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Abstract

Recent advancements in dialogue systems have
highlighted the significance of integrating mul-
timodal responses, which enable conveying
ideas through diverse modalities rather than
solely relying on text-based interactions. This
enrichment not only improves overall commu-
nicative efficacy but also enhances the quality
of conversational experiences. However, ex-
isting methods for dialogue-to-image retrieval
face limitations due to the constraints of pre-
trained vision language models (VLMs) in com-
prehending complex dialogues accurately. To
address this, we present a novel approach lever-
aging the robust reasoning capabilities of large
language models (LLMs) to generate precise
dialogue-associated visual descriptors, facili-
tating seamless connection with images. Ex-
tensive experiments conducted on benchmark
data validate the effectiveness of our proposed
approach in deriving concise and accurate vi-
sual descriptors, leading to significant enhance-
ments in dialogue-to-image retrieval perfor-
mance. Furthermore, our findings demonstrate
the method’s generalizability across diverse vi-
sual cues, various LLMs, and different datasets,
underscoring its practicality and potential im-
pact in real-world applications.1

1 Introduction

In recent years, the landscape of online conversa-
tions has undergone a significant transformation
thanks to the proliferation of instant messaging
tools. Unlike the past, when these exchanges were
confined to text alone, today’s conversations have
evolved into a multimodal experience, incorporat-
ing elements like images and speech. The various
communication modes not only enhance engage-
ment but also prove invaluable for conveying com-
plex information that can be challenging to com-
municate solely through text. Sun et al. (2022)
highlighted the advantages of integrating images

1https://github.com/MiuLab/VisualDialog

into conversations. For example, when discussing
a topic with someone who may not grasp the con-
cept, sharing an image can provide visual clarity
for better comprehension. Additionally, when pre-
cision is required to convey specific details about
a subject, relevant images can be a more effec-
tive means of communication than text alone (Hsu
et al., 2023). Consequently, the ability to generate
responses using images is a crucial area of research
in enhancing automatic dialogue systems. To equip
these systems with the capacity to respond using
images, a common method involves text-to-image
retrieval, as demonstrated by previous work (Liao
et al., 2018; Zang et al., 2021). In this approach,
a model selects an appropriate image from a pre-
constructed image repository based on the context
of the ongoing conversation.

As storage costs decline and computational
power advances, vision foundation models pre-
trained on large-scale, open-domain image-text
pairs have emerged (Radford et al., 2021; Jia et al.,
2021; Yuan et al., 2021). These models have
demonstrated outstanding performance in text-to-
image retrieval tasks, excelling in both zero-shot
and fully-trained scenarios. However, despite their
impressive capabilities, these pre-trained vision-
language models (VLMs) still come with some
limitations. One significant limitation is their sub-
optimal design for handling complete dialogue con-
texts effectively. Often, they suffer from extracting
key information comprehensively from the entire
conversation. Table 1 presents an illustrative exam-
ple, where a dialogue-to-image model fine-tuned
from CLIP (Radford et al., 2021) fails to correctly
interpret the dialogue’s intent. This highlights the
challenge of dialogue comprehension, a task for
which pre-trained VLMs may not be adequately
equipped. Additionally, most existing VLMs typ-
ically impose input text length constraints during
their pre-training stages, preventing them from pro-
cessing the entirety of the dialogue context directly.
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Dialogue context
B: how are you doing?
A: I’m doing good. Just out at a restaurant taking pic-
tures for customers.
B: congratulations
A: It’s hilarious watching people try to use chopsticks
B: i’m really happy for you friend
B: yeah, its really funny
A: Yeah, it’s better than most gigs I get
B: even i still try to try to find a way around that thing
A: I give up and ask for a fork. I want that rice in my
mouth!!!!!
A: (share a photo)

Ground-truth Retrieved top-1

Dialogue-associated visual cues
• main subject: customers
• foreground objects: chopsticks, table, food
• background scene: restaurant
• events: eating food

Table 1: An example of a dialogue and the shared image;
the fine-tuned CLIP model fails to retrieve the correct
one. Red indicates the missing elements, blue indicates
a perfect match, and orange suggests a partial match.

This constraint can lead to the loss of crucial con-
textual information, potentially undermining the
model’s overall performance.

Inspired by Menon and Vondrick (2022), we
leverage the reasoning capabilities of large lan-
guage models (LLMs) to generate the visual de-
scriptor for the dialogue context. These descrip-
tors encapsulate speculations about the image that
the speaker intends to share, aiming to provide
concise and precise cues for better text-to-image
retrieval. Our objective is to address the aforemen-
tioned limitations and enhance task performance.
Given that most vision models excel at identifying
objects, scenes, and other visual elements in im-
ages (Kuznetsova et al., 2020; Zang et al., 2021),
we employ a set of visually-focused queries, such
as main subject and background scene, to bridge
the gap between the ongoing dialogue and the pool
of potential image candidates. These queries serve
as templates for the LLM to predict correspond-
ing visual cues based on the dialogue context. We
then utilize these queries and their resulting an-
swers as dialogue-associated visual descriptors, as
illustrated in the bottom part of Table 1. Our ex-

periments on the benchmark dataset showcase the
exceptional performance of our approaches, sur-
passing all previous results. In addition to demon-
strating the effectiveness of our LLM-generated vi-
sual descriptor, we compare it with other descriptor
creation methods and conduct an in-depth analysis
to evaluate the efficacy of each proposed query.

Our contributions can be summarized as 3-fold:
• This paper introduces a novel approach for

retrieving associated photos in dialogue sys-
tems, leveraging the reasoning capabilities of
LLMs to generate visually-focused cues for
improved image retrieval.

• We design a series of visually-focused queries
based on common image features, employ-
ing them to construct conversation descriptors.
Our experiments validate the effectiveness of
these designed queries.

• The proposed approach achieves state-of-
the-art performance on multiple benchmark
datasets.

2 Related Work

Multimodal Dialogue Systems Recent years
have witnessed a notable shift in research towards
multimodal dialogues, moving beyond the confines
of text-only interactions (Liu et al., 2022). While
the exploration of image-grounded conversations,
where textual dialogues are generated from images,
has gained traction (Yang et al., 2021; Shuster et al.,
2021; Chen et al., 2023; Gong et al., 2023; Zhu
et al., 2023; Liu et al., 2023), an increasing num-
ber of studies are delving into the incorporation
of multimodal responses within dialogue systems.
This multimodal evolution enables human-machine
conversations to reflect real-life human-human in-
teractions and communicate concepts that are dif-
ficult to convey through text alone. For instance,
Liao et al. (2018) introduced a task-oriented multi-
modal dialogue system featuring a taxonomy-based
learning module that captures nuanced visual se-
mantics and employs reinforcement learning to en-
sure response coherence. Further advancements
in robotic technology now enable robots to more
effectively understand and respond to human re-
quests in life support scenarios. This requires the
interpretation of both the visual context of the en-
vironment and the user’s verbal communication,
integrating multimodal capabilities into dialogue
scenarios (Tanaka et al., 2024; Tsai et al., 2024).
Moreover, Sun et al. (2022) introduced a frame-
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Dialogue Context
User 1: What’s up?

User 2: I am with friends 

…

Visually-Focused Queries
Based on the dialogue context, please describe the 

photograph shared by User 1:

Queries: main subject, background …

Dialogue-Associated Visual Descriptors
The main subject of the photo is a group of friends.

The background scene of the photo is a bar.

…

Photo

Objects in the Photo
wine, tableware, woman, …

Pretrained 

VLM Image 

Encoder

LLM

Pretrained 

VLM Text 

Encoder

Pre-constructed 

Image Repository

Scene-Aligned 

Score

Vision-Aligned 

Score

Figure 1: The framework of our proposed method. We employ the text encoder from a pre-trained VLM to encode
both the descriptor and the object list. This yields two distinctive features, namely the descriptor embedding (edesc)
and the object list feature (eobj). Additionally, we utilize the VLM’s image encoder to process and encode the image,
resulting in the image embedding (eimg). The final retrieval score is then computed by aggregating a scene-aligned
score and a vision-aligned score.

work capable of directly generating multimodal re-
sponses via a text-to-target-modality generator. In
contrast, rather than directly generating multimodal
responses, Zang et al. (2021) achieve multimodal
responses by employing image retrieval models to
select appropriate images from a pre-existing im-
age repository. For better practicality, our paper
centers on the same task—recommending a suit-
able image from the user’s image repository based
on the ongoing dialogue context.

External Knowledge of LLMs for Visual Tasks
Many studies have showcased that the common-
sense knowledge and reasoning capabilities in large
language models (LLMs) can significantly aug-
ment the performance of visual tasks. For in-
stance, Tsimpoukelli et al. (2021) confirmed that
by projecting image encodings into the embedding
space of an LLM, it becomes possible to harness
the rich knowledge contained within the LLM for
few-shot visual question answering (VQA) tasks.
Similarly, Zeng et al. (2022) introduced Socratic
Models, which leverages multiple pre-trained large
models trained on data from diverse domains. By
translating non-language domain information into
textual prompts, Socratic Models achieve state-of-
the-art results in zero-shot image captioning and
video-to-text retrieval tasks. Furthermore, Menon
and Vondrick (2022) took a novel approach by
obtaining visual features for different categories
through queries to GPT-3 (Brown et al., 2020)
using category names. These textual descriptors
are then employed as internal representations for

zero-shot visual classification and text-to-image re-
trieval tasks. Our work centers on harnessing the
reasoning capabilities of LLMs to derive contex-
tually relevant visual descriptions for shared pho-
tos within the dialogue context. Different from
the prior work based on non-language domains
or single sentences, our approach focuses on the
nuanced domain of photo sharing within conver-
sations, which presents unique challenges due to
its reliance on commonsense knowledge and an
understanding of human-human interactions.

3 Methodology

Our objective is to select an image from a pre-
constructed photo set {(vj , oj)}mj=1 given a dia-
logue context D, where vj represents an image
candidate and oj lists the objects appearing in vj .
Note that the object lists can be obtained through
object detection in the pre-processing stage, and
we treat this object information as given data.

Figure 1 illustrates the proposed framework,
which introduces an innovative approach to es-
timate retrieval scores for each image candidate
within a dialogue context. These scores are based
on two criteria: scene-aligned and vision-aligned
scores, both relying on visual descriptors. The
scene-aligned score assesses whether the specu-
lated visual cues align with the image-associated
objects in a textual format. In contrast, the vision-
aligned score evaluates the alignment between
the visual description and the image using vision-
language models.
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Visual Features & Descriptions Examples

Main subject: the photo-focused objects for conveying a particular theme people, cakes, buildings
Prominent objects in the foreground: objects in addition to the main
subject convey signal for photo understanding.

a bar counter and bottles in a photo taken at a
bar

Background scene: the background scene in the photo restaurants, bars, outdoors
Events: activities or events currently captured in the photo weddings, birthdays, eating food
Materials and attributes: finer details about the photo teapot made of ceramic, black and white feathers

Table 2: All designed descriptors used in the proposed method.

3.1 Dialogue-Associated Visual Descriptor
Considering that visual descriptors can signifi-
cantly enhance the understanding of visual con-
tent (Menon and Vondrick, 2022), we focus on
generating dialogue-associated visual descriptors
to improve image retrieval capabilities. To cre-
ate high-quality visual descriptors that can connect
with visual elements in the photo, we define a set
of visually-focused queries, denoted as Q = {qi}.
These queries encompass various visual attributes
related to an image, such as main subject and back-
ground scene, which are instrumental in linking the
target photo to the dialogue.

Drawing from prior work (Kuznetsova et al.,
2020; Zang et al., 2021) and our common expe-
riences, we assume that photos shared in online
messaging typically contain components such as
main subjects, prominent foreground objects, back-
ground scenes, events, and materials and attributes,
as detailed in Table 2. Note that we do not ex-
pect all answers to these queries to be perfectly
extracted from the dialogue context or found in the
ground-truth image. Instead, our goal is to leverage
automatically inferred visual descriptors to bridge
the gap between the image and the given dialogue
context.

Leveraging the powerful reasoning capabilities
of large language models (LLMs) (Touvron et al.,
2023), we construct a prompt comprising the di-
alogue D and the set of queries Q and input it
into the LLM. This process yields a set of dialogue-
associated visual descriptors in a zero-shot manner:

desc = LLM(D,Q). (1)

For instance, a generated visual descriptor regard-
ing the main subject might read, “The main sub-
ject of the photo is a group of friends.” The used
prompts can be found in Appendix A.

3.2 Image Relevance Estimation
To measure the relevance of each image candi-
date in the context of a given dialogue D, we cal-
culate two retrieval scores based on their gener-

ated visual descriptors desc: Sscene(oj , desc) and
Svision(vj , desc). The former score assesses if the
objects in the photo candidate align with the in-
ferred visual descriptors in their text-only forms,
referred to as the scene-aligned score. The latter
score evaluates if the photo candidate matches the
visual descriptions through multimodal methods,
termed the vision-aligned score.

3.3 Image Retrieval Learning

Our task involves retrieving the target image from a
pre-constructed photo set, and it can be approached
in two settings: 1) zero-shot and 2) training with
contrastive leanrning.

3.3.1 Zero-Shot

Using the descriptor desc derived from the dialogue
context D, we employ a pre-trained vision lan-
guage model (VLM) for zero-shot text-to-image
retrieval. This process yields two scores through
its text encoder and image encoder, as illustrated in
Figure 1. The final retrieval score is calculated as:

Sscene(oj , desc) + λ · Svision(vj , desc), (2)

where λ is a weighting parameter. The image with
the highest score is selected in a zero-shot manner.

3.3.2 Contrastive Learning

To further enhance retrieval performance, we fine-
tune the VLM model using the training set. Fol-
lowing the pre-training stage outlined by Radford
et al. (2021), we apply contrastive learning to op-
timize our dialogue-image retriever. During train-
ing, we randomly sample a minibatch of dialogue-
associated descriptors and photo pairs, designat-
ing (desc, v∗, o∗) as the positive example, while
the remaining (b − 1) examples within the mini-
batch serve as negative examples. The contrastive
losses are calculated separately for the scene and
vision components, focusing on aligning dialogue-
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associated visual descriptors and the target photo.

Lscene = − log
exp(Sscene(o

∗, desc)/τ)∑
j∈b exp(Sscene(oj , desc)/τ)

,

Lvision = − log
exp(Sscene(v

∗, desc)/τ)∑
j∈b exp(Sscene(vj , desc)/τ)

,

where τ is the trainable temperature parameter. The
final training loss is a combination of these con-
trastive losses:

L =
1

b

∑

j∈b
(Lscene + λ · Lvision), (3)

where λ is a weighting parameter. This ap-
proach optimizes our dialogue-image retrieval
model through contrastive learning.

4 Experiments

For the LLM in (1), we utilized well-established
LLMs with instruction tuning and reinforcement
learning from human feedback (RLHF), includ-
ing LLaMA-2-7B-Chat and LLaMA-2-13B-Chat
(Touvron et al., 2023). We employed greedy decod-
ing for generating descriptors to ensure the correct
format and reasoning capability. Our pre-trained
vision-language model (VLM) backbone is CLIP
ViT-B/32, and VLM training is executed on a single
NVIDIA GeForce RTX 2080 Ti GPU with a batch
size of 56. We utilize the ADAM optimizer with
an initial learning rate of 1e-5. The weighting pa-
rameter λ was set to 1 to strike a balance between
scene-alignment and vision-alignment.

4.1 Data & Metrics

Our approach is evaluated on a benchmark mul-
timodal dialogue dataset called PhotoChat. Pho-
toChat dataset (Zang et al., 2021) is character-
ized by open-domain, high-quality multimodal di-
alogues and comprises 10,917 images paired with
12,286 dialogues. Specifically, the dataset is di-
vided into 10,286 instances for training, 1,000 for
validation, and another 1,000 for testing. Each im-
age in the dataset is accompanied by an associated
object list presented in textual form. In each data
instance, one photo is shared within the context of
the conversation.

Given that this task can be formulated as an im-
age retrieval task, we employed Recall@k (R@k)
as our evaluation metric. During the training phase,
we select the final model based on the highest
avg(R@1, R@5, R@10) score on the validation

set. In the testing phase, for each dialogue instance,
the trained models retrieved images from the can-
didate photos in the testing set.

4.2 Baselines
We compare our approach against several estab-
lished baselines:

• VSE++: Faghri et al. (2018) incorporated hard
negatives in the ranking loss to learn visual-
semantic embeddings for text-image retrieval.

• SCAN: Lee et al. (2018) utilized stacked cross
attention to align image regions and words in
a sentence and calculate image-text similarity.

• Dual Encoder (DE): Previous work (Parekh
et al., 2021; Zang et al., 2021) employed a
dual encoder architecture, where one encoder
processes the image and its object list us-
ing CLIP ViT-B/32 for images and FFNN
for object features. For the dialogue encoder,
two different text encoders were experimented
with: CLIP ViT-B/32 Text and BERT (Devlin
et al., 2019) with an additional projection to
ensure consistent dimensions. The retrieval
similarity between the image and dialogue en-
codings is measured using dot product.

4.3 Descriptor Variants
In addition to the query-based descriptors, we con-
duct experiments using the following descriptor
variants for in-depth analysis:

• Desc - Diag (whole dialogue as descriptors):
All utterances are concatenated to form the
descriptors, allowing the image retriever to
utilize complete cues within the dialogue.

• Desc - Caption (caption as descriptors): In-
spired by Li et al. (2023), we performed zero-
shot image captioning on images in the train-
ing set using BLIP-2. We then trained a text
generator to create image captions as descrip-
tors based on a given dialogue.

• Desc - Summary (summary as descriptors):
Descriptors are generated by LLMs based on
a dialogue summary, offering a more concise
representation of the conversation.

• Desc - Guessing (visually-focused guessing
as descriptors): LLMs are allowed to specu-
late about the features of the upcoming shared
photo from the dialogue without being con-
strained by a specific query.

• Desc - Queries (visually-focused query de-
scriptors): Utilizing our designed visually-
focused attributes as descriptors.
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Method LLM Zero-Shot Fully-Trained
R@1 R@5 R@10 Avg R@1 R@5 R@10 Avg

VSE++† - - - - - 10.20 25.40 34.20 23.27
SCAN† - - - - - 10.40 27.00 37.10 24.83
DE - Diag (BERT) - - - - - 12.88 35.13 47.75 31.92
DE - Diag (CLIP) - - - - - 14.76 35.78 47.12 32.55
Desc - Diag - 16.00 30.90 37.70 28.20 40.35 58.77 66.88 55.33
Desc - Caption BLIP-2 - - - - 16.68 35.34 45.17 32.40
Desc - Summary LLaMA-2-7B-Chat 22.90 40.10 47.60 36.87 42.81 62.42 71.35 58.86
Desc - Summary LLaMA-2-13B-Chat 24.40 40.50 48.30 37.73 44.17 64.23 72.66 60.35
Desc - Guessing LLaMA-2-7B-Chat 27.60 47.80 58.10 44.50 42.55 64.22 72.29 59.69
Desc - Guessing LLaMA-2-13B-Chat 29.30 51.30 59.80 46.80 43.18 65.45 73.43 60.69
Desc - Queries LLaMA-2-7B-Chat 22.60 42.20 50.40 38.40 37.34 57.52 66.62 53.83
Desc - Queries LLaMA-2-13B-Chat 26.40 45.80 55.10 42.43 44.00 64.78 73.95 60.91

Table 3: Retrieval performance for zero-shot and fully-trained settings (%). We employ the LLM with greedy
decoding to ensure the correct format and reasoning capability. Each number is the average over 10 runs with
different random seeds. †denotes that we directly report the numbers from Zang et al. (2021).

4.4 Results

Table 3 provides a comprehensive overview of the
results for both zero-shot and fully-trained settings
on PhotoChat dataset. In zero-shot scenarios, Desc
- Guessing emerges as the top-performing method
among all results. Notably, Desc - Queries outper-
forms Desc - Summary, indicating that visually-
focused queries and guessing contribute valuable
information for linking the desired images. We hy-
pothesize that the poor performance of Desc - Sum-
mary is because the LLM summarize all content of
the dialogue, rather than focusing solely on the vi-
sual information. Consequently, Desc - Summary
often includes sentences that do not aid in text-to-
image retrieval. As for why Desc - Queries did not
perform better than Desc - Guessing, we hypothe-
size that it is because we construct our descriptors
using the templates from 3.1. These sentences tend
to be less fluent and are not the types of sentences
CLIP was familiar with during pre-training stage.
In contrast, Desc - Guessing generates more flu-
ent descriptors without any constraints, making
them closer to the sentences seen by CLIP during
pre-training stage. This gives Desc - Guessing an
advantage in zero-shot scenarios.

In the fully-trained setting, the descriptor-based
results (Desc - Summary, Desc - Guessing, Desc -
Queries) with LLaMA-2-13B-Chat exhibit similar
performance, with Desc - Queries achieving the
highest average performance. These results vali-
date the effectiveness of our proposed approach,
demonstrating that the generated visual descriptors
successfully facilitate the connection between asso-
ciated images through the LLM’s understanding of
dialogue. Additionally, it is evident that LLaMA-

Ensemble R@1 R@5 R@10 Avg
S + G 47.32 69.62 77.63 64.86
S + Q 47.78 68.81 77.61 64.73
G + Q 47.44 68.90 77.15 64.50
S + G + Q 48.79 70.01 78.44 65.75
S + G + Q + C 48.84 70.20 78.74 65.93

Table 4: Ensemble results of fully-trained retrievers
with LLaMA-2-13B-Chat as the LLM (%). (S: Sum-
mary; G: Guessing; Q: Queries; C: Caption).

2-13B-Chat outperforms LLaMA-2-7B-Chat due
to its stronger reasoning abilities for understand-
ing dialogues. When compared to the fully-trained
baselines, our proposed descriptor-based methods
achieve superior performance even in zero-shot
settings, establishing a new state-of-the-art perfor-
mance achieved by a single model.

4.5 Ensemble

We further conduct experiments on ensemble learn-
ing using all descriptor-based results based on the
validation set. The results in Table 4 demonstrate
that ensemble learning consistently improves per-
formance. Even in cases where the caption model
performs poorly in a fully-trained setting, ensem-
ble learning benefits other models. These findings
highlight the efficacy of combining various types
of descriptors, leading to the best overall perfor-
mance and establishing a new state-of-the-art for
PhotoChat. This suggests that the generated de-
scriptors focus on diverse patterns that can comple-
ment each other and enhance scores.
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Method Score R@1 R@5 R@10 Avg

Desc - Summary
Scene-Aligned (Text-Only) 35.07 49.37 57.66 47.37
Vision-Aligned (Multimodal) 29.37 53.18 62.49 48.35

Desc - Guessing
Scene-Aligned (Text-Only) 35.82 50.58 58.30 48.23
Vision-Aligned (Multimodal) 28.41 53.78 63.90 48.70

Desc - Queries
Scene-Aligned (Text-Only) 35.53 50.64 58.68 48.28
Vision-Aligned (Multimodal) 29.16 54.28 64.17 49.20

Table 5: The results of the model trained using either scene-aligned or vision-aligned scores.

Figure 2: Results of different λ in zero-shot scenarios. A
smaller λ indicates greater reliance on the scene-aligned
score, while a larger λ indicates greater reliance on the
vision-aligned score.

5 Analysis

5.1 Effectiveness of Two Alignment Scores
Our proposed method incorporates two scores:
scene-aligned (text-only) and vision-aligned (multi-
modal) scores. We conduct an ablation study to as-
sess the impact of each score. Table 5 presents the
experimental results. The results show that models
trained solely on the scene-aligned score (text-only)
perform better in terms of R@1, whereas models
trained on the vision-aligned score (multimodal)
perform better for R@5 and R@10.

In addition, we conducted experiments with dif-
ferent weighting parameter λ in (2). Figure 2 illus-
trates the results obtained for various λ values in
the zero-shot scenarios. It can be observed that the
best performance is achieved when λ approaches
1. This indicates that excessive bias towards ei-
ther the scene-aligned score or the vision-aligned
score leads to a decrease in performance. Interest-
ingly, our findings reveal that the optimal zero-shot
performance occurs at λ = 1.2.

5.2 Object Detection Sensitivity
Given our experimental assumption of having avail-
able object lists for the images, a degradation in
system performance may occur when object detec-
tion is poor. Consequently, we explored the sensi-

Error Rate Type R@1 R@5 R@10 Avg

0% - 26.40 45.80 55.10 42.43
missing 24.75 43.85 53.45 40.68

15% incorrect 22.04 39.99 49.01 37.01
both 23.29 42.13 50.74 38.72
missing 23.05 42.17 51.50 38.91

25% incorrect 19.93 37.41 45.59 34.31
both 21.82 39.92 48.42 36.72
missing 21.91 40.61 49.89 37.74

35% incorrect 17.24 33.87 41.66 30.92
both 19.25 36.98 45.33 33.85

100% missing 19.80 38.50 46.60 34.97

Table 6: Sensitivity of diverse object error rates of
LLaMA-2-13B-Chat in zero-shot settings. Both denotes
the random removal or replacement of objects. 100%
missing means that we use only the vision-aligned score
for retrieval. The italicized fonts indicate scores lower
than vision-aligned only results.

tivity of error propagation in our proposed method
by simulating various error rates in detected ob-
jects. Specifically, we randomly removed objects
from the gold object list or substituted them with
others from the training set to simulate scenarios
of “missing” or “incorrect” objects. As shown in
Table 6, it is evident that with increasing error rates,
regardless of the error type, performance tends to
degrade. This suggests that our method is still influ-
enced by error propagation. Moreover, the impact
of incorrect objects is particularly severe since they
may mislead the model in image selection. Nev-
ertheless, even with a 35% error rate, our results
outperform relying solely on the vision-aligned
score, indicating a relative robustness to missing
objects. Therefore, precision in object detection
during object list extraction is more important for
our proposed approach.

5.3 Visually-Focused Query Impact

To assess the influence of different visually-focused
queries on our results, we conducted experiments
by systematically removing individual queries from
the original query set (see Table 7). Remarkably,
the query concerning the main subject emerges as
the most pivotal feature for bridging the dialogue
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Method R@1 R@5 R@10 Avg
Original 44.00 64.78 73.95 60.91
- main subject 28.80 49.16 58.41 45.56
- foreground objects 40.44 61.62 70.49 57.52
- background scene 43.65 64.05 72.88 60.19
- events 42.91 64.00 72.78 59.90
- materials & attributes 43.22 64.60 73.59 60.47
+ atmosphere or mood 43.67 64.89 73.85 60.80
+ lighting 44.13 64.95 73.93 61.00

Table 7: The results of different queries. All additions
and removals are based on the original query set.

Method VisDial MMDialog
Koh et al. (2023) 40.57 -
Desc - Diag 22.53 32.47
Desc - Summary 35.77 19.03
Desc - Guessing 49.29 36.93
Desc - Queries 44.45 36.40
Desc - Queries (all) 43.80 38.27

Table 8: Average zero-shot performance on VisDial
and MMDialog (%).

context and the target image, as its removal leads
to a significant decrease in scores. Following in
descending order of impact are the queries related
to foreground objects, events, background scene,
and materials and attributes.

Additionally, we augmented the original query
set with two common photo features: atmosphere
or mood and lighting.

• Atmosphere or mood: Research by Sun et al.
(2022) suggests that photographs convey not
only object details but also emotions and am-
biance, evoking feelings like happiness, bore-
dom, and coziness.

• Lighting: As highlighted by Hunter et al.
(2021), the presence and quality of light
are fundamental in photographic composi-
tion. Our investigation explores whether an
LLM can accurately predict lighting condi-
tions within a photo solely based on dialogue
context and whether this predictive informa-
tion enhances text-image retrieval capabilities.

Results indicate that atmosphere or mood improves
performance at R@5, while lighting enhances re-
sults at both R@1 and R@5 compared to the orig-
inal set. This suggests that these abstract and
challenging-to-predict queries have varying im-
pacts on performance.

5.4 Generalization to Other Datasets

To explore the generalizability of our approach,
we conducted experiments on other benchmark

datasets, VisDial (Das et al., 2017) and MMDi-
alog (Feng et al., 2023), with identical settings.

• VisDial (Das et al., 2017): Each instance in
VisDial comprises a single image from the
COCO dataset (Lin et al., 2014) and a dia-
logue context consisting of question-answer
pairs. During testing, the model’s task is to re-
trieve the correct image from a pool of 2,064
images in the testing set.

• MMDialog (Feng et al., 2023): This dataset
comprises multimodal open-domain dialogues
gathered from a global social media platform.
Instances in the testing set are linked with 999
corresponding negative images. MMDialog
uniquely allows dialogue context to contain
both text and images. In our experiments,
we employed BLIP2 (Li et al., 2023) for im-
age captioning within the dialogue context.
These resulting captions replaced the images,
enabling textual dialogue context input into
the LLM. Our experiments were conducted
on a random sample of 1,000 instances from
the testing set.

The average performance of LLaMA-2-13B-Chat
in zero-shot scenarios across different datasets is
summarized in Table 8, with detailed scores avail-
able in Appendix B. Our findings indicate that our
proposed approach consistently outperforms Desc
- Diag baseline and even recent work (Koh et al.,
2023), showcasing its robust generalization capa-
bility across diverse datasets.

5.5 Qualitative Study
To further explore the quality of our generated
descriptors, we conducted a qualitative analysis
across various models and descriptors. We present
an example of a testing dialogue using different
LLMs and descriptor generation methods in Table
9. A comparison between LLaMA-2-7B-Chat and
LLaMA-2-13B-Chat in the Desc - Queries domain
revealed that LLaMA-2-7B-Chat often delivers in-
accurate or unrelated answers (highlighted in red).
In contrast, LLaMA-2-13B-Chat tends to produce
more precise answers and demonstrates an ability
to infer information not explicitly present in the
dialogue context (e.g., medieval architecture). This
discrepancy is likely attributable to differences in
reasoning capabilities between the two models.

Both Desc - Summary and Desc - Guessing
can accurately describe the features of the photos.
However, Desc - Summary occasionally incorpo-
rates additional details not directly related to the
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Dialogue Context Ground-Truth Photo
B: whats up
A: Hanging out with my student Maren
B: Oh thats cool
B: how was it ?
A: Great. We are sightseeing castles
B: That sounds really cool actually
B: took any pictures of it?
A: Yes
B: Show me it I wanna see
A: sure
A: (share a photo)

LLaMA-2-7B-Chat

Desc - Queries Desc - Summary Desc - Guessing
The main subject of the photo is a pic-
ture of a castle. The prominent ob-
jects in the foreground of the photo is
Maren and A. The background scene of
the photo is a beautiful landscape with
rolling hills and a blue sky. The events
of the photo is sightseeing. The ma-
terials and attributes of the photo is a
camera and a smartphone

A is a teacher who is spending time with
their student Maren. They are sightsee-
ing castles and took pictures of them. A
is willing to show the pictures to B.

It is likely that A shared a photograph
of a castle that they and Maren visited
during their sightseeing trip. The pho-
tograph may show the exterior or inte-
rior of the castle, or a specific feature
or detail of the castle that caught A’s
attention.

LLaMA-2-13B-Chat

Desc - Queries Desc - Summary Desc - Guessing
The main subject of the photo is Maren.
The prominent objects in the foreground
of the photo are castles. The back-
ground scene of the photo is countryside.
The events of the photo are sightseeing.
The materials and attributes of the photo
are medieval architecture.

A is a teacher or mentor figure, as they
are referred to as "my student Maren"
A and Maren are currently sightseeing
castles together A has taken pictures of
the castles they have visited A is willing
to share these pictures with B

A shared a photograph of a castle that
they visited with their student Maren.
The photograph is likely to be a scenic
view of the castle, showcasing its archi-
tecture and surroundings. The photo-
graph may include Maren in the frame,
possibly posing in front of the castle or
looking out at the view.

Table 9: Red text represents incorrect information. Orange text represents redundant sentences that do not aid in the
text-to-image retrieval task.

photos, such as “A is willing to share these pic-
tures with B,” likely because we instructed the LLM
to summarize information about the users sharing
the photo rather than solely focusing on the photo-
related information. Our analysis suggests that our
visually-focused approaches are particularly effec-
tive for this task, especially when coupled with the
powerful reasoning capabilities of LLMs.

6 Conclusion

This paper presents a novel approach to enable
multimodal dialogue systems for seamless photo
sharing. By harnessing the reasoning capabili-
ties of LLMs, our method generates precise visual
cues from ongoing dialogue contexts. Addressing
challenges encountered in prior methods, such as
accurately understanding extensive dialogue con-
texts and handling input length constraints, our
approach exhibits clear superiority in experimental
results. Additionally, our comprehensive ablation
study confirms the effectiveness of text-only vi-

sual descriptors, indicating a promising pathway
for bridging intricate dialogues and images through
deep dialogue understanding via LLMs. This work
not only advances photo sharing within dialogues
but also lays groundwork for future sophisticated
multimodal dialogue systems.

Limitations

Our method assumes the availability of object de-
tection capabilities during pre-processing to extract
object lists associated with the images. This re-
liance on object detectors may limit the method’s
applicability in scenarios where object detection is
challenging or unavailable, potentially affecting its
performance.

Lastly, our method assumes that the shared im-
ages align with the given dialogue context. In cases
where users share images that are intentionally mis-
leading, unrelated to the conversation, or dependent
on users’ personal information, our method may
struggle to retrieve appropriate images, leading to
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potential accuracy issues in such scenarios.
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A Prompts

The designed prompts for all descriptor-based ap-
proaches are shown as follows.

A.1 Desc - Summary

Please read the following dialogue context:
<dialogue_context>

Based on the dialogue context, please
summarize the information of speaker A.

Answers:

A.2 Desc - Guessing

Please read the following dialogue context:
<dialogue_context>

Based on the dialogue context, please describe
the photograph shared by speaker A.

Answers:
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Method VisDial MMDialog
R@1 R@5 R@10 Avg R@1 R@5 R@10 Avg

FROMAGe (Koh et al., 2023) 20.8 44.9 56.0 40.57 - - - -
Desc - Diag 11.00 24.03 32.56 22.53 22.10 34.30 41.00 32.47
Desc - Summary 19.43 39.05 48.84 35.77 14.60 20.00 22.50 19.03
Desc - Guessing 29.46 53.73 64.68 49.29 31.30 37.30 42.20 36.93
Desc - Queries 24.52 49.13 59.69 44.45 30.90 37.50 40.80 36.40
Desc - Queries (all) 24.3 47.34 59.74 43.80 31.10 40.60 43.10 38.27

Table 10: Retrieval performance for zero-shot on VisDial and MMDialog datasets (%). Desc-Queries (all)
include the original five queries along with actions, atmosphere, or mood, and lighting queries We employ the
LLaMA-2-13B-Chat with greedy decoding to ensure the correct format and reasoning capability.

A.3 Desc - Queries

Please read the following dialogue context:
<dialogue_context>

Based on the dialogue context, please describe
the photograph shared by speaker A.
List the answer in JSON format.
- main subject: {simply list the answer by ','}
- prominent objects in the foreground: {simply
list the answer by ','}
- background scene: {one background scene}
- events: {simply list the answer by ','}
- materials and attributes: {simply list the
answer by ','}

Answers:

B Detailed Results for Other Datasets

Table 10 presents detailed scores on the VisDial and
MMDialog datasets using LLaMA-2-13B-Chat in
zero-shot scenarios. It is worth noting that we sam-
pled 1,000 instances from the MMDialog testing
data for our experiments, limiting direct compari-
son with previous work due to the discrepancy of
testing sets.
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