
Findings of the Association for Computational Linguistics: ACL 2024, pages 11743–11776
August 11-16, 2024 ©2024 Association for Computational Linguistics

SCALEARN: Simple and Highly Parameter-Efficient Task Transfer
by Learning to Scale

Markus Frohmann1,2 Carolin Holtermann3 Shahed Masoudian1,2

Anne Lauscher3 Navid Rekabsaz4

1 Johannes Kepler University Linz, 2 Linz Institute of Technology, AI Lab
3 Data Science Group, Universität Hamburg
4 Thomson Reuters Labs, Zug, Switzerland

{markus.frohmann, shahed.masoudian}@jku.at, {carolin.holtermann, anne.lauscher}@uni-hamburg.de

navid.rekabsaz@thomsonreuters.com

Abstract

Multi-task learning (MTL) has shown consider-
able practical benefits, particularly when using
language models (LMs). While this is com-
monly achieved by learning n tasks under a
joint optimization procedure, some methods,
such as AdapterFusion, divide the problem into
two stages: (i) task learning, where knowledge
specific to a task is encapsulated within sets
of parameters (e.g., adapters), and (ii) trans-
fer, where this already learned knowledge is
leveraged for a target task. This separation
of concerns provides numerous benefits (e.g.,
promoting reusability). However, current two-
stage MTL introduces a substantial number
of additional parameters. We address this is-
sue by leveraging the usefulness of linearly
scaling the output representations of source
adapters for transfer learning. We introduce
SCALEARN, a simple and highly parameter-
efficient two-stage MTL method that capital-
izes on the knowledge of the source tasks by
learning a minimal set of scaling parameters
that enable effective transfer to a target task.
Our experiments on three benchmarks (GLUE,
SuperGLUE, and HumSet) and two encoder
LMs show that SCALEARN consistently out-
performs strong baselines with a small number
of transfer parameters (∼ 0.35% of those of
AdapterFusion). Remarkably, we observe that
SCALEARN maintains its strong abilities even
when further reducing parameters, achieving
competitive results with only 8 transfer param-
eters per target task. Our proposed approach
thus demonstrates the power of simple scaling
as a promise for more efficient task transfer.1

1 Introduction

With the wide availability of pre-trained language
models (LMs) as the backbone of language process-
ing, multi-task learning (MTL) has shown signifi-
cant benefits, especially for tasks with possible con-

1Our code is available at https://github.com/CPJKU/
ScaLearn.

ceptual commonalities (Ruder, 2017; Zhang and
Yang, 2022; Raffel et al., 2020). The traditional
paradigm in MTL is to formulate a joint optimiza-
tion objective based on a set of tasks and train a
single model to simultaneously learn and transfer
the knowledge relevant to the tasks. This joint MTL
approach can be realized by fine-tuning an LM (Liu
et al., 2019a; Stickland and Murray, 2019), or, more
recently, by using parameter-efficient, often modu-
larized, MTL approaches (Mahabadi et al., 2021b;
Zeng et al., 2023; Pilault et al., 2021; Asai et al.,
2022; Ponti et al., 2023; Caccia et al., 2022).

As an alternative to the joint MTL paradigm,
some works, such as ADAPTERFUSION (Pfeiffer
et al., 2021), clearly distinguish task training from
transfer learning, assigning dedicated parameters to
each of these aspects. In this paradigm, referred to
as two-stage MTL, first each source task is trained
separately and stored into a separate module like
an adapter (Houlsby et al., 2019), and then a task
transfer layer is trained for a given target task using
information from an arbitrary set of source tasks.
This separation of concerns between task and trans-
fer learning offers valuable benefits: (1) Learning
a separate transfer layer for each target task in a
two-stage MTL approach reduces the potentially
destructive effects of transfer learning on specific
tasks, as the transfer layer parameters correspond-
ing to each target task can independently decide
what information should be used from the avail-
able source tasks. As shown in our experiments
with encoder LMs, this supports the effectiveness
of transfer learning, making it less sensitive to task
selection. (2) Since the source tasks can simply be
taken from already trained modules (no need for re-
training), two-stage approaches promote reusabil-
ity – a principle of Green AI (Scells et al., 2022;
Schwartz et al., 2020). Further, they provide a
practical solution to cases involving issues such
as data privacy and/or fairness constraints, as a
pre-trained module can readily provide the (e.g.,

11743

https://github.com/CPJKU/ScaLearn
https://github.com/CPJKU/ScaLearn

10 6 10 4 10 2 100 102

83.0

83.5

84.0

84.5

85.0

85.5
Av

g.
 M

et
ric

FineTune

GLUE

10 6 10 4 10 2 100 102
70

71

72

73

74

75

76

FineTune

STL}
Joint
 M

TL}

Two-Stage
 M

TL}

SuperGLUE Adapter
ProPETL
Compacter++
(IA)3

LoRA

FineTune-m
Adapter-m
ProPETL-m
HyperFormer
HyperFormer++

AdapterFusion
ScaLearn
ScaLearnUniform
ScaLearn++
ScaLearnUniform++

% of parameters updated

Figure 1: Performance and parameter-efficiency of single task learning (STL), and joint/two-stage MTL methods,
evaluated on GLUE (Wang et al., 2019b) and SuperGLUE (Wang et al., 2019a) using RoBERTaBASE (Liu et al.,
2019b). The reported values for the two-stage MTL methods only consider the ones in the respective transfer layers.
The full details of the learnable parameters and performance results are provided in §5.

already debiased) functionality of the source task
even without the need to have access to its training
data (Lauscher et al., 2021; Kumar et al., 2023).

Despite these benefits, current two-stage MTL
solutions introduce significantly more learnable
parameters compared to recent joint MTL ones,
exacerbated by the linear increase in the number
of parameters with the number of target tasks. In
our experiment setup with eight target tasks using
RoBERTaBASE (Liu et al., 2019b), ADAPTERFU-
SION introduces ∼134% new parameters for trans-
fer learning, while HYPERFORMER++ (Mahabadi
et al., 2021b) conducts joint MTL by adding ∼4%
(≈ 5M) trainable parameters (details in Table 1
and §5). This high number of parameters is in stark
contrast to the promise of Green AI given by the
modularized nature of two-stage MTL.

Contributions. We build on insights gained from
analyzing the effects of scaling the output represen-
tations of adapters, and introduce SCALEARN, a
novel two-stage MTL method that learns to trans-
fer the knowledge of the source adapters using a
small set of scaling parameters. For a given target
task, SCALEARN introduces parameters that scale
the output representation of each source adapter
and combine the resulting scaled representations
by simply taking the element-wise sum. This ap-
proach results in high parameter-efficiency, such
that – following the mentioned experiment set-
ting – SCALEARN only adds ∼ 0.47% (≈ 0.5M)
parameters. We further introduce an even more
parameter-efficient variant via uniform scaling
(SCALEARNUNIFORM), where each scaling vector

is reduced to a single scaling parameter. Finally, by
sharing parameters across layers, we achieve our
most efficient variation (SCALEARNUNIFORM++),
only containing 64 parameters for transfer learning.

We conduct a large set of transfer learning exper-
iments on the GLUE (Wang et al., 2019b), Super-
GLUE (Wang et al., 2019a), and HumSet (Fekih
et al., 2022) benchmarks using encoder LMs,
namely the popular RoBERTa (Liu et al., 2019b)
and XLM-R (Conneau et al., 2020) models, both
in their base and large configurations.

Figure 1 summarizes our results on GLUE and
SuperGLUE, showing that SCALEARN, while pro-
viding high efficiency and the benefits of the two-
stage MTL paradigm, consistently outperforms the
baselines. The overall performance of SCALEARN

remains highly competitive in its more parameter-
efficient variations. Our results also show the ad-
vantage of two-stage models in avoiding destruc-
tive effects during transfer learning. Overall, with
SCALEARN we leverage the power of scaling as a
viable, non-destructive, simple-to-implement, and
highly parameter-efficient solution to the current
shortcomings of existing MTL methods, paving the
future for more effective and efficient task transfer.

2 Background

In task transfer learning, we consider a pre-trained
LM as well as two sets S and T , representing the
source and target tasks, respectively. The aim of
MTL is to leverage the information of tasks in S to
improve the generalization on tasks in T .

Single Task Learning (STL). In this basic set-

11744

ting, a separate set of parameters is optimized
on each task (S = T) without any knowledge
transfer between tasks. STL can be done by fine-
tuning the LM parameters or by introducing more
parameter-efficient modules into the model, such
as adapter modules (Pfeiffer adapters (Houlsby
et al., 2019; Pfeiffer et al., 2021), PROPETL (Zeng
et al., 2023), or COMPACTER++ (Mahabadi et al.,
2021a)), (IA)3 (Liu et al., 2022), prefix-tuning (Li
and Liang, 2021), or LoRA (Hu et al., 2022), each
with Θs parameters for each task s.

Joint MTL. This approach is commonly done by
having a unified model for all tasks (S = T),
and a joint optimization objective that simultane-
ously optimizes the model using samples from all
tasks (Ruder, 2017). The general joint MTL ob-
jective can be formulated as Ljoint =

∑|S|
s=1 αsLs,

where αs is the sampling weight of task s. This
optimization objective can be used to fine-tune the
parameters of an LM (Liu et al., 2019a; Stickland
and Murray, 2019; Raffel et al., 2020), or those of a
modularized architecture (Mahabadi et al., 2021b;
Pilault et al., 2021; Ponti et al., 2023). Despite the
benefit of having one unified model, the joint loss
often causes tasks to compete with each other for
learning capacity, leading to the task interference
problem (Xin et al., 2022; McCloskey and Cohen,
1989; Kirkpatrick et al., 2017). This makes the
joint MTL paradigm particularly sensitive to the
selection of tasks (Xin et al., 2022), while various
methods in the literature have aimed to address
this issue (e.g., Kendall et al. (2018); Pilault et al.
(2021); a brief review is provided in § 6).

Two-stage MTL. In contrast to joint MTL, two-
stage MTL methods optimize each target task in-
dependently, bypassing the issue of task interfer-
ence (Pfeiffer et al., 2021). Similarly to STL, a
parameter-efficient module is first learned for each
source task s with parameters Θs. In principle, two-
stage MTL methods can simply use already pre-
trained modules (such as adapters), saving the costs
of re-training modules on each task. This facili-
tates the re-use of existing parameter-efficient mod-
ules for each source task,2 which may vary in per-
formance and/or take into account additional con-
straints such as fairness and bias mitigation (Pfeif-
fer et al., 2023; Kumar et al., 2023; Lauscher et al.,
2021). Moreover, it also removes the need for ac-
cessing the training data of the source tasks (e.g.,

2E.g., through sharing platforms such as AdapterHub
(https://adapterhub.ml/) (Pfeiffer et al., 2020).

due to data privacy) so far as the source task’s func-
tionality is solely provided via parameter-efficient
modules. Next, given |S| (pre-trained and frozen)
source task modules, two-stage MTL methods de-
fine and optimize a transfer layer for each target
task to leverage the knowledge of source tasks to
solve the target task. This stage introduces Ωt new
parameters for each target task t.

ADAPTERFUSION (Pfeiffer et al., 2021) intro-
duces an implementation of the two-stage approach
with strong performance (Pfeiffer et al., 2023). It
uses an attention mechanism as its transfer layer, in-
serted into each LM layer after the source adapters.
More specifically, given the output vector of each
source adapter s in each layer l, referred to as ol

s,
the attention layer (with target task t as query and
source tasks S as keys and values) learns to assign
a weight ωl

s to each source task. The final output
of the target task t in this layer is calculated as:

ol
t =

|S|∑

s=1

ωl
so

l
s, where

|S|∑

s=1

ωl
s = 1 (1)

Regardless of how the weights are calculated,
the method can be seen as a weighted summation
of source output vectors, where the weights form a
categorical probability distribution.

3 SCALEARN – Learning to Scale for
Knowledge Transfer

To understand the effect of scaling the output repre-
sentations of adapters, we conducted initial experi-
ments on scaling them, both in isolation and when
combining two of them. In these experiments, we
observed that (1) scaling output vectors is an ef-
fective method for controlling the (partial or full)
activation of the knowledge contained in an adapter
module; (2) an optimal configuration of the scaling
parameter will, in many cases, lead to superior re-
sults on the target task; (3) the optimal weights do
not necessarily sum up to 1. These findings stand
in contrast to the established practice of forcing the
coefficients to sum up to 1 (e.g., as in ADAPTERFU-
SION; cf. Equation 1). We provide comprehensive
results and analyses in Appendix A.2. Overall,
these observations provide strong motivation for
a method to combine representations from several
adapters by scaling their output representations.

Based on that, we present SCALEARN, a novel
two-stage transfer learning method to combine the

11745

https://adapterhub.ml/

knowledge of source adapters by scaling their out-
put representations. Our core contribution regards
the transfer layer, built on the output of the tasks’
modular networks. Similar to Pfeiffer et al. (2021),
we utilize adapter modules for the task learning
layer. In particular, the output representation of
the adapter of source task s at layer l is defined as:
ol
s = U l

s(ReLU(Dl
s(x

l
s))) + xl

s, where xl
s is the

input vector, and U l
s and Dl

s denote the up- and
down-projection parameter matrices, respectively.

Our introduced SCALEARN linearly scales and
combines the output representations of source
adapters, ol

1, . . . ,o
l
|S|, to achieve the objective of

target task t.
We define two variations of the scaling opera-

tion: non-uniform which applies a scaling vector
to each output vector using the element-wise prod-
uct (SCALEARN), and the more parameter-efficient
uniform that scales each vector only with a scalar
parameter (SCALEARNUNIFORM). These varia-
tions are formulated below:

SCALEARN : ol
t =

|S|∑

s=1

ωl
s ⊙ ol

s

SCALEARNUNIFORM : ol
t =

|S|∑

s=1

ωl
so

l
s,

(2)

where ⊙ denotes the Hadamard product, and
ωl
s and ωl

s are learnable vector and scalar pa-
rameters, respectively. Inspired by previous stud-
ies (Mahabadi et al., 2021a; Zeng et al., 2023; Bai
et al., 2022; Goldberg, 2019), we further increase
parameter-efficiency by learning shared scaling pa-
rameters among all layers, formulated as follows:

SCALEARN++ : ol
t =

|S|∑

s=1

ωs ⊙ ol
s

SCALEARNUNIFORM++ : ol
t =

|S|∑

s=1

ωso
l
s,

(3)
where, similarly, ωs and ωs are learnable vec-

tor and scalar parameters, but shared among all
layers. In all the mentioned methods, to optimize
the transfer parameters Ω, we use gradient descent
as an easy-to-implement and straightforward so-
lution. On the basis of our experiments, we find
that our approach provides highly competitive re-
sults on a wide range of tasks (cf. § 5). Fur-
thermore, SCALEARN models do not force any

distributional properties on the ω values, as com-
monly imposed in previous work (Pfeiffer et al.,
2021; Chronopoulou et al., 2023; Xin et al., 2022)
through functions such as softmax and average.

Parameter-efficiency of SCALEARN. To have
a clear view of the parameter-efficiency of the
models, we continue by analyzing the number of
learnable parameters in the transfer layer. The
SCALEARN variant introduces d×L×|S| trans-
fer parameters for a single target task, where d
is the embedding size and L denotes the num-
ber of layers. The total number of parameters
for all target tasks then becomes d×L×|S|×|T |.
Moving to SCALEARNUNIFORM, this number re-
duces to L×|S|×|T |. The SCALEARN++ spares
the L term and has d×|S|×|T | transfer parame-
ters. Finally, the most parameter-efficient variant
SCALEARNUNIFORM++ only adds |S|×|T | pa-
rameters. For each task, new task head parameters
are learned jointly with the transfer parameters.

For comparison, the number of transfer parame-
ters of ADAPTERFUSION is 3×d2×L×|T | (discard-
ing bias and task head parameters), corresponding
to the query, key, and value matrices of the attention
mechanism. Comparing the formulas, we observe
that our methods are far more parameter-efficient,
since in practice |S| ≪ d, and hence the d×L term
in SCALEARN becomes much smaller than d2 in
ADAPTERFUSION. Compared to the joint MTL
paradigm, despite the linear increase of parameters
with |T |, our SCALEARN * models still provide
high parameter-efficiency. This stems from the fact
that |T | ≪ d, and hence reducing the effect of d –
which is fully eliminated in the uniform variants –
leaves a stronger impact on parameter-efficiency.

4 Experiment Setup

Tasks and datasets. We conduct our experiments
on the GLUE and SuperGLUE benchmarks, respec-
tively, each consisting of 8 tasks, as well as on the
HumSet benchmark (Fekih et al., 2022). HumSet
is a multilingual classification dataset for humani-
tarian crisis response that consists of 5 tasks. Ad-
ditionally, we use a combination of all GLUE and
SuperGLUE tasks resulting in 15 datasets3. It has
been shown that tasks from GLUE and SuperGLUE
particularly benefit from multi-task learning, given
their partially overlapping task formulations and
highly varying dataset sizes (Devlin et al., 2019;

3The RTE task is contained in GLUE and SuperGLUE.

11746

Type Model Parameters
(one task)

Parameters
(all tasks)

STL

FINETUNE 100.00% (125M) 800.00% (125M)
ADAPTER 0.72% (895K) 5.74% (7M)
PROPETL 0.77% (959K) 6.16% (8M)
COMPACTER++ 0.02% (29K) 0.19% (235K)
(IA)3 0.05% (57K) 0.37% (455K)
LORA 0.93% (1.2M) 7.50% (9.4M)

Joint
MTL

FINETUNE-M - 100.00% (125M)
ADAPTER-M - 0.72% (895K)
PROPETL-M - 1.24% (1.5M)
HYPERFORMER - 47.67% (59M)
HYPERFORMER++ - 4.09% (5M)

Transfer (Ωt)
(target task t)

Transfer (Ω)
(all target tasks)

Two-
Stage
MTL

ADAPTERFUSION 17.05% (21M) 136.40% (170M)
SCALEARN 0.06% (74K) 0.47% (590K)
SCALEARNUNIFORM 0.00% (96) 0.00% (768)
SCALEARN++ 0.00% (6K) 0.04% (49K)
SCALEARNUNIFORM++ 0.00% (8) 0.00% (64)

Table 1: Percentage and trainable parameters per model
(excluding task head parameters) when training on 8
tasks (as in GLUE/SuperGLUE) using RoBERTaBASE.

Stickland and Murray, 2019; Asai et al., 2022;
Wang et al., 2023). Complete details regarding
the benchmarks including their train/validation/test
splits are provided in Appendix A.1.

LM backbones. We use the encoder LMs
RoBERTaBASE and RoBERTaLARGE (Liu et al.,
2019b) on GLUE and SuperGLUE. For the experi-
ments on HumSet, following Fekih et al. (2022) we
utilize the commonly used multilingual encoder
LMs XLM-RBASE and XLM-RLARGE (Conneau
et al., 2020) as it consists of multiple languages.

We put our focus on encoder LMs since they
have been studied extensively and are still widely
used for a variety of tasks, e.g., representation
learning (Kusupati et al., 2022; Zhao et al., 2022;
Xiao et al., 2023), sentence segmentation (Minix-
hofer et al., 2023), and as language encoder as part
of multi-modal architectures (Saharia et al., 2022;
Singh et al., 2022; Liu et al., 2023), inter alia, espe-
cially in real-time use cases due to their efficiency
and comparatively low computational demands.

Models and baselines. We conduct experiments
on four variants of our model, namely SCALEARN,
SCALEARNUNIFORM, SCALEARN++, and
SCALEARNUNIFORM++. As a direct baseline,
we compare our models with ADAPTERFUSION,
a common two-stage MTL method that shares sim-
ilar conceptual properties. We also compare our
models with ADAPTERSOUP (Chronopoulou et al.,
2023), performing weight-space averaging over
adapter weights of the 5 most similar tasks accord-
ing to their sentence similarity, adapted to our setup

(cf. Appendix A.1). In all two-stage MTL methods,
source and target tasks are the same, containing
the tasks of the underlying benchmark. For each
target task, they learn a transfer layer (except for
ADAPTERSOUP) and a new task head.

We also select a set of strong STL base-
lines: FINETUNE, fully fine-tuning the LM,
ADAPTER (Houlsby et al., 2019) learning an
adapter module for each task, PROPETL (Zeng
et al., 2023) a more memory-efficient variation
based on parameter sparsification and COM-
PACTER++ (Mahabadi et al., 2021a) a highly
parameter-efficient variation using parameter-
sharing between layers. In addition, we train
(IA)3 (Liu et al., 2022), learning scaling vectors
applied to the key and value matrices and interme-
diate activations in the LM’s feed-forward layer,
and LORA (Hu et al., 2022), learning low-rank
updates to the model’s weight matrices.

Furthermore, we conduct experiments on sev-
eral joint MTL baselines, namely FINETUNE-M,
ADAPTER-M, and PROPETL-M, the fully fine-
tuned, adapter-based, and ProPETL-based joint
MTL variants, respectively; and, finally, HYPER-
FORMER and HYPERFORMER++ (Karimi Ma-
habadi et al., 2021). FINETUNE-M updates all
LM parameters, ADAPTER-M adds a single adapter
module shared for all tasks, and PROPETL-M com-
bines sparse layer- and task-specific masks through
a logical OR operation. Based on task-specific em-
beddings, HYPERFORMER and HYPERFORMER++
generate module parameters by a shared hypernet-
work. In all adapter-based models, we use a re-
duction factor of 16, and, following Pfeiffer et al.
(2021), insert the modules after the feed-forward
layer of the LM. Furthermore, to allow a fair com-
parison, we adapt PROPETL-M, HYPERFORMER,
and HYPERFORMER++ to this setting by inserting
the adapters only after each feed-forward block. To
accommodate possible variations in performance,
we train each model on multiple seeds, and report
the mean and standard deviation over multiple runs.

The full details of the experiment setup regard-
ing the benchmarks and their splits, infrastructure,
training, and hyperparameters are provided in § A.1.
To further enable the reproducibility of our results,
our code, including documentation, is available
at https://github.com/CPJKU/ScaLearn under
the MIT license.

11747

https://github.com/CPJKU/ScaLearn

Model MNLI QQP QNLI SST-2 STS-B MRPC RTE CoLA Avg.

FINETUNE 86.610.51 90.320.15 91.780.28 93.330.48 90.530.22 86.941.52 73.472.05 58.464.03 83.930.60
ADAPTER 86.500.33 90.180.11 92.250.19 93.650.71 90.230.41 86.641.07 72.892.54 58.282.50 83.830.48
PROPETL 86.190.25 88.880.48 92.050.80 93.810.72 90.030.35 85.931.22 74.192.03 59.292.07 83.800.42
COMPACTER++ 85.620.42 88.840.70 91.790.39 93.580.34 89.670.54 87.210.61 72.022.21 58.492.58 83.400.45
(IA)3 83.780.88 88.370.20 90.570.38 93.350.30 89.930.30 87.111.14 72.562.23 56.575.39 82.781.36
LORA 86.520.10 89.860.33 92.250.13 94.190.53 90.660.31 87.030.62 70.408.33 57.552.18 83.561.56

FINETUNE-M 84.950.36 89.760.12 90.910.07 92.580.76 86.140.53 83.420.50 80.992.54 49.121.74 82.230.41
ADAPTER-M 86.030.18 89.690.01 91.580.30 93.350.41 88.710.49 86.760.92 80.261.96 51.791.23 83.520.32
PROPETL-M 85.230.45 87.820.16 91.370.52 93.880.44 90.270.22 86.361.82 78.580.90 54.711.12 83.530.31
HYPERFORMER 86.080.46 89.130.23 91.810.07 93.160.99 90.630.32 87.010.87 82.791.68 57.302.21 84.740.39
HYPERFORMER++ 86.380.18 88.810.29 91.990.17 93.270.11 90.800.12 87.831.42 83.750.78 54.053.30 84.610.46

ADAPTERFUSION 86.820.04 90.230.01 92.480.15 93.230.95 90.370.20 88.410.49 79.492.21 59.041.69 85.010.37
ADAPTERSOUP 63.470.37 81.630.23 78.000.20 90.750.24 80.170.18 75.001.18 62.090.64 41.061.68 71.520.59
SCALEARN 86.970.09 90.320.10 92.510.17 93.880.18 90.960.16 87.750.58 82.061.37 58.471.76 85.360.55
SCALEARNUNIFORM 86.930.10 90.380.11 92.530.28 93.580.20 90.080.07 87.570.86 80.071.18 59.041.05 85.020.49
SCALEARN++ 87.060.03 90.040.12 92.031.10 94.150.30 90.620.13 88.210.63 80.871.05 59.820.78 85.350.52
SCALEARNUNIFORM++ 86.980.17 90.380.01 92.530.28 94.110.07 90.180.19 87.430.63 80.040.99 59.450.67 85.140.38

Table 2: Evaluation results on GLUE using RoBERTaBASE. (Top) STL models, only learning a single task at a time.
(Middle) Joint MTL methods, learning all tasks simultaneously. (Bottom) Two-stage MTL methods, composing
the knowledge of several source adapters. The overall best results are underlined, and the best results among the
two-stage MTL models are bold.

Model ReCoRD MultiRC BoolQ WiC WSC COPA CB RTE Avg.

FINETUNE 71.610.84 71.641.15 76.801.34 66.382.08 63.460.00 68.606.74 81.964.33 73.472.05 71.742.32
ADAPTER 79.020.62 72.840.48 76.711.38 65.581.56 63.460.00 70.204.13 84.823.18 72.892.54 73.191.74
PROPETL 80.290.24 73.070.49 76.580.78 66.601.65 63.460.00 70.603.44 84.463.86 74.192.03 73.691.53
COMPACTER++ 77.692.67 70.440.57 75.880.96 66.461.63 63.460.00 68.304.00 87.683.62 72.022.21 72.741.96
(IA)3 75.270.23 70.320.49 76.310.79 67.071.68 63.350.32 69.303.37 87.324.57 72.562.23 72.691.71
LORA 79.600.46 71.960.36 76.580.74 65.141.17 63.460.00 68.204.05 86.433.17 70.408.33 72.722.28

FINETUNE-M 72.210.28 72.110.68 76.393.07 52.191.11 63.460.00 74.333.40 84.520.84 74.857.42 71.262.10
ADAPTER-M 72.430.64 72.460.43 75.322.78 51.991.74 59.942.97 71.673.40 86.311.68 76.531.06 70.831.84
PROPETL-M 73.140.19 72.070.58 73.913.27 50.730.99 59.625.44 74.003.27 82.141.46 73.653.83 69.912.38
HYPERFORMER 65.934.47 33.5433.54 74.011.10 55.491.72 52.8810.58 55.502.50 71.437.14 61.739.03 58.818.76
HYPERFORMER++ 24.508.13 19.4727.53 62.170.00 50.000.00 63.460.00 54.333.30 49.400.84 49.092.56 46.555.30

ADAPTERFUSION 78.820.49 71.791.67 76.720.55 66.571.24 63.460.00 73.104.51 82.322.85 76.032.38 73.601.71
ADAPTERSOUP 64.260.13 33.624.28 68.840.31 58.530.60 63.460.00 52.402.41 70.890.86 57.830.93 58.731.19
SCALEARN 79.520.06 73.220.44 77.270.68 66.351.20 63.460.00 74.802.15 90.892.59 78.882.14 75.551.16
SCALEARNUNIFORM 80.130.38 71.910.60 76.060.41 67.371.22 62.501.27 71.201.23 89.111.97 75.310.90 74.201.00
SCALEARN++ 80.130.09 72.710.57 76.440.53 67.131.24 62.262.28 75.201.93 93.042.14 79.030.95 75.741.22
SCALEARNUNIFORM++ 79.790.14 71.750.38 76.130.52 67.870.89 63.460.00 74.001.70 91.612.53 74.841.58 74.930.97

Table 3: Evaluation results on SuperGLUE using RoBERTaBASE.

5 Results

5.1 Parameter-efficiency analysis

Table 1 provides a comprehensive overview of the
number of learnable parameters of the models in
our experiment setting on GLUE and SuperGLUE:
RoBERTaBASE as the backbone LM, 8 source tasks,
and the same 8 tasks as target tasks (|S|= |T |=8).
Starting from the STL models, the left and right
columns report the number of trainable parameters
for one and all tasks, respectively. The joint MTL
models learn all tasks simultaneously, and hence
only contain values in the right column. For the
two-stage MTL models, we report the number of
trainable parameters of the transfer layer for one tar-

get task (Ωt) in the first column and the same for all
target tasks on the right (Ω). We deliberately orga-
nize the transfer parameters of the two-stage mod-
els (Ω) under the corresponding numbers of other
models in the right column since the two-stage
paradigm benefits from already trained adapters
and only needs to learn the transfer layer. If the
adapters should also be trained, we provide an ex-
tra comparison with the corresponding additional
parameters in Appendix A.1.

When comparing the results of the two-stage
MTL methods in the transfer layer, ADAPTER-
FUSION is expectedly far less parameter-efficient
than SCALEARN models, where SCALEARNUNI-
FORM++ only requires 64 parameters. The variants

11748

Model Sectors Pillars 1D Subpillars 1D Pillars 2D Subpillars 2D Avg.

FINETUNE 71.990.32 50.400.24 43.760.67 61.040.26 41.680.62 53.770.42
ADAPTER 71.380.28 51.021.23 43.260.82 61.430.91 42.460.51 53.910.75
PROPETL 71.690.86 49.691.30 41.630.84 60.580.91 39.851.10 52.691.00
COMPACTER++ 69.971.89 37.377.99 37.762.14 58.131.64 33.109.00 47.264.53
(IA)3 70.220.97 45.553.43 40.053.15 58.541.38 39.271.01 50.731.99
LORA 71.080.44 33.9629.41 42.750.31 60.330.52 42.810.63 50.196.23

FINETUNE-M 51.753.62 22.6512.88 13.546.06 33.2721.23 12.423.39 26.739.44
ADAPTER-M 56.202.72 28.5314.56 16.539.46 35.9017.36 18.892.64 31.219.35
PROPETL-M 59.8010.09 26.1014.36 29.577.40 37.5312.08 30.355.91 36.679.97
HYPERFORMER 71.081.04 40.656.93 34.163.37 46.2214.11 32.474.46 44.925.98
HYPERFORMER++ 60.429.79 22.077.45 20.357.04 30.5519.83 18.9010.84 30.4610.99

ADAPTERFUSION 72.050.12 49.630.53 43.150.38 60.680.23 42.140.46 53.530.35
ADAPTERSOUP 56.811.90 30.090.40 21.840.55 40.710.98 17.892.02 33.471.17
SCALEARN 72.360.05 51.630.61 44.060.37 61.520.11 42.810.63 54.480.35
SCALEARNUNIFORM 72.200.14 50.080.79 42.970.70 60.620.16 41.950.60 53.560.48
SCALEARN++ 72.380.27 51.660.27 44.230.50 61.660.13 42.210.21 54.430.28
SCALEARNUNIFORM++ 72.020.32 50.780.41 42.600.85 60.820.14 42.140.72 53.670.49

Table 4: Evaluation results on HumSet using XLM-RBASE.

of SCALEARN add considerably fewer transfer pa-
rameters compared to the overall parameters of the
particularly efficient joint MTL methods. More-
over, the SCALEARN models still remain com-
parable when also taking into account the source
adapter parameters. Considering these results, in
the following we report and discuss the evaluation
results in transfer learning and few-shot learning
on the respective benchmarks.

5.2 Transfer Learning Performance

Results on GLUE. Table 2 shows the evalu-
ation results on the GLUE benchmark using
RoBERTaBASE. The evaluation metrics are Pear-
son’s correlation for STS-B, Matthews’ correla-
tion for CoLA, and accuracy for the rest. We
average the results over several runs and report
the corresponding standard deviation in the sub-
scripts. Overall, the two-stage models obtain strong
gains, outperforming STL and joint MTL models.
Remarkably, all variants of SCALEARN, includ-
ing the highly parameter-efficient SCALEARNUNI-
FORM++ achieve similarly good results with only
a fraction of the parameters of ADAPTERFUSION.
Comparing the different variations of our method,
while SCALEARN shows the best results, the other
models also perform highly competitively.

Results on SuperGLUE. Table 3 shows the re-
sults on SuperGLUE for all methods considered.
The evaluation metrics are F1 for MultiRC and
ReCoRD and accuracy for the other tasks. We ob-
serve similar patterns on this benchmark: two-stage
models generally outperform other baselines. In
this benchmark, SCALEARN and SCALEARN++
improve upon ADAPTERFUSION by 2 percentage

points of the average results. Notably, we observe
performance drops for various joint MTL models
in comparison to other models (up to −27% when
comparing HYPERFORMER++ and ADAPTER).
This may be a signal of the sensitivity of these
models to the selection of tasks. Furthermore, the
subpar performance of AdapterSoup suggests that
calculating weights using sentence similarity is not
appropriate for our specific problem setup. In con-
trast, the other two-stage MTL models (and, in
particular, our SCALEARN models) do not show
any considerable performance decreases.

Results on HumSet. Table 4 shows the results on
HumSet using XLM-RBASE with the F1-score as
the evaluation metric. Similarly, SCALEARN per-
forms the best among all the methods, whereas the
more parameter-efficient variants of SCALEARN

are only marginally weaker in performance. On this
benchmark, in particular, all joint MTL methods
show poor performance, highlighting the sensitiv-
ity of these methods to task selection (up to −27%
for STL and MTL versions of FINETUNE).

We conduct an ablation study on the effect on
different combinatorial operators in SCALEARN,
reported in Appendix A.3. In Appendix A.5, we
provide further experiments and analyses of the
results along with the results of GLUE and Su-
perGLUE using RoBERTaLARGE, HumSet using
XLM-RLARGE, and for the combination of all tasks
from GLUE and SuperGLUE. Finally, we provide
an analysis of the scaling coefficients of SCALEAR-
NUNIFORM and SCALEARNUNIFORM++ in Ap-
pendix A.4, revealing the effect of various source
adapters on a target task.

11749

4 16 32 100 All

0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90

Av
g.

 M
et

ric
Adapter
AdapterFusion
ScaLearn

(a) GLUE

4 16 32 100 All
of Training Samples

0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80

(b) SuperGLUE

4 16 32 100 All

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60

(c) HumSet

Figure 2: Few-shot transfer learning results with k = {4,16,32,100} training samples for each target task using the
BASE models of RoBERTa and XLM-R. Full results over several runs are provided in Appendix A.6.

5.3 Few-shot Transfer Learning

We further assess the applicability of SCALEARN

in a few-shot setting, where we assume that only
k = {4,16,32,100} training samples are available
for a given target task. For two-stage MTL meth-
ods, for a given benchmark, we use the source
adapters of all tasks except the one corresponding
to the target task, where we use a source adapter
trained on only k samples. On the basis of this set
of source adapters, we then train a transfer layer on
the target task using k data points.

Figure 2 shows the performance of ADAPTER,
ADAPTERFUSION, and SCALEARN on the GLUE,
SuperGLUE, and HumSet benchmarks, averaged
over 5 runs. We observe that SCALEARN consis-
tently outperforms ADAPTER and ADAPTERFU-
SION in all benchmarks and values of k (except for
k = 4 on HumSet) pointing to the strength of our
method for data-lean settings. We provide the full
results, including per-dataset ones, other variations
of SCALEARN, and on RoBERTaLARGE in §A.6.

6 Related Work

Parameter-efficient task learning in NLP. Vari-
ous parameter-efficient methods have emerged as
a more sustainable alternative to full fine-tuning,
enabling modularization, efficient sharing, and
reusability of knowledge. A common modular-
ization approach is to introduce a small number
of additional parameters into an LM, realized by
various methods such as Adapters (Rebuffi et al.,
2017; Houlsby et al., 2019), Compacter (Mahabadi
et al., 2021a), and ProPETL-Adapter (Zeng et al.,
2023). Similarly, LoRA (Hu et al., 2022) injects
trainable low-rank matrices into each transformer
layer, and BitFit (Ben Zaken et al., 2022) updates
only the bias terms. Another line of research

identifies sparse subnetworks within the model to
tune (Ansell et al., 2022; Guo et al., 2021; Hauzen-
berger et al., 2023; Ansell et al., 2024), while He
et al. (2022) and Mao et al. (2022) propose to merge
various distinct modules. We refer to Pfeiffer et al.
(2023) for a full survey on this topic.

Learning by scaling. Besides the common ap-
proach of learning a feed-forward layer for a (non–)
linear transformation of an input vector, several re-
cent methods explore the merit of learning a scaling
vector applied to the input vector in various sce-
narios. Liu et al. (2022) learn a modular network
for STL that rescales LM vectors through element-
wise multiplication. Ilharco et al. (2023) and Ortiz-
Jiménez et al. (2023) introduce task arithmetic to
control LM behavior by extracting task vectors
from pre- and post-fine-tuning model weights, then
scaling and combining them to improve MTL per-
formance. Masoudian et al. (2024) learn a gating
adapter that adjusts the scaling of representations
to control the behavior of the model at inference
time. Finally, Lian et al. (2022) learn to shift and
scale the output vectors of a vision transformer
in an STL setting. Our work contributes to this
line of research by leveraging scaling for highly
parameter-efficient and effective MTL.

Joint MTL. Interference and imbalance between
tasks have been shown to impede performance in
joint MTL (Kirkpatrick et al., 2017; Kendall et al.,
2018; Pfeiffer et al., 2023). Several studies have
aimed to address these issues and improve gener-
alization. For example, (Liu et al., 2019a) learn
representations across multiple NLU tasks using
context from a semantic similarity model, and Pi-
lault et al. (2021) introduce a parameter-efficient
model that uses modules facilitating weight shar-
ing. Moreover, Stickland and Murray (2019) use
an adapter for each task while also updating the

11750

LM parameters. Zhang et al. (2022) further focus
on modularity by only activating a subset of task-
specific modules at once; however, tasks must be
mapped a priori to a given high-level skill. Ponti
et al. (2023) and Caccia et al. (2022) loosen this
constraint by learning a task-skill allocation matrix
for cross-task generalization, but rely on a multi-
task pre-training stage. Finally, Mahabadi et al.
(2021b) leverage a hypernetwork (Ha et al., 2017)
that generates modular task-specific parameters.

Two-stage MTL. Various methods have been pro-
posed to extract task-specific information and com-
pose this knowledge. Chronopoulou et al. (2023)
studies transfer learning in generative LMs by first
selecting source adapters based on different heuris-
tics and merging their weights to create a new com-
bined adapter. Holtermann et al. (2024) provide
further insights into how to combine adapters ef-
fectively and efficiently for zero-shot knowledge
compositions. Furthermore, Huang et al. (2023)
introduce LoraHub with the aim of composing
LoRA (Hu et al., 2022) modules for cross-task gen-
eralization using black-box optimization and an
additional pre-filtering stage. Asai et al. (2022) and
Wang et al. (2023) leverage continuous prompts
learned on large-scale source tasks, leading to
competitive performance in MTL benchmarks, al-
though both methods depend on the selection of
typically high-resource source tasks. In contrast
to the mentioned methods that highly depend on
the selection of tasks and/or apply the combina-
tion to the weights, Pfeiffer et al. (2021) combines
the output representations of several independent
source adapters through an attention mechanism.
Our work is directly related to this line of research
and introduces a novel highly parameter-efficient
transfer layer applied to the output representation.

7 Conclusion

We propose SCALEARN, a highly parameter-
efficient and effective two-stage MTL method lever-
aging simple scaling of output vectors. Our pro-
posed approach directly learns the coefficients that
scale the representations of source adapters and
combines them simply by taking the sum. We con-
duct transfer learning experiments using encoder
LMs on the three benchmarks of GLUE, Super-
GLUE, and HumSet, consisting of a diverse set of
tasks, domains, and languages. Our results show
that SCALEARN and even its extremely parameter-
efficient variants obtain strong improvement over

existing MTL methods without any negative cross-
task effects. We further show that these improve-
ments are also present in few-shot transfer learning.

Limitations

The first limitation of our work concerns the selec-
tion of benchmarks – we conducted experiments
only on the GLUE, SuperGLUE, and HumSet
benchmarks. While these already cover a vast num-
ber of tasks and domains of varying sizes in differ-
ent languages, they still do not fully represent the
myriad of tasks, domains, and languages within the
NLP domain. However, we strongly believe that
our findings also hold for other transfer learning
corpora, including different tasks, domains, and
languages, especially since SCALEARN * models
are agnostic concerning this selection. Related to
this aspect, we focused on transformer-based en-
coder LMs as the backbone for our experiments and
did not experiment with other architectures, e.g.,
convolutional or recurrent networks, or transformer-
based decoder LMs. Finally, we relied on adapters
as arguably the most popular modularization tech-
nique (cf. Pfeiffer et al. (2021); Chronopoulou et al.
(2023)). Due to the large number of additional ex-
periments required and related environmental con-
cerns, we did not experiment with other modular-
ization methods (e.g., LoRA or (IA)3). However,
our method clearly shows the usefulness of sim-
ply scaling output representations of modules for
transfer learning.

Ethical Considerations

The nature of our work is manifold, and so are
the ethical aspects touched by our research. First,
we acknowledge the potential of NLP datasets and
models for encoding unfair stereotypical (Blodgett
et al., 2020) and exclusive (Dev et al., 2021) bi-
ases that may lead to representational and alloca-
tional harms (Barocas et al., 2017). This potential
is a general property of pre-trained language mod-
els, and the models and datasets we use in this
research are no exception to this danger. We thus
strongly advise practitioners to carefully consider
the sociotechnical context before deploying any
models (with or without SCALEARN), and, aligned
with the specific deployment scenario, to take mea-
sures against unfair discrimination. Examples of
such measures include the use of bias measure-
ment (Nangia et al., 2020) and mitigation (Bordia
and Bowman, 2019) approaches. Second, the core

11751

of this work deals with efficiency aspects. On the
one hand, given the well-known relationship be-
tween model training (and inference) effort and
potential CO2 emissions (Strubell et al., 2019), our
work directly contributes to reaching the goals of
Green AI by making parameter-efficient MTL more
environmentally sustainable. On the other hand,
since the training of language models often comes
with high infrastructure requirements exclusive to
certain user groups (Bender et al., 2021), we hope
that our work also contributes to the ongoing de-
mocratization of language technology by reducing
resource-related usage barriers.

Acknowledgements

This work received financial support by the State
of Upper Austria and the Federal Ministry of Edu-
cation, Science, and Research, through grant LIT-
2021-YOU-215. This work was also funded by the
Austrian Science Fund (FWF): P36413, P33526,
and DFH-23. The work of Carolin Holtermann
and Anne Lauscher is funded under the Excellence
Strategy of the German Federal Government and
the States. The authors would like to thank Ben-
jamin Minixhofer for his invaluable feedback on
the manuscript.

References
Alan Ansell, Edoardo Ponti, Anna Korhonen, and Ivan

Vulić. 2022. Composable sparse fine-tuning for cross-
lingual transfer. In Proceedings of the 60th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1778–1796,
Dublin, Ireland. Association for Computational Lin-
guistics.

Alan Ansell, Ivan Vulic, Hannah Sterz, Anna Ko-
rhonen, and Edoardo M. Ponti. 2024. Scaling
sparse fine-tuning to large language models. CoRR,
abs/2401.16405.

Akari Asai, Mohammadreza Salehi, Matthew E. Pe-
ters, and Hannaneh Hajishirzi. 2022. ATTEMPT:
parameter-efficient multi-task tuning via attentional
mixtures of soft prompts. In Proceedings of the 2022
Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2022, Abu Dhabi, United
Arab Emirates, December 7-11, 2022, pages 6655–
6672. Association for Computational Linguistics.

Yue Bai, Huan Wang, Xu Ma, Yitian Zhang, Zhiqiang
Tao, and Yun Fu. 2022. Parameter-efficient masking
networks. In NeurIPS.

Solon Barocas, Kate Crawford, Aaron Shapiro, and
Hanna Wallach. 2017. The problem with bias: Al-
locative versus representational harms in machine

learning. In 9th Annual Conference of the Special
Interest Group for Computing, Information and Soci-
ety.

Elad Ben Zaken, Yoav Goldberg, and Shauli Ravfogel.
2022. BitFit: Simple parameter-efficient fine-tuning
for transformer-based masked language-models. In
Proceedings of the 60th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 2:
Short Papers), pages 1–9, Dublin, Ireland. Associa-
tion for Computational Linguistics.

Emily M. Bender, Timnit Gebru, Angelina McMillan-
Major, and Shmargaret Shmitchell. 2021. On the
dangers of stochastic parrots: Can language mod-
els be too big? In Proceedings of the 2021 ACM
Conference on Fairness, Accountability, and Trans-
parency, FAccT ’21, page 610–623, New York, NY,
USA. Association for Computing Machinery.

Su Lin Blodgett, Solon Barocas, Hal Daumé III, and
Hanna Wallach. 2020. Language (technology) is
power: A critical survey of “bias” in NLP. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 5454–
5476, Online. Association for Computational Lin-
guistics.

Shikha Bordia and Samuel R. Bowman. 2019. Identify-
ing and reducing gender bias in word-level language
models. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Student Research Workshop,
pages 7–15, Minneapolis, Minnesota. Association for
Computational Linguistics.

Lucas Caccia, Edoardo Ponti, Lucas Liu, Matheus
Pereira, Nicolas Le Roux, and Alessandro Sordoni.
2022. Multi-head adapter routing for data-efficient
fine-tuning. arXiv preprint arXiv:2211.03831.

Guanzheng Chen, Fangyu Liu, Zaiqiao Meng, and
Shangsong Liang. 2022. Revisiting parameter-
efficient tuning: Are we really there yet? In Proceed-
ings of the 2022 Conference on Empirical Methods
in Natural Language Processing, pages 2612–2626,
Abu Dhabi, United Arab Emirates. Association for
Computational Linguistics.

Alexandra Chronopoulou, Matthew Peters, Alexan-
der Fraser, and Jesse Dodge. 2023. AdapterSoup:
Weight averaging to improve generalization of pre-
trained language models. In Findings of the Asso-
ciation for Computational Linguistics: EACL 2023,
pages 2054–2063, Dubrovnik, Croatia. Association
for Computational Linguistics.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440–
8451, Online. Association for Computational Lin-
guistics.

11752

https://doi.org/10.18653/v1/2022.acl-long.125
https://doi.org/10.18653/v1/2022.acl-long.125
https://doi.org/10.48550/ARXIV.2401.16405
https://doi.org/10.48550/ARXIV.2401.16405
https://aclanthology.org/2022.emnlp-main.446
https://aclanthology.org/2022.emnlp-main.446
https://aclanthology.org/2022.emnlp-main.446
http://papers.nips.cc/paper_files/paper/2022/hash/427048354ac2db22d43149c51346bafd-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/427048354ac2db22d43149c51346bafd-Abstract-Conference.html
https://doi.org/10.18653/v1/2022.acl-short.1
https://doi.org/10.18653/v1/2022.acl-short.1
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.18653/v1/2020.acl-main.485
https://doi.org/10.18653/v1/2020.acl-main.485
https://doi.org/10.18653/v1/N19-3002
https://doi.org/10.18653/v1/N19-3002
https://doi.org/10.18653/v1/N19-3002
https://doi.org/10.18653/v1/2022.emnlp-main.168
https://doi.org/10.18653/v1/2022.emnlp-main.168
https://aclanthology.org/2023.findings-eacl.153
https://aclanthology.org/2023.findings-eacl.153
https://aclanthology.org/2023.findings-eacl.153
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747

Sunipa Dev, Masoud Monajatipoor, Anaelia Ovalle, Ar-
jun Subramonian, Jeff Phillips, and Kai-Wei Chang.
2021. Harms of gender exclusivity and challenges in
non-binary representation in language technologies.
In Proceedings of the 2021 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1968–1994, Online and Punta Cana, Dominican Re-
public. Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Selim Fekih, Nicolo’ Tamagnone, Benjamin Minixhofer,
Ranjan Shrestha, Ximena Contla, Ewan Oglethorpe,
and Navid Rekabsaz. 2022. HumSet: Dataset of
multilingual information extraction and classification
for humanitarian crises response. In Findings of the
Association for Computational Linguistics: EMNLP
2022, pages 4379–4389, Abu Dhabi, United Arab
Emirates. Association for Computational Linguistics.

Yoav Goldberg. 2019. Assessing bert’s syntactic abili-
ties. CoRR, abs/1901.05287.

Demi Guo, Alexander Rush, and Yoon Kim. 2021.
Parameter-efficient transfer learning with diff prun-
ing. In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
4884–4896, Online. Association for Computational
Linguistics.

David Ha, Andrew M. Dai, and Quoc V. Le. 2017.
Hypernetworks. In 5th International Conference
on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Pro-
ceedings. OpenReview.net.

Lukas Hauzenberger, Shahed Masoudian, Deepak Ku-
mar, Markus Schedl, and Navid Rekabsaz. 2023.
Modular and On-demand Bias Mitigation with
Attribute-Removal Subnetworks. In Findings of
the Association for Computational Linguistics: ACL
(Findings of ACL).

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-
Kirkpatrick, and Graham Neubig. 2022. Towards a
unified view of parameter-efficient transfer learning.
In The Tenth International Conference on Learning
Representations, ICLR 2022, Virtual Event, April 25-
29, 2022. OpenReview.net.

Carolin Holtermann, Markus Frohmann, Navid Rekab-
saz, and Anne Lauscher. 2024. What the weight?!
a unified framework for zero-shot knowledge com-
position. In Findings of the Association for Com-
putational Linguistics: EACL 2024. Association for
Computational Linguistics.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin de Laroussilhe, Andrea Ges-
mundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for NLP. In Pro-
ceedings of the 36th International Conference on Ma-
chine Learning, ICML 2019, 9-15 June 2019, Long
Beach, California, USA, volume 97 of Proceedings
of Machine Learning Research, pages 2790–2799.
PMLR.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. LoRA: Low-rank adaptation of
large language models. In International Conference
on Learning Representations.

Chengsong Huang, Qian Liu, Bill Yuchen Lin, Tianyu
Pang, Chao Du, and Min Lin. 2023. Lorahub: Effi-
cient cross-task generalization via dynamic lora com-
position. CoRR, abs/2307.13269.

Gabriel Ilharco, Marco Túlio Ribeiro, Mitchell Worts-
man, Ludwig Schmidt, Hannaneh Hajishirzi, and Ali
Farhadi. 2023. Editing models with task arithmetic.
In The Eleventh International Conference on Learn-
ing Representations, ICLR 2023, Kigali, Rwanda,
May 1-5, 2023. OpenReview.net.

Rabeeh Karimi Mahabadi, Sebastian Ruder, Mostafa
Dehghani, and James Henderson. 2021. Parameter-
efficient multi-task fine-tuning for transformers via
shared hypernetworks. In Proceedings of the 59th
Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 565–576, Online. Association
for Computational Linguistics.

Alex Kendall, Yarin Gal, and Roberto Cipolla. 2018.
Multi-task learning using uncertainty to weigh losses
for scene geometry and semantics. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 7482–7491.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz,
Joel Veness, Guillaume Desjardins, Andrei A. Rusu,
Kieran Milan, John Quan, Tiago Ramalho, Ag-
nieszka Grabska-Barwinska, Demis Hassabis, Clau-
dia Clopath, Dharshan Kumaran, and Raia Hadsell.
2017. Overcoming catastrophic forgetting in neural
networks. Proceedings of the National Academy of
Sciences, 114(13):3521–3526.

Deepak Kumar, Oleg Lesota, George Zerveas, Daniel
Cohen, Carsten Eickhoff, Markus Schedl, and Navid
Rekabsaz. 2023. Parameter-efficient modularised
bias mitigation via AdapterFusion. In Proceedings
of the 17th Conference of the European Chapter
of the Association for Computational Linguistics,

11753

https://aclanthology.org/2021.emnlp-main.150
https://aclanthology.org/2021.emnlp-main.150
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2022.findings-emnlp.321
https://doi.org/10.18653/v1/2022.findings-emnlp.321
https://doi.org/10.18653/v1/2022.findings-emnlp.321
http://arxiv.org/abs/1901.05287
http://arxiv.org/abs/1901.05287
https://doi.org/10.18653/v1/2021.acl-long.378
https://doi.org/10.18653/v1/2021.acl-long.378
https://openreview.net/forum?id=rkpACe1lx
https://openreview.net/forum?id=0RDcd5Axok
https://openreview.net/forum?id=0RDcd5Axok
http://proceedings.mlr.press/v97/houlsby19a.html
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://doi.org/10.48550/arXiv.2307.13269
https://doi.org/10.48550/arXiv.2307.13269
https://doi.org/10.48550/arXiv.2307.13269
https://openreview.net/pdf?id=6t0Kwf8-jrj
https://doi.org/10.18653/v1/2021.acl-long.47
https://doi.org/10.18653/v1/2021.acl-long.47
https://doi.org/10.18653/v1/2021.acl-long.47
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.1073/pnas.1611835114
https://doi.org/10.1073/pnas.1611835114
https://doi.org/10.18653/v1/2023.eacl-main.201
https://doi.org/10.18653/v1/2023.eacl-main.201

pages 2738–2751, Dubrovnik, Croatia. Association
for Computational Linguistics.

Aditya Kusupati, Gantavya Bhatt, Aniket Rege,
Matthew Wallingford, Aditya Sinha, Vivek Ra-
manujan, William Howard-Snyder, Kaifeng Chen,
Sham M. Kakade, Prateek Jain, and Ali Farhadi.
2022. Matryoshka representation learning. In Ad-
vances in Neural Information Processing Systems 35:
Annual Conference on Neural Information Process-
ing Systems 2022, NeurIPS 2022, New Orleans, LA,
USA, November 28 - December 9, 2022.

Anne Lauscher, Tobias Lueken, and Goran Glavaš. 2021.
Sustainable modular debiasing of language models.
In Findings of the Association for Computational
Linguistics: EMNLP 2021, pages 4782–4797, Punta
Cana, Dominican Republic. Association for Compu-
tational Linguistics.

Quentin Lhoest, Albert Villanova del Moral, Yacine
Jernite, Abhishek Thakur, Patrick von Platen, Suraj
Patil, Julien Chaumond, Mariama Drame, Julien Plu,
Lewis Tunstall, Joe Davison, Mario Šaško, Gun-
jan Chhablani, Bhavitvya Malik, Simon Brandeis,
Teven Le Scao, Victor Sanh, Canwen Xu, Nicolas
Patry, Angelina McMillan-Major, Philipp Schmid,
Sylvain Gugger, Clément Delangue, Théo Matus-
sière, Lysandre Debut, Stas Bekman, Pierric Cis-
tac, Thibault Goehringer, Victor Mustar, François
Lagunas, Alexander Rush, and Thomas Wolf. 2021.
Datasets: A community library for natural language
processing. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing: System Demonstrations, pages 175–184, Online
and Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 4582–
4597, Online. Association for Computational Lin-
guistics.

Dongze Lian, Daquan Zhou, Jiashi Feng, and Xinchao
Wang. 2022. Scaling & shifting your features: A new
baseline for efficient model tuning. In NeurIPS.

Haohe Liu, Zehua Chen, Yi Yuan, Xinhao Mei, Xubo
Liu, Danilo Mandic, Wenwu Wang, and Mark D
Plumbley. 2023. AudioLDM: Text-to-audio genera-
tion with latent diffusion models. Proceedings of the
International Conference on Machine Learning.

Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mo-
hta, Tenghao Huang, Mohit Bansal, and Colin Raffel.
2022. Few-shot parameter-efficient fine-tuning is bet-
ter and cheaper than in-context learning. In NeurIPS.

Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jian-
feng Gao. 2019a. Multi-task deep neural networks
for natural language understanding. In Proceedings

of the 57th Conference of the Association for Compu-
tational Linguistics, ACL 2019, Florence, Italy, July
28- August 2, 2019, Volume 1: Long Papers, pages
4487–4496. Association for Computational Linguis-
tics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019b.
Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In 7th International
Conference on Learning Representations, ICLR 2019,
New Orleans, LA, USA, May 6-9, 2019. OpenRe-
view.net.

Rabeeh Karimi Mahabadi, James Henderson, and Se-
bastian Ruder. 2021a. Compacter: Efficient low-rank
hypercomplex adapter layers. In Advances in Neural
Information Processing Systems 34: Annual Confer-
ence on Neural Information Processing Systems 2021,
NeurIPS 2021, December 6-14, 2021, virtual, pages
1022–1035.

Rabeeh Karimi Mahabadi, Sebastian Ruder, Mostafa
Dehghani, and James Henderson. 2021b. Parameter-
efficient multi-task fine-tuning for transformers via
shared hypernetworks. In Proceedings of the 59th
Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing, ACL/IJCNLP
2021, (Volume 1: Long Papers), Virtual Event, Au-
gust 1-6, 2021, pages 565–576. Association for Com-
putational Linguistics.

Yuning Mao, Lambert Mathias, Rui Hou, Amjad Alma-
hairi, Hao Ma, Jiawei Han, Scott Yih, and Madian
Khabsa. 2022. UniPELT: A unified framework for
parameter-efficient language model tuning. In Pro-
ceedings of the 60th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 6253–6264, Dublin, Ireland. Associa-
tion for Computational Linguistics.

Shahed Masoudian, Cornelia Volaucnik, Markus Schedl,
and Navid Rekabsaz. 2024. Effective controllable
bias mitigation for classification and retrieval using
gate adapters. In Proceedings of the 18th Confer-
ence of the European Chapter of the Association for
Computational Linguistics. Association for Compu-
tational Linguistics.

Michael McCloskey and Neal J Cohen. 1989. Catas-
trophic interference in connectionist networks: The
sequential learning problem. In Psychology of learn-
ing and motivation, volume 24, pages 109–165. Else-
vier.

Benjamin Minixhofer, Jonas Pfeiffer, and Ivan Vulic.
2023. Where’s the point? self-supervised multilin-
gual punctuation-agnostic sentence segmentation. In
Proceedings of the 61st Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:

11754

http://papers.nips.cc/paper_files/paper/2022/hash/c32319f4868da7613d78af9993100e42-Abstract-Conference.html
https://doi.org/10.18653/v1/2021.findings-emnlp.411
https://doi.org/10.18653/v1/2021.emnlp-demo.21
https://doi.org/10.18653/v1/2021.emnlp-demo.21
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353
http://papers.nips.cc/paper_files/paper/2022/hash/00bb4e415ef117f2dee2fc3b778d806d-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/00bb4e415ef117f2dee2fc3b778d806d-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/0cde695b83bd186c1fd456302888454c-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/0cde695b83bd186c1fd456302888454c-Abstract-Conference.html
https://doi.org/10.18653/v1/p19-1441
https://doi.org/10.18653/v1/p19-1441
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://proceedings.neurips.cc/paper/2021/hash/081be9fdff07f3bc808f935906ef70c0-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/081be9fdff07f3bc808f935906ef70c0-Abstract.html
https://doi.org/10.18653/v1/2021.acl-long.47
https://doi.org/10.18653/v1/2021.acl-long.47
https://doi.org/10.18653/v1/2021.acl-long.47
https://doi.org/10.18653/v1/2022.acl-long.433
https://doi.org/10.18653/v1/2022.acl-long.433
https://doi.org/10.18653/V1/2023.ACL-LONG.398
https://doi.org/10.18653/V1/2023.ACL-LONG.398

Long Papers), ACL 2023, Toronto, Canada, July 9-14,
2023, pages 7215–7235. Association for Computa-
tional Linguistics.

Nikita Nangia, Clara Vania, Rasika Bhalerao, and
Samuel R. Bowman. 2020. CrowS-pairs: A chal-
lenge dataset for measuring social biases in masked
language models. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1953–1967, Online. As-
sociation for Computational Linguistics.

Guillermo Ortiz-Jiménez, Alessandro Favero, and Pas-
cal Frossard. 2023. Task arithmetic in the tan-
gent space: Improved editing of pre-trained models.
CoRR, abs/2305.12827.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Köpf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Pytorch: An
imperative style, high-performance deep learning li-
brary. In Advances in Neural Information Processing
Systems 32: Annual Conference on Neural Informa-
tion Processing Systems 2019, NeurIPS 2019, De-
cember 8-14, 2019, Vancouver, BC, Canada, pages
8024–8035.

Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé,
Kyunghyun Cho, and Iryna Gurevych. 2021.
AdapterFusion: Non-destructive task composition
for transfer learning. In Proceedings of the 16th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Main Volume, pages
487–503, Online. Association for Computational Lin-
guistics.

Jonas Pfeiffer, Andreas Rücklé, Clifton Poth, Aishwarya
Kamath, Ivan Vulic, Sebastian Ruder, Kyunghyun
Cho, and Iryna Gurevych. 2020. Adapterhub: A
framework for adapting transformers. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing: System Demon-
strations, EMNLP 2020 - Demos, Online, November
16-20, 2020, pages 46–54. Association for Computa-
tional Linguistics.

Jonas Pfeiffer, Sebastian Ruder, Ivan Vulic, and
Edoardo Maria Ponti. 2023. Modular deep learning.
CoRR, abs/2302.11529.

Jonathan Pilault, Amine Elhattami, and Christopher J.
Pal. 2021. Conditionally adaptive multi-task learn-
ing: Improving transfer learning in NLP using fewer
parameters & less data. In 9th International Confer-
ence on Learning Representations, ICLR 2021, Vir-
tual Event, Austria, May 3-7, 2021. OpenReview.net.

Edoardo Maria Ponti, Alessandro Sordoni, Yoshua Ben-
gio, and Siva Reddy. 2023. Combining parameter-
efficient modules for task-level generalisation. In
Proceedings of the 17th Conference of the European

Chapter of the Association for Computational Lin-
guistics, pages 687–702, Dubrovnik, Croatia. Associ-
ation for Computational Linguistics.

Clifton Poth, Jonas Pfeiffer, Andreas Rücklé, and Iryna
Gurevych. 2021. What to pre-train on? efficient
intermediate task selection. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2021, Virtual Event
/ Punta Cana, Dominican Republic, 7-11 November,
2021, pages 10585–10605. Association for Computa-
tional Linguistics.

Yada Pruksachatkun, Jason Phang, Haokun Liu,
Phu Mon Htut, Xiaoyi Zhang, Richard Yuanzhe Pang,
Clara Vania, Katharina Kann, and Samuel R. Bow-
man. 2020. Intermediate-task transfer learning with
pretrained language models: When and why does it
work? In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
5231–5247, Online. Association for Computational
Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21:140:1–140:67.

Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea
Vedaldi. 2017. Learning multiple visual domains
with residual adapters. In Advances in Neural Infor-
mation Processing Systems 30: Annual Conference
on Neural Information Processing Systems 2017, De-
cember 4-9, 2017, Long Beach, CA, USA, pages 506–
516.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3982–3992, Hong Kong, China. Association for Com-
putational Linguistics.

Sebastian Ruder. 2017. An overview of multi-task learn-
ing in deep neural networks. CoRR, abs/1706.05098.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala
Li, Jay Whang, Emily L. Denton, Seyed Kam-
yar Seyed Ghasemipour, Raphael Gontijo Lopes,
Burcu Karagol Ayan, Tim Salimans, Jonathan Ho,
David J. Fleet, and Mohammad Norouzi. 2022. Pho-
torealistic text-to-image diffusion models with deep
language understanding. In Advances in Neural In-
formation Processing Systems 35: Annual Confer-
ence on Neural Information Processing Systems 2022,
NeurIPS 2022, New Orleans, LA, USA, November 28
- December 9, 2022.

Harrisen Scells, Shengyao Zhuang, and Guido Zuccon.
2022. Reduce, reuse, recycle: Green information
retrieval research. In Proceedings of the 45th Inter-
national ACM SIGIR Conference on Research and

11755

https://doi.org/10.18653/v1/2020.emnlp-main.154
https://doi.org/10.18653/v1/2020.emnlp-main.154
https://doi.org/10.18653/v1/2020.emnlp-main.154
https://doi.org/10.48550/arXiv.2305.12827
https://doi.org/10.48550/arXiv.2305.12827
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://doi.org/10.18653/v1/2021.eacl-main.39
https://doi.org/10.18653/v1/2021.eacl-main.39
https://doi.org/10.18653/v1/2020.emnlp-demos.7
https://doi.org/10.18653/v1/2020.emnlp-demos.7
https://doi.org/10.48550/arXiv.2302.11529
https://openreview.net/forum?id=de11dbHzAMF
https://openreview.net/forum?id=de11dbHzAMF
https://openreview.net/forum?id=de11dbHzAMF
https://aclanthology.org/2023.eacl-main.49
https://aclanthology.org/2023.eacl-main.49
https://doi.org/10.18653/v1/2021.emnlp-main.827
https://doi.org/10.18653/v1/2021.emnlp-main.827
https://doi.org/10.18653/v1/2020.acl-main.467
https://doi.org/10.18653/v1/2020.acl-main.467
https://doi.org/10.18653/v1/2020.acl-main.467
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://proceedings.neurips.cc/paper/2017/hash/e7b24b112a44fdd9ee93bdf998c6ca0e-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/e7b24b112a44fdd9ee93bdf998c6ca0e-Abstract.html
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
http://arxiv.org/abs/1706.05098
http://arxiv.org/abs/1706.05098
http://papers.nips.cc/paper_files/paper/2022/hash/ec795aeadae0b7d230fa35cbaf04c041-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/ec795aeadae0b7d230fa35cbaf04c041-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/ec795aeadae0b7d230fa35cbaf04c041-Abstract-Conference.html
https://doi.org/10.1145/3477495.3531766
https://doi.org/10.1145/3477495.3531766

Development in Information Retrieval, SIGIR ’22,
page 2825–2837, New York, NY, USA. Association
for Computing Machinery.

Roy Schwartz, Jesse Dodge, Noah A. Smith, and
Oren Etzioni. 2020. Green ai. Commun. ACM,
63(12):54–63.

Amanpreet Singh, Ronghang Hu, Vedanuj Goswami,
Guillaume Couairon, Wojciech Galuba, Marcus
Rohrbach, and Douwe Kiela. 2022. FLAVA: A foun-
dational language and vision alignment model. In
CVPR.

Asa Cooper Stickland and Iain Murray. 2019. BERT
and pals: Projected attention layers for efficient adap-
tation in multi-task learning. In Proceedings of the
36th International Conference on Machine Learning,
ICML 2019, 9-15 June 2019, Long Beach, California,
USA, volume 97 of Proceedings of Machine Learning
Research, pages 5986–5995. PMLR.

Emma Strubell, Ananya Ganesh, and Andrew McCal-
lum. 2019. Energy and policy considerations for
deep learning in NLP. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 3645–3650, Florence, Italy. Asso-
ciation for Computational Linguistics.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. 2019.
BERT rediscovers the classical NLP pipeline. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4593–
4601, Florence, Italy. Association for Computational
Linguistics.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Aman-
preet Singh, Julian Michael, Felix Hill, Omer Levy,
and Samuel R. Bowman. 2019a. Superglue: A stick-
ier benchmark for general-purpose language under-
standing systems. In Advances in Neural Information
Processing Systems 32: Annual Conference on Neu-
ral Information Processing Systems 2019, NeurIPS
2019, December 8-14, 2019, Vancouver, BC, Canada,
pages 3261–3275.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019b.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In 7th In-
ternational Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net.

Zhen Wang, Rameswar Panda, Leonid Karlinsky,
Rogério Feris, Huan Sun, and Yoon Kim. 2023.
Multitask prompt tuning enables parameter-efficient
transfer learning. CoRR, abs/2303.02861.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,

Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Shitao Xiao, Zheng Liu, Peitian Zhang, and Niklas
Muennighoff. 2023. C-pack: Packaged resources
to advance general chinese embedding.

Derrick Xin, Behrooz Ghorbani, Justin Gilmer, Ankush
Garg, and Orhan Firat. 2022. Do current multi-task
optimization methods in deep learning even help? In
NeurIPS.

Guangtao Zeng, Peiyuan Zhang, and Wei Lu. 2023.
One network, many masks: Towards more parameter-
efficient transfer learning. In Proceedings of the 61st
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 7564–
7580, Toronto, Canada. Association for Computa-
tional Linguistics.

Fan Zhang, Duyu Tang, Yong Dai, Cong Zhou,
Shuangzhi Wu, and Shuming Shi. 2022. Skillnet-
nlu: A sparsely activated model for general-purpose
natural language understanding.

Yu Zhang and Qiang Yang. 2022. A survey on multi-
task learning. IEEE Transactions on Knowledge and
Data Engineering, 34(12):5586–5609.

Wayne Xin Zhao, Jing Liu, Ruiyang Ren, and Ji-Rong
Wen. 2022. Dense text retrieval based on pretrained
language models: A survey. CoRR, abs/2211.14876.

11756

https://doi.org/10.1145/3381831
http://proceedings.mlr.press/v97/stickland19a.html
http://proceedings.mlr.press/v97/stickland19a.html
http://proceedings.mlr.press/v97/stickland19a.html
https://doi.org/10.18653/v1/P19-1355
https://doi.org/10.18653/v1/P19-1355
https://doi.org/10.18653/v1/P19-1452
https://proceedings.neurips.cc/paper/2019/hash/4496bf24afe7fab6f046bf4923da8de6-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/4496bf24afe7fab6f046bf4923da8de6-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/4496bf24afe7fab6f046bf4923da8de6-Abstract.html
https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7
https://doi.org/10.48550/arXiv.2303.02861
https://doi.org/10.48550/arXiv.2303.02861
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
http://arxiv.org/abs/2309.07597
http://arxiv.org/abs/2309.07597
http://papers.nips.cc/paper_files/paper/2022/hash/580c4ec4738ff61d5862a122cdf139b6-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/580c4ec4738ff61d5862a122cdf139b6-Abstract-Conference.html
https://aclanthology.org/2023.acl-long.418
https://aclanthology.org/2023.acl-long.418
https://doi.org/10.1109/TKDE.2021.3070203
https://doi.org/10.1109/TKDE.2021.3070203
https://doi.org/10.48550/ARXIV.2211.14876
https://doi.org/10.48550/ARXIV.2211.14876

A Appendix

A.1 Complete Experiment Details

Name |Train| |Validation| |Test|
MNLI 353,431 39,270 9,815
QQP 327,461 36,384 40,430
QNLI 94,268 10,474 5,463
SST-2 60,614 6,734 872
STS-B 5,174 574 1,500
MRPC 3,301 366 408
RTE 2,241 249 277
CoLA 7,695 855 1,043

ReCoRD 100,730 10,000 10,000
MultiRC 24,518 2,724 4,848
BoolQ 8,484 942 3,270
WiC 4,885 542 638
WSC 498 55 104
COPA 360 40 100
CB 225 25 56

Sectors 117,435 16,039 15,147
Pillars 1D 117,435 16,039 15,147
Subpillars 1D 117,435 16,039 15,147
Pillars 2D 117,435 16,039 15,147
Subpillars 2D 117,435 16,039 15,147

Table 5: Number of used samples for each dataset and
used split. (Top) GLUE tasks. (Middle) SuperGLUE
tasks. (Bottom) HumSet tasks.

Dataset Details. As has been mentioned, we are
using the GLUE, SuperGLUE, and HumSet bench-
marks for our experiments. Table 6 summarizes
the tasks contained in each of the datasets. We use
the datasets library (Lhoest et al., 2021) to load
each dataset for our experiments. We set the max-
imum length of the input sequence to 128 tokens
for all tasks in GLUE, SuperGLUE, and HumSet.
However, for MultiRC and ReCoRD, we set the
maximum length to 324 and 256, respectively, due
to their significantly longer context lengths. Note
that we treat HumSet as five separate tasks, fol-
lowing (Fekih et al., 2022). The GLUE and Super-
GLUE benchmarks only contain the training and
validation split publicly, so we follow Chen et al.
(2022) and use 10% of the training samples from
the training split as the validation set and the re-
maining 90% for training. We split the datasets
with the datasets library (Lhoest et al., 2021) us-
ing seed 42 and shuffle the samples. Then, the
original validation split is taken as the test set on
which we report the performance of all models. For
HumSet, we use the original train/validation/test
splits, as all of them are publicly available, includ-
ing labels. Details about the train/validation/test
splits can be found in Table 5.

Computing Infrastructure. We run all experi-
ments with RoBERTaBASE and XLM-RBASE on a
single Nvidia GTX1080Ti GPU and Intel Xeon
CPU E5-2640 v4 CPUs, and the experiments with
RoBERTaLARGE and XLM-RLARGE on a single
Nvidia RTX5000 GPU and Intel Xeon Silver 4216
CPUs.

Implementation Details. We use PyTorch (Paszke
et al., 2019) for all experiments. For the joint
multi-task learning methods, we adapt the code-
base of Karimi Mahabadi et al. (2021) and
Zeng et al. (2023), both of which rely on
the transformers (Wolf et al., 2020) library.
For all other models, we make use of the
adapter-transformers library (Pfeiffer et al.,
2020) library, a wrapper around the transformers
library. Our code is released under the MIT Li-
cense, ensuring open access to the community for
further development.

Training and optimization. We train all methods
with a batch size of 32. All STL and two-stage
MTL methods are trained for a maximum of 30
epochs with early stopping and patience of 5. 4 We
use 10 seeds for low-resource and 3 seeds for high-
resource tasks when using RoBERTaBASE, and on
5 and 2 seeds for low- and high-resource tasks, re-
spectively, when using RoBERTaLARGE. We define
tasks with more than 10k training samples as high-
resource and as low-resource otherwise. All joint
MTL models are trained on 3 seeds. We report the
mean and standard deviations across all runs. We
use the AdamW (Kingma and Ba, 2015; Loshchilov
and Hutter, 2019) optimizer with default PyTorch
hyperparameters (weight decay = 0.01, β1 = 0.9,
β2 = 0.99, ϵ = 1 · 10−6). We use seeds {0,1} for
instances with two seeds, {0,1,2} for instances
with three seeds, seeds {0,1,2,3,4} for instances
with five seeds, and {0,1,2,3,4,5,6,7,8,9} for
instances with ten seeds.

Single-task learning hyperparameters. We train
FINETUNE with a learning rate of 2e-5, ADAPTER

with a learning rate of 3e-4, COMPACTER++ with
a learning rate of 3e-3, and PROPETL with a learn-
ing rate of 1e-3, a mask learning rate of 5e-3, a spar-
sity rate of 0.5, and a weight decay of 0.1, which
we found to be the most suitable for our setup. Fur-
thermore, we train (IA)3 with a learning rate of
5e-3. For LORA, we use a learning rate of 3e-4 in

4The exception is ReCoRD, which we train on 3 epochs
due to its size.

11757

Name Category Task Domain Metric

MNLI GLUE NLI various accuracy
QQP GLUE paraphrase detection social QA accuracy & F1
QNLI GLUE NLI Wikipedia accuracy
SST-2 GLUE sentiment analysis Movie Reviews accuracy
STS-B GLUE sentence similarity various Pearson & Spearman corr.
MRPC GLUE paraphrase detection news accuracy & F1
RTE GLUE NLI News, Wikipedia accuracy
CoLA GLUE acceptability various Matthews’ corr.

ReCoRD SuperGLUE cloze-style QA news (CNN, Daily Mail) F1 & EM
MultiRC SuperGLUE QA various F1 & EM
BoolQ SuperGLUE boolean QA Wikipedia accuracy
WiC SuperGLUE word sense disambiguation lexical databases accuracy
WSC SuperGLUE coreference / commonsense fiction books accuracy
COPA SuperGLUE commonsense reasoning various accuracy
CB SuperGLUE NLI various accuracy

Sectors HumSet classification humanitarian crisis response F1 & precision
Pillars 1D HumSet classification humanitarian crisis response F1 & precision
Subpillars 1D HumSet classification humanitarian crisis response F1 & precision
Pillars 2D HumSet classification humanitarian crisis response F1 & precision
Subpillars 2D HumSet classification humanitarian crisis response F1 & precision

Table 6: Details of all datasets. Lexical databases for WiC include WordNet, VerbNet, Wiktionary. For datasets
where two metrics are officially used, we use the underlined metric as our main metric. (Top) GLUE tasks. (Middle)
SuperGLUE tasks. (Bottom) HumSet tasks.

Model Parameters
(one task)

Parameters
(all tasks)

Task (Θ) + Transfer (Ω)
(source adapters + transfer layers)

ADAPTERFUSION 17.05% (21M) 136.40% (170M) 5.74% + 136.40% =142.14% (177M)
SCALEARN 0.06% (74K) 0.47% (590K) 5.74% + 0.47% =6.21% (8M)
SCALEARNUNIFORM 0.00% (96) 0.00% (768) 5.74% + 0.00% =5.74% (7M)
SCALEARN++ 0.00% (6K) 0.04% (49K) 5.74% + 0.04% =5.79% (7M)
SCALEARNUNIFORM++ 0.00% (8) 0.00% (64) 5.74% + 0.00% =5.74% (7M)

Table 7: Percentage and number of trainable parameters for Two-Stage MTL models in total.

combination with rank r = 32 and scaling factor
α = 64. Moreover, we follow Hu et al. (2022) and
apply LoRA on the query and value matrices of the
transformer. Each of them is trained with a linear
learning rate decay.

For RoBERTaLARGE, we add a linear learning
rate warmup for the first 10% of training, as we
notice it improves stability. For early stopping,
we use the loss on the validation set, except for
HumSet, where we use the F1-score, and in the
few-shot setting, where we use the main metric for
the respective dataset, as shown in Table 6. In the
few-shot setting, we train for a maximum of 1,000
steps, apply an early stopping patience of 20, and
use a maximum of 5,000 samples for validation.
Note that, while the layer normalization parame-
ters of the LM have also been updated (Mahabadi
et al., 2021a,b), following Pfeiffer et al. (2021), we
keep them frozen. This approach improves modu-
larity, while still allowing LMs to efficiently adapt

to new tasks. Note that the same hyperparameters
as outlined here are also used for ADAPTER in our
probing analyses (cf. Appendix A.2).

Joint MTL hyperparameters. In all joint multi-
task learning methods, we sample tasks with con-
ventional temperature-based sampling with temper-
ature τ = 10, following Mahabadi et al. (2021b)
and Zeng et al. (2023). Specifically, a task is sam-
pled with probability p

1/τ
t , where pt = Nt∑τ

i=1 Nt
,

Nt the number of training samples of task t, and
τ = 10. Using this sampling strategy, we train each
model for a total of 375,000 steps to ensure con-
vergence and evaluate every 7,500 steps. We train
each model with early stopping and patience of 10.
In the end, the model checkpoint with the lowest
average validation loss is loaded and evaluated on
the test set. We train FINETUNE-M with a learning
rate of 2e-5, ADAPTER-M, HYPERFORMER, and
HYPERFORMER++ with a learning rate of 3e-4,

11758

and PROPETL-M with a learning rate of 3e-4 and
a mask learning rate of 3e-3, a sparsity rate of 0.3,
and no weight decay. We train each of them with
a linear learning rate warmup for the first 10% of
training, followed by a linear learning rate decay.
For the remaining hyperparameters of PROPETL-
M, HYPERFORMER, and HYPERFORMER++, we
follow the respective original implementations, but
always use a reduction factor of 16 for a fair com-
parison.

Two-stage MTL hyperparameters. We train each
variant of SCALEARN * with a learning rate of
6e-3 and train ADAPTERFUSION with a learning
rate of 5e-5, following Pfeiffer et al. (2021). Both
SCALEARN * and ADAPTERFUSION are trained
with a linear learning rate decay and no warmup.
Early stopping is the same as in the single-task
learning setting. We initialize the parameters
of SCALEARN * with N

(
2
T , 0.001

)
,5 and apply

a dropout rate of 0.3 to increase robustness for
SCALEARN and SCALEARN++. For AdapterSoup,
we first calculate the cosine similarity of sentence
embeddings for each task from the training set us-
ing the sentence-transformers (Reimers
and Gurevych, 2019) library and the
all-mpnet-base-v2 model. In contrast to
Chronopoulou et al. (2023), who only select 100
samples for each domain, we select 10000 samples
for each task, as our sequences corresponding to
tasks are meaningfully shorter than the sequences
corresponding to domains. Using these similarities,
we select the top 5 most similar tasks to the target
task, normalize the similarity scores to obtain the
weights, and perform weight-space averaging of
the adapter parameters, following Chronopoulou
et al. (2023). Note that we also include the corpus
of the target task when calculating the similarities
for weight-space averaging, and hence also the
target adapter during weight-space averaging, and
train a new task head on the target task to allow
a more fair comparison to other two-stage MTL
methods. We use a learning rate of 3e-4 when
training the target task head with ADAPTERSOUP.

Efficiency of two-stage MTL methods. We pro-
vide a comprehensive comparison of all trainable
parameters of two-stage MTL methods if all the
adapters should also be trained in Table 7.

5We also test out {N
(

1
T
, 0.001

)
, N

(
3
T
, 0.001

)
,

N (1, 0.001)}.

A.2 Analysis on Scaling Output
Representations

As mentioned in § 3, we conducted preliminary
experiments in which we scaled the output repre-
sentations of adapters – in isolation and combin-
ing two of them each. We use the GLUE (Wang
et al., 2019b) and SuperGLUE (Wang et al., 2019a)
benchmarks (cf. Appendix A.1) and train a Pfeiffer
adapter (Pfeiffer et al., 2021) on each task using
the encoder LM RoBERTaBASE (Liu et al., 2019b).
In our probing-like setup (Tenney et al., 2019), we
freeze both the backbone and adapter weights and
train a new task head on target task t each time
we change the scaling factor. For full clarity, we
first show the effect of scaling output representa-
tions of adapters on a subset of tasks from GLUE
and SuperGLUE in Figure 3, and then show the
remaining ones in Figure 5 as well as Figure 6.
Complete descriptions of the datasets, hyperparam-
eters, and training procedure are provided in § 4
and Appendix A.1.

We start by analyzing the performance change
of a target task when scaling the output representa-
tions of the adapter of one given source task. We
define ωs as the scaling value in the range of [0, 1],
multiplied by the output representations ol

s of the
source task s in all layers, such that ol

t = ωso
l
s. Fig-

ure 3 (Top) shows the probing results on four target
tasks (each column), given various scaling weights
applied to four source tasks (one of which is the
respective target task). The results show that, while
increasing the scaling weights generally improves
the performance, the optimal value is not necessar-
ily at ωs = 1. In particular, there exist instances
with 0 < ωs < 1 reaching better performance than
ωs = 1. This suggests that partial knowledge trans-
fer of tasks may be more beneficial. Notably, and
as also reported in previous studies (Poth et al.,
2021; Pruksachatkun et al., 2020), some source
tasks such as MNLI show strong transfer learning
abilities.

Next, we go one step further by assessing the
scaled combination of the output vectors of two
adapters. We focus on MNLI as one of the source
tasks given its observed benefit in transfer learning,
and set the second source adapter (denoted by s)
to the one corresponding to the target task. We
use two scaling parameters ωMNLI and ωs to scale
ol

MNLI and ol
s, respectively. The resulting output

vector is defined as: ol
t = ωso

l
s+ωMNLIo

l
MNLI. Fig-

ure 3 (Bottom) shows the results for various values

11759

0.00.1 0.3 0.5 0.7 0.91.0
s

0.65

0.7

0.75

0.8

0.85

0.9

0.95
Ac

cu
ra

cy
MNLI
QNLI
MultiRC
CB

0.00.1 0.3 0.5 0.7 0.91.0
CB

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Ac
cu

ra
cy

MNLI = 0.0
MNLI = 0.3
MNLI = 0.5
MNLI = 0.7
MNLI = 1.0

(a) CB

0.0 0.1 0.3 0.5 0.7 0.9 1.0
s

0.6

0.65

0.7

0.75

0.8
MNLI
QNLI
MultiRC
COPA

0.0 0.1 0.3 0.5 0.7 0.9 1.0
COPA

0.6

0.65

0.7

0.75

0.8

MNLI = 0.0
MNLI = 0.3
MNLI = 0.5
MNLI = 0.7
MNLI = 1.0

(b) COPA

0.0 0.1 0.3 0.5 0.7 0.9 1.0
s

0.7

0.75

0.8

0.85

0.9
MNLI
QNLI
MultiRC
MRPC

0.0 0.1 0.3 0.5 0.7 0.9 1.0
MRPC

0.7

0.75

0.8

0.85

0.9

MNLI = 0.0
MNLI = 0.3
MNLI = 0.5
MNLI = 0.7
MNLI = 1.0

(c) MRPC

0.0 0.1 0.3 0.5 0.7 0.9 1.0
s

0.55

0.6

0.65

0.7

0.75

0.8
MNLI
QNLI
MultiRC
RTE

0.0 0.1 0.3 0.5 0.7 0.9 1.0
RTE

0.55

0.6

0.65

0.7

0.75

0.8

MNLI = 0.0
MNLI = 0.3
MNLI = 0.5
MNLI = 0.7
MNLI = 1.0

(d) RTE

Figure 3: Probing results of 4 target tasks in various transfer learning conditions. (Top) Effect of scaling the
output representations of adapters by weight ωs using different source adapters. (Bottom) Effect of combining
independently scaled output representations of two adapters trained on the target task and MNLI, respectively. Each
point shows the mean over 5 seeds.

of ωMNLI and ωs. Combining the information en-
capsulated within multiple adapters through scaling
can result in improved performance. Interestingly,
in some cases, the best combination of ωMNLI and
ωs does not add up to 1, i.e., ωt + ωs ̸= 1. These
initial experiments – while only covering a simple
combination of up to two source tasks – provide
insights into the benefits of scaling representations
for transfer learning.

A.3 Ablation Study
Table 8 shows the effect of adding constraints
on the distributional values of scaling coeffi-
cient in SCALEARN, evaluated on GLUE using
RoBERTaBASE. In particular, we change the orig-
inal SCALEARN model by adding the constraints
mean and softmax over the source task dimension,
thus enforcing

∑|S|
s=1ω

l
s = 1. The results indicate

that both constraints reduce average performance
compared to those having no constraints, confirm-
ing our choice of directly learning the scaling coef-
ficients without imposing any restrictions.

A.4 Scaling Coefficient Visualizations
SCALEARNUNIFORM and SCALEARNUNI-
FORM++ utilize uniform scaling and learn
coefficients that are directly used to scale the
output representations of the source adapters. In
the following, we leverage this characteristic to
provide an analysis of the potential degrees of ef-
fects of source tasks on target tasks. We present the
adapter weights learned using RoBERTaBASE for
GLUE and SuperGLUE, and using XLM-RBASE

for HumSet with the random seed set to 0.
The learned coefficients of each LM layer on

GLUE, SuperGLUE, and HumSet of SCALEAR-
NUNIFORM are shown in Figure 7, Figure 8, and
Figure 9, respectively. The weights reveal that in
most cases, the actual target task adapter is acti-
vated most strongly across the layers. Among the
source tasks, most weights are close to 0, while
some source tasks also show high values, particu-
larly in some of the higher layers of the LM. Inter-
estingly, some of the scaling coefficients go beyond
or even below 1, which would not have been possi-
ble in the traditional paradigm where scaling coef-
ficients combining multiple vectors are restricted
to sum up to 1.

The learned weights on GLUE, SuperGLUE, and
HumSet of SCALEARNUNIFORM++ are shown in
Figure 10. SCALEARNUNIFORM++ also mostly
activates the actual target task adapter, whereas this
effect is comparatively weaker in SuperGLUE and
stronger in HumSet. As is the case with SCALEAR-
NUNIFORM, many scaling coefficients exceed or
go below 1.

A.5 Additional Results

More results using RoBERTaBASE. Table 12
shows the results when training on the combination
of all GLUE and SuperGLUE tasks, resulting in a
total of 15 tasks.

Results using RoBERTaLARGE. We further vali-
date our method and its variations on the encoder
LM RoBERTaLARGE. Table 9 shows the corre-

11760

Model Constraint MNLI QQP QNLI SST-2 STS-B MRPC RTE CoLA Avg.

SCALEARN None (original) 86.970.09 90.320.10 92.510.17 93.880.18 90.960.16 87.750.58 82.061.37 58.471.76 85.360.55
SCALEARN Mean 87.030.01 90.360.30 92.340.09 92.601.38 90.620.25 87.110.79 79.211.82 59.872.95 84.890.95
SCALEARN Softmax 86.850.05 90.600.05 92.740.22 93.750.08 90.660.10 85.831.09 79.281.04 58.431.98 84.770.58

Table 8: Effect of adding various constraints to the scaling values of SCALEARN, evaluated on GLUE using
RoBERTaBASE. The constraints mean and softmax are applied over the task dimension, enforcing

∑|S|
s=1 ω

l
s = 1.

The best results are shown in bold.

4 16 32 100 All

0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90

Av
g.

 M
et

ric

Adapter
AdapterFusion
ScaLearn

(a) GLUE

4 16 32 100 All
of Training Samples

0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85

(b) SuperGLUE

4 16 32 100 All

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60

(c) HumSet

Figure 4: Few-shot learning results (k = {4,16,32,100}) comparing ADAPTER, ADAPTERFUSION, and SCALEARN
using RoBERTaLARGE on three benchmarks. We show the mean across 5 seeds. For ADAPTERFUSION and
SCALEARN, we assume that there is a Pfeiffer adapter trained on the target task on k samples and a Pfeiffer adapter
trained on all samples for all other tasks available.

sponding results, including all baselines, on the
GLUE benchmark. Table 10 shows the results on
SuperGLUE. Table 11 shows the results on Hum-
Set. Finally, Table 13 shows the results when train-
ing on the combination of all GLUE and Super-
GLUE tasks, resulting in a total of 15 tasks.

A.6 Complete Few-Shot Results

To obtain a more complete understanding of the
few-shot capabilities of ADAPTER, ADAPTERFU-
SION, and SCALEARN, we show few-shot transfer
learning results for each dataset, as well as for every
variant of SCALEARN (cf. § 5.3).

Few-shot results using RoBERTaBASE. Table 14
shows the few-shot transfer learning performance
of the methods on the GLUE benchmark using
k = {4,16,32,100} samples. Table 15 shows
the performance of the methods on SuperGLUE.
Table 16 shows the performance of the methods
on HumSet (on XLM-R)BASE. Finally, Table 17
shows the results when training on the combination
of all GLUE and SuperGLUE tasks, resulting in
|S| = 15 source tasks.

Few-shot results using RoBERTaLARGE. Fig-
ure 4 provides an overview, comparing the
few-shot learning capabilities of ADAPTER,
ADAPTERFUSION, and SCALEARN when using
RoBERTaLARGE. Moreover, Table 18 shows the
few-shot learning performance of the methods on

the GLUE benchmark using k = {4,16,32,100}
samples. Table 19 shows the performance of
the methods on SuperGLUE. Table 20 shows
the performance of the methods on HumSet (on
XLM-RLARGE). Finally, Table 21 shows the results
when training on the combination of all GLUE and
SuperGLUE tasks.

11761

0.00.1 0.3 0.5 0.7 0.91.0
s

0.45
0.5

0.55
0.6

0.65
0.7

0.75
0.8

0.85
0.9

0.95

Ac
cu

ra
cy

COPA
WSC
RTE
MRPC
CoLA
WiC
STS-B
BoolQ
SST-2
QQP
ReCoRD
CB

(a) CB

0.00.1 0.3 0.5 0.7 0.91.0
s

0.5

0.55

0.6

0.65

0.7

0.75

Ac
cu

ra
cy

CB
WSC
RTE
MRPC
CoLA
WiC
STS-B
BoolQ
SST-2
QQP
ReCoRD
COPA

(b) COPA

0.00.1 0.3 0.5 0.7 0.91.0
s

0.65

0.7

0.75

0.8

0.85

0.9

Ac
cu

ra
cy

CB
COPA
WSC
RTE
CoLA
WiC
STS-B
SST-2
QQP
QNLI
MultiRC
ReCoRD
MRPC

(c) MRPC

0.00.1 0.3 0.5 0.7 0.91.0
s

0.5

0.55

0.6

0.65

0.7

0.75

Ac
cu

ra
cy

CB
COPA
WSC
MRPC
CoLA
WiC
STS-B
BoolQ
SST-2
QQP
ReCoRD
RTE

(d) RTE

0.00.1 0.3 0.5 0.7 0.91.0
s

0.45

0.5

0.55

0.6

0.65

Ac
cu

ra
cy

COPA
CB
RTE
MRPC
CoLA
WiC
STS-B
BoolQ
SST-2
QQP
ReCoRD
WSC

(e) WSC

Figure 5: Effect of scaling the output representations ol
s

of adapters by weight ωs using different source adapters
from all other tasks from GLUE and SuperGLUE. Each
point shows the mean over 5 seeds.

0.00.1 0.3 0.5 0.7 0.91.0
WSC

0.55

0.6

0.65

Ac
cu

ra
cy

MNLI = 0.0
MNLI = 0.3
MNLI = 0.5
MNLI = 0.7
MNLI = 1.0

(a) WSC

0.00.1 0.3 0.5 0.7 0.91.0
CoLA

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

0.55
0.6

M
at

th
ew

s'
Co

rre
la

tio
n

MNLI = 0.0
MNLI = 0.3
MNLI = 0.5
MNLI = 0.7
MNLI = 1.0

(b) CoLA

0.00.1 0.3 0.5 0.7 0.91.0
WiC

0.55

0.6

0.65

0.7

Ac
cu

ra
cy

MNLI = 0.0
MNLI = 0.3
MNLI = 0.5
MNLI = 0.7
MNLI = 1.0

(c) WiC

0.00.1 0.3 0.5 0.7 0.91.0
STS B

0.6
0.65
0.7

0.75
0.8

0.85
0.9

0.95

Pe
ar

so
n'

s C
or

re
la

tio
n

MNLI = 0.0
MNLI = 0.3
MNLI = 0.5
MNLI = 0.7
MNLI = 1.0

(d) STS-B

0.00.1 0.3 0.5 0.7 0.91.0
MultiRC

0.25
0.3

0.35
0.4

0.45
0.5

0.55
0.6

0.65
0.7

0.75

F1

MNLI = 0.0
MNLI = 0.3
MNLI = 0.5
MNLI = 0.7
MNLI = 1.0

(e) MultiRC

0.00.1 0.3 0.5 0.7 0.91.0
BoolQ

0.6

0.65

0.7

0.75

0.8

Ac
cu

ra
cy

MNLI = 0.0
MNLI = 0.3
MNLI = 0.5
MNLI = 0.7
MNLI = 1.0

(f) BoolQ

Figure 6: Effect of combining independently scaled
output representations of two adapters trained on the
target task and MNLI, respectively, on additional tasks
from GLUE and SuperGLUE. Each point shows the
mean over 5 seeds.

11762

0 1 2 3 4 5 6 7 8 9 10 11
Layer

MRPC

CoLA

QNLI

QQP

SS
T-2

ST
S-B

MNLI

RT
E

GL
UE

So
ur

ce
 Ta

sk

-0.28-0.05-0.06-0.01-0.24-0.39-0.090.03-0.19-0.21-0.020.09

-0.11-0.00-0.040.32-0.110.34 0.38-0.080.04 0.16 0.05 0.23

0.36 0.47 0.69 0.46 0.71 0.33 0.64 0.67 0.83 0.35 1.26 0.40

0.16 0.04 0.10 0.18 0.11-0.07-0.160.26-0.07-0.000.32 0.62

0.10 0.12 0.15 0.09 0.10 0.24 0.21 0.06 0.28 0.17 0.13 0.74

0.31 0.21-0.04-0.080.17 0.20-0.050.04 0.16 0.14-0.000.17

-0.08-0.150.16-0.03-0.07-0.270.04-0.010.23-0.120.26 0.04

0.80 0.65 0.29 0.26 0.60 0.38 0.42 0.44 0.15 0.25 0.17 0.28

0 1 2 3 4 5 6 7 8 9 10 11
Layer

RT
E

CoLA

QNLI

QQP

SS
T-2

ST
S-B

MNLI

MRPC

-0.41-0.57-0.24-0.12-0.24-0.51-0.24-0.030.17-0.11-0.100.25

-0.200.06 0.10 0.15 0.06 0.18 0.18 0.14-0.230.13-0.120.26

0.07-0.04-0.050.02 0.07 0.00 0.02 0.02 0.13 0.15 0.29 0.41

0.02-0.09-0.020.06 0.01-0.04-0.070.18 0.06-0.010.15 0.57

0.02 0.07 0.04 0.05 0.16 0.05 0.17 0.07 0.08 0.13 0.10 0.69

0.09-0.020.41 0.16 0.29 0.16 0.15 0.02 0.06 0.15 0.23 0.39

0.10-0.24-0.14-0.14-0.150.05-0.15-0.14-0.010.14-0.090.14

1.41 1.33 1.11 1.72 1.01 0.99 0.83 1.06 0.91 0.70 0.77 0.60 0.0

0.2

0.4

0.6

0.8

1.0
s

0 1 2 3 4 5 6 7 8 9 10 11
Layer

RT
E

MRPC

QNLI

QQP

SS
T-2

ST
S-B

MNLI

CoLA

GL
UE

So
ur

ce
 Ta

sk

-0.30-0.210.03-0.51-0.200.23-0.00-0.04-0.331.35 1.21 0.01

-0.150.06-0.190.54-0.130.04-0.240.02 0.02 0.75-0.480.17

0.30 0.02 0.05 0.15 0.02 0.09 0.08 0.01-0.080.08 0.62 0.54

0.00 0.08 0.21-0.09-0.05-0.020.18 0.13 0.17 0.27 0.00 0.71

0.07 0.10 0.08-0.030.13 0.00 0.14-0.140.03 0.13 0.10 0.74

-0.03-0.050.10 0.01 0.02 0.14 0.14 0.14-0.010.12-0.250.43

-0.17-0.21-0.290.06-0.01-0.270.33-0.27-0.09-0.22-0.49-0.09

1.14 1.35 1.31 1.52 1.53 1.40 1.47 1.47 1.18 0.56 0.52 0.82

0 1 2 3 4 5 6 7 8 9 10 11
Layer

RT
E

MRPC

CoLA

QQP

SS
T-2

ST
S-B

MNLI

QNLI

-0.180.12-0.06-0.110.25 0.21-0.10-0.000.52-0.440.91 0.31

0.14-0.01-0.190.07-0.04-0.10-0.06-0.25-0.51-0.37-0.68-0.69

-0.09-0.06-0.140.04-0.160.13-0.20-0.03-0.220.24-0.21-0.48

-0.010.06 0.06 0.07 0.05 0.08-0.03-0.070.14 0.15 1.20-0.54

0.04 0.07 0.04-0.000.01-0.04-0.06-0.020.04-0.110.16 0.00

0.06-0.00-0.090.04-0.06-0.170.05-0.020.18 0.11-0.39-0.15

-0.12-0.140.06 0.00-0.02-0.220.12 0.05 0.05 0.04-1.06-0.26

0.97 1.10 1.09 1.00 1.13 1.00 1.16 1.06 0.90 1.13 1.07 0.69 0.0

0.2

0.4

0.6

0.8

1.0

s

0 1 2 3 4 5 6 7 8 9 10 11
Layer

RT
E

MRPC

CoLA

QNLI

SS
T-2

ST
S-B

MNLI

QQP

GL
UE

So
ur

ce
 Ta

sk

-0.10-0.010.03-0.06-0.170.07-0.110.20 0.10 0.23-1.36-0.12

-0.04-0.08-0.090.24-0.00-0.020.01-0.20-0.36-0.19-0.05-0.46

-0.030.04 0.04 0.02 0.02-0.050.14-0.320.32 0.44-0.07-1.65

0.02 0.09 0.02 0.05 0.01 0.04 0.06 0.01-0.15-0.030.15-1.34

-0.050.04-0.040.02 0.01-0.050.03 0.04 0.11-0.24-0.040.28

0.08-0.090.04 0.05 0.01-0.010.03 0.13-0.100.15-0.090.18

0.07 0.01-0.020.01-0.00-0.040.00-0.090.12 0.29 0.86-0.28

1.04 0.98 0.99 0.98 0.94 1.02 1.01 0.95 0.93 1.10 0.96-0.17

0 1 2 3 4 5 6 7 8 9 10 11
Layer

RT
E

MRPC

CoLA

QNLI

QQP

ST
S-B

MNLI

SS
T-2

-0.11-0.010.02-0.23-0.060.03 0.05 0.07-0.360.10 0.28 0.13

0.06-0.04-0.060.11 0.01 0.28-0.040.10-0.050.41-0.56-0.05

0.13 0.32-0.070.04-0.330.13-0.21-0.000.40 0.24-0.41-0.14

-0.060.01-0.01-0.020.08-0.020.03 0.03-0.04-0.011.09 0.15

0.05 0.04 0.05 0.01-0.08-0.20-0.07-0.190.00 0.15 0.33 0.33

0.05-0.040.04-0.020.00 0.04-0.090.05-0.020.07-0.160.66

-0.030.02-0.080.01 0.02 0.05 0.01-0.110.09 0.06 0.05 0.11

1.09 1.06 1.16 1.02 1.10 1.35 1.13 0.95 1.23 0.85 1.24 1.33 0.0

0.2

0.4

0.6

0.8

1.0

s

0 1 2 3 4 5 6 7 8 9 10 11
Layer

RT
E

MRPC

CoLA

QNLI

QQP

SS
T-2

MNLI

ST
S-B

GL
UE

So
ur

ce
 Ta

sk

0.00-0.11-0.110.01 0.06-0.42-0.000.16-0.170.10 0.33 0.11

0.08-0.31-0.07-0.030.10-0.15-0.030.24-0.46-0.31-0.100.06

0.04-0.15-0.170.02-0.200.07-0.330.07 0.14-0.10-0.390.17

0.07 0.10 0.10-0.050.12 0.13 0.00 0.25 0.10 0.72 0.32 0.40

0.07-0.080.04-0.04-0.080.01-0.08-0.02-0.120.16 0.14 0.57

0.11 0.08 0.01-0.020.08 0.15 0.02 0.03 0.07 0.39 0.59 0.70

0.01 0.15 0.21 0.04 0.02-0.070.06-0.110.10 0.33 0.06 0.40

1.12 0.95 1.33 1.23 1.27 1.00 1.19 0.89 0.88 0.20 0.21 0.21

0 1 2 3 4 5 6 7 8 9 10 11
Layer

RT
E

MRPC

CoLA

QNLI

QQP

SS
T-2

ST
S-B

MNLI

-0.16-0.020.04-0.110.10-0.340.27-0.19-0.27-1.201.07 0.26

0.03 0.08-0.07-0.060.11-0.06-0.060.04 0.31 0.62-0.431.74

0.04 0.05-0.050.14 0.01 0.18-0.090.02-0.840.47-0.52-0.88

0.08-0.05-0.02-0.000.05 0.00 0.02 0.07 0.03-0.050.45 1.53

0.06 0.04 0.06 0.03 0.01 0.04 0.03-0.01-0.000.08 0.10-1.15

0.03-0.020.02 0.01 0.00 0.04-0.07-0.040.07 0.05-0.30-0.62

-0.02-0.11-0.04-0.04-0.090.05-0.10-0.030.05 0.21 0.22 0.97

0.98 1.01 0.99 1.00 1.00 0.96 1.01 1.09 1.02 1.11 1.17 0.44 0.0

0.2

0.4

0.6

0.8

1.0

s

Figure 7: SCALEARNUNIFORM scaling coefficients on GLUE using RoBERTaBASE on seed 0. Target tasks are
shown in the last index of each heatmap.

11763

0 1 2 3 4 5 6 7 8 9 10 11
Layer

COPA

WSC

WiC

Boo
lQ

RT
E

Mult
iRC

Re
CoR

D

CB

Su
pe

rG
LU

E

So
ur

ce
 Ta

sk

0.210.130.230.360.290.190.340.380.270.230.210.32

0.260.320.230.220.220.220.230.290.220.210.210.22

0.250.240.270.330.220.170.180.150.190.190.260.30

0.050.070.190.210.210.160.180.220.100.190.180.28

0.220.200.150.070.070.190.290.280.350.350.270.34

0.130.070.140.160.250.150.280.210.330.260.200.24

0.280.240.130.200.130.180.210.230.180.180.130.26

0.530.570.570.530.550.490.490.450.500.450.460.40

0 1 2 3 4 5 6 7 8 9 10 11
Layer

CB

COPA

WSC

WiC

Boo
lQ

Mult
iRC

Re
CoR

D

RT
E

-0.280.650.200.27-0.39-0.010.010.34-0.00-0.13-0.060.16

0.53-0.53-0.050.380.08-0.340.07-0.00-0.160.070.150.11

-0.48-0.02-0.35-0.49-0.33-0.11-0.020.080.160.100.320.02

-0.010.060.070.070.030.02-0.030.000.270.17-0.170.07

-0.01-0.050.080.150.480.180.370.890.440.460.140.26

0.190.090.470.480.460.420.460.460.250.280.010.66

0.120.550.290.130.210.220.250.180.040.470.160.42

1.121.230.600.671.320.470.660.520.690.650.800.37 0.0

0.2

0.4

0.6

0.8

1.0
s

0 1 2 3 4 5 6 7 8 9 10 11
Layer

CB

WSC

WiC

Boo
lQ

RT
E

Mult
iRC

Re
CoR

D

COPA

Su
pe

rG
LU

E

So
ur

ce
 Ta

sk

0.420.380.02-0.040.160.100.220.260.210.190.050.19

0.420.340.180.140.350.480.100.230.200.360.480.24

0.150.190.070.040.35-0.05-0.040.11-0.02-0.00-0.120.12

0.330.430.200.150.300.330.190.440.290.610.420.02

0.000.140.09-0.170.310.290.240.010.290.350.340.20

0.320.260.130.310.470.310.210.420.430.590.480.19

0.190.37-0.290.140.080.080.180.130.230.05-0.080.17

0.320.310.550.570.850.830.670.790.700.690.810.32

0 1 2 3 4 5 6 7 8 9 10 11
Layer

CB

COPA

WiC

Boo
lQ

RT
E

Mult
iRC

Re
CoR

D

WSC

0.260.140.130.190.150.130.200.180.190.170.180.17

0.210.190.120.110.130.130.100.110.090.080.040.31

0.120.130.270.180.110.130.150.160.160.100.03-0.01

0.210.240.130.400.270.220.260.200.260.160.07-0.00

0.040.080.080.060.170.240.310.150.300.240.150.24

0.220.160.160.150.180.260.430.280.300.180.060.45

0.190.240.200.210.310.300.230.200.200.480.370.39

0.430.320.150.290.360.350.380.410.490.470.580.06 0.0

0.2

0.4

0.6

0.8

1.0

s

0 1 2 3 4 5 6 7 8 9 10 11
Layer

CB

COPA

WSC

Boo
lQ

RT
E

Mult
iRC

Re
CoR

D

WiC

Su
pe

rG
LU

E

So
ur

ce
 Ta

sk

-0.06-0.31-0.34-0.04-0.20-0.260.020.150.270.080.170.12

0.07-0.24-0.04-0.010.200.080.19-0.20-0.22-0.22-0.180.13

0.16-0.010.05-0.230.00-0.26-0.08-0.090.02-0.04-0.320.03

-0.47-0.87-0.26-0.37-0.12-0.040.380.390.400.450.55-0.07

0.04-0.33-0.060.270.050.140.12-0.16-0.030.320.050.38

-0.050.18-0.160.090.13-0.12-0.04-0.040.420.39-0.040.87

0.130.150.000.080.00-0.00-0.23-0.040.190.040.060.65

0.931.371.491.081.041.120.880.821.130.820.640.06

0 1 2 3 4 5 6 7 8 9 10 11
Layer

CB

COPA

WSC

WiC

RT
E

Mult
iRC

Re
CoR

D

Boo
lQ

0.00-0.490.16-0.30-0.08-0.530.050.230.130.430.10-0.29

-0.020.04-0.05-0.12-0.090.14-0.22-0.41-0.24-0.21-0.22-0.00

-0.21-0.030.24-0.17-0.30-0.230.220.22-0.050.13-0.31-0.02

-0.330.16-0.17-0.110.17-0.420.02-0.110.970.220.52-0.11

-0.190.040.03-0.14-0.010.110.04-0.54-0.070.080.100.12

0.15-0.11-0.030.00-0.07-0.05-0.16-0.140.02-0.19-0.111.23

-0.060.02-0.10-0.040.05-0.040.000.040.010.240.130.55

0.931.440.961.681.081.341.081.231.110.820.360.88 0.0

0.2

0.4

0.6

0.8

1.0

s

0 1 2 3 4 5 6 7 8 9 10 11
Layer

CB

COPA

WSC

WiC

Boo
lQ

RT
E

Re
CoR

D

Mult
iRC

Su
pe

rG
LU

E

So
ur

ce
 Ta

sk

-0.15-0.24-0.140.040.11-0.20-0.010.13-0.01-0.41-0.96-0.10

-0.15-0.000.000.090.09-0.18-0.080.020.26-0.07-0.37-0.34

0.120.18-0.09-0.250.11-0.130.06-0.260.21-0.420.62-0.14

0.06-0.170.040.05-0.070.010.070.09-0.62-0.951.27-0.13

-0.030.01-0.10-0.14-0.030.020.18-0.16-0.120.45-0.440.09

-0.020.05-0.110.02-0.020.090.12-0.170.38-0.29-0.330.26

0.060.01-0.010.02-0.04-0.04-0.04-0.100.04-0.060.050.76

1.190.981.091.041.131.031.171.051.181.030.890.63

0 1 2 3 4 5 6 7 8 9 10 11
Layer

CB

COPA

WSC

WiC

Boo
lQ

RT
E

Mult
iRC

Re
CoR

D

0.01-0.03-0.110.07-0.070.080.07-0.060.16-0.391.370.02

0.090.11-0.03-0.03-0.010.050.070.120.030.14-0.270.50

-0.020.07-0.100.01-0.110.000.040.09-0.01-0.101.371.69

0.42-0.31-0.13-0.01-0.17-0.050.01-0.200.40-0.342.731.08

-0.03-0.000.10-0.070.04-0.10-0.04-0.01-0.240.15-0.330.34

0.020.050.01-0.040.09-0.040.07-0.07-0.04-0.061.46-1.08

0.000.010.080.03-0.050.080.000.070.020.05-0.47-0.47

0.830.860.960.940.950.940.920.810.910.870.940.03 0.0

0.2

0.4

0.6

0.8

1.0

s

Figure 8: SCALEARNUNIFORM scaling coefficients on SuperGLUE using RoBERTaBASE on seed 0. Target tasks
are shown in the last index of each heatmap.

11764

0 1 2 3 4 5 6 7 8 9 10 11
Layer

Pill
ars

 1D

Su
bp

illa
rs

1D

Pill
ars

 2D

Su
bp

illa
rs

2D

Se
cto

rs

Hu
m

Se
t

So
ur

ce
 Ta

sk

0.02 0.06-0.030.02 0.02 0.04-0.010.01-0.00-0.03-0.050.17

0.05 0.03-0.000.03-0.00-0.000.03 0.01-0.010.09 0.04-0.12

0.08 0.03 0.01 0.02 0.04 0.00 0.02-0.000.02 0.02 0.07 0.38

0.03 0.01-0.02-0.000.00 0.03-0.03-0.020.01 0.02-0.040.20

1.00 1.12 1.05 1.13 0.99 1.24 1.12 1.07 1.17 1.07 1.00 1.44

0 1 2 3 4 5 6 7 8 9 10 11
Layer

Se
cto

rs

Su
bp

illa
rs

1D

Pill
ars

 2D

Su
bp

illa
rs

2D

Pill
ars

 1D

-0.04-0.04-0.090.02-0.06-0.06-0.04-0.04-0.04-0.090.05 0.01

-0.03-0.02-0.01-0.01-0.02-0.02-0.07-0.04-0.01-0.020.07 0.01

0.17 0.14 0.16 0.16 0.08 0.12 0.10 0.08 0.07 0.07 0.13 0.83

-0.03-0.01-0.04-0.050.02-0.050.02-0.03-0.02-0.03-0.020.06

1.02 0.98 0.98 1.08 1.01 1.03 1.07 1.00 1.02 1.00 1.03 1.45
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

s

0 1 2 3 4 5 6 7 8 9 10 11
Layer

Se
cto

rs

Pill
ars

 1D

Pill
ars

 2D

Su
bp

illa
rs

2D

Su
bp

illa
rs

1D

Hu
m

Se
t

So
ur

ce
 Ta

sk

0.03-0.030.01-0.03-0.010.01-0.020.01-0.04-0.05-0.040.02

0.11 0.09 0.13 0.06 0.05 0.07 0.06 0.03 0.03-0.020.07 0.50

-0.030.00-0.02-0.00-0.00-0.05-0.01-0.00-0.000.01 0.00-0.07

0.02-0.05-0.03-0.03-0.000.01-0.02-0.02-0.02-0.040.01 0.31

1.01 1.01 1.01 1.03 1.04 0.99 1.02 1.04 1.05 1.07 1.19 1.22

0 1 2 3 4 5 6 7 8 9 10 11
Layer

Se
cto

rs

Pill
ars

 1D

Su
bp

illa
rs

1D

Su
bp

illa
rs

2D

Pill
ars

 2D

-0.070.02-0.00-0.11-0.050.00-0.03-0.000.04-0.030.06-0.19

0.01-0.020.02-0.030.03-0.02-0.060.00-0.010.03 0.01 0.14

-0.000.02-0.020.02-0.01-0.000.02-0.05-0.03-0.010.04 0.57

0.07 0.12 0.01 0.04 0.06 0.02 0.05 0.04 0.00 0.01-0.050.04

0.95 1.05 0.96 1.07 1.07 0.99 1.13 1.07 1.06 1.05 1.06 1.24 0.0

0.2

0.4

0.6

0.8

1.0

1.2

s

0 1 2 3 4 5 6 7 8 9 10 11
Layer

Se
cto

rs

Pill
ars

 1D

Su
bp

illa
rs

1D

Pill
ars

 2D

Su
bp

illa
rs

2D

Hu
m

Se
t

So
ur

ce
 Ta

sk

-0.02-0.01 0.05 -0.17-0.10-0.02-0.03 0.03 -0.05-0.04-0.13 0.16

0.01 0.01 -0.04-0.01-0.01-0.03-0.06-0.01 0.01 -0.04-0.03 0.20

0.19 0.19 0.22 0.21 0.22 0.14 0.08 0.02 0.08 0.09 0.06 0.21

0.02 0.03 -0.02-0.03-0.07 0.02 -0.05-0.03-0.02-0.04-0.01 0.23

0.98 1.02 1.00 0.99 1.05 0.89 1.04 0.94 1.10 1.01 1.16 1.72 0.00

0.25

0.50

0.75

1.00

1.25

1.50

s

Figure 9: SCALEARNUNIFORM scaling coefficients on HumSet using XLM-RBASE on seed 0. Target tasks are
shown in the last index of each heatmap.

RT
E

MRPC
CoLA MNLI

QNLI
QQP

SS
T-2

ST
S-B

GLUE

RT
E

MRPC

CoLA

MNLI

QNLI

QQP

SS
T-2

ST
S-B

So
ur

ce
 Ta

sk

0.38 -0.20-0.08-0.060.05 0.00 -0.06-0.05

-0.141.08 -0.010.00 -0.06-0.020.03 -0.08

0.06 -0.001.22 0.03 -0.11-0.030.06 -0.11

0.60 0.04 0.10 0.99 0.08 0.02 0.01 0.05

0.03 -0.030.01 0.01 1.05 -0.00-0.01-0.02

0.16 0.05 0.06 0.04 -0.000.99 0.01 0.06

0.10 0.17 0.07 0.02 -0.000.02 1.09 0.12

-0.08-0.07-0.09-0.05-0.05-0.00-0.011.09

CB
COPA WSC WiC

Boo
lQ RT

E

Mult
iRC

Re
CoR

D

SuperGLUE

CB

COPA

WSC

WiC

Boo
lQ

RT
E

Mult
iRC

Re
CoR

D

0.74 0.29 0.09 0.18 -0.12-0.08-0.050.04

0.13 0.59 0.29 0.05 0.07 -0.010.00 0.04

-0.010.24 0.76 0.16 -0.060.03 -0.01-0.00

-0.090.18 -0.030.43 -0.07-0.09-0.02-0.07

0.02 0.09 0.34 0.17 1.06 -0.04-0.05-0.04

0.27 0.22 -0.000.17 0.08 1.15 0.02 0.00

0.31 0.18 0.39 0.16 0.01 -0.031.07 0.02

0.20 0.15 -0.030.45 0.00 -0.00-0.020.90

Se
cto

rs

Pill
ars

 1D

Su
bp

illa
rs

1D

Pill
ars

 2D

Su
bp

illa
rs

2D

HumSet

Se
cto

rs

Pill
ars

 1D

Su
bp

illa
rs

1D

Pill
ars

 2D

Su
bp

illa
rs

2D

1.08 -0.04 -0.03 -0.01 -0.03

0.01 1.02 0.07 -0.01 -0.02

0.02 -0.02 1.03 -0.00 0.13

0.02 0.10 -0.01 1.04 -0.01

0.00 -0.03 -0.01 0.04 1.00 0.0

0.2

0.4

0.6

0.8

1.0

s

Target Task

Figure 10: SCALEARNUNIFORM++ scaling coefficients on GLUE, SuperGLUE, and HumSet using RoBERTaBASE
for GLUE and SuperGLUE and XLM-RBASE for HumSet on seed 0.

11765

Model MNLI QQP QNLI SST-2 STS-B MRPC RTE CoLA Avg.

FINETUNE 89.570.36 89.751.03 93.910.43 95.300.65 91.890.35 86.271.15 81.523.19 60.152.89 86.041.26
ADAPTER 89.620.18 89.870.67 94.130.06 95.240.08 91.810.29 87.822.11 81.232.92 64.071.97 86.721.04
PROPETL 89.780.24 89.230.77 94.320.09 95.410.00 91.450.39 87.650.73 84.552.14 65.852.10 87.280.81
COMPACTER++ 89.150.67 87.332.39 92.931.42 95.410.00 91.460.35 87.841.23 79.714.58 65.662.08 86.191.59
(IA)3 88.690.61 87.790.72 91.720.79 94.950.16 91.390.45 86.371.65 80.793.16 64.703.20 85.801.34
LORA 89.660.27 89.660.10 94.200.28 95.470.24 91.980.13 87.701.14 80.512.03 63.802.71 86.620.86

FINETUNE-M 87.950.39 89.820.77 92.580.32 94.880.94 87.040.68 81.371.00 84.361.19 55.320.78 84.160.76
ADAPTER-M 89.100.36 89.350.09 93.640.05 94.900.17 88.400.32 83.090.25 86.640.00 56.380.79 85.190.25
PROPETL-M 88.980.33 89.030.15 94.140.11 95.150.05 91.560.23 87.831.10 88.450.29 60.991.03 87.010.41
HYPERFORMER 89.660.40 90.150.63 93.950.13 95.800.62 91.680.35 86.601.22 86.280.29 61.184.76 86.911.05
HYPERFORMER++ 89.790.21 89.540.43 93.950.54 95.220.11 91.620.29 88.071.86 86.281.06 65.160.61 87.450.64

ADAPTERFUSION 89.570.17 90.880.06 94.150.04 95.870.00 91.860.15 88.970.78 85.701.13 66.391.83 87.930.52
ADAPTERSOUP 65.830.51 82.370.00 74.061.01 93.980.24 81.671.63 73.370.51 67.271.63 43.701.62 72.780.89
SCALEARN 90.090.09 90.510.26 94.180.03 95.410.16 92.320.15 88.090.82 87.080.54 65.402.62 87.910.55
SCALEARNUNIFORM 90.110.04 90.050.28 94.230.08 95.410.16 92.110.06 88.631.72 84.403.93 66.980.58 87.740.86
SCALEARN++ 90.310.10 90.590.03 94.050.03 95.930.24 92.480.15 88.481.26 86.281.05 67.130.59 88.160.43
SCALEARNUNIFORM++ 90.080.01 90.490.02 94.120.16 95.180.16 92.120.09 90.050.54 84.981.32 64.970.85 87.750.39

Table 9: Evaluation results on GLUE using RoBERTaLARGE. (Top) STL models, only learning a single task at a time.
(Middle) Joint MTL methods, learning all tasks simultaneously. (Bottom) Two-stage MTL methods, composing
the knowledge of several source adapters. The overall best results are underlined, and the best results among the
two-stage MTL models are shown in bold.

Model ReCoRD MultiRC BoolQ WiC WSC COPA CB RTE Avg.

FINETUNE 81.601.25 79.030.02 81.650.30 69.722.16 63.460.00 52.008.28 90.362.99 81.523.19 74.922.27
ADAPTER 88.520.09 80.730.69 82.360.72 69.161.31 63.250.64 71.9013.63 92.681.78 81.232.92 78.732.72
PROPETL 87.862.59 81.190.99 81.610.86 69.622.16 63.460.00 69.0018.96 94.114.04 84.552.14 78.923.97
COMPACTER++ 88.340.97 79.180.29 79.536.13 69.261.51 62.261.43 79.009.74 87.507.48 79.714.58 78.104.02
(IA)3 87.470.21 77.910.43 80.970.75 68.652.55 60.580.00 77.000.00 90.003.91 80.793.16 77.931.35
LORA 88.300.36 79.100.29 78.028.88 68.462.07 62.121.46 76.6019.22 92.861.79 80.512.03 73.5811.06

FINETUNE-M 83.570.81 78.080.55 81.700.65 53.030.37 49.369.50 86.672.36 82.142.92 83.872.01 74.802.39
ADAPTER-M 86.760.32 75.150.24 77.182.22 51.571.12 53.219.75 67.671.25 80.951.68 77.381.36 71.232.24
PROPETL-M 84.830.40 79.600.37 82.021.11 55.330.46 59.629.05 86.674.03 88.102.23 85.560.29 77.712.24
HYPERFORMER 84.381.00 79.680.97 81.870.97 53.812.48 63.468.64 82.336.94 83.932.53 86.880.90 77.043.05
HYPERFORMER++ 13.660.00 40.2140.21 71.509.33 49.140.86 62.980.48 54.003.00 67.8617.86 66.9719.68 53.2911.43

ADAPTERFUSION 89.210.17 80.520.24 82.210.30 69.091.68 63.460.68 81.2016.07 95.710.98 86.061.07 80.932.65
ADAPTERSOUP 70.330.28 38.4212.42 73.200.16 62.231.17 63.460.00 54.505.74 68.751.03 61.373.97 61.533.06
SCALEARN 87.850.01 78.400.70 80.292.52 68.561.68 62.980.68 85.403.78 92.861.79 84.910.59 80.161.47
SCALEARNUNIFORM 88.850.22 80.420.06 81.850.21 69.911.15 61.540.00 82.003.08 90.001.60 84.041.66 79.831.00
SCALEARN++ 88.280.23 80.760.58 83.080.31 69.591.89 62.980.68 87.801.10 91.071.79 85.700.32 81.160.86
SCALEARNUNIFORM++ 88.850.22 80.700.04 82.130.21 70.190.26 62.980.68 83.602.88 91.072.82 84.841.02 80.541.02

Table 10: Evaluation results on SuperGLUE using RoBERTaLARGE.

11766

Model Sectors Pillars 1D Subpillars 1D Pillars 2D Subpillars 2D Avg.

FINETUNE 72.990.17 51.380.39 44.840.89 61.900.20 43.490.86 54.920.50
ADAPTER 72.290.59 49.311.27 45.250.03 62.580.67 44.360.66 54.760.65
PROPETL 73.200.32 51.580.40 45.100.92 61.522.29 41.980.70 54.680.92
COMPACTER++ 61.7712.63 8.175.92 6.3711.00 20.3924.91 15.362.71 22.4111.43
(IA)3 64.721.83 38.267.27 26.772.79 55.571.48 31.112.53 43.293.18
LORA 72.220.82 52.150.25 0.000.00 61.341.35 0.000.00 37.140.48

FINETUNE-M 59.047.86 22.9512.78 10.755.31 29.7621.25 9.651.25 26.439.69
ADAPTER-M 65.667.13 37.6511.25 28.517.80 43.4016.06 27.441.68 40.538.78
PROPETL-M 70.561.06 41.586.27 35.913.46 42.2014.55 29.676.92 43.986.45
HYPERFORMER 47.7420.72 29.0611.76 22.168.44 35.9217.37 22.5810.58 31.4913.77
HYPERFORMER++ 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00

ADAPTERFUSION 72.530.45 51.330.23 43.750.52 62.310.25 42.782.11 54.540.71
ADAPTERSOUP 52.541.61 24.072.18 20.620.28 31.161.40 12.840.49 28.251.19
SCALEARN 73.320.08 53.940.13 44.140.75 63.890.16 44.750.47 56.010.32
SCALEARNUNIFORM 72.560.20 50.590.10 44.620.00 62.660.00 45.160.00 55.120.06
SCALEARN++ 73.180.04 51.410.36 44.100.09 63.370.02 45.430.24 55.500.15
SCALEARNUNIFORM++ 73.020.20 50.840.30 44.880.39 62.870.01 44.450.02 55.210.18

Table 11: Evaluation results on HumSet using XLM-RLARGE.

11767

M
od

el
M

N
L

I
Q

Q
P

Q
N

L
I

SS
T-

2
ST

S-
B

M
R

PC
R

T
E

C
oL

A
R

eC
oR

D
M

ul
tiR

C
B

oo
lQ

W
iC

W
SC

C
O

PA
C

B
Av

g.

F
IN

E
T

U
N

E
8
6.
61

0
.5
1

9
0.
32

0
.1
5

9
1
.7
8 0

.2
8

9
3.
33

0
.4
8

90
.5
3 0

.2
2

86
.9
4 1

.5
2

73
.4
7 2

.0
5

58
.4
6
4
.0
3

71
.6
1 0

.8
5

71
.6
4 1

.1
5

76
.8
0 1

.3
4

6
6
.3
8 2

.0
8

6
3.
4
6 0

.0
0

6
8.
6
0 6

.7
4

8
1.
9
6 4

.3
3

7
8.
1
2 1

.7
2

A
D

A
P

T
E

R
8
6.
5
0 0

.3
3

9
0.
18

0
.1
1

92
.2
5 0

.1
9

93
.6
5 0

.7
1

90
.2
3 0

.4
1

86
.6
4 1

.0
7

7
2.
89

2
.5
4

5
8.
2
8
2
.5
0

7
9.
0
2 0

.6
2

72
.8
4 0

.4
8

76
.7
1 1

.3
8

65
.5
8 1

.5
6

63
.4
6 0

.0
0

7
0.
2
0 4

.1
3

8
4.
8
2 3

.1
8

7
8.
8
8 1

.2
8

P
R

O
P

E
T

L
8
6.
1
9 0

.2
5

8
8.
8
8 0

.4
8

92
.0
5 0

.8
0

93
.8
1 0

.7
2

90
.0
3 0

.3
5

85
.9
3 1

.2
2

7
4.
19

2
.0
3

5
9.
2
9
2
.0
7

8
0.
2
9 0

.2
4

7
3.
0
7 0

.4
9

76
.5
8 0

.7
8

6
6
.6
0 1

.6
5

6
3.
4
6 0

.0
0

7
0.
6
0 3

.4
4

8
4.
4
6 3

.8
6

7
9.
0
5 1

.2
1

C
O

M
PA

C
T

E
R

+
+

8
5.
6
2 0

.4
2

8
8.
8
4 0

.7
0

91
.7
9 0

.3
9

93
.5
8 0

.3
4

89
.6
7 0

.5
4

87
.2
1 0

.6
1

7
2.
02

2
.2
1

5
8.
4
9
2
.5
8

7
7.
6
9 2

.6
7

70
.4
4 0

.5
7

75
.8
8 0

.9
6

66
.4
6 1

.6
3

63
.4
6 0

.0
0

6
8.
3
0 4

.0
0

8
7.
6
8 3

.6
2

7
8.
4
8 1

.4
2

(I
A
)3

8
4.
2
4 1

.0
1

8
8.
3
7 0

.2
0

90
.5
7 0

.3
8

93
.3
5 0

.3
0

89
.9
3 0

.3
0

87
.1
1 1

.1
4

7
2.
56

2
.2
3

5
6.
5
7
5
.3
9

7
5.
2
7 0

.2
3

70
.3
2 0

.4
9

76
.3
1 0

.7
9

67
.0
7 1

.6
8

63
.3
5 0

.3
2

6
9.
30

3
.3
7

8
7.
32

4
.5
7

7
8.
1
1 1

.4
9

L
O

R
A

8
6.
52

0
.1
0

89
.8
6 0

.3
3

92
.2
5 0

.1
3

94
.1
9 0

.4
3

90
.6
6 0

.3
1

87
.0
3 0

.6
2

70
.4
0 8

.3
3

57
.5
5
2
.1
8

79
.6
0 0

.4
6

71
.9
6 0

.3
6

7
6.
58

0
.7
4

6
5
.1
4 1

.1
7

6
3.
4
6 0

.0
0

68
.2
0 4

.0
5

86
.4
3 3

.1
7

7
8.
6
6 1

.4
9

F
IN

E
T

U
N

E
-M

8
5.
8
2 0

.2
2

9
0.
1
8 0

.2
6

91
.3
4 0

.2
8

93
.4
6 0

.8
3

86
.5
2 0

.8
6

83
.6
6 1

.0
1

80
.9
9 1

.6
2

49
.2
3
4
.0
9

6
4.
01

0
.9
1

7
1.
9
4 0

.2
1

76
.8
6 0

.4
0

5
2
.3
0 1

.2
4

5
7.
0
5 7

.8
6

7
3.
0
0 1

.6
3

8
2.
1
4 2

.5
3

7
5.
9
0 1

.6
0

A
D

A
P

T
E

R
-M

86
.1
4
0
.2
1

89
.7
0 0

.1
7

91
.3
8 0

.2
2

93
.2
7 0

.4
8

8
8.
67

0
.3
1

85
.9
5 0

.7
6

80
.8
7 1

.5
3

48
.8
8
1
.3
8

69
.7
9 0

.3
4

7
2.
10

0
.2
9

7
5.
6
5 0

.2
0

5
3
.9
2 0

.7
8

6
2.
1
8 1

.2
0

7
3.
3
3 1

.7
0

8
2.
1
4 2

.5
3

7
6.
9
3 0

.8
1

P
R

O
P

E
T

L
-M

8
5.
4
0
0
.5
5

8
8.
1
1 0

.3
5

91
.5
6 0

.2
7

93
.5
0 0

.3
8

9
0.
31

0
.4
8

86
.8
5 0

.5
8

79
.7
8 2

.8
4

49
.5
3
3
.6
3

70
.3
3 0

.8
7

72
.3
5
0
.6
3

75
.7
8 0

.8
5

5
4
.1
8 2

.2
6

5
2.
5
6 1

1
.4
4

7
7.
3
3 0

.4
7

8
7.
5
0 1

.4
6

7
7.
0
0 1

.8
0

H
Y

P
E

R
F

O
R

M
E

R
8
6.
0
5
0
.4
5

8
8.
8
2 0

.4
6

91
.8
7 0

.2
5

9
3.
81

0
.3
4

89
.9
9 0

.9
7

86
.8
5 0

.8
1

81
.8
3 2

.0
9

56
.1
1 1

.7
1

71
.1
8 0

.7
3

71
.5
9
1
.9
7

7
6.
30

1
.6
3

5
1
.8
3 1

.5
3

5
8.
9
7 6

.3
5

6
4.
67

1
0
.1
4

8
5.
7
1 1

.4
6

7
7.
0
4 2

.0
6

H
Y

P
E

R
F

O
R

M
E

R
+

+
8
6.
32

0
.1
7

8
9.
0
4 0

.2
0

9
1.
7
1 0

.1
5

9
3.
31

0
.5
9

9
0.
8
0 0

.4
8

88
.8
1 1

.2
1

83
.1
5 0

.9
5

55
.4
0
3
.1
3

7
1.
83

0
.4
0

7
1.
1
8 0

.6
9

76
.9
0 0

.2
5

5
5
.0
2 1

.2
6

6
0.
9
0 2

.2
7

7
6.
0
0 0

.8
2

8
5.
7
1 1

.4
6

7
8.
4
1 0

.9
3

A
D

A
P

T
E

R
F

U
S

IO
N

8
6.
52

0
.2
0

9
0.
18

0
.1
1

92
.3
5 0

.1
6

93
.6
2 0

.6
9

90
.4
6 0

.3
1

87
.8
9 1

.0
0

78
.8
4 1

.6
3

58
.6
7
1
.4
2

7
8.
66

0
.9
4

7
2.
7
1 0

.7
1

76
.6
3 0

.7
1

6
6
.3
6 1

.3
4

6
3
.4
6
0
.0
0

7
4.
3
0 3

.0
2

8
3.
5
7 5

.7
0

7
9.
6
2 1

.2
0

A
D

A
P

T
E

R
S

O
U

P
5
8.
0
4 0

.6
2

8
3.
02

0
.0
3

77
.0
6 0

.2
6

91
.0
6 0

.1
6

65
.9
3 0

.2
7

71
.5
7 0

.4
9

5
9.
03

0
.9
3

3
6.
8
3
2
.7
1

6
2.
0
2 0

.1
2

35
.0
6 1

.6
6

68
.5
4 0

.3
2

58
.8
6 0

.8
0

62
.5
0 1

.6
1

5
2.
50

4
.1
8

7
1.
13

0
.7
3

6
3.
5
4 0

.9
9

S
C

A
L

E
A

R
N

8
6.
93

0
.0
3

89
.7
8 0

.0
9

92
.7
8 0

.0
3

9
4
.6
5
0
.3
5

9
0
.9
7
0
.0
9

8
8
.2
1
0
.7
2

8
1
.5
9
1
.6
9

59
.3
2
1
.8
1

78
.5
0 0

.4
8

72
.6
7 0

.4
2

7
8
.5
9
0
.2
8

6
6
.7
6 1

.7
0

6
3
.4
6
0
.5
1

8
0
.6
0
3
.2
7

9
6
.0
7
1
.4
1

8
1
.3
9
0
.8
6

S
C

A
L

E
A

R
N

U
N

IF
O

R
M

8
7
.0
2
0
.0
7

9
0
.2
6
0
.1
0

92
.0
1 0

.9
2

94
.3
8 0

.3
0

90
.1
6 0

.1
1

87
.9
7 0

.9
9

80
.8
7 1

.0
9

58
.9
7
0
.8
3

8
0
.0
5
0
.1
8

7
1.
9
0 0

.2
9

76
.4
2 0

.6
5

6
8
.0
7
0
.7
7

6
3.
2
2 0

.8
5

7
3.
3
0 2

.1
6

9
3.
9
3 1

.7
3

8
0.
5
7 0

.7
4

S
C

A
L

E
A

R
N

+
+

86
.9
4 0

.0
1

89
.5
6 1

.2
7

9
2
.8
0
0
.0
8

94
.0
4 0

.3
0

90
.7
5 0

.1
6

8
8
.2
1
1
.0
5

80
.4
0 0

.9
0

5
9
.6
5
1
.0
6

79
.9
8 0

.2
1

71
.1
6 0

.3
7

77
.3
4 0

.3
7

6
7
.4
3 1

.5
8

6
3
.4
6
0
.0
0

7
9.
9
0 1

.6
6

9
4.
2
9 2

.3
5

8
1.
0
6 0

.7
6

S
C

A
L

E
A

R
N

U
N

IF
O

R
M

+
+

8
6.
8
2 0

.1
7

9
0.
16

0
.3
4

92
.3
5 0

.3
1

94
.6
1 0

.1
1

90
.3
2 0

.1
4

87
.9
7 0

.8
6

8
0.
79

0
.9
6

5
9.
3
3
0
.9
0

7
9.
8
0 0

.5
6

7
2
.7
6
0
.5
1

76
.2
2 0

.6
9

67
.9
5 1

.0
4

61
.7
8 1

.9
8

7
4.
20

1
.7
5

9
3.
21

0
.7
5

8
0.
5
5 0

.7
4

Ta
bl

e
12

:E
va

lu
at

io
n

re
su

lts
on

th
e

co
m

bi
na

tio
n

of
al

lG
L

U
E

an
d

Su
pe

rG
L

U
E

ta
sk

s
us

in
g

R
oB

E
R

Ta
B

A
SE

.(
To

p)
ST

L
m

od
el

s,
on

ly
le

ar
ni

ng
a

si
ng

le
ta

sk
at

a
tim

e.
(M

id
dl

e)
Jo

in
t

M
TL

m
et

ho
ds

,l
ea

rn
in

g
al

lt
as

ks
si

m
ul

ta
ne

ou
sl

y.
(B

ot
to

m
)T

w
o-

st
ag

e
M

TL
m

et
ho

ds
,c

om
po

si
ng

th
e

kn
ow

le
dg

e
of

se
ve

ra
ls

ou
rc

e
ad

ap
te

rs
.T

he
ov

er
al

lb
es

tr
es

ul
ts

ar
e

un
de

rl
in

ed
,

an
d

th
e

be
st

re
su

lts
am

on
g

th
e

tw
o-

st
ag

e
M

T
L

m
od

el
s

ar
e

sh
ow

n
in

bo
ld

.
M

od
el

M
N

L
I

Q
Q

P
Q

N
L

I
SS

T-
2

ST
S-

B
M

R
PC

R
T

E
C

oL
A

R
eC

oR
D

M
ul

tiR
C

B
oo

lQ
W

iC
W

SC
C

O
PA

C
B

Av
g.

F
IN

E
T

U
N

E
8
9.
57

0
.3
6

8
9.
75

1
.0
3

93
.9
1 0

.4
3

95
.3
0 0

.6
5

91
.8
9 0

.3
5

86
.2
7 1

.1
5

81
.5
2 3

.1
9

60
.1
5
2
.8
9

8
1.
60

1
.2
5

7
9.
0
3 0

.0
2

81
.6
5 0

.3
0

6
9
.7
2 2

.1
6

6
3.
4
6 0

.0
0

5
2.
0
0 8

.2
8

9
0.
3
6 2

.9
9

8
0.
4
1 1

.6
7

A
D

A
P

T
E

R
89

.6
2 0

.1
8

89
.8
7 0

.6
7

94
.1
3 0

.0
6

95
.2
4 0

.0
8

9
1.
81

0
.2
9

87
.8
2 2

.1
1

81
.2
3 2

.9
2

64
.0
7
1
.9
7

88
.5
2 0

.0
9

8
0.
73

0
.6
9

8
2.
3
6 0

.7
2

6
9
.1
6 1

.3
1

6
3.
2
5 0

.6
4

7
1
.9
0 1

3
.6
3

9
2.
6
8 1

.7
8

8
2.
8
3 1

.8
1

P
R

O
P

E
T

L
89

.7
8 0

.2
4

8
9.
2
3 0

.7
7

94
.3
2 0

.0
9

95
.4
1 0

.0
0

9
1.
45

0
.3
9

87
.6
5 0

.7
3

84
.5
5 2

.1
4

65
.8
5
2
.1
0

87
.8
6 2

.5
9

81
.1
9 0

.9
9

81
.6
1 0

.8
6

6
9
.6
2 2

.1
6

6
3.
4
6 0

.0
0

6
9
.0
0 1

8
.9
6

9
4.
1
1 4

.0
4

8
3.
0
1 2

.4
0

C
O

M
PA

C
T

E
R

+
+

89
.1
5 0

.6
7

87
.3
3 2

.3
9

92
.9
3 1

.4
2

95
.4
1 0

.0
0

9
1.
46

0
.3
5

87
.8
4 1

.2
3

79
.7
1 4

.5
8

65
.6
6
2
.0
8

88
.3
4 0

.9
7

7
9.
18

0
.2
9

7
9.
5
3 6

.1
3

6
9
.2
6 1

.5
1

6
2.
2
6 1

.4
3

7
9.
0
0 9

.7
4

8
7.
5
0 7

.4
8

8
2.
3
0 2

.6
9

(I
A
)3

88
.6
9 0

.6
1

8
7.
7
9 0

.7
2

91
.7
2 0

.7
9

94
.9
5 0

.1
6

9
1.
39

0
.4
5

86
.3
7 1

.6
5

80
.7
9 3

.1
6

64
.7
0
3
.2
0

87
.4
7 0

.2
1

77
.9
1 0

.4
3

80
.9
7 0

.7
5

6
8
.6
5 2

.5
5

6
0.
5
8 0

.0
0

7
4
.0
0 1

1
.7
9

9
0.
0
0 3

.9
1

8
1.
7
3 2

.0
1

L
O

R
A

8
9.
6
6 0

.2
7

8
9.
66

0
.1
0

94
.2
0 0

.2
8

95
.4
7 0

.2
4

91
.9
8 0

.1
3

87
.7
0 1

.1
4

80
.5
1 2

.0
3

6
3.
80

2
.7
1

8
8.
30

0
.0
0

7
9.
1
0 0

.2
9

78
.0
2 8

.8
8

6
8
.4
6 2

.0
7

6
2.
1
2 1

.4
6

7
6
.6
0 1

9
.2
2

9
2.
8
6 1

.7
9

8
2.
5
6 2

.7
1

F
IN

E
T

U
N

E
-M

8
8.
2
3 0

.1
0

8
9.
8
1 0

.0
8

92
.4
8 0

.2
8

93
.2
0 0

.7
6

85
.4
1 0

.7
5

79
.2
5 3

.0
6

84
.1
2 0

.5
1

51
.4
8
3
.5
0

7
4.
48

0
.3
6

7
5.
0
7 0

.3
9

78
.9
9 0

.7
3

5
2
.4
0 0

.7
0

5
8.
0
1 7

.7
1

7
7.
6
7 3

.4
0

8
1.
5
5 3

.6
7

7
7.
4
8 1

.7
3

A
D

A
P

T
E

R
-M

89
.3
0
0
.3
1

90
.0
4 0

.3
0

93
.9
0 0

.1
4

95
.1
8 0

.3
4

8
9.
41

0
.3
1

85
.4
6 1

.8
6

86
.5
2 1

.1
9

57
.3
6
1
.2
2

81
.8
1 1

.1
2

7
7.
81

0
.5
2

8
0.
5
3 0

.6
3

5
5
.6
9 2

.0
7

5
9.
2
9 2

.5
2

8
3.
3
3 0

.9
4

8
0.
9
5 2

.2
3

8
0.
4
4 1

.0
5

P
R

O
P

E
T

L
-M

8
8.
9
3
0
.3
0

8
8.
2
5 0

.0
5

93
.6
9 0

.2
6

95
.0
3 0

.1
9

9
0.
44

0
.6
0

86
.1
1 0

.4
2

86
.4
0 0

.7
4

57
.8
6
3
.8
3

83
.8
5 0

.1
7

77
.8
6
0
.1
9

78
.6
5 1

.3
9

5
1
.2
0 0

.9
6

4
5.
8
3 1

2
.4
7

9
0.
3
3 3

.0
9

8
7.
5
0 1

.4
6

8
0.
1
3 1

.7
4

H
Y

P
E

R
F

O
R

M
E

R
8
9.
7
5
0
.3
4

9
0.
0
5 0

.2
2

94
.3
7 0

.1
1

9
5.
57

0
.3
0

91
.8
0 0

.3
1

86
.7
6 1

.4
4

88
.6
9 0

.7
4

62
.3
4
1
.8
5

8
5.
16

0
.1
4

7
9.
7
8 0

.3
7

82
.1
6 0

.8
1

5
1
.9
3 2

.2
0

6
1.
8
6 2

.2
7

8
9.
0
0 4

.9
0

8
4.
5
2 1

.6
8

8
2.
2
5 1

.1
8

A
D

A
P

T
E

R
F

U
S

IO
N

8
9.
79

0
.1
2

9
0
.8
3
0
.2
7

94
.1
4 0

.0
5

95
.6
4 0

.0
0

92
.0
8 0

.1
4

89
.1
2 0

.2
2

85
.8
5 2

.4
8

66
.5
2
1
.3
1

8
9
.2
6
0
.0
0

79
.2
5 0

.8
0

82
.4
0 0

.5
4

6
9
.5
0 1

.1
2

6
2.
6
9 1

.7
2

8
8.
6
0 3

.3
6

9
0.
3
6 2

.9
9

8
4.
4
0 1

.0
1

A
D

A
P

T
E

R
S

O
U

P
5
7.
2
9 0

.0
0

8
4.
0
1 0

.0
0

73
.7
1 0

.0
0

94
.0
4 0

.0
0

71
.1
6 0

.8
6

71
.5
1 0

.2
3

6
3.
54

3
.9
0

4
2.
2
2
3
.2
7

68
.0
9 0

.0
0

31
.3
2 0

.5
1

72
.4
8 0

.2
2

6
2
.5
4 1

.0
6

6
2.
9
8 0

.6
8

5
4.
5
0 3

.8
7

7
1.
8
8 1

.7
1

6
5.
4
2 1

.0
9

S
C

A
L

E
A

R
N

8
9.
67

0
.1
3

8
9.
70

0
.5
8

93
.9
8 0

.3
1

95
.3
6 0

.5
7

92
.2
9 0

.1
3

88
.2
8 1

.3
7

85
.7
8 1

.1
6

67
.2
0
1
.3
3

85
.4
3 0

.4
4

8
0.
08

0
.6
9

8
2.
4
3 0

.7
9

7
0
.1
6 2

.0
8

6
6
.7
3
4
.7
9

9
1
.0
0
1
.2
2

9
3.
9
3 2

.0
4

8
4
.8
0
1
.1
8

S
C

A
L

E
A

R
N

U
N

IF
O

R
M

90
.0
9 0

.0
4

9
0.
5
4 0

.0
8

9
3
.8
4 0

.6
9

9
5
.7
0
0
.0
8

92
.1
3 0

.0
5

88
.3
3 1

.1
2

85
.8
5 2

.3
9

66
.8
5
1
.0
5

88
.2
4 0

.0
0

8
0
.5
0
0
.0
7

82
.0
4 0

.1
6

7
0
.2
8
2
.4
7

5
9.
6
2 0

.0
0

9
0.
4
0 1

.5
2

9
5.
0
0 2

.3
3

8
4.
6
3 0

.8
0

S
C

A
L

E
A

R
N

+
+

9
0
.1
3
0
.2
7

9
0.
2
2 0

.9
3

9
4
.4
9
0
.2
3

94
.6
1 2

.1
1

9
2
.3
5
0
.1
0

87
.7
0 0

.9
6

8
6
.2
1
1
.0
0

6
7
.2
3
1
.2
8

87
.5
3 0

.1
3

80
.1
4 0

.2
9

8
2
.5
1
1
.9
5

6
9
.4
0 1

.6
3

6
2.
8
2 1

.1
1

8
9.
8
0 1

.1
0

9
4.
2
9 0

.8
0

8
4.
6
3 0

.9
3

S
C

A
L

E
A

R
N

U
N

IF
O

R
M

+
+

90
.1
0 0

.1
4

90
.4
5 0

.1
0

93
.9
1 0

.0
9

95
.3
0 0

.0
0

9
2.
12

0
.1
2

8
8
.9
7
0
.8
8

84
.7
7 1

.3
4

65
.8
3
1
.4
9

8
8.
28

0
.5
6

8
0.
4
6 0

.2
3

82
.2
3 0

.2
8

7
0
.0
9 0

.3
6

6
0.
1
0 0

.6
8

8
9.
2
0 1

.3
0

9
5
.3
6
0
.9
8

8
4.
4
8
0
.5
7

Ta
bl

e
13

:E
va

lu
at

io
n

re
su

lts
on

th
e

co
m

bi
na

tio
n

of
al

lG
L

U
E

an
d

Su
pe

rG
L

U
E

ta
sk

s
us

in
g

R
oB

E
R

Ta
L

A
R

G
E
.

11768

Model Samples MNLI QQP QNLI SST-2 STS-B MRPC RTE CoLA Avg.

ADAPTER 4 33.651.39 63.270.11 50.530.04 50.920.00 32.129.28 68.380.00 52.710.00 2.933.88 44.311.84
ADAPTER 16 34.780.58 63.180.00 50.460.20 57.181.23 55.5310.12 68.380.00 53.721.29 0.250.56 47.941.75
ADAPTER 32 33.560.66 63.180.00 51.860.33 70.462.25 73.781.30 68.380.00 54.581.81 0.000.00 51.980.80
ADAPTER 100 40.712.67 71.740.50 58.774.13 85.002.25 82.511.21 73.091.27 56.171.95 21.693.94 61.212.24
ADAPTER All 86.500.33 90.180.11 92.250.19 93.650.71 90.230.41 86.641.07 72.892.54 58.282.50 83.830.98

ADAPTERFUSION 4 33.942.09 72.015.39 52.362.75 50.920.00 77.172.44 72.994.28 52.780.16 2.793.54 51.872.58
ADAPTERFUSION 16 49.122.76 76.261.20 61.9511.04 59.296.12 83.511.79 78.280.37 60.652.27 0.921.82 58.753.42
ADAPTERFUSION 32 43.893.17 76.450.83 78.350.75 68.265.11 70.7230.12 78.871.63 60.874.48 1.914.27 59.916.30
ADAPTERFUSION 100 47.225.48 77.231.74 77.805.43 85.282.42 85.811.64 78.431.34 70.041.17 13.957.80 66.973.38
ADAPTERFUSION All 86.820.04 90.230.01 92.480.15 93.230.95 90.370.20 88.410.49 79.492.21 59.041.69 85.010.72

SCALEARN 4 35.592.13 76.240.38 62.304.58 52.680.66 85.340.98 75.001.59 52.710.00 4.250.83 55.511.39
SCALEARN 16 51.210.84 76.850.19 65.031.37 64.010.90 86.180.38 79.070.68 62.741.74 7.512.36 61.581.06
SCALEARN 32 51.910.36 76.190.18 73.630.46 69.563.25 86.340.44 75.980.39 65.421.50 8.561.70 63.451.03
SCALEARN 100 57.880.34 77.250.39 73.970.73 83.971.76 87.810.28 78.381.36 69.171.70 13.311.71 67.721.03
SCALEARN All 86.970.09 90.320.10 92.510.17 93.880.18 90.960.16 87.750.58 82.061.37 58.471.76 85.360.55

SCALEARN++ 4 34.051.78 75.500.56 59.884.74 52.250.70 85.200.80 72.991.46 52.710.00 3.872.20 54.551.53
SCALEARN++ 16 50.521.42 76.300.60 60.403.04 62.201.99 85.960.30 78.041.58 61.590.98 9.002.05 60.501.49
SCALEARN++ 32 52.301.35 75.710.65 72.012.62 71.902.37 86.040.37 76.181.07 63.680.94 7.543.03 63.171.55
SCALEARN++ 100 56.160.83 76.600.76 61.665.15 83.071.92 87.240.20 77.891.19 65.052.95 11.501.47 64.901.81
SCALEARN++ All 87.060.03 90.040.12 92.031.10 94.150.30 90.620.13 88.210.63 80.871.05 59.820.78 85.350.52

SCALEARNUNIFORM 4 34.171.67 76.620.62 55.252.01 52.481.37 84.470.97 75.441.75 52.710.00 5.091.50 54.531.24
SCALEARNUNIFORM 16 49.551.21 76.600.32 66.691.07 65.052.42 85.830.40 77.651.09 61.811.95 10.962.45 61.771.36
SCALEARNUNIFORM 32 51.501.92 76.280.56 72.840.54 71.492.38 86.010.43 75.881.03 63.751.16 11.152.18 63.611.28
SCALEARNUNIFORM 100 55.061.23 76.940.38 70.422.28 81.630.90 86.220.45 75.931.54 64.621.02 15.542.95 65.791.35
SCALEARNUNIFORM All 86.930.10 90.370.11 92.430.36 93.580.20 90.080.07 87.570.86 80.071.18 59.041.05 85.010.49

SCALEARNUNIFORM++ 4 34.862.18 76.080.38 53.363.84 51.791.09 83.121.63 74.801.05 52.710.00 4.342.15 53.881.54
SCALEARNUNIFORM++ 16 50.090.81 76.130.25 61.353.09 62.591.52 85.550.40 76.420.72 62.600.70 11.943.04 60.831.32
SCALEARNUNIFORM++ 32 50.961.64 76.150.47 70.240.96 71.972.06 85.670.41 74.410.66 62.240.66 12.852.49 63.061.17
SCALEARNUNIFORM++ 100 48.961.99 76.770.34 60.643.67 81.900.67 85.660.63 75.691.17 63.541.53 15.902.99 63.631.62
SCALEARNUNIFORM++ All 86.980.17 90.380.01 92.530.28 94.110.07 90.180.19 87.430.63 80.040.99 59.450.67 85.140.38

Table 14: Complete few-shot transfer learning results on GLUE with k = {4,16,32,100} training samples for each
target task using RoBERTaBASE.

11769

Model Samples ReCoRD Multi BoolQ WiC WSC COPA CB RTE Avg.

ADAPTER 4 9.652.79 24.926.71 62.050.27 49.441.26 41.9212.04 50.203.63 62.148.12 52.710.00 44.134.35
ADAPTER 16 13.826.06 37.488.48 62.170.00 50.531.18 42.505.46 53.005.48 69.292.93 53.721.29 47.813.86
ADAPTER 32 17.6412.76 38.553.74 62.160.03 52.261.78 36.540.00 51.202.39 70.711.60 54.581.81 47.953.01
ADAPTER 100 37.692.61 51.563.89 61.511.27 54.041.01 50.3810.12 58.405.18 73.934.11 56.171.95 55.463.77
ADAPTER All 79.020.62 72.840.48 76.711.38 65.581.56 63.460.00 70.204.13 84.823.18 72.892.54 73.191.74

ADAPTERFUSION 4 8.512.73 44.5024.40 62.160.03 50.311.04 38.083.44 50.402.19 51.072.40 52.641.31 44.714.69
ADAPTERFUSION 16 13.7110.75 48.8614.98 62.120.27 50.161.84 38.464.30 56.807.22 67.863.99 52.923.71 48.865.88
ADAPTERFUSION 32 26.7914.35 46.3916.63 62.030.34 52.230.87 37.121.29 59.605.86 68.932.71 54.662.35 50.975.55
ADAPTERFUSION 100 34.0213.55 43.524.01 61.831.45 54.611.07 43.858.78 64.203.83 74.643.43 59.711.63 54.554.72
ADAPTERFUSION All 78.820.49 71.791.67 76.720.55 66.571.24 63.460.00 73.104.51 82.322.85 76.032.38 73.601.71

SCALEARN 4 28.376.53 31.5311.93 61.630.22 49.720.39 49.625.34 71.804.49 66.7911.48 52.710.00 51.525.05
SCALEARN 16 31.076.24 49.977.42 60.921.21 51.500.49 51.355.25 69.005.24 72.862.33 54.221.31 55.113.69
SCALEARN 32 34.806.48 44.283.71 61.700.22 50.530.94 48.088.68 68.609.34 76.072.04 56.751.18 55.104.07
SCALEARN 100 40.821.25 58.922.28 62.111.16 53.890.99 61.922.21 69.002.74 86.791.60 61.371.71 61.851.74
SCALEARN All 79.520.06 73.220.44 77.270.68 66.351.20 63.460.00 74.802.15 90.892.59 78.882.14 75.551.16

SCALEARNUNIFORM 4 22.646.41 29.696.54 61.720.25 49.840.86 44.625.71 70.602.30 70.364.48 52.710.00 50.273.32
SCALEARNUNIFORM 16 30.011.08 50.327.20 61.721.03 52.480.70 49.817.24 66.802.17 73.933.70 54.512.75 54.953.23
SCALEARNUNIFORM 32 30.845.74 45.755.47 61.410.32 51.570.73 48.276.61 71.402.30 75.710.98 55.380.75 55.042.86
SCALEARNUNIFORM 100 35.501.94 58.742.59 61.360.99 52.790.58 56.977.98 65.002.00 82.863.24 59.211.28 59.052.58
SCALEARNUNIFORM All 80.130.38 71.910.60 76.060.41 67.371.22 62.501.27 71.201.23 89.111.97 75.310.90 74.201.00

SCALEARN++ 4 27.534.00 11.116.18 60.921.59 49.940.50 44.625.71 70.002.24 62.508.28 52.710.00 47.423.56
SCALEARN++ 16 25.782.80 49.4310.93 59.862.01 52.010.62 49.428.62 71.801.10 74.643.43 56.681.17 54.953.83
SCALEARN++ 32 34.002.31 39.995.10 59.800.63 52.040.53 42.503.99 73.604.56 75.711.60 56.390.86 54.252.45
SCALEARN++ 100 37.323.39 58.721.28 60.432.22 53.230.61 62.121.87 66.201.30 85.712.19 59.061.89 60.351.84
SCALEARN++ All 80.130.09 72.710.57 76.440.53 67.131.24 62.262.28 75.201.93 93.042.14 79.030.95 75.741.22

SCALEARNUNIFORM++ 4 23.048.12 29.112.02 61.020.41 49.621.41 46.734.54 67.605.68 66.438.60 52.710.00 49.533.85
SCALEARNUNIFORM++ 16 26.674.91 53.008.69 61.061.41 52.160.67 50.967.10 67.402.97 74.294.66 54.802.74 55.044.14
SCALEARNUNIFORM++ 32 30.621.27 49.466.35 59.881.47 51.690.70 44.623.70 67.201.64 78.210.80 56.901.07 54.822.13
SCALEARNUNIFORM++ 100 29.779.96 58.402.35 60.770.91 53.261.87 61.153.76 63.202.77 80.000.80 57.181.74 57.973.02
SCALEARNUNIFORM++ All 79.790.14 71.750.38 76.130.52 67.870.89 63.460.00 74.001.70 91.612.53 74.841.58 74.930.97

Table 15: Complete few-shot transfer learning results on SuperGLUE with k = {4,16,32,100} training samples for
each target task using RoBERTaBASE.

11770

Model Samples Sectors Pillars 1D Subpillars 1D Pillars 2D Subpillars 2D Avg.

ADAPTER 4 5.782.05 4.211.16 0.690.34 11.072.07 3.580.49 5.071.22
ADAPTER 16 8.226.21 2.592.28 0.780.42 8.424.12 2.591.34 4.522.87
ADAPTER 32 4.651.88 2.302.71 0.820.15 5.967.43 2.971.52 3.342.74
ADAPTER 100 44.261.22 10.599.70 0.000.00 25.261.36 0.010.02 16.022.46
ADAPTER All 71.380.28 51.021.23 43.260.82 61.430.91 42.460.51 53.910.75

ADAPTERFUSION 4 13.601.29 7.202.19 2.450.37 16.242.77 8.161.00 9.531.53
ADAPTERFUSION 16 13.271.27 8.380.99 2.170.67 15.982.41 7.630.73 9.481.21
ADAPTERFUSION 32 12.591.91 6.411.79 2.240.25 13.673.94 7.121.00 8.401.78
ADAPTERFUSION 100 8.031.36 4.232.75 1.770.54 32.024.30 5.071.32 10.222.05
ADAPTERFUSION All 72.050.12 49.630.53 43.150.38 60.680.23 42.140.46 53.530.35

SCALEARN 4 5.561.27 4.540.57 1.120.23 12.990.26 3.950.85 5.630.64
SCALEARN 16 13.210.74 8.900.41 3.680.16 18.300.60 7.400.53 10.300.49
SCALEARN 32 16.640.43 16.480.74 7.230.37 26.390.34 11.110.47 15.570.47
SCALEARN 100 34.041.36 26.310.67 13.271.06 30.681.20 14.430.39 23.750.94
SCALEARN All 72.360.05 51.630.61 44.060.37 61.520.11 42.810.63 54.480.35

SCALEARNUNIFORM 4 5.351.09 4.320.17 1.030.20 13.240.43 3.780.64 5.540.50
SCALEARNUNIFORM 16 13.650.47 8.690.59 3.640.13 17.511.23 7.590.13 10.220.51
SCALEARNUNIFORM 32 15.340.52 16.721.09 6.980.34 25.750.48 10.580.19 15.070.52
SCALEARNUNIFORM 100 33.400.63 25.480.71 13.430.64 29.440.78 14.920.62 23.330.68
SCALEARNUNIFORM All 72.200.14 50.080.79 42.970.70 60.620.16 41.950.60 53.560.48

SCALEARN++ 4 5.421.47 4.660.45 1.160.33 13.170.17 3.621.24 5.610.73
SCALEARN++ 16 13.550.71 8.890.16 3.620.09 18.621.10 7.730.28 10.480.47
SCALEARN++ 32 16.270.82 16.351.62 7.270.13 26.080.51 10.700.28 15.330.67
SCALEARN++ 100 33.760.49 25.830.74 13.270.66 30.110.51 14.370.61 23.470.60
SCALEARN++ All 72.380.27 51.660.27 44.230.50 61.660.13 42.210.21 54.430.28

SCALEARNUNIFORM++ 4 5.271.18 4.370.14 1.080.09 13.200.50 3.561.15 5.500.61
SCALEARNUNIFORM++ 16 13.470.77 9.040.58 3.600.10 17.410.59 7.500.33 10.200.47
SCALEARNUNIFORM++ 32 15.240.35 16.750.72 7.310.28 26.230.83 10.610.27 15.230.49
SCALEARNUNIFORM++ 100 39.222.98 26.220.74 13.761.11 30.340.63 14.560.59 24.821.21
SCALEARNUNIFORM++ All 72.020.32 50.780.41 42.600.85 60.820.14 42.140.72 53.670.49

Table 16: Complete few-shot transfer learning results on HumSet with k = {4,16,32,100} training samples for each
target task using XLM-RBASE.

11771

M
od

el
Sa

m
pl

es
M

N
L

I
Q

Q
P

Q
N

L
I

SS
T-

2
ST

S-
B

M
R

PC
R

T
E

C
oL

A
R

eC
oR

D
M

ul
ti

B
oo

lQ
W

iC
W

SC
C

O
PA

C
B

Av
g.

A
D

A
P

T
E

R
4

3
3.
65

1
.3
9

63
.2
7 0

.1
1

50
.5
3 0

.0
4

50
.9
2 0

.0
0

32
.1
2
9
.2
8

68
.3
8 0

.0
0

52
.7
1 0

.0
0

2.
93

3
.8
8

9
.6
5 2

.7
9

24
.9
2 6

.7
1

62
.0
5 0

.2
7

4
9.
4
4 1

.2
6

4
1.
9
2
1
2
.0
4

5
0.
2
0 3

.6
3

6
2.
1
4 8

.1
2

4
3.
6
6
3
.3

A
D

A
P

T
E

R
16

34
.7
8 0

.5
8

63
.1
8 0

.0
0

50
.4
6 0

.2
0

5
7.
18

1
.2
3

55
.5
3
1
0
.1
2

68
.3
8 0

.0
0

53
.7
2 1

.2
9

0.
25

0
.5
6

13
.8
2
6
.0
6

37
.4
8 8

.4
8

62
.1
7 0

.0
0

5
0
.5
3
1
.1
8

4
2.
5
0 5

.4
6

5
3.
0
0 5

.4
8

6
9.
29

2
.9
3

4
7.
4
8 2

.9

A
D

A
P

T
E

R
32

33
.5
6 0

.6
6

63
.1
8 0

.0
0

51
.8
6 0

.3
3

70
.4
6 2

.2
5

73
.7
8 1

.3
0

68
.3
8 0

.0
0

54
.5
8 1

.8
1

0.
00

0
.0
0

17
.6
4
1
2
.7
6

3
8.
5
5 3

.7
4

6
2.
1
6 0

.0
3

5
2
.2
6 1

.7
8

3
6.
5
4 0

.0
0

5
1.
20

2
.3
9

7
0.
7
1 1

.6
0

4
9.
6
6
1
.9
1

A
D

A
P

T
E

R
10

0
40
.7
1 2

.6
7

7
1.
7
4 0

.5
0

58
.7
7 4

.1
3

8
5.
00

2
.2
5

82
.5
1 1

.2
1

73
.0
9 1

.2
7

56
.1
7 1

.9
5

21
.6
9 3

.9
4

37
.6
9 2

.6
1

5
1.
5
6 3

.8
9

6
1.
5
1 1

.2
7

5
4
.0
4 1

.0
1

5
0.
38

1
0
.1
2

5
8.
4
0 5

.1
8

7
3.
9
3 4

.1
1

5
8.
4
8
3
.0
7

A
D

A
P

T
E

R
A

ll
8
6.
5
0 0

.3
3

90
.1
8 0

.1
1

9
2.
2
5 0

.1
9

93
.6
5 0

.7
1

90
.2
3 0

.4
1

86
.6
4 1

.0
7

72
.8
9 2

.5
4

58
.2
8 2

.5
0

79
.0
2
0
.6
2

72
.8
4 0

.4
8

7
6.
7
1 1

.3
8

6
5
.5
8
1
.5
6

6
3.
4
6 0

.0
0

7
0.
2
0 4

.1
3

8
4
.8
2 3

.1
8

7
8.
8
8
1
.2
8

A
D

A
P

T
E

R
F

U
S

IO
N

4
3
3.
03

1
.1
9

64
.0
7 1

2
.2
3

51
.4
6 2

.1
3

51
.0
3 0

.2
6

77
.5
4
5
.7
1

69
.7
5 2

.1
5

53
.7
2 2

.0
6

4.
37

4
.1
1

17
.1
3
3
.5
9

5
1.
0
1 1

9
.8
7

6
2.
1
7 0

.0
0

5
2.
1
3 2

.4
5

38
.8
5 5

.1
6

6
6.
8
0 8

.0
1

60
.0
0 8

.6
2

5
0.
2 5

.1
7

A
D

A
P

T
E

R
F

U
S

IO
N

16
46
.5
5 3

.2
7

73
.6
3 4

.7
9

55
.2
8 7

.9
2

5
8.
05

1
.9
6

83
.7
4 0

.9
3

71
.2
3 5

.9
1

59
.8
6 4

.1
7

4.
01

3
.6
9

14
.6
7 6

.7
2

53
.0
6 9

.6
2

62
.0
7 0

.4
4

5
4
.2
9
4
.8
9

4
1.
5
4 6

.8
8

6
8.
8
0
5
.5
0

6
7.
5
0 1

0
.3
7

5
4.
28

5
.1
4

A
D

A
P

T
E

R
F

U
S

IO
N

32
4
3.
42

4
.7
7

70
.6
3 6

.8
0

70
.4
8 1

1
.3
0

68
.1
2 6

.5
6

84
.1
7 1

.7
9

72
.6
5 5

.9
8

60
.7
9 5

.7
2

1.
95

4
.3
7

12
.4
0 4

.7
3

5
1.
6
4
8
.9
7

6
2.
0
8 0

.7
7

54
.2
6 2

.1
9

3
8.
2
7 5

.0
1

6
5.
2
0
9
.8
3

7
1.
7
9 5

.8
4

5
5.
1
9 5

.6
4

A
D

A
P

T
E

R
F

U
S

IO
N

10
0

46
.1
0
2
.9
5

7
6.
7
7 1

.2
7

7
8.
0
2 4

.4
5

83
.8
8 2

.6
5

86
.4
5 1

.5
7

77
.5
0
1
.4
3

68
.7
4 2

.2
9

22
.1
7 2

.7
3

22
.9
1 5

.9
6

5
0.
8
4 4

.4
4

6
2.
4
6 0

.8
4

58
.0
6 2

.0
4

5
2.
6
9 6

.7
1

7
1.
4
0 4

.5
1

7
8.
9
3 6

.1
1

6
2.
4
6 3

.3
3

A
D

A
P

T
E

R
F

U
S

IO
N

A
ll

86
.5
2 0

.2
0

9
0.
1
8 0

.1
1

9
2.
3
5 0

.1
6

93
.6
2 0

.6
9

90
.4
6 0

.3
1

87
.8
9 1

.0
0

78
.8
4 1

.6
3

58
.6
7 1

.4
2

78
.6
6 0

.9
4

7
2.
7
1 0

.7
1

7
6.
6
3 0

.7
1

66
.3
6 1

.3
4

6
3
.4
6 0

.0
0

7
4.
3
0 3

.0
2

8
3.
5
7
5
.7
0

79
.6
2 1

.2

S
C

A
L

E
A

R
N

4
3
7.
5
7 1

.5
4

73
.1
0 2

.3
7

60
.1
8 2

.8
7

52
.7
8 1

.7
3

73
.3
6
4
.8
4

72
.3
5 2

.0
8

51
.7
0 2

.2
6

4.
26

5
.4
1

34
.4
6
6
.0
5

4
8.
4
1 4

.2
1

6
1.
6
4 0

.3
3

5
2.
4
8 0

.7
9

45
.3
8 6

.7
4

7
5.
0
0 3

.5
4

73
.5
7 4

.9
6

54
.4
2 3

.3
1

S
C

A
L

E
A

R
N

16
51
.7
6 0

.9
7

76
.3
3 0

.3
5

57
.8
3 1

.3
3

6
6.
33

3
.6
7

83
.0
3 1

.1
0

74
.5
1 1

.2
9

60
.3
6 3

.2
4

11
.3
1 5

.2
6

33
.4
7
3
.8
3

4
7.
4
2 6

.9
0

6
1.
7
0 0

.9
0

5
2.
4
8 0

.9
8

4
6.
9
2 6

.1
3

7
2.
8
0 4

.5
5

8
3.
2
1 2

.4
0

58
.6
3
2
.8
6

S
C

A
L

E
A

R
N

32
53
.3
7 1

.5
0

7
6.
13

0
.2
4

68
.4
4 0

.6
6

7
7.
73

2
.6
1

83
.6
3 1

.2
9

75
.0
5 1

.1
3

63
.1
0 1

.7
2

12
.9
8 2

.7
7

34
.5
9
1
.0
7

4
7.
0
5 5

.3
2

6
3.
1
6 0

.4
6

5
4
.3
6 1

.2
9

5
1.
7
3 7

.4
6

7
2.
20

1
.7
9

8
5.
0
0 0

.9
8

6
1.
2
4
2
.0
2

S
C

A
L

E
A

R
N

10
0

60
.4
0 1

.2
5

7
7.
4
6 0

.4
3

73
.9
1 1

.0
7

8
6.
40

1
.2
0

87
.1
9 0

.7
3

76
.3
2 1

.2
6

71
.0
5 2

.0
8

18
.9
9 2

.2
2

40
.3
1
1
.6
3

5
9.
7
1 0

.3
2

6
3.
4
6 1

.5
4

5
7
.3
4 2

.0
4

5
7.
6
9 6

.3
8

7
2.
40

3
.5
8

9
0.
0
0 2

.7
1

6
6.
1
7
1
.9
0

S
C

A
L

E
A

R
N

A
ll

86
.9
3 0

.0
3

8
9.
7
8 0

.0
9

92
.7
8 0

.0
3

94
.6
5 0

.3
5

90
.9
7 0

.0
9

88
.2
1 0

.7
2

81
.5
9 1

.6
9

59
.3
2 1

.8
1

78
.5
0
0
.4
8

7
2.
6
7 0

.4
2

7
8.
5
9 0

.2
8

6
6
.7
6 1

.7
0

6
3.
4
6 0

.5
1

8
0.
60

3
.2
7

9
6.
0
7 1

.4
1

8
1.
3
9
0
.8
6

S
C

A
L

E
A

R
N

U
N

IF
O

R
M

4
3
9.
28

4
.1
5

74
.6
4 0

.4
1

55
.2
1 2

.9
7

51
.6
3 1

.8
6

63
.5
8
9
.9
3

70
.2
9 0

.4
0

52
.7
1 0

.0
0

7.
19

2
.7
8

16
.6
5
7
.4
6

3
9.
8
2 1

0
.7
3

6
0.
5
7 0

.8
2

5
2.
3
2 0

.8
4

4
8.
8
5
1
1
.6
1

7
0.
8
0 1

.9
2

7
0.
00

3
.6
6

5
1.
57

3
.9
7

S
C

A
L

E
A

R
N

U
N

IF
O

R
M

16
5
0.
97

0
.9
2

76
.2
0 0

.3
3

5
5.
84

1
.9
7

62
.9
1 3

.3
3

77
.1
4 2

.3
8

73
.2
4 1

.8
9

60
.5
1 1

.9
5

13
.8
5 1

.5
7

26
.2
5
6
.7
9

49
.6
7 7

.1
1

61
.1
5 0

.9
5

5
2.
1
9
0
.6
7

5
3.
4
6 8

.0
3

7
1.
4
0 2

.7
0

7
8.
93

7
.9
3

5
7.
58

3
.2
3

S
C

A
L

E
A

R
N

U
N

IF
O

R
M

32
4
8.
73

1
.4
5

76
.1
4 0

.1
0

6
6.
4
2 0

.9
6

74
.5
4 2

.2
5

81
.2
2 0

.7
8

74
.4
1 1

.7
6

63
.9
7 0

.4
0

13
.3
1 4

.1
0

35
.1
5
3
.9
8

55
.5
0 4

.2
3

61
.6
0 0

.5
5

5
4
.1
7
1
.2
1

4
6.
9
2 2

.3
9

6
8.
6
0 2

.7
9

7
8.
2
1 3

.8
7

5
9.
93

2
.0
6

S
C

A
L

E
A

R
N

U
N

IF
O

R
M

10
0

5
7.
8
1 0

.7
4

77
.1
0 0

.4
6

6
7.
1
4 1

.4
2

81
.3
5 1

.9
5

84
.9
9 0

.3
7

75
.3
4 0

.7
1

65
.9
2 1

.6
1

17
.5
8 4

.3
4

38
.3
8
3
.9
5

59
.1
4 1

.4
2

62
.2
0 0

.6
9

5
5
.4
5
1
.7
1

5
2.
5
0 6

.9
2

7
1.
4
0 0

.8
9

9
0.
0
0 2

.0
4

6
3.
7
5
1
.9
5

S
C

A
L

E
A

R
N

U
N

IF
O

R
M

A
ll

8
7.
0
2 0

.0
7

90
.2
6 0

.1
0

9
2.
0
1 0

.9
2

94
.3
8 0

.3
0

90
.1
6 0

.1
1

87
.9
7 0

.9
9

80
.8
7 1

.0
9

58
.9
7 0

.8
3

80
.0
5
0
.1
8

71
.9
0 0

.2
9

7
6.
4
2 0

.6
5

6
8
.0
7
0
.7
7

6
3.
2
2 0

.8
5

7
3.
3
0 2

.1
6

9
3
.9
3 1

.7
3

8
0.
5
7
0
.7
4

S
C

A
L

E
A

R
N

+
+

4
3
6.
43

0
.8
4

71
.9
9 3

.1
7

52
.4
7 2

.5
6

50
.9
6 0

.3
1

70
.7
3
3
.4
9

69
.6
6 1

.7
7

52
.7
1 0

.0
0

5.
38

3
.0
0

29
.0
1
4
.0
5

2
9.
5
6 1

0
.2
0

6
2.
0
2 0

.3
5

5
0.
3
8 1

.0
7

43
.2
7 4

.1
4

7
2.
2
0 1

.6
4

73
.5
7 4

.4
5

51
.3
6 2

.7
4

S
C

A
L

E
A

R
N

+
+

16
49
.8
8 1

.2
9

75
.5
9 0

.9
3

55
.8
2 1

.5
7

5
9.
20

2
.0
2

80
.6
8 1

.1
4

73
.1
4 1

.4
4

58
.8
4 1

.1
7

12
.3
6 4

.8
8

25
.4
5
4
.1
9

30
.5
0 1

7
.8
3

6
0.
1
2 1

.3
7

5
2
.2
9 1

.6
9

4
7.
8
8 9

.4
6

7
3.
4
0 3

.2
1

7
9.
6
4 2

.7
1

55
.6
5
3
.6
6

S
C

A
L

E
A

R
N

+
+

32
49
.0
2 2

.0
0

7
4.
91

1
.2
1

67
.1
0 0

.9
1

7
4.
29

2
.7
4

82
.9
1 0

.7
6

73
.2
4 1

.1
7

62
.8
9 1

.3
4

11
.3
0 2

.3
1

34
.0
1
1
.0
5

2
5.
7
6 8

.1
9

6
1.
5
0 1

.5
5

5
3
.4
8 0

.4
6

4
0.
7
7 3

.8
2

7
4.
80

2
.2
8

8
1.
7
9 3

.4
3

5
7.
8
5
2
.2
2

S
C

A
L

E
A

R
N

+
+

10
0

58
.5
2 1

.2
1

7
6.
4
9 0

.8
6

68
.0
2 1

.6
5

8
2.
98

0
.8
4

86
.4
5 0

.4
1

75
.6
4 0

.3
7

68
.5
9 2

.1
8

13
.3
4 3

.8
9

39
.0
5
3
.7
9

5
7.
3
7 3

.8
8

6
0.
6
3 1

.2
6

5
6
.1
1 0

.7
3

5
9.
0
4 3

.3
0

7
5.
20

1
.3
0

9
1.
7
9 2

.0
4

6
4.
6
2
1
.8
5

S
C

A
L

E
A

R
N

+
+

A
ll

86
.9
4 0

.0
1

8
9.
5
6 1

.2
7

92
.8
0 0

.0
8

94
.0
4 0

.3
0

90
.7
5 0

.1
6

88
.2
1 1

.0
5

80
.4
0 0

.9
0

59
.6
5 1

.0
6

79
.9
8
0
.2
1

7
1.
1
6 0

.3
7

7
7.
3
4 0

.3
7

6
7
.4
3 1

.5
8

6
3.
4
6 0

.0
0

7
9.
90

1
.6
6

9
4.
2
9 2

.3
5

8
1.
0
6
0
.7
6

S
C

A
L

E
A

R
N

U
N

IF
O

R
M

+
+

4
3
8.
43

1
.6
3

73
.4
0 1

.0
0

54
.8
2 2

.3
3

51
.9
3 1

.3
1

58
.3
7 1

4
.7
2

70
.4
9 0

.4
8

52
.7
1 0

.0
0

4.
87

2
.3
8

17
.9
6
8
.7
9

3
6.
3
1 1

0
.9
9

6
0.
9
1 1

.1
5

5
1.
8
2 1

.2
4

49
.2
3 8

.0
0

7
1.
2
0 2

.8
6

71
.7
9 3

.4
3

50
.9
5 4

.0
2

S
C

A
L

E
A

R
N

U
N

IF
O

R
M

+
+

16
52
.2
4 1

.6
2

75
.5
2 0

.6
9

53
.6
5 0

.7
4

6
2.
04

2
.2
3

76
.2
7 2

.7
3

74
.5
1 1

.4
6

60
.7
9 1

.6
5

8.
95

2
.7
7

26
.0
4
6
.6
6

51
.3
7 8

.4
9

61
.4
3
0
.5
8

5
2
.0
7 1

.0
3

4
9.
2
3 5

.9
0

6
9
.6
0 2

.8
8

7
3.
2
1 5

.9
2

5
6.
4
6
3
.0
2

S
C

A
L

E
A

R
N

U
N

IF
O

R
M

+
+

32
49
.5
9 1

.3
0

75
.7
0 0

.3
5

65
.3
8 1

.0
4

74
.5
0 0

.6
6

80
.9
9 0

.9
6

73
.6
8 0

.8
2

62
.1
7 0

.9
3

11
.8
0 3

.5
9

35
.2
0
1
.9
3

5
7.
2
9 4

.9
3

6
2.
14

0
.5
2

53
.7
6 1

.4
4

5
1.
1
5 5

.9
0

70
.4
0 1

.3
4

8
0.
3
6 5

.0
5

6
0.
2
7
2
.0
5

S
C

A
L

E
A

R
N

U
N

IF
O

R
M

+
+

10
0

53
.4
7 1

.2
9

76
.2
2 0

.5
8

60
.7
0 0

.5
7

82
.9
4 1

.0
3

83
.6
0 0

.5
8

73
.8
2 1

.2
1

6
3.
83

1
.2
3

16
.4
3 2

.9
7

33
.2
7
3
.3
8

5
9.
3
2 0

.9
9

6
2.
70

0
.3
1

55
.4
9 2

.2
1

5
8.
4
6 7

.6
7

65
.2
0 2

.8
6

8
6.
0
7 3

.8
7

6
2.
1
0
2
.0
5

S
C

A
L

E
A

R
N

U
N

IF
O

R
M

+
+

A
ll

86
.8
2 0

.1
7

90
.1
6 0

.3
4

92
.3
5 0

.3
1

94
.6
1 0

.1
1

90
.3
2 0

.1
4

87
.9
7 0

.8
6

80
.7
9 0

.9
6

59
.3
3 0

.9
0

79
.8
0
0
.5
6

72
.7
6 0

.5
1

7
6.
22

0
.6
9

67
.9
5 1

.0
4

6
1.
7
8 1

.9
8

74
.2
0 1

.7
5

9
3.
2
1 0

.7
5

8
0.
5
5
0
.7
4

Ta
bl

e
17

:C
om

pl
et

e
fe

w
-s

ho
tt

ra
ns

fe
rl

ea
rn

in
g

re
su

lts
on

th
e

co
m

bi
na

tio
n

of
al

lG
L

U
E

an
d

Su
pe

rG
L

U
E

ta
sk

s
w

ith
k
=

{4
,1

6,
32

,1
00

}
tr

ai
ni

ng
sa

m
pl

es
fo

re
ac

h
ta

rg
et

ta
sk

us
in

g
R

oB
E

R
Ta

B
A

SE
.

11772

Model Samples MNLI QQP QNLI SST-2 STS-B MRPC RTE CoLA Avg.

ADAPTER 4 34.090.48 62.002.54 50.461.12 50.920.00 10.022.34 68.330.11 51.482.74 3.473.01 41.351.54
ADAPTER 16 35.121.00 63.110.18 49.590.24 59.383.42 12.415.51 68.380.00 52.641.06 2.553.07 42.901.81
ADAPTER 32 34.050.94 63.881.40 51.300.98 74.702.59 27.1613.89 68.770.71 51.621.75 7.4710.36 47.374.08
ADAPTER 100 41.392.59 71.350.81 53.751.18 83.672.22 76.844.07 69.071.48 56.972.30 30.965.72 60.502.55
ADAPTER All 89.620.18 89.870.67 94.130.06 95.240.08 91.810.29 87.822.11 81.232.92 64.071.97 86.721.04

ADAPTERFUSION 4 39.266.48 79.280.71 65.1311.67 51.030.23 76.4012.07 69.952.76 54.083.07 4.931.85 55.014.85
ADAPTERFUSION 16 49.948.89 80.370.13 78.853.67 56.653.82 83.960.85 77.501.62 70.474.04 16.083.34 64.233.29
ADAPTERFUSION 32 56.1210.53 80.010.25 80.551.30 75.297.71 85.360.87 77.114.44 78.703.54 6.778.63 67.494.66
ADAPTERFUSION 100 60.8413.22 78.863.07 85.090.80 85.441.87 88.090.39 81.861.63 84.402.62 34.692.72 74.913.29
ADAPTERFUSION All 89.570.17 90.880.06 94.150.04 95.870.00 91.860.15 88.970.78 85.701.13 66.391.83 87.930.52

SCALEARN 4 45.654.75 79.590.24 66.973.83 52.061.12 81.942.17 72.062.37 52.710.00 3.141.31 56.771.97
SCALEARN 16 57.541.50 80.040.58 77.240.85 62.592.91 85.081.83 76.422.70 69.752.56 4.233.10 64.112.00
SCALEARN 32 60.951.59 79.950.34 77.720.94 74.131.58 88.500.27 76.911.69 77.911.83 5.142.00 67.651.28
SCALEARN 100 69.181.32 80.800.21 83.642.26 84.200.98 89.250.40 77.601.78 82.960.93 10.801.43 72.301.17
SCALEARN All 90.090.09 90.510.26 94.180.03 95.410.16 92.320.15 88.090.82 87.080.54 65.402.62 87.910.55

SCALEARNUNIFORM 4 45.735.20 79.740.34 67.953.57 52.411.39 81.591.89 72.212.26 52.710.00 3.251.02 56.951.96
SCALEARNUNIFORM 16 57.611.01 79.810.31 74.551.75 57.432.44 85.320.85 75.341.10 68.811.21 1.922.57 62.601.41
SCALEARNUNIFORM 32 58.861.71 80.060.14 75.861.12 73.601.06 86.610.33 74.661.16 77.911.12 5.664.15 66.651.35
SCALEARNUNIFORM 100 63.511.39 80.340.21 74.982.50 81.441.48 87.360.24 76.471.26 81.371.87 14.981.27 70.061.28
SCALEARNUNIFORM All 90.110.04 90.050.28 94.230.08 95.410.16 92.110.06 88.631.72 84.403.93 66.980.58 87.740.86

SCALEARN++ 4 44.544.16 79.580.41 66.902.38 51.700.75 80.803.59 71.861.54 52.710.00 3.780.89 56.481.72
SCALEARN++ 16 56.711.57 80.110.37 73.801.36 60.163.41 85.171.14 75.203.15 69.822.07 2.853.64 62.982.09
SCALEARN++ 32 58.871.51 79.090.49 75.920.89 73.123.27 87.450.32 75.691.18 77.330.90 5.474.01 66.611.57
SCALEARN++ 100 65.071.14 80.230.33 78.820.81 82.001.89 88.010.84 76.621.16 81.812.60 12.112.78 70.581.44
SCALEARN++ All 90.310.10 90.590.03 94.050.03 95.930.24 92.480.15 88.481.26 86.281.05 67.130.59 88.160.43

SCALEARNUNIFORM++ 4 44.484.38 79.420.58 66.594.06 51.460.57 82.151.17 73.221.12 52.710.00 2.340.52 56.551.55
SCALEARNUNIFORM++ 16 56.631.44 79.530.45 72.952.27 56.941.01 85.140.66 75.612.09 68.861.85 0.802.46 62.061.53
SCALEARNUNIFORM++ 32 57.683.31 79.470.42 73.781.89 75.150.96 86.640.56 76.651.49 78.340.66 1.782.84 66.191.52
SCALEARNUNIFORM++ 100 56.721.49 78.910.82 66.112.51 83.750.58 85.530.82 74.332.49 81.682.51 20.843.14 68.481.79
SCALEARNUNIFORM++ All 90.080.01 90.490.02 94.120.16 95.180.16 92.120.09 90.050.54 84.981.32 64.970.85 87.750.39

Table 18: Complete few-shot transfer learning results on GLUE with k = {4,16,32,100} training samples for each
target task using RoBERTaLARGE.

11773

Model Samples ReCoRD Multi BoolQ WiC WSC COPA CB RTE Avg.

ADAPTER 4 15.583.93 31.7815.80 61.830.58 49.750.56 50.388.93 49.605.59 53.934.96 51.482.74 45.545.39
ADAPTER 16 17.427.21 40.463.08 61.640.54 51.381.37 54.042.30 53.605.46 61.073.19 52.641.06 49.033.03
ADAPTER 32 22.0414.70 41.115.21 62.170.01 52.881.91 47.693.76 66.207.60 67.502.33 51.621.75 51.404.66
ADAPTER 100 31.0119.22 51.934.94 62.170.00 55.962.03 52.885.81 65.2013.86 82.145.65 56.972.30 57.286.73
ADAPTER All 88.520.09 80.730.69 82.360.72 69.161.31 63.250.64 71.9013.63 92.681.78 81.232.92 78.732.72

ADAPTERFUSION 4 19.214.17 24.0720.35 61.770.18 50.631.49 43.2712.03 57.007.42 61.4311.75 52.710.00 46.267.17
ADAPTERFUSION 16 14.285.34 28.094.31 61.510.35 51.103.13 47.319.26 66.2012.44 77.864.48 53.211.37 49.955.09
ADAPTERFUSION 32 18.8211.93 37.6810.93 64.973.64 52.821.39 44.423.36 62.4010.24 78.214.45 58.054.21 52.176.27
ADAPTERFUSION 100 55.421.38 59.980.03 71.062.02 56.021.25 55.585.33 76.4013.22 84.644.11 57.622.71 64.593.75
ADAPTERFUSION All 89.210.17 80.520.24 82.210.30 69.091.68 63.460.68 81.2016.07 95.710.98 86.061.07 80.932.65

SCALEARN 4 32.723.66 58.491.59 61.900.30 51.661.61 55.588.66 71.006.36 77.502.04 52.710.00 57.693.03
SCALEARN 16 36.713.11 53.373.76 61.820.56 53.511.09 50.195.54 77.407.13 77.864.11 55.883.01 58.343.54
SCALEARN 32 36.723.37 57.304.03 61.470.75 53.262.28 49.045.73 80.603.05 80.001.49 57.625.12 59.503.23
SCALEARN 100 54.2112.46 59.790.30 68.783.12 51.881.84 57.121.87 81.805.97 85.002.04 65.343.44 65.493.88
SCALEARN All 87.850.01 78.400.70 80.292.52 68.561.68 62.980.68 85.403.78 92.861.79 84.910.59 80.161.47

SCALEARNUNIFORM 4 33.125.16 59.470.94 61.511.01 50.911.64 63.460.00 68.003.08 78.932.33 52.710.00 58.511.77
SCALEARNUNIFORM 16 32.752.12 54.657.16 62.110.15 52.260.85 52.123.49 72.001.87 81.792.65 54.443.40 57.762.71
SCALEARNUNIFORM 32 35.303.67 58.223.85 61.760.61 54.672.40 51.926.04 76.402.97 80.002.93 58.925.58 59.653.51
SCALEARNUNIFORM 100 41.505.85 60.010.10 61.960.76 51.851.21 58.271.75 72.405.37 85.002.04 60.651.05 61.452.27
SCALEARNUNIFORM All 88.850.22 80.420.06 81.850.21 69.911.15 61.540.00 82.003.08 90.001.60 84.041.66 79.831.00

SCALEARN++ 4 33.871.90 56.113.47 61.750.21 51.321.66 60.583.96 68.006.04 78.212.33 52.710.00 57.822.45
SCALEARN++ 16 35.360.48 53.715.41 61.930.39 52.790.17 50.772.99 71.403.78 80.004.07 55.232.75 57.652.51
SCALEARN++ 32 38.871.77 59.950.00 61.940.81 54.612.06 46.923.22 78.602.30 79.642.71 53.143.49 59.212.05
SCALEARN++ 100 43.154.43 59.950.00 63.360.98 52.010.73 57.123.23 75.204.15 86.792.04 62.242.68 62.482.28
SCALEARN++ All 88.280.23 80.760.58 83.080.31 69.591.89 62.980.68 87.801.10 91.071.79 85.700.32 81.160.86

SCALEARNUNIFORM++ 4 33.871.90 56.113.47 61.750.21 51.321.66 60.583.96 68.006.04 78.212.33 52.710.00 57.822.45
SCALEARNUNIFORM++ 16 35.360.48 53.715.41 61.930.39 52.790.17 50.772.99 71.403.78 80.004.07 55.232.75 57.652.51
SCALEARNUNIFORM++ 32 38.871.77 59.950.00 61.940.81 54.612.06 46.923.22 78.602.30 79.642.71 53.143.49 59.212.05
SCALEARNUNIFORM++ 100 43.154.43 59.950.00 63.360.98 52.010.73 57.123.23 75.204.15 86.792.04 62.242.68 62.482.28
SCALEARNUNIFORM++ All 88.850.22 80.700.04 82.130.21 70.190.26 62.980.68 83.602.88 91.072.82 84.841.02 80.541.02

Table 19: Complete few-shot transfer learning results on SuperGLUE with k = {4,16,32,100} training samples for
each target task using RoBERTaLARGE.

11774

Model Samples Sectors Pillars 1D Subpillars 1D Pillars 2D Subpillars 2D Avg.

ADAPTER 4 4.800.60 4.330.18 0.600.08 10.871.72 2.560.56 4.630.63
ADAPTER 16 7.122.11 1.351.85 0.450.32 11.080.59 2.820.82 4.561.14
ADAPTER 32 6.603.21 0.580.54 0.520.24 11.821.44 2.400.92 4.391.27
ADAPTER 100 24.6613.33 12.383.57 0.000.00 16.211.14 3.132.91 11.274.19
ADAPTER All 72.290.59 49.311.27 45.250.03 62.580.67 44.360.66 54.760.65

ADAPTERFUSION 4 12.432.84 7.580.95 2.110.12 14.590.57 7.101.13 8.761.12
ADAPTERFUSION 16 11.062.41 6.492.35 2.300.26 13.081.04 6.331.79 7.851.57
ADAPTERFUSION 32 11.903.19 6.402.61 2.500.60 13.230.90 6.161.54 8.041.77
ADAPTERFUSION 100 31.925.40 17.742.59 1.940.42 31.442.30 8.083.78 18.222.90
ADAPTERFUSION All 72.530.45 51.330.23 43.750.52 62.310.25 42.782.11 54.540.71

SCALEARN 4 5.520.93 4.940.21 1.300.26 13.590.46 3.810.90 5.830.55
SCALEARN 16 12.050.80 7.780.31 3.240.09 20.101.33 6.190.30 9.870.57
SCALEARN 32 16.340.63 15.740.95 6.540.29 24.920.40 10.540.33 14.820.52
SCALEARN 100 24.600.97 24.361.80 11.370.40 34.262.54 15.630.64 22.051.27
SCALEARN All 73.320.08 53.940.13 44.140.75 63.890.16 44.750.47 56.010.32

SCALEARNUNIFORM 4 4.920.61 4.840.26 1.250.30 13.050.48 3.410.11 5.490.35
SCALEARNUNIFORM 16 11.580.45 7.780.53 3.150.19 20.110.32 5.790.16 9.680.33
SCALEARNUNIFORM 32 15.450.00 15.480.64 6.540.52 24.220.16 9.700.17 14.280.30
SCALEARNUNIFORM 100 21.910.00 23.312.49 10.600.22 36.442.05 15.270.13 21.510.98
SCALEARNUNIFORM All 72.560.20 50.590.10 44.620.00 62.660.00 45.160.00 55.120.06

SCALEARN++ 4 4.900.40 4.950.20 1.450.26 13.480.52 3.370.50 5.630.38
SCALEARN++ 16 12.450.65 8.470.77 3.290.13 21.011.12 6.550.37 10.350.61
SCALEARN++ 32 16.610.57 15.801.00 6.710.29 24.760.32 10.310.36 14.840.51
SCALEARN++ 100 24.440.95 23.950.40 11.360.65 35.181.28 15.770.77 22.140.81
SCALEARN++ All 73.180.04 51.410.36 44.100.09 63.370.02 45.430.24 55.500.15

SCALEARNUNIFORM++ 4 4.920.61 4.840.26 1.250.30 13.050.48 3.410.11 5.490.35
SCALEARNUNIFORM++ 16 11.580.45 7.780.53 3.150.19 20.110.32 5.790.16 9.680.33
SCALEARNUNIFORM++ 32 15.450.00 15.480.64 6.540.52 24.220.16 9.700.17 14.280.30
SCALEARNUNIFORM++ 100 21.910.00 23.312.49 10.600.22 36.442.05 15.270.13 21.510.98
SCALEARNUNIFORM++ All 73.020.20 50.840.30 44.880.39 62.870.01 44.450.02 55.210.18

Table 20: Complete few-shot transfer learning results on HumSet with k = {4,16,32,100} training samples for each
target task using XLM-RLARGE.

11775

M
od

el
Sa

m
pl

es
M

N
L

I
Q

Q
P

Q
N

L
I

SS
T-

2
ST

S-
B

M
R

PC
R

T
E

C
oL

A
R

eC
oR

D
M

ul
ti

B
oo

lQ
W

iC
W

SC
C

O
PA

C
B

Av
g.

A
D

A
P

T
E

R
4

3
4.
09

0
.4
8

62
.0
0 2

.5
4

5
0.
46

1
.1
2

50
.9
2 0

.0
0

10
.0
2 2

.3
4

68
.3
3 0

.1
1

51
.4
8 2

.7
4

3
.4
7 3

.0
1

15
.5
8 3

.9
3

31
.7
8 1

5
.8
0

61
.8
3 0

.5
8

4
9.
75

0
.5
6

5
0.
3
8 8

.9
3

49
.6
0 5

.5
9

5
3.
9
3 4

.9
6

4
2.
9
1 3

.5
1

A
D

A
P

T
E

R
16

35
.1
2 1

.0
0

6
3.
11

0
.1
8

49
.5
9 0

.2
4

59
.3
8 3

.4
2

12
.4
1 5

.5
1

68
.3
8 0

.0
0

52
.6
4 1

.0
6

2
.5
5 3

.0
7

17
.4
2 7

.2
1

40
.4
6 3

.0
8

61
.6
4 0

.5
4

5
1.
3
8
1
.3
7

5
4.
0
4 2

.3
0

5
3.
60

5
.4
6

6
1.
0
7 3

.1
9

4
5.
5
2 2

.5
1

A
D

A
P

T
E

R
32

3
4.
05

0
.9
4

63
.8
8 1

.4
0

5
1.
3
0 0

.9
8

74
.7
0
2
.5
9

27
.1
6 1

3
.8
9

68
.7
7 0

.7
1

51
.6
2 1

.7
5

7
.4
7 1

0
.3
6

22
.0
4 1

4
.7
0

41
.1
1 5

.2
1

62
.1
7 0

.0
1

52
.8
8 1

.9
1

4
7.
69

3
.7
6

6
6.
2
0 7

.6
0

6
7.
5
0 2

.3
3

49
.2
4 4

.5
4

A
D

A
P

T
E

R
10

0
41
.3
9
2
.5
9

71
.3
5 0

.8
1

5
3.
75

1
.1
8

83
.6
7
2
.2
2

76
.8
4 4

.0
7

69
.0
7 1

.4
8

56
.9
7 2

.3
0

30
.9
6 5

.7
2

31
.0
1 1

9
.2
2

51
.9
3 4

.9
4

62
.1
7 0

.0
0

5
5.
9
6 2

.0
3

5
2.
8
8 5

.8
1

65
.2
0 1

3
.8
6

8
2.
14

5
.6
5

5
9.
0
2 4

.7
9

A
D

A
P

T
E

R
A

ll
8
9.
62

0
.1
8

89
.8
7 0

.6
7

9
4
.1
3 0

.0
6

95
.2
4 0

.0
8

91
.8
1 0

.2
9

87
.8
2 2

.1
1

81
.2
3 2

.9
2

64
.0
7
1
.9
7

88
.5
2 0

.0
9

80
.7
3 0

.6
9

82
.3
6 0

.7
2

6
9.
1
6 1

.3
1

6
2.
7
9 1

.5
7

71
.9
0 1

3
.6
3

92
.6
8 1

.7
8

8
2.
8
0 1

.8
7

A
D

A
P

T
E

R
F

U
S

IO
N

4
3
9.
28

3
.9
0

67
.1
8 6

.8
0

5
1.
03

2
.6
7

51
.9
5 1

.7
9

80
.2
7 0

.9
5

68
.3
8 0

.0
0

52
.7
1 0

.0
0

8
.2
4 3

.1
2

22
.3
3 1

0
.6
8

20
.4
3 4

.0
1

61
.1
3 0

.9
1

5
2.
14

0
.6
5

5
8.
6
5 8

.3
3

79
.6
7 6

.0
3

7
3.
8
1 2

.7
3

5
2.
4
8 3

.5
0

A
D

A
P

T
E

R
F

U
S

IO
N

16
49
.2
4 4

.0
9

7
8.
34

0
.6
1

78
.7
5 0

.8
0

58
.1
4 5

.0
1

83
.5
4 1

.1
7

74
.5
9 6

.2
9

70
.4
0 7

.6
1

19
.3
5 5

.3
4

21
.8
0 1

5
.8
1

43
.8
9 7

.6
1

62
.4
6 5

.0
1

5
3.
6
1
2
.0
0

5
6.
4
1 1

2
.2
1

8
0.
6
7 6

.0
3

7
9.
76

3
.7
2

6
0.
7
3 5

.5
5

A
D

A
P

T
E

R
F

U
S

IO
N

32
52
.6
2 9

.9
7

78
.7
1 1

.1
6

79
.2
7 4

.2
5

7
9.
32

2
.6
1

84
.1
5 1

.7
0

75
.9
8 2

.3
4

76
.7
7 1

.8
5

12
.6
3 3

.8
2

30
.1
1 7

.0
6

47
.1
3 4

.0
1

66
.6
1 5

.9
2

6
0.
6
1 2

.3
3

5
7.
6
9 9

.9
9

84
.3
3 1

.1
5

8
2.
7
4 2

.0
6

6
4.
5
8 4

.0
1

A
D

A
P

T
E

R
F

U
S

IO
N

10
0

6
2.
92

6
.8
7

78
.3
2 4

.4
2

85
.1
4 1

.0
0

8
6.
81

1
.3
5

87
.6
6 0

.3
9

79
.9
8 2

.7
0

81
.1
1 4

.5
7

35
.7
3
1
.5
1

44
.0
1 3

.5
7

66
.0
8 1

.8
2

73
.2
9 0

.8
9

5
9.
3
0 2

.6
5

5
9.
9
4 0

.5
6

8
3.
0
0 7

.2
1

83
.9
3 3

.5
7

7
1.
1
5 2

.8
7

A
D

A
P

T
E

R
F

U
S

IO
N

A
ll

89
.7
9
0
.1
2

90
.8
3 0

.2
7

94
.1
4 0

.0
5

95
.6
4 0

.0
0

92
.0
8 0

.1
4

89
.1
2 0

.2
2

85
.8
5 2

.4
8

66
.5
2
1
.3
1

89
.2
6 0

.0
0

79
.2
5 0

.8
0

82
.4
0 0

.5
4

69
.5
0 1

.1
2

6
2.
69

1
.7
2

8
8.
6
0 3

.3
6

9
0.
3
6 2

.9
9

84
.4
0
1
.0
1

S
C

A
L

E
A

R
N

4
48
.5
8 1

.9
3

7
1.
81

1
.6
2

56
.8
9 0

.7
9

5
2.
75

2
.6
1

57
.2
7 7

.5
7

68
.3
0 0

.1
4

51
.1
4 2

.7
1

0
.9
8 3

.4
0

32
.8
2 4

.9
8

57
.5
2 2

.5
8

60
.0
4 3

.1
0

5
1.
4
6 1

.3
3

5
4.
4
9 1

5
.5
4

72
.3
3 1

1
.8
5

7
7
.3
8 1

4
.4
3

54
.2
5 4

.9
7

S
C

A
L

E
A

R
N

16
52
.4
0 2

.7
4

78
.0
7 0

.8
1

65
.6
3 2

.0
8

73
.2
0 2

.7
2

74
.2
3 6

.8
0

68
.8
7 0

.2
5

69
.8
0 1

.6
3

8
.5
5 4

.9
3

34
.9
2 2

.7
4

58
.0
2 2

.1
0

61
.6
3 2

.8
7

55
.0
2
2
.5
2

5
4.
1
7 8

.0
6

87
.6
7 2

.5
2

8
7.
5
0 4

.7
2

61
.9
8 3

.1
7

S
C

A
L

E
A

R
N

32
58
.7
7 0

.9
3

8
0.
03

1
.8
9

75
.4
0 3

.3
9

75
.6
5
2
.4
2

82
.7
9 0

.8
8

70
.0
2 1

.1
1

74
.3
7 2

.5
3

4
.6
2 4

.9
5

34
.9
3 1

.6
7

55
.8
1 3

.5
8

69
.0
7 1

.0
1

57
.1
1
2
.2
8

5
7.
6
9 5

.0
0

84
.3
3 0

.5
8

8
6.
3
1 4

.1
2

6
4.
4
6 2

.4
2

S
C

A
L

E
A

R
N

10
0

6
8.
52

1
.5
5

80
.9
0 0

.5
2

8
5.
49

0
.4
3

86
.7
7
0
.9
3

88
.4
3 1

.0
6

76
.3
1 0

.1
4

80
.7
5 0

.2
1

20
.5
0 4

.1
1

56
.0
3 4

.0
1

64
.8
6 0

.8
2

74
.4
9 1

.0
5

5
6.
7
4 1

.5
9

58
.9
7 3

.6
4

8
8.
3
3 2

.0
8

91
.0
7 1

.7
9

7
1.
8
8 1

.5
9

S
C

A
L

E
A

R
N

A
ll

8
9.
67

0
.1
3

89
.7
0 0

.5
8

9
3.
98

0
.3
1

95
.3
6
0
.5
7

92
.2
9 0

.1
3

88
.2
8 1

.3
7

85
.7
8 1

.1
6

67
.2
0 1

.3
3

85
.4
3 0

.4
4

80
.0
8 0

.6
9

82
.4
3 0

.7
9

7
0.
16

2
.0
8

66
.7
3 4

.7
9

9
1.
0
0 1

.2
2

9
3.
9
3 2

.0
4

84
.8
0 1

.1
8

S
C

A
L

E
A

R
N

U
N

IF
O

R
M

4
4
9.
39

1
.7
5

69
.2
8 2

.3
1

6
1.
28

2
.0
3

52
.5
2 2

.5
8

45
.1
4 7

.0
6

68
.7
9 0

.2
8

51
.1
4 2

.7
1

3
.2
3 4

.9
9

36
.2
5 4

.0
1

57
.5
2 2

.2
6

60
.5
2 2

.3
3

5
0.
84

0
.9
6

5
8.
0
1 4

.0
0

77
.6
7 1

.5
3

7
7.
3
8 6

.7
6

5
4.
6
0 3

.0
4

S
C

A
L

E
A

R
N

U
N

IF
O

R
M

16
51
.4
0 0

.9
7

7
7.
92

0
.5
7

61
.7
1 2

.4
9

63
.6
5 3

.3
8

67
.1
9 2

.5
7

69
.2
0 0

.5
7

70
.1
6 3

.7
9

5
.9
8 0

.3
0

35
.4
1 7

.2
0

57
.1
8 2

.5
8

60
.9
9 1

.7
6

5
5.
4
3
2
.0
7

4
4.
2
3 4

.4
1

8
0.
33

7
.5
7

8
6.
9
0 3

.7
2

5
9.
1
8 2

.9
3

S
C

A
L

E
A

R
N

U
N

IF
O

R
M

32
5
5.
41

1
.9
8

78
.0
5 0

.9
2

6
6.
2
2 2

.1
1

72
.5
5
0
.9
3

76
.2
6 1

.0
7

70
.5
1 0

.6
2

76
.4
1 0

.9
1

6
.4
0 4

.6
9

35
.3
8 0

.8
2

56
.1
9 3

.3
5

64
.6
4 1

.9
1

5
6.
4
3
0
.4
1

5
2.
8
8 6

.7
3

8
1.
0
0 8

.8
9

86
.3
1 1

.0
3

6
2.
3
1 2

.4
2

S
C

A
L

E
A

R
N

U
N

IF
O

R
M

10
0

62
.6
2 1

.3
8

79
.8
1 0

.1
3

72
.8
0 1

.7
8

8
2.
53

1
.4
7

85
.2
5 0

.7
5

73
.9
4 1

.3
9

80
.9
9 1

.1
6

19
.3
7 1

.4
2

44
.6
4 1

0
.3
2

59
.9
8 0

.0
6

68
.8
0 1

.2
4

54
.1
8 0

.7
9

5
7.
0
5 2

.0
0

86
.3
3 2

.3
1

9
2.
2
6 1

.0
3

68
.0
4 1

.8
1

S
C

A
L

E
A

R
N

U
N

IF
O

R
M

A
ll

9
0.
09

0
.0
4

9
0.
54

0
.0
8

93
.8
4 0

.6
9

9
5.
70

0
.0
8

92
.1
3 0

.0
5

88
.3
3 1

.1
2

85
.8
5 2

.3
9

66
.8
5
1
.0
5

88
.2
4 0

.0
0

80
.5
0 0

.0
7

82
.0
4 0

.1
6

7
0.
2
8 2

.4
7

5
9.
6
2 0

.0
0

90
.4
0 1

.5
2

9
5.
0
0 2

.3
3

8
4.
6
3 0

.8
0

S
C

A
L

E
A

R
N

+
+

4
4
8.
69

4
.1
6

71
.6
5 2

.7
9

5
5.
85

3
.7
0

50
.9
6 0

.0
7

51
.6
2 8

.0
6

68
.3
8 0

.4
2

52
.7
1 0

.0
0

5
.2
9 4

.2
1

32
.3
6 5

.5
2

39
.1
2 8

.1
8

60
.9
3 1

.3
4

5
1.
25

0
.5
7

4
0.
0
6 2

.9
4

78
.0
0 6

.2
4

8
0.
9
5 4

.4
9

5
2.
5
2 3

.5
1

S
C

A
L

E
A

R
N

+
+

16
50
.0
1 3

.6
2

7
6.
53

0
.5
1

62
.4
3 0

.6
2

60
.8
9 2

.5
8

67
.5
0 4

.8
9

69
.4
4 1

.0
2

67
.8
7 1

.5
7

6
.3
6 2

.9
1

29
.3
6 1

.3
9

56
.8
0 2

.8
8

60
.2
4 0

.4
8

5
3.
8
1
3
.6
3

5
0.
0
0 6

.9
3

8
3.
67

1
.1
5

8
8.
1
0 2

.0
6

5
8.
8
7 2

.4
2

S
C

A
L

E
A

R
N

+
+

32
5
6.
60

1
.7
3

78
.0
4 0

.7
1

68
.9
4 4

.6
8

7
3.
09

3
.3
9

77
.9
0 1

.6
0

70
.8
3 1

.7
0

75
.4
5 1

.2
5

7
.4
9 2

.5
3

32
.0
9 2

.9
5

59
.9
5 0

.0
0

65
.7
7 0

.9
4

5
6.
2
2 0

.9
6

4
5.
1
9 3

.4
7

8
6.
0
0 1

.0
0

85
.7
1 0

.0
0

6
2.
6
2 1

.7
9

S
C

A
L

E
A

R
N

+
+

10
0

65
.5
9
1
.1
6

78
.5
3 1

.7
8

76
.6
1 1

.1
9

84
.2
5
1
.6
7

85
.7
9 1

.4
0

73
.0
4 0

.4
9

79
.9
0 0

.9
1

17
.9
6 1

.2
9

53
.0
4 1

.6
9

62
.6
2 0

.8
5

73
.2
2 1

.3
2

5
6.
4
3 1

.7
0

55
.4
5 4

.8
4

8
6.
3
3 0

.5
8

88
.6
9 4

.1
2

6
9.
1
6 1

.6
7

S
C

A
L

E
A

R
N

+
+

A
ll

9
0.
13

0
.2
7

90
.2
2 0

.9
3

9
4.
49

0
.2
3

94
.6
1
2
.1
1

92
.3
5 0

.1
0

87
.7
0 0

.9
6

86
.2
1 1

.0
0

67
.2
3 1

.2
8

87
.5
3 0

.1
3

80
.1
4 0

.2
9

82
.5
1 1

.9
5

6
9.
40

1
.6
3

62
.8
2 1

.1
1

8
9.
8
0 1

.1
0

9
4.
2
9 0

.8
0

84
.6
3 0

.9
3

S
C

A
L

E
A

R
N

U
N

IF
O

R
M

+
+

4
4
7.
67

3
.8
4

69
.7
4 1

.5
1

6
1.
64

0
.5
2

51
.8
7 0

.6
9

49
.5
6 6

.9
2

69
.0
4 0

.9
3

50
.5
4 3

.0
6

2
.1
3 7

.3
7

32
.7
8 1

.1
0

55
.5
4 1

.5
4

59
.2
9 2

.5
6

5
1.
52

1
.3
1

6
0.
2
6 3

.3
8

75
.0
0 2

.0
0

8
2.
1
4 3

.5
7

5
4.
5
8 2

.6
9

S
C

A
L

E
A

R
N

U
N

IF
O

R
M

+
+

16
50
.0
4 1

.9
9

7
7.
01

0
.5
8

62
.5
4 2

.7
2

60
.8
9 0

.3
4

68
.9
6 4

.7
9

69
.0
4 0

.2
8

70
.5
2 2

.8
0

5
.2
3 2

.5
2

32
.6
6 6

.3
4

57
.5
1 2

.7
3

60
.5
2 1

.8
4

5
2.
6
1
2
.1
4

4
9.
6
8 8

.0
1

7
9.
67

4
.6
2

8
4.
5
2 4

.1
2

5
8.
7
6 3

.0
6

S
C

A
L

E
A

R
N

U
N

IF
O

R
M

+
+

32
5
4.
75

1
.4
5

78
.7
7 0

.5
5

6
6.
1
4 3

.0
6

74
.4
3
2
.4
0

76
.2
1 1

.6
2

69
.6
1 1

.2
7

77
.1
4 1

.1
6

5
.7
1 1

.0
7

34
.2
2 0

.9
9

55
.3
8 4

.2
2

64
.2
4 0

.6
7

5
5.
0
2
0
.7
2

4
5.
5
1 3

.3
8

8
2.
0
0 5

.5
7

86
.9
0 2

.0
6

6
1.
7
3 2

.0
1

S
C

A
L

E
A

R
N

U
N

IF
O

R
M

+
+

10
0

58
.1
4 1

.3
5

78
.2
6 0

.8
9

68
.2
9 1

.5
1

8
3.
18

0
.8
9

83
.8
8 1

.8
9

74
.1
0 0

.5
1

82
.3
1 1

.2
5

20
.1
2 2

.0
5

46
.2
3 1

.8
2

60
.4
0 0

.5
0

66
.7
1 2

.5
0

53
.4
0 0

.7
7

5
6.
7
3 2

.5
4

80
.6
7 4

.1
6

9
1.
6
7 1

.0
3

66
.9
4 1

.5
8

S
C

A
L

E
A

R
N

U
N

IF
O

R
M

+
+

A
ll

9
0.
10

0
.1
4

90
.4
5 0

.1
0

9
3.
91

0
.0
9

95
.3
0
0
.0
0

92
.1
2 0

.1
2

88
.9
7 0

.8
8

84
.7
7 1

.3
4

65
.8
3 1

.4
9

88
.2
8 0

.5
6

80
.4
6 0

.2
3

82
.2
3 0

.2
8

7
0.
0
9 0

.3
6

60
.1
0 0

.6
8

8
9.
2
0 1

.3
0

95
.3
6 0

.9
8

8
4.
4
8 0

.5
7

Ta
bl

e
21

:C
om

pl
et

e
fe

w
-s

ho
tt

ra
ns

fe
rl

ea
rn

in
g

re
su

lts
on

th
e

co
m

bi
na

tio
n

of
al

lG
L

U
E

an
d

Su
pe

rG
L

U
E

ta
sk

s
w

ith
k
=

{4
,1

6,
32

,1
00

}
tr

ai
ni

ng
sa

m
pl

es
fo

re
ac

h
ta

rg
et

ta
sk

us
in

g
R

oB
E

R
Ta

L
A

R
G

E
.

11776

