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Abstract

Scientific data visualization plays a crucial role
in research by enabling the direct display of
complex information and assisting researchers
in identifying implicit patterns. Despite its
importance, the use of Large Language Mod-
els (LLMs) for scientific data visualization re-
mains rather unexplored. In this study, we
introduce MatPlotAgent, an efficient model-
agnostic LLM agent framework designed to au-
tomate scientific data visualization tasks. Lever-
aging the capabilities of both code LLMs and
multi-modal LLMs, MatPlotAgent consists of
three core modules: query understanding, code
generation with iterative debugging, and a vi-
sual feedback mechanism for error correction.
To address the lack of benchmarks in this
field, we present MatPlotBench, a high-quality
benchmark consisting of 100 human-verified
test cases. Additionally, we introduce a scoring
approach that utilizes GPT-4V for automatic
evaluation. Experimental results demonstrate
that MatPlotAgent can improve the perfor-
mance of various LLMs, including both com-
mercial and open-source models. Furthermore,
the proposed evaluation method shows a strong
correlation with human-annotated scores.'

1 Introduction

A picture is worth a thousand words. Data visual-
ization is an essential process in scientific research,
facilitating a more direct conveyance of complex
information and aiding researchers in uncovering
implicit patterns. There are many advanced toolk-
its, such as Matplotlib?> and Origin®, that can help
researchers plot various types of figures for com-
plex data distributions. However, transforming
raw data into informative and easy-to-understand

* Equal contribution.
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! MatPlotAgent and MatPlotBench are be publicly avail-
able at https://github.com/thunlp/MatPlotAgent.

2https://matplotlib.org
3https ://www.originlab.com

visualizations is still time-consuming and labor-
intensive. Before the invention of large language
models (LLMs) (OpenAl, 2023), automating this
process with Al models is almost impossible.
With large-scale parameters and extensive train-
ing data, LLMs have demonstrated remarkable ca-
pabilities in a wide range of complex tasks, in-
cluding reasoning (Wei et al., 2022; Kojima et al.,
2022a; Yao et al., 2023a), mathematics (Yu et al.,
2024; Luo et al., 2023a; Azerbayev et al., 2024;
Shao et al., 2024) and coding (Roziere et al., 2024;
Luo et al., 2023b; Guo et al., 2024; Wei et al., 2023).
This breakthrough has unlocked new opportunities
for utilizing LLMs as autonomous agents in a di-
verse range of practical scenarios, such as web
browsing (Nakano et al., 2021; Yao et al., 2022;
Qin et al., 2023; Zhou et al., 2023; Deng et al.,
2023; Yao et al., 2023b; Xie et al., 2023), social
simulations (Park et al., 2023; Xu et al., 2023;
Chen et al., 2024a; Wang et al., 2023), tool uti-
lization (Qin et al., 2024; Schick et al., 2023; Liu
et al., 2024; Li et al., 2023a; Lu et al., 2023; Qian
et al., 2023b; Shinn et al., 2023), and software de-
velopment (Qian et al., 2023a). Using LLMs to
enhance human productivity in specialized areas is
now a key research focus with great potential.
Recent advancements in LLM-based agents in-
spire us to explore the utilization of LLMs for
scientific data visualization, a realm that remains
rather unexplored in existing studies. A closely
related line of research is text-to-image genera-
tion (Ramesh et al., 2021; Saharia et al., 2022),
where diffusion models (Rombach et al., 2022)
have shown great potential in generating various
types of images. However, existing text-to-image
generation methods predominantly focus on artistic
expression, potentially misaligning with the needs
of scientific data visualization, where clarity and
precision in conveying information are the most im-
portant principles. This work aims to automatically
generate figures with precise information.
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Country | Red Meat White Meat  Eggs Temperature  Pressure  Temperature Pressure
Albania 101 14 05 27316 611657 210 1
Austria 89 14 43 27315 101325 250 100
Belgium 135 93 41 270 10000000 27316 611657

Time(sec)
0.323139139 27.2643839 | 28.24879002 9.073632995 0.2925 0.0224 0.0288 0.042
0.658706707 87.91011441 16.89604138 22.03673759 0.0195 0.2816 0.0063 0.008
0.994274274 52.92724834  57.24762992 415508988 0.0117 0.0032 0.0279 0.01

Ampltiude(a.u) Samsung Apple Huawei Other

Output Figure |

I have data of protein consumption
in 24 European countries named
data.csv. ... Write a Python code to
visualize this data using a 2D scatter
plot with K-Means clustering into
three distinct color-coded

clusters. ...

Iwant to create a phase diagram of
water using Python. The data is in a
file called data.csv. ... You should add
a grid to make the chart easier to
read, and ensure the pressure scale is
logarithmic, since phase diagrams
often cover a wide range of pressures.

Create a 3D Waterfall plot using the
data.csv file, where the first column
represents time and the subsequent
columns ... Label the axes: 'Time
(sec)' for the x-axis, 'Frequency (Hz)'
for the y-axis, and 'Amplitude (a.u.)'
for the z-axis.

Create a chord diagram titled
"Mobile Phone Brand Switching
Behavior" using Holoviews with
Bokeh backend. The data represents
transitions between Samsung, Apple,
Huawei, and Other Android.

Mobile Phone Brand Switching Behavior

Time (sec)

Figure 1: Examples in the proposed MatPlotBench. Given the raw data and user queries, the Al agent is expected to
generate a figure accordingly. We only display partial raw data and user queries due to space limitations.

We propose leveraging modern code LLMs and
multi-modal LLMs to develop scientific data vi-
sualization agents that can significantly enhance
human efficiency. The resulting MatPlotAgent* is
comprised of three modules: (1) the query under-
standing module that can thoroughly understand
user-provided requirements; (2) the code genera-
tion module with iterative debugging capabilities
that use code to precisely preprocess raw data and
generate figures; and (3) the visual feedback mod-
ule that possesses visual perceptual abilities to find
errors in the plotted draft and provide visual feed-
back to the code generation module to rectify the
errors. Our method is model-agnostic, which can
be driven with any code LLMs and multi-modal
LLMs. Through experiments, we find that Mat-
PlotAgent can work with both closed-source LLMs
(e.g., GPT-4 (OpenAl, 2023)) and open-source
LLMs (e.g., Magicoder (Wei et al., 2023)).

Another critical challenge in the field of auto-
matic scientific data visualization is the absence of
benchmarks for evaluation purposes. To address
this issue, we introduce a meticulously crafted
benchmark called MatPlotBench to quantitatively
evaluate the approaches involved. Specifically,
MatPlotBench contains 100 carefully hand-crafted
test examples, each of which contains a user query,
the corresponding input data, and a ground-truth
figure verified by human experts. We believe that

*This name is in homage to the well-known Matplotlib.

high-quality test sets play a crucial role in driving
advancements in the field.

To facilitate automatic quantitative evaluation,
we also design a scoring mechanism based on GPT-
4V (OpenAl, 2023), which is one of the strongest
multi-modal LLMs that can effectively understand
text and figures. Specifically, GPT-4V is prompted
to produce a score between 0 and 100 based on
the ground-truth figure and the one generated by
Al models. Additionally, we conduct human eval-
uation and estimate the correlation coefficient be-
tween human-annotated scores and the automati-
cally calculated scores. The results reveal a strong
correlation between the automatic score and the
human-annotated score, thus affirming the reliabil-
ity of the scoring mechanism. In summary, our
contribution can be listed as follows:

* We introduce MatPlotBench to enable au-
tomatic quantitative evaluation of Al meth-
ods designed for scientific data visualization.
Through comparison with human evaluation,
we observe that MatPlotBench can effectively
capture the performance of Al approaches in
this cutting-edge task.

* We propose an effective and generalizable
LLM agent framework, MatPlotAgent, that
can improve the performance of a wide range
of LLMs based on the newly proposed visual
feedback mechanism.

11790



2 Task Description

We first introduce the scientific data visualization
task investigated in this work. Given a user query
x described in text and the corresponding data D,
the Al system is expected to output a figure V' that
can satisfy the user’s demand:

V:f<x7D)7 (D

where f denotes the involved Al system that can
be either an LLM or an LLM-based agent.

Specifically, x specifies the visualization require-
ments, encompassing the visualization type, data
to plot, structural or spatial requirements for in-
dividual elements or the entire plot, and aesthetic
preferences. D represents the data, a collection of
data points {dy, - - - , d, } whether specified by the
user or stored in the external data file. Figure 1
provides some examples for this task.

3 MatPlotBench

Automatic evaluation is important in Al tasks as it
enables researchers to efficiently assess the perfor-
mance of various methods, thereby guiding the de-
velopment of the field. While the DS-1000 bench-
mark (Lai et al., 2023) includes coding problems
about Matplotlib, the solutions’ average length is
merely three lines, rendering them too simplistic to
gauge the proficiency of contemporary Al agents
in tackling practical challenges. Therefore, we
propose to construct MatPlotBench with complex
data visualization problems that are more close to
real-world scenarios. We will illustrate the data
collection process in Section 3.1 and then explain
the scoring mechanism in Section 3.2.

3.1 Data Collection

Principles To enhance the quality of MatPlot-
Bench, we adhere to the following principles for
data collection: (1) Covering diverse types: encom-
passing a broad range of plot types, including not
only the most commonly used but also rare but use-
ful ones; (2) Containing representative instances:
ensuring that the test examples reflect the represen-
tative features of scientific data visualization, such
as varying data complexity; and (3) Balancing easy
and challenging problems: including problems of
varying levels of difficulty in the benchmark.

Selecting Original Examples In accordance
with the principles outlined above, we first select

some original examples from reputable online sci-
entific data visualization forums. These examples
are carefully selected from the Matplotlib Gallery
and OriginLab GraphGallery, encompassing di-
verse and representative instances with varying lev-
els of difficulty. Specifically, we select 1 or 2 exam-
ples from every section in the Matplotlib Gallery,
covering bars, lines, markers, pie charts, polar plots,
contour plots, statistics plots, 3D plots, text anno-
tations, radar charts, shapes, scales, axes, spines,
subplots, and so on. We also seek more advanced
test examples from the OriginLab GraphGallery,
focusing on those that are more aesthetically ap-
pealing or complex, such as Sankey diagrams, sun-
burst charts, radial plots, chord diagrams, stream-
plots, and others. Finally, 75 original examples
come from the Matplotlib Gallery and the 25 other
original examples come from the OriginLab Graph-
Gallery. Subsequently, these examples undergo
several modifications to become the final test cases
in MatPlotBench.

Preliminary Query Generation Based on the
selected original examples, we use LLMs to gener-
ate preliminary queries, which are then revised by
humans. For original examples from the Matplotlib
Gallery, we use GPT-4 to convert the code in each
original example into preliminary queries. For the
examples from the OriginLab GraphGallery, there
are only images. We thus use GPT-4V to convert
each image into a preliminary query.

Data Replacement Based on these preliminary
queries, we begin data replacement for examples
from the Matplotlib Gallery due to the observed
phenomenon of memorization by GPT-4. In this
process, we replace the original data points with
newly generated ones, while keeping other factors
such as the plot type unchanged. For examples
from OriginLab, we find that the data is inherently
complex, and even GPT-4 does not exhibit memo-
rization with these examples. As a result, we only
perform data replacement for Matplotlib examples.

Human Modification After completing the data
replacement process, we engage human annotators
to refine the preliminary queries. These annota-
tors are tasked with correcting errors, eliminating
ambiguity, and adding any omitted essential infor-
mation. Each annotator involved has a minimum
of three years of experience in coding and NLP.
Furthermore, each query undergoes refinement by
two independent human annotators.
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Updating Ground-Truth Figures After obtain-
ing the human-annotated queries, as the data in
Matplotlib examples are altered, we cannot di-
rectly use the images in the original example as
the ground truth. To this end, we manually wrote
code to plot the ground truth for the Matplotlib ex-
amples. For examples from OriginLab, we employ
human experts to prompt GPT-4 to generate code
and subsequently produce its corresponding plots
as the ground truth. If GPT-4 fails to generate the
plots, we extract the images from their website to
serve as the ground truth.

Human Verification After obtaining the queries
and their corresponding ground truths, we per-
formed a final round of manual verification. Three
NLP researchers were asked to conduct this verifi-
cation. In this turn, the focus is mainly on check-
ing whether the user queries and the ground truths
are well aligned. The researchers meticulously
checked each element in the ground truth images
and looked for their corresponding descriptions in
the user query. Ill-described elements and those
missing clarifications are corrected. Redundant
and incorrect descriptions are removed. This pro-
cess results in 100 high-quality (query, raw data,
ground-truth figure) triplets, which comprise our
final benchmark.

3.2 Automatic Quantitative Evaluation

To ease the burden of manual evaluation and
broaden the applicability of our benchmark for re-
search purposes, we suggest employing GPT-4V,
a cutting-edge multi-modal LLM, to conduct au-
tomatic evaluations on our proposed benchmark.
We carefully prompt GPT-4V to give a score from
0 to 100 on model-generated visualizations using
the corresponding ground truths as reference. The
prompt is shown in Figure 6 in Appendix.

Correlation with Human Evaluation To assess
the reliability of GPT-4V as an automatic evaluator
for scientific visualizations, we calculate the cor-
relation between the automatic scores and human-
evaluated scores. Specifically, we employ GPT-3.5
and GPT-4 to generate figures on MatPlotBench,
and then conduct both automatic and human eval-
uation for the generated figures. For each model,
we iteratively sample a subset that consists of n
examples from the total benchmark, and then cal-
culate the average score of both automatic and hu-
man evaluation. This process repeats k times and
we get k data points for each type of evaluation,

100

80

60

40

Human Evaluation

20

0 20 40 60 80 100
Automatic Evaluation

Figure 2: Correlation between the proposed automatic
evaluation mechanism and human evaluation.

which can be represented by A = {ay, -+ ,ax}
and H = {hi,---,hi}. a; denotes the average
automatic score on the i-th randomly sampled sub-
set, and h; represents the average human-evaluated
score in the same subset. n and k are set to 25 and
100, respectively.

We utilize the statistical functions provided by
scipy’ to compute the Pearson correlation coeffi-
cient 7 and the corresponding p-value p. For GPT-
4, we obtain r=0.876 and p=7.41e-33, while for
GPT-3.5, the values are 7=0.836 and p=2.67e-27.
Figure 2 shows the data points for GPT-4. Given
that » > 0.8 and p <0.05, we conclude that the
automatic evaluation scores are strongly correlated
with human evaluation results. This demonstrates
the reliability of the proposed scoring mechanism
in assessing the quality of model-generated figures
on MatPlotBench.

4 MatPlotAgent

To improve the capabilities of LLMs for scientific
data visualization, we propose an agentic frame-
work that mimics the plotting process of human
experts. The proposed MatPlotAgent is comprised
of three modules, including the query expansion
module, the code agent, and the visual agent. Fig-
ure 3 illustrates the workflow of MatPlotAgent.

4.1 Query Expansion

The query expansion module interprets and refines
the user query, converting the high-level require-
ments into a sequence of explicit and detailed in-
structions that are easy for LLMs to follow. This
module can also be viewed as a planning mod-
ule, creating an overall plan before generating the

5https: //docs.scipy.org/doc/scipy/reference/
stats.html
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&L
User Query

Generate a scatter plot with polar projection. The
plot should have 200 points with their positions
and colors determined by random values. The area
of each point should be proportional to the square
of its radial distance from the origin, and the color
should be determined by its angle from the
positive x-axis.

e Code Generation
hue = theta / (2*np.pi) o

saturation = np.ones_like (hue)
value = np.ones_like(hue)

scatter = ax.scatter(theta, r, s=area
, c=(hue, saturation, value), cmap='hsv')

Self-Debugging
hue = theta / (2xnp.pi)
saturation = np.ones_like(hue)
value = np.ones_like(hue)

colors = list(zip(hue, saturation, value))
rgb_colors = hsv_to_rgh(colors)
scatter = ax.scatter(theta, r, s=area, c=rgb_colors)

i

&

Query Expansion Principles

You should understand what the query's requirements are, and
output step by step, detailed instructions on how to use python code
to fulfill these requirements. Include what libraries to import, what
library functions to call, how to set the parameters in each function
correctly, how to prepare the data, how to manipulate the data so
that it becomes appropriate for later functions to call etc.

Principles B

Match Type and Data: Ensure that the plot
and data match the requests.

Customize: Adapt colors and labels to meet
the user's requirements.

Adjust and Improve: Resolve discrepancies
and improve visual quality.

7 Feedback

Enhance Visibility: Scale up point
sizes with a factor, like 100, for
better visibility.

Final Result

Figure 3: Workflow of MatPlotAgent: The query expansion module converts the user query into detailed multi-step
instructions. These instructions are then passed to the code agent, which generates the plotting code. The visual
agent provides informative feedback based on the current draft, guiding the refinement of the figure.

figure. Specifically, this module is based on the
involved code LLM, which is prompted to give
detailed instructions on how to use code to fulfill
the requirement specified by the user, including
what libraries to import, what library functions to
call, how to set the parameters in each function cor-
rectly, how to prepare the data, how to manipulate
the data, and so on.

4.2 Code Agent

The code agent is the core component in MatPlotA-
gent, responsible for generating the code to plot fig-
ures. Given detailed instructions from the query ex-
pansion module, the code agent first generates the
code using appropriate libraries and functions. To
improve the success rate of the generated code, we
also employ the self-debugging mechanism (Chen
et al., 2024b), which helps the involved code LLM
iteratively identify and correct bugs in the code.
To prevent an infinite loop, we set the maximum
iterations of self-debugging to 3.

Similar to humans, who need to repeatedly refine
the figure based on current drafts, we also introduce
a visual feedback mechanism. This mechanism em-
ploys multi-modal LL.Ms to provide suggestions
to improve the figure and better fulfill the user’s
queries. These suggestions, which we call visual
feedback, are then provided to the code agent to

further improve the code. Our experiments in Sec-
tion 5.2 demonstrate that MatPlotAgent is compat-
ible with several modern code LLMs, including
both some well-known closed-source models and
some open-source models.

4.3 Visual Agent

The major difference between MatPlotAgent and
previous LLM-based coding agents (Qian et al.,
2023a; Chen et al., 2024b) is that we take the visual
signal into account, which is important in scientific
data visualization. Some errors or weaknesses may
be difficult to identify in the code but become ap-
parent when observing the output figure through
“eyes”. The visual agent is the “eyes” for MatPlotA-
gent, while the aforementioned code agent acts as
the “hands” for MatPlotAgent.

Specifically, the visual agent is powered by
multi-modal LLMs. We introduce several guiding
principles for the visual agent, including verifying
whether the figure aligns with the provided data,
and enhancing the colors or labels to improve the
figure’s informativeness. Based on the principles,
the user query, and the current draft of the figure,
the visual agent generates some suggestions to re-
fine to figure. These suggestions serve as feedback
for the code agent to refine the code. Experimental
results in Section 5.4 show that our visual feedback
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Model Direct Zero-Shot MatPlotAgent
Decod. CoT w/ GPT-4V
GPT-4 48.86 4542 344 61.16 41230
GPT-3.5 38.03 37.14 -0.89 47.51 +9.48
Magicoder-S-DS-6.7B (Wei et al., 2023) 38.49 3795 —054 5170 +1321
Deepseek-coder-6.7B-instruct (Guo et al., 2024) 31.53 29.16 237 3945 +7.92
CodeLlama-34B-Instruct (Roziere et al., 2024) 16.54 1240 —4.14 14.18 —2.36
Deepseek-coder-33B-instruct (Guo et al., 2024) 30.88 36.10 +5.22 32.18 +1.30
WizardCoder-Python-33B-V1.1 (Luo et al., 2023b) 36.94 35.81 -1.13 4596 +9.02

Table 1: Performance of different LLMs on MatPlotBench. For each model, improvements over the direct decoding

are highlighted in
Direct MatPlotAgent
Model Decod. w/ Gemini Pro Vision
GPT-4 48.86 56.73  +7.87
GPT-3.5 38.03 4348 4545

Table 2: Performance of GPT-4 and GPT-3.5 using Gem-
ini Pro Vision as visual agent on MatPlotBench.

mechanism can significantly improve the quality
of the plotted figures.

5 Experiments

5.1 Setup

Models Since the proposed MatPlotAgent is
model-agnostic, we can employ various LLMs in
this framework. The code LLMs we use in our ex-
periments include GPT-4, GPT-3.5, Magicoder-S-
DS-6.7B (Wei et al., 2023), Deepseek-coder-6.7B-
instruct (Guo et al., 2024), Deepseek-coder-33B-
instruct (Guo et al., 2024), WizardCoder-Python-
33B-V1.1 (Luoetal., 2023b), and CodeLLlama-34B-
Instruct (Roziere et al., 2024). The decoding tem-
perature is set to 0.0 for all involved code LLMs.
For GPT-4 and GPT-3.5, we use the API provided
by OpenAlI°. For the other five open-source LLMs,
we use VLLM (Kwon et al., 2023) for model infer-
ence. For the visual agent, we utilize GPT-4V (Ope-
nAl, 2023) and Gemini Pro Vision (Google, 2023),
two representative multi-modal LLMs. We leave
the exploration of using open-source multi-modal
LLMs to power the visual agent for future work.

Evaluation We evaluate the involved methods on
MatPlotBench, using the proposed automatic scor-
ing mechanism that is shown reliable in Section 3.2.

6https ://openai.com/product

, while results worse than that of the direct decoding are highlighted in

For each code LLM, we evaluate its performance
in three ways:

* Direct decoding: given the query, the model
directly generates the plotting code.

* Zero-Shot Chain-of-thought (Kojima et al.,
2022b): the model is prompted to inference
with the zero-shot CoT mechanism.

* MatPlotAgent: the model is equipped with
the proposed MatPlotAgent framework, driv-
ing the query expansion module and the code
agent, as illustrated in Section 4.

5.2 Main Results

Table 1 presents the results of different methods
on the scientific data visualization task. In the
direct decoding setting, GPT-4 achieves the high-
est score of 48.86. Surprisingly, the open-source
model Magicoder-S-DS-6.7B (Wei et al., 2023)
achieves the second-best performance, surpassing
models with substantially larger parameter sizes,
such as WizardCoder-Python-33B-V1.1.

The results also suggest that the zero-shot CoT
mechanism does not effectively enhance the per-
formance of many recent code LLMs. Zero-shot
CoT only improves the results of Deepseek-coder-
33B-instruct (Guo et al., 2024) from 30.88 to 36.10.
Conversely, for other models, implementing zero-
shot CoT results in poorer performance. For ex-
ample, when zero-shot CoT is applied, the perfor-
mance of GPT-4 drops to 45.42, which is lower
than the direct decoding result of 48.86.

From Table 1, we find the proposed MatPlotA-
gent can improve the plotting capabilities of sev-
eral models. For GPT-4 and GPT-3.5, MatPlotA-
gent leads to significant improvements of 12.30 and
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Accuracy of Code Execution Results (%)

Model
Visualization-Hard Visualization-Easy Average
GPT-4 66.7 60.8 63.8
+ MatPlotAgent 72.6 68.4 70.5
w/o Visual Feedback 66.7 65.8 66.3

Table 3: Effect of MatPlotAgent on the visualization

9.48, respectively. For the other five open-source
LLMs, MatPlotAgent improves the performance of
four models. With MatPlotAgent, the open-source
Magicoder-S-DS-6.7B model even surpasses GPT-
4 with direct decoding (51.70 vs. 48.86), showcas-
ing the effectiveness of our method.

To investigate the generalizability of MatPlotA-
gent across various multi-modal LLMs, we present
the results of employing Gemini Pro Vision as the
visual agent in Table 2. We observe considerable
improvements of 7.87 and 5.45, respectively, over
the direct decoding baseline. This evidence fur-
ther demonstrates the model-agnostic characteristic
of our approach, leveraging various multi-modal
LLMs to achieve enhanced performance.

5.3 Results on Qwen-Agent Code Interpreter
Benchmark

In Table 3, we detail the performance of MatPlotA-
gent on the visualization subset of the Qwen-Agent
Code Interpreter Benchmark’, which was recently
published. According to their GitHub repository,
GPT-4 achieved scores of 66.7 and 60.8 on the
Visualization-Hard and Visualization-Easy subsets,
respectively. Utilizing MatPlotAgent, we attained
higher scores of 72.62 and 68.35 on these subsets.
When the visual feedback mechanism is disabled,
MatPlotAgent reached scores of 66.67 and 65.82,
reconfirming the necessity of visual feedback.

5.4 Ablation Study

Compared to previous LLM-based coding
agents (Qian et al., 2023a; Chen et al., 2024b), the
major contribution of our work lies in the newly
proposed visual feedback mechanism, which is
expected to leverage visual signals to enhance
the quality of the output figure. To gain a deeper
understanding of the impact of the visual feedback
mechanism, we conduct both qualitative and
quantitative analyses in this section.

7https ://github.com/QwenLM/Qwen-Agent/tree/
main/benchmark

subset of the Qwen-Agent Code Interpreter benchmark.

Model GPT-4 GPT-3.5

Direct Decod. 48.86 38.03

MatPlotAgent 61.16 47.51
w/o Visual Feedback 53.44 41.57

Table 4: Effect of the visual feedback mechanism (GPT-
4V visual agent).

Figure 4 presents examples plotted by LLMs
both with and without the visual feedback mech-
anism. We observe a clear improvement in the
quality of the output figure with the visual feed-
back. For example, in case C, the text in the figure
is jumbled, but this issue is resolved with the assis-
tance of visual feedback. It is important to note that
the visual agent does not reference the ground-truth
figure when generating feedback; it only examines
the draft plotted by the model. Table 4 also presents
quantitative results of the visual feedback mecha-
nism, indicating that the absence of visual feedback
would result in significantly poorer outcomes for
both GPT-4 and GPT-3.5. This reaffirms the impor-
tance of visual signals in the task of scientific data
visualization.

5.5 Case Study

We present output figures in Figure 5. The first
example is relatively simple, correctly plotted by
GPT-4 augmented with MatPlotAgent. The sec-
ond example is more challenging; while GPT-4
and Magicoder-S-DS-6.7B can generate a draft,
both omit some elements. The third example is
the most difficult, where none of the three mod-
els can produce the correct result. These results
indicate that the proposed MatPlotBench poses a
significant challenge for current LLMs. Even the
state-of-the-art LLM, GPT-4, equipped with Mat-
PlotAgent, fails in some cases. We believe this
benchmark will be effective not only for evaluating
Al systems in scientific data visualization but also
for assessing general capabilities such as coding
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w/o 1
Visual Feedback| _

with :
Visual Feedback| .

Ground-Truth

Figure 4: Examples to illustrate the effect of visual feedback. To investigate the effect of the visual feedback
mechanism on different models, we display the outputs of two representative LLMs. Case A, B, and C are generated

by GPT-4. Case D is generated by Magicoder-S-DS-6.7B.

and visual perception.

6 Related Work

Code LLMs Since the release of Codex (Chen
et al., 2021), many closed- and open-source code
LLMs have been published, pushing the bound-
aries of LLMs’ capabilities to write functional code.
Early open-source efforts include SantaCoder (Al-
lal et al., 2023) and StarCoder (Li et al., 2023b).
More recently, the Code Llama (Roziere et al.,
2024) series is released, including models of vary-
ing sizes. DeepSeekCoder (Guo et al., 2024), a
series of open-source code models ranging in size
from 1.3B to 33B, has also garnered significant
attention for its impressive performance on general
coding benchmarks. Wei et al. (2023) introduce
a novel data augmentation method for automati-
cally creating high-quality fine-tuning data. The
resulting Magicoder model surpasses a wide array
of open-source code LLMs in performance.

LLM Agents Recently, a wide range of LLM-
based agent frameworks is proposed to explore
LLMs’ potential in real-world scenarios (Nakano
etal., 2021; Yao et al., 2022; Qin et al., 2023; Zhou
et al., 2023). OpenAgents (Xie et al., 2023) pro-

posed an open platform that leverages LLM agents
in everyday situation by employing a Data Agent, a
Plugins Agent, and a Web Agent. Park et al. (2023)
proposed an interactive simulation of human behav-
ior in which software agents emulate realistic hu-
man actions and interactions through computation.
Voyager (Wang et al., 2023) introduced the fisrt
LLM model-driven autonomous agent in Minecraft,
designed to perpetually explore the environment,
master various skills, and uncover new insights
independently, without any human guidance. Chat-
Dev (Qian et al., 2023a) proposed creating a vir-
tual, chat-driven software development enterprise
that follows the traditional waterfall methodology.
In this study, we explore the capabilities of LLM-
based agents in the task of scientific data visualiza-
tion, a critical and practical area for contemporary
researchers.

Automatic Data Visualization Dibia and
Cagatay Demiralp (2018) first used LSTM
networks to turn JSON data into Vega-Lite
visualizations, marking an early innovation
in automatic data visualization. Unlike them,
MatPlotAgent uses LLMs to generate Python code
from user queries and data. Dibia (2023) used a
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Ground Truth GPT-4

GPT-3.5 Magicoder-S-DS-6.7B

Figure 5: Case study of different models.

modular approach that contains four components
to generate visualization and infographics. Cheng
et al. (2023) introduced an end-to-end data
analysis framework using GPT-4. Distinctively,
MatPlotAgent employs a novel visual agent to
enhance plot quality based on visual feedback.

7 Conclusion

We propose to assess and enhance the capabilities
of modern LLMs for scientific data visualization,
a multifaceted task demanding coding and visual
skills. We begin with the creation of MatPlotBench,
a rigorous benchmark supporting automated quan-
titative evaluation that strongly aligns with human
assessment. Additionally, we introduce MatPlotA-
gent, a model-agnostic mechanism employing vi-
sual feedback to enhance LLMs’ plotting abilities.
Experimental results demonstrate that MatPlotA-
gent enhances the performance of various LLMs.

8 Limitations

In this paper, we introduce MatPlotBench, a bench-
mark designed for scientific data visualization.
However, the demands of scientific data visual-
ization can vary significantly across disciplines.
Since MatPlotBench is developed for general sci-
entific data visualization, it may not encompass all

domain-specific requirements, potentially restrict-
ing its applicability to certain fields. In the future,
the data construction and evaluation approaches
can be customized for specific domains if neces-

sary.
Acknowledgements

We thank all anonymous reviewers for their valu-
able comments and suggestions on this work. This
work is supported by the National Key R&D Pro-
gram of China (N0.2022ZD0116312), the Na-
tional Natural Science Foundation of China (No.
62236011), and a grant from the Guoqiang Insti-
tute, Tsinghua University.

References

Loubna Ben Allal, Raymond Li, Denis Kocetkov,
Chenghao Mou, Christopher Akiki, Carlos Munoz
Ferrandis, Niklas Muennighoff, Mayank Mishra,
Alex Gu, Manan Dey, Logesh Kumar Umapathi,
Carolyn Jane Anderson, Yangtian Zi, Joel Lamy
Poirier, Hailey Schoelkopf, Sergey Troshin, Dmitry
Abulkhanov, Manuel Romero, Michael Lappert,
Francesco De Toni, Bernardo Garcia del Rio, Qian
Liu, Shamik Bose, Urvashi Bhattacharyya, Terry Yue
Zhuo, Ian Yu, Paulo Villegas, Marco Zocca, Sourab
Mangrulkar, David Lansky, Huu Nguyen, Danish
Contractor, Luis Villa, Jia Li, Dzmitry Bahdanau,

11797



Yacine Jernite, Sean Hughes, Daniel Fried, Arjun
Guha, Harm de Vries, and Leandro von Werra. 2023.
Santacoder: don’t reach for the stars!

Zhangir Azerbayev, Hailey Schoelkopf, Keiran Paster,
Marco Dos Santos, Stephen Marcus McAleer, Al-
bert Q. Jiang, Jia Deng, Stella Biderman, and Sean
Welleck. 2024. Llemma: An open language model
for mathematics. In The Twelfth International Con-
ference on Learning Representations.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021. Evaluating
large language models trained on code.

Weize Chen, Yusheng Su, Jingwei Zuo, Cheng Yang,
Chenfei Yuan, Chi-Min Chan, Heyang Yu, Yaxi Lu,
Yi-Hsin Hung, Chen Qian, Yujia Qin, Xin Cong,
Ruobing Xie, Zhiyuan Liu, Maosong Sun, and Jie
Zhou. 2024a. Agentverse: Facilitating multi-agent
collaboration and exploring emergent behaviors. In
The Twelfth International Conference on Learning
Representations.

Xinyun Chen, Maxwell Lin, Nathanael Scharli, and
Denny Zhou. 2024b. Teaching large language mod-
els to self-debug. In The Twelfth International Con-
ference on Learning Representations.

Liying Cheng, Xingxuan Li, and Lidong Bing. 2023. Is
gpt-4 a good data analyst? ArXiv, abs/2305.15038.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen,
Samuel Stevens, Boshi Wang, Huan Sun, and Yu Su.
2023. Mind2web: Towards a generalist agent for
the web. In Thirty-seventh Conference on Neural
Information Processing Systems Datasets and Bench-
marks Track.

Victor Dibia. 2023. LIDA: A tool for automatic gen-
eration of grammar-agnostic visualizations and info-
graphics using large language models. In Proceed-
ings of the 61st Annual Meeting of the Association
Jfor Computational Linguistics (Volume 3: System
Demonstrations), pages 113—126, Toronto, Canada.
Association for Computational Linguistics.

Victor C. Dibia and Cagatay Demiralp. 2018. Data2vis:
Automatic generation of data visualizations us-
ing sequence-to-sequence recurrent neural networks.
IEEE Computer Graphics and Applications, 39:33—
46.

Gemini Team Google. 2023. Gemini: A family of
highly capable multimodal models.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai
Dong, Wentao Zhang, Guanting Chen, Xiao Bi,
Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wen-
feng Liang. 2024. Deepseek-coder: When the large
language model meets programming — the rise of
code intelligence.

Takeshi Kojima, Shixiang (Shane) Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022a. Large lan-
guage models are zero-shot reasoners. In Advances in
Neural Information Processing Systems, volume 35,
pages 22199-22213.

Takeshi Kojima, Shixiang (Shane) Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022b. Large lan-
guage models are zero-shot reasoners. In Advances
in Neural Information Processing Systems.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. 2023. Effi-
cient memory management for large language model
serving with pagedattention. In Proceedings of the
ACM SIGOPS 29th Symposium on Operating Systems
Principles.

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang,
Ruiqi Zhong, Luke Zettlemoyer, Wen-Tau Yih,
Daniel Fried, Sida Wang, and Tao Yu. 2023. DS-
1000: A natural and reliable benchmark for data sci-
ence code generation. In Proceedings of the 40th
International Conference on Machine Learning.

Guohao Li, Hasan Abed Al Kader Hammoud, Hani
Itani, Dmitrii Khizbullin, and Bernard Ghanem.
2023a. CAMEL: Communicative agents for “mind”
exploration of large language model society. In
Thirty-seventh Conference on Neural Information
Processing Systems.

Raymond Li, Loubna Ben allal, Yangtian Zi, Niklas
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc
Marone, Christopher Akiki, Jia LI, Jenny Chim,
Qian Liu, Evgenii Zheltonozhskii, Terry Yue Zhuo,
Thomas Wang, Olivier Dehaene, Joel Lamy-Poirier,
Joao Monteiro, Nicolas Gontier, Ming-Ho Yee, Lo-
gesh Kumar Umapathi, Jian Zhu, Ben Lipkin, Muh-
tasham Oblokulov, Zhiruo Wang, Rudra Murthy, Ja-
son T Stillerman, Siva Sankalp Patel, Dmitry Ab-
ulkhanov, Marco Zocca, Manan Dey, Zhihan Zhang,
Urvashi Bhattacharyya, Wenhao Yu, Sasha Luccioni,
Paulo Villegas, Fedor Zhdanov, Tony Lee, Nadav
Timor, Jennifer Ding, Claire S Schlesinger, Hailey
Schoelkopf, Jan Ebert, Tri Dao, Mayank Mishra,
Alex Gu, Carolyn Jane Anderson, Brendan Dolan-
Gavitt, Danish Contractor, Siva Reddy, Daniel Fried,

11798


http://arxiv.org/abs/2301.03988
https://openreview.net/forum?id=4WnqRR915j
https://openreview.net/forum?id=4WnqRR915j
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
https://openreview.net/forum?id=EHg5GDnyq1
https://openreview.net/forum?id=EHg5GDnyq1
https://openreview.net/forum?id=KuPixIqPiq
https://openreview.net/forum?id=KuPixIqPiq
https://api.semanticscholar.org/CorpusID:258866019
https://api.semanticscholar.org/CorpusID:258866019
https://openreview.net/forum?id=kiYqbO3wqw
https://openreview.net/forum?id=kiYqbO3wqw
https://doi.org/10.18653/v1/2023.acl-demo.11
https://doi.org/10.18653/v1/2023.acl-demo.11
https://doi.org/10.18653/v1/2023.acl-demo.11
https://api.semanticscholar.org/CorpusID:4706694
https://api.semanticscholar.org/CorpusID:4706694
https://api.semanticscholar.org/CorpusID:4706694
http://arxiv.org/abs/2312.11805
http://arxiv.org/abs/2312.11805
http://arxiv.org/abs/2401.14196
http://arxiv.org/abs/2401.14196
http://arxiv.org/abs/2401.14196
https://proceedings.neurips.cc/paper_files/paper/2022/file/8bb0d291acd4acf06ef112099c16f326-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/8bb0d291acd4acf06ef112099c16f326-Paper-Conference.pdf
https://openreview.net/forum?id=3IyL2XWDkG
https://openreview.net/forum?id=3IyL2XWDkG

Dzmitry Bahdanau, Yacine Jernite, Carlos Muiioz
Ferrandis, Sean Hughes, Thomas Wolf, Arjun Guha,
Leandro Von Werra, and Harm de Vries. 2023b. Star-
coder: may the source be with you! Transactions on
Machine Learning Research. Reproducibility Certifi-
cation.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu
Lei, Hanyu Lai, Yu Gu, Hangliang Ding, Kaiwen
Men, Kejuan Yang, Shudan Zhang, Xiang Deng, Ao-
han Zeng, Zhengxiao Du, Chenhui Zhang, Sheng
Shen, Tianjun Zhang, Yu Su, Huan Sun, Minlie
Huang, Yuxiao Dong, and Jie Tang. 2024. Agent-
bench: Evaluating LLMs as agents. In The Twelfth
International Conference on Learning Representa-
tions.

Pan Lu, Baolin Peng, Hao Cheng, Michel Galley, Kai-
Wei Chang, Ying Nian Wu, Song-Chun Zhu, and
Jianfeng Gao. 2023. Chameleon: Plug-and-play
compositional reasoning with large language models.
In Thirty-seventh Conference on Neural Information
Processing Systems.

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jian-
guang Lou, Chongyang Tao, Xiubo Geng, Qingwei
Lin, Shifeng Chen, and Dongmei Zhang. 2023a. Wiz-
ardmath: Empowering mathematical reasoning for
large language models via reinforced evol-instruct.
arXiv preprint arXiv:2308.09583.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo
Geng, Wenxiang Hu, Chongyang Tao, Jing Ma, Qing-
wei Lin, and Daxin Jiang. 2023b. Wizardcoder:
Empowering code large language models with evol-
instruct.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu,
Ouyang Long, Christina Kim, Christopher Hesse,
Shantanu Jain, Vineet Kosaraju, William Saunders,
Xu Jiang, Karl Cobbe, Tyna Eloundou, Gretchen
Krueger, Kevin Button, Matthew Knight, Benjamin
Chess, and John Schulman. 2021. Webgpt: Browser-
assisted question-answering with human feedback.
ArXiv, abs/2112.09332.

OpenAl. 2023. Gpt-4 technical report.

Joon Sung Park, Joseph O’Brien, Carrie Jun Cai, Mered-
ith Ringel Morris, Percy Liang, and Michael S. Bern-
stein. 2023. Generative agents: Interactive simulacra
of human behavior. In Proceedings of the 36th An-
nual ACM Symposium on User Interface Software
and Technology, UIST °23, New York, NY, USA.
Association for Computing Machinery.

Chen Qian, Xin Cong, Wei Liu, Cheng Yang, Weize
Chen, Yusheng Su, Yufan Dang, Jiahao Li, Juyuan
Xu, Dahai Li, Zhiyuan Liu, and Maosong Sun. 2023a.
Communicative agents for software development.

Cheng Qian, Chi Han, Yi Fung, Yujia Qin, Zhiyuan
Liu, and Heng Ji. 2023b. CREATOR: Tool creation
for disentangling abstract and concrete reasoning of
large language models. In Findings of the Associa-
tion for Computational Linguistics: EMNLP 2023,

pages 6922-6939, Singapore. Association for Com-
putational Linguistics.

Yujia Qin, Zihan Cai, Dian Jin, Lan Yan, Shihao
Liang, Kunlun Zhu, Yankai Lin, Xu Han, Ning Ding,
Huadong Wang, Ruobing Xie, Fanchao Qi, Zhiyuan
Liu, Maosong Sun, and Jie Zhou. 2023. WebCPM:
Interactive web search for Chinese long-form ques-
tion answering. In Proceedings of the 61st Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 8968—8988,
Toronto, Canada. Association for Computational Lin-
guistics.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,
Bill Qian, Sihan Zhao, Lauren Hong, Runchu Tian,
Ruobing Xie, Jie Zhou, Mark Gerstein, dahai li,
Zhiyuan Liu, and Maosong Sun. 2024. ToolLLM:
Facilitating large language models to master 16000+
real-world APIs. In The Twelfth International Con-
ference on Learning Representations.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott
Gray, Chelsea Voss, Alec Radford, Mark Chen, and
Ilya Sutskever. 2021. Zero-shot text-to-image gener-
ation.

Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Bjorn Ommer. 2022. High-
resolution image synthesis with latent diffusion mod-
els.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy
Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna
Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron
Grattafiori, Wenhan Xiong, Alexandre Défossez,
Jade Copet, Faisal Azhar, Hugo Touvron, Louis Mar-
tin, Nicolas Usunier, Thomas Scialom, and Gabriel
Synnaeve. 2024. Code llama: Open foundation mod-
els for code.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala
Li, Jay Whang, Emily Denton, Seyed Kamyar Seyed
Ghasemipour, Burcu Karagol Ayan, S. Sara Mahdavi,
Rapha Gontijo Lopes, Tim Salimans, Jonathan Ho,
David J Fleet, and Mohammad Norouzi. 2022. Pho-
torealistic text-to-image diffusion models with deep
language understanding.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta
Raileanu, Maria Lomeli, Eric Hambro, Luke Zettle-
moyer, Nicola Cancedda, and Thomas Scialom. 2023.
Toolformer: Language models can teach themselves
to use tools. In Thirty-seventh Conference on Neural
Information Processing Systems.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,
Junxiao Song, Mingchuan Zhang, Y. K. Li, Y. Wu,
and Daya Guo. 2024. Deepseekmath: Pushing the
limits of mathematical reasoning in open language
models.

11799


https://openreview.net/forum?id=KoFOg41haE
https://openreview.net/forum?id=KoFOg41haE
https://openreview.net/forum?id=zAdUB0aCTQ
https://openreview.net/forum?id=zAdUB0aCTQ
https://openreview.net/forum?id=HtqnVSCj3q
https://openreview.net/forum?id=HtqnVSCj3q
http://arxiv.org/abs/2306.08568
http://arxiv.org/abs/2306.08568
http://arxiv.org/abs/2306.08568
https://api.semanticscholar.org/CorpusID:245329531
https://api.semanticscholar.org/CorpusID:245329531
https://api.semanticscholar.org/CorpusID:257532815
https://doi.org/10.1145/3586183.3606763
https://doi.org/10.1145/3586183.3606763
http://arxiv.org/abs/2307.07924
https://doi.org/10.18653/v1/2023.findings-emnlp.462
https://doi.org/10.18653/v1/2023.findings-emnlp.462
https://doi.org/10.18653/v1/2023.findings-emnlp.462
https://doi.org/10.18653/v1/2023.acl-long.499
https://doi.org/10.18653/v1/2023.acl-long.499
https://doi.org/10.18653/v1/2023.acl-long.499
https://openreview.net/forum?id=dHng2O0Jjr
https://openreview.net/forum?id=dHng2O0Jjr
https://openreview.net/forum?id=dHng2O0Jjr
http://arxiv.org/abs/2102.12092
http://arxiv.org/abs/2102.12092
http://arxiv.org/abs/2112.10752
http://arxiv.org/abs/2112.10752
http://arxiv.org/abs/2112.10752
http://arxiv.org/abs/2308.12950
http://arxiv.org/abs/2308.12950
http://arxiv.org/abs/2205.11487
http://arxiv.org/abs/2205.11487
http://arxiv.org/abs/2205.11487
https://openreview.net/forum?id=Yacmpz84TH
https://openreview.net/forum?id=Yacmpz84TH
http://arxiv.org/abs/2402.03300
http://arxiv.org/abs/2402.03300
http://arxiv.org/abs/2402.03300

Noah Shinn, Federico Cassano, Ashwin Gopinath,
Karthik R Narasimhan, and Shunyu Yao. 2023. Re-
flexion: language agents with verbal reinforcement
learning. In Thirty-seventh Conference on Neural
Information Processing Systems.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Man-
dlekar, Chaowei Xiao, Yuke Zhu, Linxi (Jim) Fan,
and Anima Anandkumar. 2023. Voyager: An open-
ended embodied agent with large language models.
ArXiv, abs/2305.16291.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V Le,
and Denny Zhou. 2022. Chain-of-thought prompt-
ing elicits reasoning in large language models. In
Advances in Neural Information Processing Systems,
volume 35, pages 24824-24837. Curran Associates,
Inc.

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and
Lingming Zhang. 2023. Magicoder: Source code is
all you need.

Tianbao Xie, Fan Zhou, Zhoujun Cheng, Peng Shi, Lu-
oxuan Weng, Yitao Liu, Toh Jing Hua, Junning Zhao,
Qian Liu, Che Liu, Leo Z. Liu, Yiheng Xu, Hongjin
Su, Dongchan Shin, Caiming Xiong, and Tao Yu.
2023. Openagents: An open platform for language
agents in the wild.

Yuzhuang Xu, Shuo Wang, Peng Li, Fuwen Luo, Xi-
aolong Wang, Weidong Liu, and Yang Liu. 2023.
Exploring large language models for communication
games: An empirical study on werewolf.

Shunyu Yao, Howard Chen, John Yang, and Karthik
Narasimhan. 2022. WebShop: Towards Scalable
Real-World Web Interaction with Grounded Lan-
guage Agents. In Advances in Neural Information
Processing Systems, volume 35, pages 20744-20757.
Curran Associates, Inc.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Thomas L. Griffiths, Yuan Cao, and Karthik R
Narasimhan. 2023a. Tree of thoughts: Deliberate
problem solving with large language models. In
Thirty-seventh Conference on Neural Information
Processing Systems.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik R Narasimhan, and Yuan Cao.
2023b. React: Synergizing reasoning and acting
in language models. In The Eleventh International
Conference on Learning Representations.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng YU,
Zhengying Liu, Yu Zhang, James Kwok, Zhenguo Li,
Adrian Weller, and Weiyang Liu. 2024. Metamath:
Bootstrap your own mathematical questions for large
language models. In The Twelfth International Con-
ference on Learning Representations.

Shuyan Zhou, Frank F. Xu, Hao Zhu, Xuhui Zhou,
Robert Lo, Abishek Sridhar, Xianyi Cheng, Tianyue

Ou, Yonatan Bisk, Daniel Fried, Uri Alon, and Gra-
ham Neubig. 2023. Webarena: A realistic web envi-
ronment for building autonomous agents. In Second
Agent Learning in Open-Endedness Workshop.

A Detailed Prompts

To better understand MatPlotBench and MatPlotA-
gent, we list the prompts for automatic evaluation
and the three modules in MatPlotAgent, including
the query expansion module, the code agent, and
the visual agent.

A.1 Evaluation Prompts

The automatic evaluation prompt primarily requires
GPT-4V to provide a score between 0 and 100 for
the model-generated plot, with reference to the
ground truth plot.

A.2 Prompts for MatPlotAgent

The query expansion prompt mainly requires LLMs
to generate step-by-step, detailed instructions on
how to use Python code to fulfill the requirements
specified by users, as shown in Figure 7.

For the code agent, there are two prompts for
the code generation process and the self-debugging
mechanism. The code generation prompt mainly
requires LLMs to generate executable code accord-
ing to the user query to plot and save the output
figure, as shown in Figure 8. The self-debugging
prompt mainly requires LLMs to correct the buggy
code according to the error message from a Python
interpreter, as displayed in Figure 9.

The visual agent prompt mainly requires multi-
modal LLMs to firstly understand the user query
and analyze the draft plot, then generate the visual
feedback to refine the draft, as shown in Figure 10.

B Human Evaluation Details

We engage human annotators from computer sci-
ence departments at various universities via social
media. They are compensated for their work at a
rate slightly higher than the prevailing market rate.
All human annotators involved are informed that
the collected data will be used solely for academic
research purposes, and their personal information
will not be disclosed.

B.1 Evaluation Guide for Human Annotators

Figure 11 gives detailed instructions for human
annotators when scoring the model-generated plots.
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You are an excellent judge at
evaluating visualization plots between a

model-generated plot and the ground truth.

You will be giving scores on how well it
matches the ground truth plot.

The generated plot will be given to you
as the first figure. If the first figure
is blank, that means the code failed to
generate a figure.

Another plot will be given to you as
the second figure, which is the desired
outcome of the user query, meaning it is
the ground truth for you to reference.

Please compare the two figures head to
head and rate them. Suppose the second
figure has a score of 100, rate the first
figure on a scale from @ to 100.

Scoring should be carried out regarding
the plot correctness: Compare closely
between the generated plot and the ground
truth, the more resemblance the generated
plot has compared to the ground truth, the
higher the score. The score should be
proportionate to the resemblance between
the two plots.

In some rare occurrences, see if the data
points are generated randomly according to
the query, if so, the generated plot may
not perfectly match the ground truth, but
it is correct nonetheless.

Only rate the first figure, the second

figure is only for reference.

If the first figure is blank, that means
the code failed to generate a figure. Give
a score of @ on the Plot correctness.

After scoring from the above aspect, please
give a final score. The final score is
preceded by the [FINAL SCORE] token.

For example [FINAL SCORE]: 40.

SYSTEM PROMPT: According to the user
query, expand and solidify the query into
a step by step detailed instruction (or
comment) on how to write python code
to fulfill the user query’s requirements.
Import the appropriate libraries. Pinpoint
the correct library functions to call and
set each parameter in every function call
accordingly.

USER PROMPT: Here is the user query:
[User Queryl: """ {{query}} """ You should
understand what the query’s requirements
are, and output step by step, detailed
instructions on how to use python code to
fulfill these requirements. Include what
libraries to import, what library functions
to call, how to set the parameters in
each function correctly, how to prepare the
data, how to manipulate the data so that
it becomes appropriate for later functions
to call etc,. Make sure the code to
be executable and correctly generate the
desired output in the user query.

Figure 7: The query expansion prompt in MatPlotAgent.

SYSTEM PROMPT: You are a cutting-edge
super capable code generation LLM. You will
be given a natural language query, generate
a runnable python code to satisfy all the
requirements in the query. You can use any
python library you want. When you complete
a plot, remember to save it to a png file.
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USER PROMPT: Here is the query:
{{query}} """ If the query requires data
manipulation from a csv file, process the
data from the csv file and draw the plot in
one piece of code. When you complete a plot,
remember to save it to a png file. The file
name should be """{{file_name}}""".

Figure 6: Automatic evaluation prompt for GPT-4V.

Figure 8: The code generation prompt in MatPlotAgent.

USER PROMPT: There are some errors in
the code you gave: {{error_message}} please
correct the errors. Then give the complete
code and don’t omit anything even though
you have given it in the above code.

Figure 9: The self-debugging prompt in MatPlotAgent.
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SYSTEM PROMPT: Given a user query and an
image of the current plot, please determine
whether the plot has faithfully followed
the user query. Your task is to provide
instruction to make sure the plot has
strictly completed the requirements of the
query. Please output a detailed step by
step instruction on how to use python code
to enhance the plot.

USER PROMPT: Here is the user query:
[Queryl: """ {{query}} """ Carefully read
and analyze the user query to understand
the specific requirements. Check if
the plot aligns with the user query in
terms of data selection, plot type, and
any specific customization. Look at the
provided image of the plot. Assess the
plot type, the data it represents, labels,
titles, colors, and any other visual
elements. Compare these elements with the

requirements specified in the user query.

Note any differences between the user

query requirements and the current plot.

Based on the identified discrepancies,
provide step-by-step instructions on how
to modify the Python code to meet the user
query requirements. Suggest improvements
for better visualization practices, such
as clarity, readability, and aesthetics,
while ensuring the primary focus is on

meeting the user’s specified requirements.

Remember to save the plot to a png file. The
file name should be """{{file_name}}"""

Figure 10: Prompt for the visual agent.
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Evaluation Guide

Plot Correctness (0-100 points)

» Exact Match (90-100 points): The generated plot is nearly identical to the ground truth, with
only minor, negligible differences.

* High Resemblance (70-89 points): The generated plot closely resembles the ground truth
with some small but noticeable differences in data representation or styling.

* Moderate Resemblance (50-69 points): The generated plot has a moderate level of similarity
to the ground truth, but there are several noticeable differences that impact the plot’s accuracy
or interpretation.

* Low Resemblance (30-49 points): The generated plot shares some similarities with the
ground truth but has significant differences that change the overall message or interpretation
of the data.

* Poor Match (10-29 points): The generated plot has very little in common with the ground
truth, with major discrepancies in data representation.

* No Resemblance (1-9 points): The generated plot is completely different from the ground
truth, with no discernible similarities in data representation.

* Failure to Generate (0 points): The first figure is blank, indicating a failure to generate any
plot.

Special Considerations

* In cases where the generated plot includes random data points that are correct in the context
of the query, the plot should be evaluated for its correctness based on the query’s intent, not
solely on its visual match to the ground truth.

[FINAL SCORE]: XX

Figure 11: Evaluation guide for human annotators when scoring the model-generated plots.
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Comparison of Human Evaluated and Automatic Scores

This table shows the comparison of 20 randomly selected scores from human evaluation and automatic evaluation by
GPT-4V. Each pair represents a distinct evaluation instance.
Human Evaluated Score | Automatic Score

80 95

0 10

85 80

55 70

45 40

20 0

40 20

78 95

100 85
Score Pairs: 80 95

90 98

100 95

95 100

47 20

85 80

58 85

90 85

45 20

45 60

90 100

Figure 12: Detailed comparison of evaluation scores.
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