correlation
between the two metrics can be moderately pos-
itive when noise is exposed during the training
process. This suggests that noise-augmented
models may be better at identifying salient to-
kens when uncertain. Furthermore, when pre-
dictive and epistemic uncertainty measures are
over-confident, the robustness of a saliency
map to perturbation can indicate model stabil-
ity issues. Integrated Gradients shows the over-
all greatest robustness to perturbation, while
still showing model-specific patterns in perfor-
mance; however, this phenomenon is limited to
smaller Transformer-based language models.

§
https://github.com/spaidataiga/
unc-and-xai-noise

1 Introduction

Though language models have become increasingly
popular for personal and industrial use, these black-
box models have been prone to perpetuate discrimi-
nation and output hallucinations (Augenstein et al.,

2023; Bang et al., 2023; Weidinger et al., 2021).
To use these models safely, it is important to in-
stil a level of trust in their output. Some methods
of instilling trust in a model output include uncer-
tainty estimation and eXplainable AI (XAI). Un-
certainty is a reflection of a model’s confidence in
its output, given, for example, ambiguous or un-
familiar data. While uncertainty can be estimated
at inference time in an unsupervised manner, XAI
is typically holistically evaluated for a model and
task (Chen et al., 2022; Hedström et al., 2023).
However, XAI techniques give unstable explana-
tions given small changes in input data (Adebayo
et al., 2018; Alvarez-Melis and Jaakkola, 2018;
Lakkaraju and Bastani, 2020). While these studies
have been critiqued for inserting unnatural noise
into the input data, even relatively realistic pertur-
bations to images can disrupt most gradient-based
saliency map techniques (Amorim et al., 2023).

Due to this instability, it is difficult to know when
we can trust a specific explanation. Ideally, we
would like to use XAI to understand both why a
model succeeds and fails to identify points of fail-
ure in a model pipeline– these failures could arise
from mistakes in the model training or ambiguity
within the data. It is also vital to understand when
explanations are trustworthy, as the inclusion of
XAI can cause an over-reliance on models (Bauer
et al., 2023; van der Waa et al., 2021), give users
the false impression of global task understanding
(Chromik et al., 2021), and lead to overall poorer
performance than if no human-AI collaboration
(Schmidt et al., 2020). Therefore, we would like
to assess if the uncertainty of a model’s output can
give any indication of an explanation’s quality and
if the instability of an explanation can provide in-
sight into the model’s performance. We expect
noise at inference time, especially for text: Words
can be accidentally ablated, mispelled or otherwise
mutated. Different authors have distinct linguistic
styles, and new words emerge or change in mean-
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Noise type Example text

(unperturbed) “an artful intelligent film that stays within the confines of a well-established genre”

token-MASK “an [MASK] [MASK] film that stays within the confines of a [MASK] genre”
token-UNK “an [UNK] [UNK] film that stays within the confines of a [UNK] genre”
charinsert “an artfuVl intDelligent film that stays within the confines of a well-Mestablished genre”
charswap “an artfjl intellhgent film that stays within the confines of a Pell-established genre”
butterfingers “an artdul intelligegt film that stays within the confines of a well-esfablished genre”
l33t “an @r7fu1 1n7311193n7 film that stays within the confines of a w311-357@611543d genre”
synonym "an disingenous sound film that stays within the confines of a good-established genre"

Table 1: All 7 types of perturbation visualized on a datapoint where 25% of human-salient tokens are perturbed

ing. Due to this noise, many SOTA language mod-
els suffer out-of-distribution issues and, thus, fail
in real-world applications (Alipanahi et al., 2022;
Ribeiro et al., 2020). As large language models
rely on drawing from large amounts of data (often
stemming from sources with variable writing styles
and formatting, like social media), we must under-
stand how this “noise” in the data affects model’s
performance, confidence, and explainability. As
text perturbations can introduce some ambiguity
into the data that is not present at training time, they
should affect a model’s reported uncertainty along-
side its explanation. Given the variety of language
models available, it is also vital to compare how
this relationship differs across different models and
XAI methods.

In this paper, we conduct a large-scale empirical
investigation into the effect of noise on Pre-trained
Language Models via a controlled experiment by
artificially injecting varying degrees and types of re-
alistic noise (see Table 1) and measuring the impact
on model explanations and uncertainty. In this man-
ner, we also investigate the relationship between
explanation plausibility (the agreement between
model saliency and ground-truth annotations) and
model uncertainty. To assess if explanation insta-
bility reflects model instability, we limit our inves-
tigation to gradient-based techniques, given their
high-performance in robustness and plausibility
measures (Atanasova et al., 2020) and to limit ad-
ditional uncertainty introduced by model approxi-
mation techniques, like LIME (Zhang et al., 2019).

Here, we provide the following contributions:

• We evaluate, for the first time, the relationship
between uncertainty and explanation plausi-
bility given perturbed and unperturbed data;

• We assess on a large-scale how the de-
gree of artificial noise at inference time af-
fects model performance, confidence and
explanation plausibility across a variety of

transformer-based language models, degrees
of perturbation, and methods of perturbation;

• We compare four popular XAI methods in
their robustness to noise across noise types
and models at different levels of perturbation.

We find that high uncertainty does not imply
low explanation plausibility; models trained with
noisy data can still generate coherent explanations
despite high uncertainty amid noise. Furthermore,
we argue that explanation instability can give some
insight into model performance and can show pat-
terns in saliency attribution: Common, realistic
perturbations (like synonym replacement) have
smaller effects on model performance and saliency
maps, yet l33t speak and token replacement have
a larger impact. This pattern is seen typically
strongest in Integrated Gradients, which also shows
the greatest robustness for smaller language mod-
els.

2 Related Work

Assessing trustworthiness There are many ways
to assess a model’s trustworthiness for a task or in-
ference. The confidence in an output can be quanti-
fied via its uncertainty, and the reasonability of an
output can be assessed via XAI. Furthermore, the
overall quality of an XAI method can be evaluated,
either via the similarity to human annotations or
via other metrics like robustness to noise or con-
ciseness (Hedström et al., 2023; Chen et al., 2022;
Atanasova et al., 2020). There is some controversy
within these measures: Models that output expla-
nations with high similarity to human-annotations
may result in unfaithful explanations, as models
may not actually rely on this information to com-
pute their output (Jin et al., 2023). Moreover, these
explanations can also be unstable and prone to
large changes in output given small changes in
input data (Adebayo et al., 2018; Alvarez-Melis
and Jaakkola, 2018; Lakkaraju and Bastani, 2020;
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Hedström et al., 2023; Chen et al., 2022). How-
ever, these (often image) studies do not investigate
the causes of the instabilities or how they relate to
other measures, like uncertainty.

Noise on language model performance Several
other studies have looked specifically at the effect
of noise on the performance and confidence of
BERT-related models. Surprisingly, there are con-
trasting effects of noise on machine and human abil-
ity to perform natural language understanding tasks.
Perturbations that do not affect a human’s ability
to understand text significantly perturb BERT per-
formance (Jin et al., 2019; Wang et al., 2022), yet
perturbations that worsen human performance do
not affect model performance (Feng et al., 2018;
Gupta et al., 2021; Sinha et al., 2021). The im-
pact of different kinds of noise differs across model
types (Moradi and Samwald, 2021), and the more
“learnable” a kind of noise is for a model, the less
performance decays given noise-augmented data
(Zhang et al., 2022b). However, as these studies fo-
cus on BERT-related models, there is limited focus
on other model types, like GPT, and they also do
not evaluate explanations.

Uncertainty measures The ‘learnability’ of a
trait or type of noise can be likened to epistemic
uncertainty, which is a measure of uncertainty in
a model’s parameters. This is believed to be mal-
leable given more training time and data (Gal and
Ghahramani, 2015). In contrast, aleatoric uncer-
tainty stems from noise inherent in the data genera-
tion process (Kendall and Gal, 2016). Many stud-
ies conflate the two forms of uncertainty by only
looking at the softmax of the output logits as a mea-
sure of confidence (hereon named predictive un-
certainty). However, these measures can be prone
to over-confidence. For example, when provided
highly perturbed data, model confidence increases,
even with the addition of calibration methods (Feng
et al., 2018; Gupta et al., 2021). As these studies
use the conflated measure of predictive uncertainty,
it is difficult to ascertain the cause of this confi-
dence increase. Therefore, we include epistemic
uncertainty as a measure in our study.

Uncertainty and XAI Other works in the inter-
section of uncertainty and XAI quantify the uncer-
tainty of a given explanation, by developing new
models (Bykov et al., 2020) or looking at ensemble
explanations (Chai, 2018; Slack et al., 2020; Marx
et al., 2023), or they attempt to explain the causes

Dataset Task Size
SemEval 2013
Task 2

Sentiment
Classification

Training: 4133
Annotated Test: 1659

SST-2 +
Hummingbird

Sentiment
Classification

Training: 67349
Annotated Test: 62

HateXplain Hatespeech
Detection

Training: 15383
Annotated Test: 1142

Table 2: Our training and test datasets. We restrict
our test datapoints to those including human-annotated
explanations (‘Annotated Test’).

of a model’s uncertainty (Brown and Talbert, 2022;
Watson et al., 2023). In Marx et al. (2023), they
find that the size of the dataset is inversely propor-
tional to the uncertainty of the explanations, which
suggests that, with increased training data, XAI
techniques tend to converge; therefore, epistemic
uncertainty may affect XAI explanations. However,
these methods do not look at existing links between
XAI and uncertainty and look mainly at image and
synthetic datasets.

In summary, most studies investigating noise on
model output look only at small levels of perturba-
tion and focus on a small subset of language mod-
els. Furthermore, they conflate different sources
of uncertainty in their investigation and do not as-
sess their link to saliency attribution. In our paper,
we investigate the effect of different scales of per-
turbations on a range of popular language models,
including GPT2 and OPT. In addition, to avoid
conflating sources of uncertainty, we use multiple
measures of uncertainty to assess the relationship
between model instability and saliency attribution.

3 Methods

3.1 Datasets
We limit relevant tasks and datasets for this in-
vestigation to publicly available English datasets.
We select simple, popular text classification tasks
with text that has been annotated for importance
at word-level granularity by multiple (2+) an-
notators. We summarize the datasets in Table
2. Within sentiment classification, we have two
datasets: Hummingbird (Hayati et al., 2021) and
the Semeval-2013 Task 2 dataset (Nakov et al.,
2013). Hummingbird is a re-annotated subset
of several datasets, including the SST-2 dataset
(Socher et al., 2013). We restrict the Humming-
bird Sentiment test dataset to only datapoints origi-
nating from the SST-2 validation set and train on
the SST-2 train dataset. We remove neutral data-
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points from SemEval-2013 dataset and HateXplain
(Mathew et al., 2020) to avoid issues of the suffi-
ciency of highlighted text as explanations (Wiegr-
effe and Marasović, 2021).

3.2 Models
We test the performance of five different
open-source large pre-trained language models:
BERTbase (Devlin et al., 2018), RoBERTabase (Liu
et al., 2019), ELECTRA (Clark et al., 2020), GPT-
2medium (Radford et al., 2019), and OPT-350M
(Zhang et al., 2022a), chosen due to their variety in
pretraining and their popularity. We describe their
finetuning in Appendix A.

3.3 Perturbations
At test time, we introduce varying levels, hi-
erarchies, and types of perturbations to sim-
ulate epistemic uncertainty. A singular type
of perturbation is applied to space-delimited
words following different hierarchies for increas-
ing levels, or proportions, of the text (α ∈
{0, .05, .10, .25, .50, .70, .80, .90, .95}); more de-
tails are in Appendix B.1.

We use three hierarchies of preferential pertur-
bation: random, human, and gradient. Random-
hierarchy is determined randomly, though the pat-
tern of perturbed words is preserved across increas-
ing levels of perturbation. Human-hierarchy is
determined by the word-level annotations of the
dataset. Non-annotated words are then ranked via
their part-of-speech tag. We assess the efficacy
of this perturbation approach in Appendix D.1.
Gradient-hierarchy is calculated specific to each
model as it is ranked by words with the greatest
average change according to the Hotflip candidates
table (Ebrahimi et al., 2018). When combining
tokens to create full words, we take the mean of
token gradients. This was determined after taking
a subsample of the datapoints and choosing the ag-
gregation method giving the lowest mean ranking
to NLTK stopwords.

We introduce seven different noise types to the
datapoints (see Table 1), selected from previous
work in text perturbation: At a fine-grained level,
we introduce a random character into a random sec-
tion of the word (charinsert), randomly replace
a character in a word (charswap) or replace a ran-
dom character with a character nearby on a qwerty
keyboard (butterfingers). These insertions have
been implemented in other studies on adversarial
perturbation in text (Zhang et al., 2022b; Moradi

and Samwald, 2021). At the word level, we re-
place words with tokens, such as MASK, as done in
perturbation-based studies (Madsen et al., 2021).
We also compare MASK replacement with UNK to-
kens replacement. We convert the entire word to
l33t speak (l33t) (Eger et al., 2019; Zhang et al.,
2022b), and swap the word with a semantically re-
lated word (synonym) using publicly available cor-
pora (Pavlick et al., 2015; Fellbaum, 1998; Loper
and Bird, 2002), manually-made dictionaries (e.g.,
for public Twitter IDs) or randomly generated re-
placements (e.g., for URLs). Not all words have
valid synonyms; therefore, we are only able to per-
turb about 16.2% of words in the Hummingbird
dataset and 18.4% of the SemEval dataset. These
mainly consist of rare or slang words, and non-
parseable hashtags or misspellings in the case of
the SemEval dataset. Our precise rules for syn-
onym replacement can be found in Appendix B.2.

3.4 Explanation techniques

We focus on local gradient-based explanations,
which use backpropagation to compute a saliency
heatmap over input features for a specific datapoint
to audit a model’s decision. These explanations
have been shown to perform best across many met-
rics, models, and tasks (Atanasova et al., 2020),
and, compared to perturbation-based techniques,
like LIME, which approximate model performance,
are model-centric and should give a more faithful
representation of the instability within the model,
rather than the technique (Zhang et al., 2019). The
simplest implementation uses the gradient of the
input as the saliency score (Simonyan et al., 2013);
however, this can be very noisy (Smilkov et al.,
2017). Therefore, we rely on modified versions:
SmoothGrad (SG) returns the average saliency
map obtained by perturbing the original input with
Gaussian noise (Smilkov et al., 2017). Guided
Backpropogation (GBP) uses a different computa-
tion of gradients (by ignoring all negative values)
to visually improve its saliency maps (Springen-
berg et al., 2014). InputXGradients (IXG) con-
siders both the importance of the feature and the
strength of the expressed dimension (Shrikumar
et al., 2016). IntegratedGradients (IG) accumu-
lates the gradients between an input of interest and
a neutral baseline (Sundararajan et al., 2017). We
use the Captum implementations (Kokhlikyan et al.,
2019).
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Figure 1: The effect of increasing text perturbation (averaged across perturbation type) on RoBERTa performance
and uncertainty across three different hierarchies: (1) Random; (2) Human, following human annotation and POS
tags; and (3) Gradient, following ranking of Hotflip gradients. Dotted lines show the value at α = 0.0.

3.5 Evaluation design

Throughout our investigations, we use the follow-
ing metrics: To measure model performance, we
use accuracy. To measure uncertainty, we use two
measures: Following similar perturbation studies,
we include predictive uncertainty, the conflated,
popular measure of uncertainty, measured via the
entropy of the softmax logits (to reduce overconfi-
dence (Pearce et al., 2021)). We define epistemic
uncertainty, the uncertainty in the model’s parame-
ters, using MC Dropout entropy, following Kendall
and Gal (2016). We define explanation robust-
ness as the average Pearson correlation between
saliency mapα = .05 and saliency mapα = .00. We
also define explanation plausibility as the Mean
Average Precision (MAP) of model gradients to the
human annotations. There are many metrics to eval-
uate explanation quality, and each with pitfalls (Ju
et al., 2022); we chose this one for its applicability
for human-XAI collaboration and evaluation. We
first evaluate its suitability by assessing the change
in model performance and confidence between the
perturbation of human- and gradient-ranked salient
tokens. For all saliency map comparisons, we com-
bine all gradients back to word level.

We first look at general trends in performance,
uncertainty, and explanation plausibility with in-
creasing perturbation across models and datasets.
As a Kolmogorov–Smirnov test of the plausibil-
ity and uncertainty measures violates the assump-
tion of normality (p < 10−5), we use Spearman’s
Rank Correlation (SciPy v1.11.4) to find the corre-
lation between the explanation plausibility and un-
certainty measures at a datapoint level for correctly-
predicted datapoints. We then compare the robust-
ness of the saliency maps across model, dataset,
and perturbation type.

4 Results

We present the motivation and results of each in-
vestigation. We show the results for SST-2 but
summarize and interpret the results for all investi-
gated datasets; the data for all datasets are in the
Appendix.

4.1 Noise on uncertainty and explanations

The effect of perturbation hierarchy To en-
sure the faithfulness of using human annotations
as ground-truth for salient tokens (Ju et al., 2022),
we showcase the impact of different hierarchies
of perturbation (as described in §3.3) on model
performance, uncertainty and explanations in Fig-
ure 1 and Appendix C.1. All perturbations impair
model performance, uncertainty, and explanation
plausibility, but human-hierarchical perturbation
has the greatest impact up to very high levels of
perturbation across all tasks, suggesting that these
human-salient tokens are vital signals for the mod-
els. While random and gradient-based perturbation
generally have similar impacts on task performance,
uncertainty and explanation plausibility, gradient-
based perturbation strategies have a stronger im-
pact on these metrics at low levels of perturbation
(α = .05), which lessens with slightly more pertur-
bation (α = .1), and suggests that gradient-based
perturbation techniques have their greatest efficacy
at low levels of perturbation.

The effect of perturbation type To assess the
impact of our various perturbation types, we show
the effect of the investigated noise types (see Table
1) in Figure 2. Though all perturbation types ad-
versely impact task performance and explanation
plausibility, this effect is typically smaller for more
‘realistic’ perturbations, especially synonym and
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Figure 2: The effect of increasing text perturbation on BERT accuracy, uncertainty and explanation plausibility
across the different types of perturbation, averaged across perturbation hierarchy. Dotted lines show α = 0.0.

butterfingers. Across datasets and models, we
typically see that special token replacements have
the greatest detrimental effect (particularly MASK).
This trend can be seen across models and datasets,
as shown in Appendix C.2. Typically, we see an
inverse relationship between task performance and
uncertainty for all perturbation types; In Figure 2,
a steep decrease in performance from l33t pertur-
bation comes with little to no increase in either
uncertainty measure. Furthermore, while we do
often see a trend for uncertainty to increase with
increased perturbation, it is not at the same rate of
performance decline, mimicking over-confidence
issues reported in other studies (Feng et al., 2018;
Gupta et al., 2021; Pearce et al., 2021). As we show
in Appendix C.2, this is especially pronounced with
RoBERTa.

4.2 The relationship between uncertainty and
explanation plausibility

While we see a general increase in uncertainty and
a decrease in explanation quality with perturba-
tion, we want to investigate at a data point level
if greater uncertainty of a model output implies
lower plausibility across explanation techniques.
Therefore, we assess the correlation between un-
certainty and explanation plausibility across all
datasets, saliency maps, and models in Table 3. We
see similar patterns in correlation between all attri-
bution methods and before and after perturbation
with some exceptions: SmoothGrad (SG) typically
shows much weaker correlation after perturbation,
whereas Guided Backpropagation (GBP) and Inte-
grated Gradients (IG) show the strongest. While
we would expect increased uncertainty to imply
decreased explanation plausibility, this is not al-

ways the case; While SST-2 shows a low negative
correlation between epistemic uncertainty and ex-
planation plausibility after perturbation, this is not
the case for SemEval and HateXplain, which has
a low-to-moderate positive correlation that exists
before and after perturbation. Therefore, greater
uncertainty of an output does not necessarily imply
a degradation in explanation quality.

4.3 Robustness across perturbation type

To investigate how noise introduces instability in
explanation maps, we assess how saliency maps
are impacted by our perturbations. We show the
robustness values across each model in Figure 3
and see distinct patterns that are shared across most
saliency maps. For example, Integrated Gradients
(IG), InputXGrad (IXG), and Guided Backpropa-
gation (GBP) all show reduced robustness to l33t
perturbations and increased robustness to synonym
at low-levels of perturbation. This aligns with the
differences we see in task performance in Figure
2. We also see different patterns emerge across
different models; RoBERTa has general lower ro-
bustness to UNK tokens, and ELECTRA to MASK. IG
shows the greatest overall robustness for the mod-
els BERT, RoBERTa, and ELECTRA, but Smooth-
Grad (SG) has greater robustness for GPT2 and
OPT. GBP, which typically has low robustness for
all other models, shows the greatest robustness for
OPT. These patterns are preserved across datasets
(See Appendix C.3), where perturbations to which
we find decreased robustness typically also further
deteriorate model performance. Furthermore, on
datasets with lower performance (HateXplain), we
also see decreased overall robustness.
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Before Perturbation Including Perturbed Text
Predictive uncertainty Epistemic uncertainty Predictive uncertainty Epistemic uncertainty

dataset model GBP IXG IG SG GBP IXG IG SG GBP IXG IG SG GBP IXG IG SG

SST-2

BERT 0.076 0.068 -0.128 -0.155 -0.052 -0.060 0.041 0.039 -0.104 -0.099 -0.069 -0.069 -0.240 -0.228 -0.248 -0.219

ELECTRA 0.040 0.002 -0.050 -0.089 -0.127 -0.065 -0.050 -0.058 -0.096 -0.096 -0.043 -0.050 -0.383 -0.380 -0.164 -0.175

RoBERTa 0.088 0.048 0.030 -0.000 -0.367 -0.330 -0.174 -0.200 -0.124 -0.101 -0.084 -0.069 -0.357 -0.324 -0.267 -0.246

GPT2 0.078 -0.033 0.124 -0.014 -0.150 -0.237 -0.036 -0.088 -0.092 -0.068 -0.013 -0.004 -0.232 -0.241 -0.094 -0.068

OPT -0.205 -0.205 -0.030 -0.030 -0.159 -0.159 -0.099 -0.099 -0.152 -0.152 -0.130 -0.130 -0.219 -0.219 -0.109 -0.109

SemEval

BERT 0.237 0.248 0.238 0.249 0.235 0.247 0.234 0.247 0.149 0.165 0.150 0.165 0.151 0.166 0.148 0.164

ELECTRA 0.200 0.232 0.199 0.232 0.201 0.233 0.199 0.231 0.162 0.169 0.162 0.169 0.163 0.171 0.162 0.170

RoBERTa 0.213 0.234 0.212 0.234 0.215 0.235 0.213 0.235 0.149 0.155 0.148 0.154 0.149 0.155 0.147 0.153

GPT2 0.220 0.181 0.218 0.182 0.221 0.184 0.219 0.181 0.127 0.120 0.127 0.121 0.128 0.122 0.127 0.120

OPT 0.224 0.224 0.226 0.226 0.230 0.230 0.224 0.224 0.164 0.164 0.165 0.165 0.167 0.167 0.164 0.164

HateXplain

BERT 0.268 0.270 0.265 0.262 0.211 0.229 0.263 0.267 0.293 0.178 0.297 0.181 0.243 0.139 0.259 0.148

ELECTRA 0.565 0.458 0.573 0.464 0.539 0.430 0.568 0.462 0.444 0.240 0.452 0.247 0.425 0.221 0.448 0.244

RoBERTa 0.529 0.434 0.517 0.424 0.502 0.407 0.503 0.408 0.396 0.218 0.390 0.213 0.371 0.195 0.379 0.201

GPT2 0.393 0.278 0.386 0.278 0.380 0.270 0.399 0.284 0.300 0.106 0.298 0.105 0.291 0.097 0.304 0.110

OPT 0.459 0.459 0.428 0.428 0.432 0.432 0.456 0.456 0.408 0.408 0.391 0.391 0.382 0.382 0.410 0.410

Table 3: The Spearman Rank Correlation between explanation plausibility and both measures of uncertainty across
model, dataset, and saliency technique. We bold the strongest correlation for each comparison.

In summary While perturbation decreases
model performance and explanation plausibility,
it has a task and perturbation-dependent effect
on uncertainty. Furthermore, high uncertainty of
an output does not necessarily imply low expla-
nation plausibility, as we find a moderate posi-
tive correlation between the measures on some
datasets. Where uncertainty measures fail to align
with model accuracy on some perturbation patterns,
saliency map robustness can provide additional in-
dication of model performance patterns; Integrated
Gradients typically shows the greatest robustness
to all types of noise; however, we can see model-
specific patterns in susceptibility to adversarial per-
turbation.

5 Discussion

In this section, we discuss the causes behind pat-
terns seen across the experiments in §4, which are
further supplemented with extra analyses in our
Appendix. We investigate over-arching patterns
as well as patterns across perturbation types and
datasets.

Overarching patterns While noise consistently
deteriorates model performance and explanation
plausibility, the impact of increasing noise on
model confidence varies across model and task.
Unlike previous studies, we do not typically see
an increase in confidence after perturbation (Feng
et al., 2018; Gupta et al., 2021); though the ob-
served decrease is not at the same rate of perfor-
mance decline. However, both cited studies perturb

at the word and sentence structure level, unlike
our study. Furthermore, we see a similar pattern
between the predictive and epistemic uncertainty
measures, suggesting that over-confidence after per-
turbation stems from the training process. Overall,
human-based perturbations have the strongest ef-
fect on task performance and uncertainty measures,
and gradient-based perturbation is only more effec-
tive than random perturbation at low levels of noise
(α = .05). This suggests that the human-generated
annotations of each dataset are faithful indicators of
true saliency, as their perturbation degrades model
performance more than gradient-based approaches,
further justifying our use of plausibility as a quality
metric.

Perturbation-level patterns Across all models,
realistic perturbations, such as butterfingers or
synonym have the smallest impact on task perfor-
mance and explanation plausibility, yet masking
has the greatest impact. Furthermore, MASK has the
greatest effect on both measures of uncertainty. We
expect that the embedding layer of the PLMs is
better equipped to handle synonym-level perturba-
tions, allowing the hidden representations of the
input to change minimally, so that model perfor-
mance and explanations are minimally impacted.
Furthermore, we explore model-level differences
in Appendix C.2 and C.3 and find that the perturba-
tions that have the maximal impact on model per-
formance (e.g. MASK for ELECTRA in SemEval)
also uniquely impact saliency maps at low levels
of perturbation. This suggests that the instability
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Figure 3: Model-level differences of the correlation to the unperturbed saliency map at low levels of perturbation.
We separately show the effect on BERT, RoBERTa, ELECTRA, GPT2 and OPT.

we see in explanations can provide some signal to
model performance in the absence of labels. While
SmoothGrad shows good all-around robustness to
noise due to its regularization, it does not show
specific patterns in model instability. In contrast,
Integrated Gradients has relatively high robustness
for smaller language models at low levels of per-
turbation and shows increased robustness to pertur-
bations that minimally impact model performance
(synonym and butterfinger). While lack of ro-
bustness is typically viewed as a deficiency of an
XAI technique (Hedström et al., 2023), we believe
it can also be a signal of model instability: Epis-
temic uncertainty approximation measures work to
perturb the model decision boundary to obtain a
datapoint’s likelihood of class correspondence as
an indicator of uncertainty. In contrast, perturba-
tion, by introducing stochasticity in an input (much
like SmoothGrad), also suggests the proximity of a
datapoint to the decision boundary. In cases where
popular uncertainty measures are prone to over-
confidence, a lack of robustness may give some
indication of uncertainty for a particular data point.

Dataset-level patterns The relationship between
uncertainty and explanation plausibility after per-
turbation varies across datasets. For HateXplain,
UNK and l33t surprisingly reduce uncertainty (see
Appendix C.2); this could explain the positive cor-
relation between uncertainty and explanation plau-
sibility for the dataset, as highly perturbed exam-
ples will show lower plausibility, yet lower un-
certainty. The dataset is compiled from Twitter,
and character substitutions may hide potentially
offensive terms. While we do not see a signifi-
cant class difference regarding the proportion of
words containing letters and numbers (0:0.695%,
1:0.975%, 2:0.912%), at manual inspection, we
find examples of l33t-like speak in Classes 0 and 2
(e.g. ‘h0e’) that we do not find in the neutral class

(e.g. ‘WW2’). The existence of these examples
in the training data may have made the noise an
indicator of a class, owing to the high “learnability”
of this perturbation (Zhang et al., 2022b), creating
the positive correlation between uncertainty, output
quality and explanation plausibility.
In Appendix D.2, we investigate if particular pertur-
bation types are salient and find that saliency is not
attributed to l33t noise, suggesting it is not a class
indicator. Furthermore, we also see a weaker, pos-
itive relationship with the Twitter-based SemEval
dataset. Therefore, though one would expect to
see an inverse relationship between uncertainty and
explanation plausibility, we only see this behaviour
with the SST-2 dataset; we posit that models trained
with noisy data instead show a positive relation-
ship between uncertainty and explanation plausi-
bility. When these models express greater uncer-
tainty, they are more precise at identifying salient
tokens, adding to other reported performance im-
provements after training models with noisy data
(Yu et al., 2024). We show in Appendix D.4 that, at
very high perturbation, the strength of this relation-
ship weakens (due to lack of meaningful tokens),
but can remain weakly positive for simple tasks.

In summary The results suggest that the effect
of perturbation on language models must be con-
sidered holistically across noise type and training
data; realistic perturbations, like synonyms and
mispellings, which are expected to be more preva-
lent in social media, have a smaller impact on per-
formance, uncertainty, and explanations. While un-
certainty is not always a faithful indicator of local
instability, weakened robustness to perturbations
can provide additional information for model per-
formance. Furthermore, as high uncertainty does
not necessarily imply low explanation plausibility
with noisy datasets, noise-augmented training may
not only help model performance in out-of-domain
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tasks, but may also help ensure coherent explana-
tions in low-confidence domains. Further research
is required to devise a metric to estimate explana-
tion quality at a datapoint-level, as current uncer-
tainty measures are not reflective of explanation
quality. For future work, we recommend the use
of Integrated Gradients for smaller language mod-
els as it gives a more holistic depiction of model
performance in adversarial conditions; however, as
models scale in size, other gradient-based explana-
tion techniques are more robust.

6 Conclusion

We provide an empirical investigation across lan-
guage models, noise perturbations, and saliency
maps to investigate a relationship between uncer-
tainty and explanation plausibility. Following an
array of perturbation techniques, we show that
noise injection simultaneously affects model per-
formance, uncertainty, and explanation plausibil-
ity. We do not find a strong negative relationship
between uncertainty and explanation plausibility;
model fine-tuned with noisy data typically show
a moderately positive correlation between plausi-
bility and uncertainty, which suggests that these
models may even be better at identifying salient
tokens when uncertain. We also show that the insta-
bility of a saliency map to noise can also provide
insights into a model’s performance, and suggest
Integrated Gradients for future work in Human-
XAI collaboration, due to its robustness to noise
for smaller language models.

Limitations

We do not investigate aleatoric uncertainty in this
study, as our experimental setup intended to sim-
ulate epistemic uncertainty by introducing noise
not present in the training data. However, we
do assess across different dataset sources, with
differing levels of latent noise in the data, and,
therefore, differing aleatoric uncertainty, and find
highly correlated results for a shared task. Fu-
ture work should consider further disambiguating
aleatoric uncertainty in their comparisons. In ad-
dition, given our investigation into epistemic un-
certainty, it could be interesting to assess how the
observed robustness changes in models fine-tuned
with noise-augmented training data. Future stud-
ies could consider simulating uncertainty in other
methods, perhaps at other points of the experimen-
tal pipeline.

Though we do compare many popular language
models, more model types would have made an
interesting comparison. Models with visual encod-
ing, for example PIXEL (Rust et al., 2023), may
handle different types of noise differently; visual
perturbations, like l33t speak, may show a lesser
effect on PIXEL model performance and confi-
dence, whereas semantic changes, like synonym
replacement, may have a larger effect. However,
given the format of our study, the saliency maps
would be difficult to compare across all model
types. It would also have been interesting to ex-
plore larger language models (> 1B parameters),
like LLAMA (Touvron et al., 2023); however, our
focus on gradient-based explanations makes such
an investigation very computationally expensive.
Furthermore, our requirement for human annota-
tions limited the possible number of datasets for
investigation; however, our pilot studies on other
popular NLP tasks found very similar results to
those reported in this study.
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A Model training specifications

The pre-trained models are connected to a classi-
fication head and fine-tuned on the datasets listed
in Table 2 using either previously reported optimal
hyperparameters or with hyperparameters we iden-
tified by exploring the search space with raytuning
(Liaw et al., 2018). We use pre-trained tokeniz-
ers specific to each model. For BERT, we rely on
BERTbase„ which is 110 million parameters. We
use RoBERTabase, which is 125 million parameters.
ELECTRA is 110 million parameters. We rely
on GPT2medium, which is 345 million parameters,
and OPT-350M, which is 350 million parameters.
BERT, RoBERTa, and ELECTRA are trained and

assessed on Titan RTX GPUs; GPT2 and OPT are
trained and assessed on A100 GPUs.

A.1 SST-2

Our BERT model uses the hyperparameters re-
ported by the best-performing BERT-base model on
the SST-2 task, which achieves 92.3% accuracy on
the evaluation set1. While we cannot find hyperpa-
rameters reaching the performance described in the
original RoBERTa-base (94.8%) article (Liu et al.,
2019), we choose the hyperparameters specified by
this model card 2, which achieves an accuracy of
94.5% on the evaluation set. Our ELECTRA model
uses the best-performing hyperparameters listed
in the original article (Clark et al., 2020), which
achieves an accuracy of 96.0% on the evaluation
set. Our GPT2 model uses the hyperparameters
listed in the original article (Radford et al., 2019)
and achieves an accuracy of 92% on the evalua-
tion set. For OPT, we used the hyperparameters
specified by the huggingface model card3, which
achieved an accuracy of 91% on the evaluation set.

A.2 SemEval, HateXplain

Model hyperparameters are identified using a hy-
perparameter search space with a learning rate be-
tween 1e− 6 and 1e− 4, epochs between 1 and 10,
and a batch size of (4, 8, 16, 32).

Our final hyperparameters for SemEval, and Ha-
teXplain are shown in Tables 4 and 5.

B Perturbation specifications

B.1 Proportion replaced

When perturbing a text by α α indicates the pro-
portion of the text that is modified by a perturba-
tion type. Texts are never fully perturbed, so, if
α = 0.95, and the length of the text (Ntokens) is
fewer than 20 tokens, at least one token is left un-
modified. For very short texts, as seen in SST-2, the
data point is left unmodified until α×Ntokens ≥ 1.
Effects of perturbation level are only assessed at
an aggregated level to visualize the rate of metric
change with increasing perturbation.

1https://huggingface.co/gchhablani/bert-base-cased-
finetuned-sst2

2https://huggingface.co/Bhumika/RoBERTa-base-
finetuned-sst2

3https://huggingface.co/tianyisun/opt-350m-finetuned-
sst2
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SemEval
model BERT RoBERTa ELECTRA GPT2 OPT
Learning rate 1e-5 1e-5 3e-6 8e-5 7e-6

Batch size 16 16 8 32 32

Epochs 3 3 5 7 1

Random seed 37 37 24 42 42

Adam ϵ 1e-8 1e-8 1e-8 1e-8 1e-8

Adam β 1 0.9 0.9 0.9 0.9 0.9

Adam β 2 0.999 0.999 0.999 0.999 0.999

LLRD None None None None None

Decay type Linear Linear Linear Cosine Cosine

Warmup
Fraction

0 0 0 0.01 0.01

Attention
Dropout

0.1 0.1 0.1 0.1 0.1

Dropout 0.1 0.1 0.1 0.1 0.1

Weight Decay 0 0 0 0.1 0.1

Test Accuracy 92% 94% 91% 91% 91%

Table 4: Final hyperparameters for all investigated mod-
els on the SemEval dataset

B.2 Synonym replacement

Across all synonym replacements, we preserve the
case of the original word (e.g. HAPPY! becomes
GLAD!). In addition, we use NLTK POS tagger to
tag each word to a part of speech for more precise
synonym mapping. If NLTK is unable to find a part
of speech, or it must be dropped when merging
multiple tokens (e.g. if one token is not a punc-
tuation mark or a possession-indicator), then we
ignore part of speech.

We followed the following hierarchical rules for
synonym replacement:

1. Tokens beginning with http://t.co/
or https://t.co/ are replaced with a similar
randomly-generated URL string following a similar
regex pattern

2. Tokens beginning with a #, we remove the #,
find a synonym, and then re-add the #.

3. Tokens beginning with a @ are replaced with
another random Twitter ID found in the test set.

4. Determinants are re-
placed another random determinant
(['a', 'an', 'the', 'this', 'that']).
Similarly question determinants are re-
placed with other question determinants.
(['that', 'what', 'whatever', 'which',
'whichever'])

5. Proper nouns are replaced with a randomly
generated first name or last name. If the original
name ends with a "’s", this is removed and then

HateXplain
model BERT RoBERTa ELECTRA GPT2 OPT
Learning rate 2e-5 6e-6 2e-5 5e-5 9e-6

Batch size 32 32 8 32 8

Epochs 5 5 2 6 1

Random seed 2 2 6 42 42

Adam ϵ 1e-8 1e-8 1e-8 1e-8 1e-8

Adam β 1 0.9 0.9 0.9 0.9 0.9

Adam β 2 0.999 0.999 0.999 0.999 0.999

LLRD None None None None None

Decay type Linear Linear Linear Cosine Cosine

Warmup
Fraction

0 0 0 0.01 0.01

Attention
Dropout

0.1 0.1 0.1 0.1 0.1

Dropout 0.1 0.1 0.1 0.1 0.1

Weight Decay 0 0 0 0.1 0.1

Test Accuracy 68% 69% 70% 66% 69%

Table 5: Final hyperparameters for all investigated mod-
els on the HateXplain dataset

re-added to the synonym.
6. If the word is a quote

[ "'", "''", "`", "``", '"'], bracket
["(", ")", "{", "}", "[", "]", '/'],
punctuation mark [ '.', '!', '?', ','], or
sentence break ['-', '--', ',', ':', ';'], it
is replaced by another quote, bracket, punctuation
mark or sentence break.

7. If the word is an arabic number (e.g. 7), it is
replaced by its english equivalent (e.g. seven).

8. If a word has a synonym in WordNet or a
word with an Equivalence relation in PPDB 2.0,
we randomly select a synonym from the set. If a
synonym is longer than one word, the words are
hyphenated (This is done to simplify matching of
saliency maps between perturbations).

9. If the word starts or ends with a quote, bracket,
punctuation mark or line break, we remove the char-
acter, find a synonym and then re-add the character
in question.

10. If there are hyphens, periods or ’//’ spaced
throughout the word, we use the punctuation mark
to parse the word and find a replacement word for
one of the word subsections.

11. If a word has a forward or reverse entail-
ment in PPDB 2.0, we randomly choose one as a
replacement. (e.g. berry for fruit or fruit for berry).

12. If no synonym has been found with using
POS tags, I will expand my search in WordNet and
PPDB 2.0 without the POS tag.
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13. If the word ends with the popular suffixes
’-ish’, ’-ness’, or ’-less’, we remove the suffix, find
a synonym, and then re-add the suffix in question.

C Model and dataset-level differences

While the results for BERT and SST-2 are visual-
ized in the article, we provide the results for all
investigated models and datasets below.

C.1 The effect of perturbation hierarchy on
uncertainty and explanations

We show the results of our investigations into
the effect of perturbation hierarchies (see §4.1)
across our investigated datasets in Figure 4. Re-
sults: Across all 4 datasets, we find that human-
hierarchied perturbation has the strongest impact
on task performance, uncertainty, and explanation
plausibility. Furthermore, we can see that, while
gradient and random-hierarchical perturbation has
typically quite similar impact, the difference is
greatest at low (α = .05) levels of perturbation,
and begins to diminish at higher levels (α = .1).
Interestingly, we see high levels of perturbation
have a parabolic relationship with uncertainty in
the HateXplain dataset.

C.2 The effect of perturbation type on model
output

We show the results of our investigations into
the differential effect of perturbation types (see
§4.1) across our datasets and models. We present
the effect of perturbations across models on
accuracy and predictive and epistemic uncertainty
for the SST-2 dataset in Figure 5, and the effect
of perturbations on explanation plausibility in
Figure 6. Similarly, we provide model-specific
graphs for the SemEval dataset in Figures 7 and
8, and the HateXplain dataset in Figures 9 and
10. Results: We typically see a steep decrease
in accuracy with increasing perturbation across
all perturbations, models, datasets. Typically, we
also see an increase in predictive and epistemic
uncertainty; though, we see some exceptions
with the HateXplain datasets, and this increase
does not always correspond to the performance
decrease. We generally see a decreasing trend in
explanation plausibility with increasing perturba-
tion, but this relationship is not as strong as the
other observed metrics. Typically, this decrease
is steepest with Integrated Gradients and all
BERT explanations. Interestingly, we do not see

SmoothGrad explanation plausibility change with
perturbation with OPT and GPT2, which is related
to the robustness of the combination as we see in
Appendix C.3 and the poor initial plausibility score.

Across all datasets, we find similar be-
haviour between special token replacements
(token-unk and token-mask) as well as between
character-level changes (charswap, charinsert,
butterfingers). synonym and butterfingers
typically have the smallest effect on all measures.
Interestingly, l33t has a very task-dependent ef-
fect: For SemEval, it has a moderate effect on all
model outputs. In HateXplain, it has a very strong
negative effect on model performance and explana-
tion plausibility, yet decreases model uncertainty.
Generally, we see increasing uncertainty with in-
creasing levels of perturbation for all models and
noise types as well as decreasing accuracy. Typi-
cally, perturbations decrease accuracy at a similar
rate as they increase uncertainty, except in the case
of l33t, UNK, and MASK. With SST-2, l33t, UNK,
and MASK perturbations most impact all models’
accuracy, yet we do not see this reflected in the un-
certainty curves. Similarly, for HateXplain, these
perturbations reduce uncertainty for BERT, ELEC-
TRA, RoBERTa, and OPT. Overall, GPT2 outputs
much greater predictive and epistemic uncertainty
relative to the other base models, and RoBERTa
shows only slight increase in uncertainty with in-
creased perturbation, even when accuracy is just
as perturbed as other models (SST-2), suggesting a
tendency for over-confidence.

C.3 Robustness across perturbation types

We look at model-level differences in saliency map
robustness across datasets at low levels of perturba-
tion in Figure 11. We look at robustness at high lev-
els of perturbation in Appendix D.3. Results: Typ-
ically, we see the greatest overall robustness across
all perturbation types for Integrated Gradient. How-
ever, GPT2 and OPT typically has the greatest ro-
bustness with SmoothGrad. Guided backpropoga-
tion is typically very unrobust for all models, save
for OPT, where it shows surprising robustness. For
all models, we see a similar shape on the radar plot
appear by Guided backpropagation, Integrated Gra-
dients and InputXGrad, which is consistent for each
model across datasets. Saliency maps on BERT typ-
ically show decreased robustness to l33t perturba-
tion, and increased robustness to butterfingers
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Figure 4: We show the differential effect of our perturbation hierarchies across the different datasets investigated.
Values are averaged over all 7 perturbation types.
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Figure 5: We show the differential effect of increasing levels of text perturbation on model accuracy and both
measures of uncertainty on the SST-2 dataset. Values are averaged over all hierarchies.
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Figure 6: We show the differential effect of increasing levels of text perturbation on the explanation plausiblity of
all saliency maps SST-2 dataset. Values are averaged over all hierarchies.
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Figure 7: We show the differential effect of increasing levels of text perturbation on model accuracy and both
measures of uncertainty on the SemEval dataset. Values are averaged over all hierarchies.
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Figure 8: We show the differential effect of increasing levels of text perturbation on the explanation plausiblity of
all saliency maps Semeval dataset. Values are averaged over all hierarchies.
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Figure 9: We show the differential effect of increasing levels of text perturbation on model accuracy and both
measures of uncertainty on the HateXplain dataset. Values are averaged over all hierarchies.
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Figure 10: We show the differential effect of increasing levels of text perturbation on the explanation plausiblity of
all saliency maps HateXplain dataset. Values are averaged over all hierarchies.
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and synonym. For RoBERTa and GPT2, we see
a decreased robustness to UNK and l33t perturba-
tions, whereas robustness is lowest to MASK pertur-
bations for ELECTRA. OPT shows consistent poor
robustness to l33t, and relatively low robustness
to UNK and MASK, though the extent of this changes
between tasks.

D Extra investigations

D.1 Human-Random vs Human-Strategic

To assess the efficacy of our human-strategic ap-
proach (and if POS tag-level perturbations affect
model performance), we compare human-random
and human-strategic perturbation in Figure 12, and
denote the average location of a change in strat-
egy with a dotted line. Results: We can see that
POS-hierarchied perturbation does adversely affect
model performance and uncertainty. However, we
find that after all adjectives, adverbs, verbs, and
nouns have been perturbed, further perturbation
does not show any increasing impact on model
performance or uncertainty until the text is nearly
completely perturbed.

D.2 Saliency map correlation to noise

To assess if decreased robustness of a saliency map
technique to a particular perturbation type stems
from attribution of saliency to the perturbed in-
put, we assess the Pearson correlation of the output
saliency map to the perturbed tokens, and visualize
the output across dataset and model in a radar plot
in Figure 13. Results: While we see equivalent
lack of correlation to all types of noise for InputX-
Grad and GuidedBP saliency maps, SmoothGrad
shows differing behaviour according to model type.
For most models, SmoothGrad shows a slight neg-
ative correlation to l33t and UNK tokens; however,
SmoothGrad does not show this particular aver-
sion to UNK with RoBERTa and it does not show
a particular aversion to l33t with GPT2. Further-
more, SmoothGrad applied on ELECTRA shows
a consistent aversion to UNK and l33t tokens. All
correlation values are very low, with a magnitude
under 0.3. This behaviour for SmoothGrad may
stem from its regularization process, and may also
give some indication of model instability or sta-
bility, as these specific perturbations also have a
strong detrimental effect on model performance.
Ultimately, no model and saliency map combina-
tions appear to preferentially attribute saliency to
any type of perturbed tokens/words.

D.3 Saliency map robustness at high levels of
noise

To assess saliency map robustness at high levels
of noise, we present the same investigation per-
formed in §4.3 but with α = .5 in Figure 14. Re-
sults: We see similar patterns as those described in
Appendix C.3, but overall lower robustness. One
exception is SmoothGrad on the larger language
models (GPT2 and OPT) and Guided Backprop-
agation for OPT, which still seem to show high
general robustness. However, though the general
patterns of the saliency mapα = 0.0 is preserved, we
can see in Figures 6, 8, 10, the quality of the origi-
nal saliency maps are typically quite low, in terms
of agreement to human annotations. Similarly to
§4.3, we can see that robustness is typically lower
to l33t and UNK perturbations for BERT and GPT2,
l33t and MASK for ELECTRA, and l33t, MASK and
UNK for OPT.

D.4 Uncertainty and explanation plausibility
at high levels of perturbation

We investigate the correlation between explanation
plausibility and our two uncertainty measures at
very high levels of perturbation (α ∈ {.90, .95})
in Table 6, to assess if the previously observed
relationship breaks down after salient tokens are
removed. In this comparison, we also include in-
correctly guessed datapoints. Results: In SST-2,
which has no noise in its training data, we con-
tinue to observe a moderately negative relationship
between uncertainty and explanation plausibility.
SemEval, which is an easier task than HateXplain,
seems to conserve a very weak positive relation-
ship between uncertainty and explanation plausibil-
ity across models and attribution methods. How-
ever, for HateXplain, this correlation disappears
(ca. 0.0), which suggests that the model can no
longer identify salient tokens.
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Figure 11: We show the robustness across models of our saliency maps at low levels of perturbation across different
tasks

Figure 12: We compare the effect of two different methods of human-based perturbation on model accuracy,
confidence and explanation plausibility. Human-Random randomly perturbs tokens after all annotated tokens are
perturbed. Human-Strategic preferentially perturbs tokens based on their POS. Vertical lines denote the average
location of strategy shift for the Human-Strategic perturbation hierarchy.
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Figure 13: We show the correlation to noise across models of our saliency maps at low levels of perturbation across
different tasks
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Figure 14: We show the robustness of our saliency maps at high levels of perturbation (α = 0.50) across different
tasks
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Predictive Uncertainty Epistemic Uncertainty

Dataset Model GBP IXG IG SG GBP IXG IG SG

SST-2

BERT -0.016 0.020 -0.015 0.092 -0.162 -0.100 -0.089 -0.011

ELECTRA -0.122 -0.114 -0.048 -0.032 -0.308 -0.289 -0.160 -0.151

RoBERTa -0.169 -0.123 -0.153 -0.130 -0.315 -0.254 -0.244 -0.178

GPT2 -0.075 -0.017 -0.070 -0.016 -0.159 -0.100 -0.096 -0.048

OPT -0.013 -0.013 -0.054 -0.054 -0.070 -0.070 -0.020 -0.020

SemEval

BERT 0.088 0.103 0.088 0.103 0.089 0.104 0.087 0.103

ELECTRA 0.103 0.096 0.103 0.096 0.105 0.097 0.104 0.097

RoBERTa 0.106 0.106 0.106 0.106 0.108 0.106 0.104 0.104

GPT2 0.064 0.083 0.065 0.083 0.065 0.085 0.065 0.084

OPT 0.074 0.074 0.073 0.073 0.067 0.067 0.076 0.076

HateXplain

BERT -0.049 -0.078 -0.049 -0.078 -0.040 -0.060 -0.041 -0.064
ELECTRA -0.054 -0.084 -0.061 -0.091 -0.033 -0.059 -0.060 -0.090

RoBERTa -0.021 -0.054 -0.023 -0.055 -0.009 -0.036 -0.020 -0.052
GPT2 0.134 0.090 0.140 0.094 0.126 0.097 0.134 0.092

OPT 0.019 0.019 0.003 0.003 -0.025 -0.025 0.005 0.005

Table 6: The Spearman Rank Correlation between explanation plausibility (MAP) and both measures of uncertainty
across model, dataset and saliency map at high levels of perturbation (α ∈ {0.90, 0.95}) All datapoints (correctly
and incorrected guessed) are included. We bold the saliency map with the strongest correlation for each comparison.
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