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Abstract

Multi-task learning (MTL) has shown consider-
able practical benefits, particularly when using
language models (LMs). While this is com-
monly achieved by learning n tasks under a
joint optimization procedure, some methods,
such as AdapterFusion, divide the problem into
two stages: (i) task learning, where knowledge
specific to a task is encapsulated within sets
of parameters (e.g., adapters), and (ii) trans-
fer, where this already learned knowledge is
leveraged for a target task. This separation
of concerns provides numerous benefits (e.g.,
promoting reusability). However, current two-
stage MTL introduces a substantial number
of additional parameters. We address this is-
sue by leveraging the usefulness of linearly
scaling the output representations of source
adapters for transfer learning. We introduce
SCALEARN, a simple and highly parameter-
efficient two-stage MTL method that capital-
izes on the knowledge of the source tasks by
learning a minimal set of scaling parameters
that enable effective transfer to a target task.
Our experiments on three benchmarks (GLUE,
SuperGLUE, and HumSet) and two encoder
LMs show that SCALEARN consistently out-
performs strong baselines with a small number
of transfer parameters (∼ 0.35% of those of
AdapterFusion). Remarkably, we observe that
SCALEARN maintains its strong abilities even
when further reducing parameters, achieving
competitive results with only 8 transfer param-
eters per target task. Our proposed approach
thus demonstrates the power of simple scaling
as a promise for more efficient task transfer.1

1 Introduction

With the wide availability of pre-trained language
models (LMs) as the backbone of language process-
ing, multi-task learning (MTL) has shown signifi-
cant benefits, especially for tasks with possible con-

1Our code is available at https://github.com/CPJKU/
ScaLearn.

ceptual commonalities (Ruder, 2017; Zhang and
Yang, 2022; Raffel et al., 2020). The traditional
paradigm in MTL is to formulate a joint optimiza-
tion objective based on a set of tasks and train a
single model to simultaneously learn and transfer
the knowledge relevant to the tasks. This joint MTL
approach can be realized by fine-tuning an LM (Liu
et al., 2019a; Stickland and Murray, 2019), or, more
recently, by using parameter-efficient, often modu-
larized, MTL approaches (Mahabadi et al., 2021b;
Zeng et al., 2023; Pilault et al., 2021; Asai et al.,
2022; Ponti et al., 2023; Caccia et al., 2022).

As an alternative to the joint MTL paradigm,
some works, such as ADAPTERFUSION (Pfeiffer
et al., 2021), clearly distinguish task training from
transfer learning, assigning dedicated parameters to
each of these aspects. In this paradigm, referred to
as two-stage MTL, first each source task is trained
separately and stored into a separate module like
an adapter (Houlsby et al., 2019), and then a task
transfer layer is trained for a given target task using
information from an arbitrary set of source tasks.
This separation of concerns between task and trans-
fer learning offers valuable benefits: (1) Learning
a separate transfer layer for each target task in a
two-stage MTL approach reduces the potentially
destructive effects of transfer learning on specific
tasks, as the transfer layer parameters correspond-
ing to each target task can independently decide
what information should be used from the avail-
able source tasks. As shown in our experiments
with encoder LMs, this supports the effectiveness
of transfer learning, making it less sensitive to task
selection. (2) Since the source tasks can simply be
taken from already trained modules (no need for re-
training), two-stage approaches promote reusabil-
ity – a principle of Green AI (Scells et al., 2022;
Schwartz et al., 2020). Further, they provide a
practical solution to cases involving issues such
as data privacy and/or fairness constraints, as a
pre-trained module can readily provide the (e.g.,
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Figure 1: Performance and parameter-efficiency of single task learning (STL), and joint/two-stage MTL methods,
evaluated on GLUE (Wang et al., 2019b) and SuperGLUE (Wang et al., 2019a) using RoBERTaBASE (Liu et al.,
2019b). The reported values for the two-stage MTL methods only consider the ones in the respective transfer layers.
The full details of the learnable parameters and performance results are provided in §5.

already debiased) functionality of the source task
even without the need to have access to its training
data (Lauscher et al., 2021; Kumar et al., 2023).

Despite these benefits, current two-stage MTL
solutions introduce significantly more learnable
parameters compared to recent joint MTL ones,
exacerbated by the linear increase in the number
of parameters with the number of target tasks. In
our experiment setup with eight target tasks using
RoBERTaBASE (Liu et al., 2019b), ADAPTERFU-
SION introduces ∼134% new parameters for trans-
fer learning, while HYPERFORMER++ (Mahabadi
et al., 2021b) conducts joint MTL by adding ∼4%
(≈ 5M) trainable parameters (details in Table 1
and §5). This high number of parameters is in stark
contrast to the promise of Green AI given by the
modularized nature of two-stage MTL.

Contributions. We build on insights gained from
analyzing the effects of scaling the output represen-
tations of adapters, and introduce SCALEARN, a
novel two-stage MTL method that learns to trans-
fer the knowledge of the source adapters using a
small set of scaling parameters. For a given target
task, SCALEARN introduces parameters that scale
the output representation of each source adapter
and combine the resulting scaled representations
by simply taking the element-wise sum. This ap-
proach results in high parameter-efficiency, such
that – following the mentioned experiment set-
ting – SCALEARN only adds ∼ 0.47% (≈ 0.5M)
parameters. We further introduce an even more
parameter-efficient variant via uniform scaling
(SCALEARNUNIFORM), where each scaling vector

is reduced to a single scaling parameter. Finally, by
sharing parameters across layers, we achieve our
most efficient variation (SCALEARNUNIFORM++),
only containing 64 parameters for transfer learning.

We conduct a large set of transfer learning exper-
iments on the GLUE (Wang et al., 2019b), Super-
GLUE (Wang et al., 2019a), and HumSet (Fekih
et al., 2022) benchmarks using encoder LMs,
namely the popular RoBERTa (Liu et al., 2019b)
and XLM-R (Conneau et al., 2020) models, both
in their base and large configurations.

Figure 1 summarizes our results on GLUE and
SuperGLUE, showing that SCALEARN, while pro-
viding high efficiency and the benefits of the two-
stage MTL paradigm, consistently outperforms the
baselines. The overall performance of SCALEARN

remains highly competitive in its more parameter-
efficient variations. Our results also show the ad-
vantage of two-stage models in avoiding destruc-
tive effects during transfer learning. Overall, with
SCALEARN we leverage the power of scaling as a
viable, non-destructive, simple-to-implement, and
highly parameter-efficient solution to the current
shortcomings of existing MTL methods, paving the
future for more effective and efficient task transfer.

2 Background

In task transfer learning, we consider a pre-trained
LM as well as two sets S and T , representing the
source and target tasks, respectively. The aim of
MTL is to leverage the information of tasks in S to
improve the generalization on tasks in T .

Single Task Learning (STL). In this basic set-
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ting, a separate set of parameters is optimized
on each task (S = T ) without any knowledge
transfer between tasks. STL can be done by fine-
tuning the LM parameters or by introducing more
parameter-efficient modules into the model, such
as adapter modules (Pfeiffer adapters (Houlsby
et al., 2019; Pfeiffer et al., 2021), PROPETL (Zeng
et al., 2023), or COMPACTER++ (Mahabadi et al.,
2021a)), (IA)3 (Liu et al., 2022), prefix-tuning (Li
and Liang, 2021), or LoRA (Hu et al., 2022), each
with Θs parameters for each task s.

Joint MTL. This approach is commonly done by
having a unified model for all tasks (S = T ),
and a joint optimization objective that simultane-
ously optimizes the model using samples from all
tasks (Ruder, 2017). The general joint MTL ob-
jective can be formulated as Ljoint =

∑|S|
s=1 αsLs,

where αs is the sampling weight of task s. This
optimization objective can be used to fine-tune the
parameters of an LM (Liu et al., 2019a; Stickland
and Murray, 2019; Raffel et al., 2020), or those of a
modularized architecture (Mahabadi et al., 2021b;
Pilault et al., 2021; Ponti et al., 2023). Despite the
benefit of having one unified model, the joint loss
often causes tasks to compete with each other for
learning capacity, leading to the task interference
problem (Xin et al., 2022; McCloskey and Cohen,
1989; Kirkpatrick et al., 2017). This makes the
joint MTL paradigm particularly sensitive to the
selection of tasks (Xin et al., 2022), while various
methods in the literature have aimed to address
this issue (e.g., Kendall et al. (2018); Pilault et al.
(2021); a brief review is provided in § 6).

Two-stage MTL. In contrast to joint MTL, two-
stage MTL methods optimize each target task in-
dependently, bypassing the issue of task interfer-
ence (Pfeiffer et al., 2021). Similarly to STL, a
parameter-efficient module is first learned for each
source task s with parameters Θs. In principle, two-
stage MTL methods can simply use already pre-
trained modules (such as adapters), saving the costs
of re-training modules on each task. This facili-
tates the re-use of existing parameter-efficient mod-
ules for each source task,2 which may vary in per-
formance and/or take into account additional con-
straints such as fairness and bias mitigation (Pfeif-
fer et al., 2023; Kumar et al., 2023; Lauscher et al.,
2021). Moreover, it also removes the need for ac-
cessing the training data of the source tasks (e.g.,

2E.g., through sharing platforms such as AdapterHub
(https://adapterhub.ml/) (Pfeiffer et al., 2020).

due to data privacy) so far as the source task’s func-
tionality is solely provided via parameter-efficient
modules. Next, given |S| (pre-trained and frozen)
source task modules, two-stage MTL methods de-
fine and optimize a transfer layer for each target
task to leverage the knowledge of source tasks to
solve the target task. This stage introduces Ωt new
parameters for each target task t.

ADAPTERFUSION (Pfeiffer et al., 2021) intro-
duces an implementation of the two-stage approach
with strong performance (Pfeiffer et al., 2023). It
uses an attention mechanism as its transfer layer, in-
serted into each LM layer after the source adapters.
More specifically, given the output vector of each
source adapter s in each layer l, referred to as ol

s,
the attention layer (with target task t as query and
source tasks S as keys and values) learns to assign
a weight ωl

s to each source task. The final output
of the target task t in this layer is calculated as:

ol
t =

|S|∑

s=1

ωl
so

l
s, where

|S|∑

s=1

ωl
s = 1 (1)

Regardless of how the weights are calculated,
the method can be seen as a weighted summation
of source output vectors, where the weights form a
categorical probability distribution.

3 SCALEARN – Learning to Scale for
Knowledge Transfer

To understand the effect of scaling the output repre-
sentations of adapters, we conducted initial experi-
ments on scaling them, both in isolation and when
combining two of them. In these experiments, we
observed that (1) scaling output vectors is an ef-
fective method for controlling the (partial or full)
activation of the knowledge contained in an adapter
module; (2) an optimal configuration of the scaling
parameter will, in many cases, lead to superior re-
sults on the target task; (3) the optimal weights do
not necessarily sum up to 1. These findings stand
in contrast to the established practice of forcing the
coefficients to sum up to 1 (e.g., as in ADAPTERFU-
SION; cf. Equation 1). We provide comprehensive
results and analyses in Appendix A.2. Overall,
these observations provide strong motivation for
a method to combine representations from several
adapters by scaling their output representations.

Based on that, we present SCALEARN, a novel
two-stage transfer learning method to combine the
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knowledge of source adapters by scaling their out-
put representations. Our core contribution regards
the transfer layer, built on the output of the tasks’
modular networks. Similar to Pfeiffer et al. (2021),
we utilize adapter modules for the task learning
layer. In particular, the output representation of
the adapter of source task s at layer l is defined as:
ol
s = U l

s(ReLU(Dl
s(x

l
s))) + xl

s, where xl
s is the

input vector, and U l
s and Dl

s denote the up- and
down-projection parameter matrices, respectively.

Our introduced SCALEARN linearly scales and
combines the output representations of source
adapters, ol

1, . . . ,o
l
|S|, to achieve the objective of

target task t.
We define two variations of the scaling opera-

tion: non-uniform which applies a scaling vector
to each output vector using the element-wise prod-
uct (SCALEARN), and the more parameter-efficient
uniform that scales each vector only with a scalar
parameter (SCALEARNUNIFORM). These varia-
tions are formulated below:

SCALEARN : ol
t =

|S|∑

s=1

ωl
s ⊙ ol

s

SCALEARNUNIFORM : ol
t =

|S|∑

s=1

ωl
so

l
s,

(2)

where ⊙ denotes the Hadamard product, and
ωl
s and ωl

s are learnable vector and scalar pa-
rameters, respectively. Inspired by previous stud-
ies (Mahabadi et al., 2021a; Zeng et al., 2023; Bai
et al., 2022; Goldberg, 2019), we further increase
parameter-efficiency by learning shared scaling pa-
rameters among all layers, formulated as follows:

SCALEARN++ : ol
t =

|S|∑

s=1

ωs ⊙ ol
s

SCALEARNUNIFORM++ : ol
t =

|S|∑

s=1

ωso
l
s,

(3)
where, similarly, ωs and ωs are learnable vec-

tor and scalar parameters, but shared among all
layers. In all the mentioned methods, to optimize
the transfer parameters Ω, we use gradient descent
as an easy-to-implement and straightforward so-
lution. On the basis of our experiments, we find
that our approach provides highly competitive re-
sults on a wide range of tasks (cf. § 5). Fur-
thermore, SCALEARN models do not force any

distributional properties on the ω values, as com-
monly imposed in previous work (Pfeiffer et al.,
2021; Chronopoulou et al., 2023; Xin et al., 2022)
through functions such as softmax and average.

Parameter-efficiency of SCALEARN. To have
a clear view of the parameter-efficiency of the
models, we continue by analyzing the number of
learnable parameters in the transfer layer. The
SCALEARN variant introduces d×L×|S| trans-
fer parameters for a single target task, where d
is the embedding size and L denotes the num-
ber of layers. The total number of parameters
for all target tasks then becomes d×L×|S|×|T |.
Moving to SCALEARNUNIFORM, this number re-
duces to L×|S|×|T |. The SCALEARN++ spares
the L term and has d×|S|×|T | transfer parame-
ters. Finally, the most parameter-efficient variant
SCALEARNUNIFORM++ only adds |S|×|T | pa-
rameters. For each task, new task head parameters
are learned jointly with the transfer parameters.

For comparison, the number of transfer parame-
ters of ADAPTERFUSION is 3×d2×L×|T | (discard-
ing bias and task head parameters), corresponding
to the query, key, and value matrices of the attention
mechanism. Comparing the formulas, we observe
that our methods are far more parameter-efficient,
since in practice |S| ≪ d, and hence the d×L term
in SCALEARN becomes much smaller than d2 in
ADAPTERFUSION. Compared to the joint MTL
paradigm, despite the linear increase of parameters
with |T |, our SCALEARN * models still provide
high parameter-efficiency. This stems from the fact
that |T | ≪ d, and hence reducing the effect of d –
which is fully eliminated in the uniform variants –
leaves a stronger impact on parameter-efficiency.

4 Experiment Setup

Tasks and datasets. We conduct our experiments
on the GLUE and SuperGLUE benchmarks, respec-
tively, each consisting of 8 tasks, as well as on the
HumSet benchmark (Fekih et al., 2022). HumSet
is a multilingual classification dataset for humani-
tarian crisis response that consists of 5 tasks. Ad-
ditionally, we use a combination of all GLUE and
SuperGLUE tasks resulting in 15 datasets3. It has
been shown that tasks from GLUE and SuperGLUE
particularly benefit from multi-task learning, given
their partially overlapping task formulations and
highly varying dataset sizes (Devlin et al., 2019;

3The RTE task is contained in GLUE and SuperGLUE.
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Type Model Parameters
(one task)

Parameters
(all tasks)

STL

FINETUNE 100.00% (125M) 800.00% (125M)
ADAPTER 0.72% (895K) 5.74% (7M)
PROPETL 0.77% (959K) 6.16% (8M)
COMPACTER++ 0.02% (29K) 0.19% (235K)
(IA)3 0.05% (57K) 0.37% (455K)
LORA 0.93% (1.2M) 7.50% (9.4M)

Joint
MTL

FINETUNE-M - 100.00% (125M)
ADAPTER-M - 0.72% (895K)
PROPETL-M - 1.24% (1.5M)
HYPERFORMER - 47.67% (59M)
HYPERFORMER++ - 4.09% (5M)

Transfer (Ωt)
(target task t)

Transfer (Ω)
(all target tasks)

Two-
Stage
MTL

ADAPTERFUSION 17.05% (21M) 136.40% (170M)
SCALEARN 0.06% (74K) 0.47% (590K)
SCALEARNUNIFORM 0.00% (96) 0.00% (768)
SCALEARN++ 0.00% (6K) 0.04% (49K)
SCALEARNUNIFORM++ 0.00% (8) 0.00% (64)

Table 1: Percentage and trainable parameters per model
(excluding task head parameters) when training on 8
tasks (as in GLUE/SuperGLUE) using RoBERTaBASE.

Stickland and Murray, 2019; Asai et al., 2022;
Wang et al., 2023). Complete details regarding
the benchmarks including their train/validation/test
splits are provided in Appendix A.1.

LM backbones. We use the encoder LMs
RoBERTaBASE and RoBERTaLARGE (Liu et al.,
2019b) on GLUE and SuperGLUE. For the experi-
ments on HumSet, following Fekih et al. (2022) we
utilize the commonly used multilingual encoder
LMs XLM-RBASE and XLM-RLARGE (Conneau
et al., 2020) as it consists of multiple languages.

We put our focus on encoder LMs since they
have been studied extensively and are still widely
used for a variety of tasks, e.g., representation
learning (Kusupati et al., 2022; Zhao et al., 2022;
Xiao et al., 2023), sentence segmentation (Minix-
hofer et al., 2023), and as language encoder as part
of multi-modal architectures (Saharia et al., 2022;
Singh et al., 2022; Liu et al., 2023), inter alia, espe-
cially in real-time use cases due to their efficiency
and comparatively low computational demands.

Models and baselines. We conduct experiments
on four variants of our model, namely SCALEARN,
SCALEARNUNIFORM, SCALEARN++, and
SCALEARNUNIFORM++. As a direct baseline,
we compare our models with ADAPTERFUSION,
a common two-stage MTL method that shares sim-
ilar conceptual properties. We also compare our
models with ADAPTERSOUP (Chronopoulou et al.,
2023), performing weight-space averaging over
adapter weights of the 5 most similar tasks accord-
ing to their sentence similarity, adapted to our setup

(cf. Appendix A.1). In all two-stage MTL methods,
source and target tasks are the same, containing
the tasks of the underlying benchmark. For each
target task, they learn a transfer layer (except for
ADAPTERSOUP) and a new task head.

We also select a set of strong STL base-
lines: FINETUNE, fully fine-tuning the LM,
ADAPTER (Houlsby et al., 2019) learning an
adapter module for each task, PROPETL (Zeng
et al., 2023) a more memory-efficient variation
based on parameter sparsification and COM-
PACTER++ (Mahabadi et al., 2021a) a highly
parameter-efficient variation using parameter-
sharing between layers. In addition, we train
(IA)3 (Liu et al., 2022), learning scaling vectors
applied to the key and value matrices and interme-
diate activations in the LM’s feed-forward layer,
and LORA (Hu et al., 2022), learning low-rank
updates to the model’s weight matrices.

Furthermore, we conduct experiments on sev-
eral joint MTL baselines, namely FINETUNE-M,
ADAPTER-M, and PROPETL-M, the fully fine-
tuned, adapter-based, and ProPETL-based joint
MTL variants, respectively; and, finally, HYPER-
FORMER and HYPERFORMER++ (Karimi Ma-
habadi et al., 2021). FINETUNE-M updates all
LM parameters, ADAPTER-M adds a single adapter
module shared for all tasks, and PROPETL-M com-
bines sparse layer- and task-specific masks through
a logical OR operation. Based on task-specific em-
beddings, HYPERFORMER and HYPERFORMER++
generate module parameters by a shared hypernet-
work. In all adapter-based models, we use a re-
duction factor of 16, and, following Pfeiffer et al.
(2021), insert the modules after the feed-forward
layer of the LM. Furthermore, to allow a fair com-
parison, we adapt PROPETL-M, HYPERFORMER,
and HYPERFORMER++ to this setting by inserting
the adapters only after each feed-forward block. To
accommodate possible variations in performance,
we train each model on multiple seeds, and report
the mean and standard deviation over multiple runs.

The full details of the experiment setup regard-
ing the benchmarks and their splits, infrastructure,
training, and hyperparameters are provided in § A.1.
To further enable the reproducibility of our results,
our code, including documentation, is available
at https://github.com/CPJKU/ScaLearn under
the MIT license.
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Model MNLI QQP QNLI SST-2 STS-B MRPC RTE CoLA Avg.

FINETUNE 86.610.51 90.320.15 91.780.28 93.330.48 90.530.22 86.941.52 73.472.05 58.464.03 83.930.60
ADAPTER 86.500.33 90.180.11 92.250.19 93.650.71 90.230.41 86.641.07 72.892.54 58.282.50 83.830.48
PROPETL 86.190.25 88.880.48 92.050.80 93.810.72 90.030.35 85.931.22 74.192.03 59.292.07 83.800.42
COMPACTER++ 85.620.42 88.840.70 91.790.39 93.580.34 89.670.54 87.210.61 72.022.21 58.492.58 83.400.45
(IA)3 83.780.88 88.370.20 90.570.38 93.350.30 89.930.30 87.111.14 72.562.23 56.575.39 82.781.36
LORA 86.520.10 89.860.33 92.250.13 94.190.53 90.660.31 87.030.62 70.408.33 57.552.18 83.561.56

FINETUNE-M 84.950.36 89.760.12 90.910.07 92.580.76 86.140.53 83.420.50 80.992.54 49.121.74 82.230.41
ADAPTER-M 86.030.18 89.690.01 91.580.30 93.350.41 88.710.49 86.760.92 80.261.96 51.791.23 83.520.32
PROPETL-M 85.230.45 87.820.16 91.370.52 93.880.44 90.270.22 86.361.82 78.580.90 54.711.12 83.530.31
HYPERFORMER 86.080.46 89.130.23 91.810.07 93.160.99 90.630.32 87.010.87 82.791.68 57.302.21 84.740.39
HYPERFORMER++ 86.380.18 88.810.29 91.990.17 93.270.11 90.800.12 87.831.42 83.750.78 54.053.30 84.610.46

ADAPTERFUSION 86.820.04 90.230.01 92.480.15 93.230.95 90.370.20 88.410.49 79.492.21 59.041.69 85.010.37
ADAPTERSOUP 63.470.37 81.630.23 78.000.20 90.750.24 80.170.18 75.001.18 62.090.64 41.061.68 71.520.59
SCALEARN 86.970.09 90.320.10 92.510.17 93.880.18 90.960.16 87.750.58 82.061.37 58.471.76 85.360.55
SCALEARNUNIFORM 86.930.10 90.380.11 92.530.28 93.580.20 90.080.07 87.570.86 80.071.18 59.041.05 85.020.49
SCALEARN++ 87.060.03 90.040.12 92.031.10 94.150.30 90.620.13 88.210.63 80.871.05 59.820.78 85.350.52
SCALEARNUNIFORM++ 86.980.17 90.380.01 92.530.28 94.110.07 90.180.19 87.430.63 80.040.99 59.450.67 85.140.38

Table 2: Evaluation results on GLUE using RoBERTaBASE. (Top) STL models, only learning a single task at a time.
(Middle) Joint MTL methods, learning all tasks simultaneously. (Bottom) Two-stage MTL methods, composing
the knowledge of several source adapters. The overall best results are underlined, and the best results among the
two-stage MTL models are bold.

Model ReCoRD MultiRC BoolQ WiC WSC COPA CB RTE Avg.

FINETUNE 71.610.84 71.641.15 76.801.34 66.382.08 63.460.00 68.606.74 81.964.33 73.472.05 71.742.32
ADAPTER 79.020.62 72.840.48 76.711.38 65.581.56 63.460.00 70.204.13 84.823.18 72.892.54 73.191.74
PROPETL 80.290.24 73.070.49 76.580.78 66.601.65 63.460.00 70.603.44 84.463.86 74.192.03 73.691.53
COMPACTER++ 77.692.67 70.440.57 75.880.96 66.461.63 63.460.00 68.304.00 87.683.62 72.022.21 72.741.96
(IA)3 75.270.23 70.320.49 76.310.79 67.071.68 63.350.32 69.303.37 87.324.57 72.562.23 72.691.71
LORA 79.600.46 71.960.36 76.580.74 65.141.17 63.460.00 68.204.05 86.433.17 70.408.33 72.722.28

FINETUNE-M 72.210.28 72.110.68 76.393.07 52.191.11 63.460.00 74.333.40 84.520.84 74.857.42 71.262.10
ADAPTER-M 72.430.64 72.460.43 75.322.78 51.991.74 59.942.97 71.673.40 86.311.68 76.531.06 70.831.84
PROPETL-M 73.140.19 72.070.58 73.913.27 50.730.99 59.625.44 74.003.27 82.141.46 73.653.83 69.912.38
HYPERFORMER 65.934.47 33.5433.54 74.011.10 55.491.72 52.8810.58 55.502.50 71.437.14 61.739.03 58.818.76
HYPERFORMER++ 24.508.13 19.4727.53 62.170.00 50.000.00 63.460.00 54.333.30 49.400.84 49.092.56 46.555.30

ADAPTERFUSION 78.820.49 71.791.67 76.720.55 66.571.24 63.460.00 73.104.51 82.322.85 76.032.38 73.601.71
ADAPTERSOUP 64.260.13 33.624.28 68.840.31 58.530.60 63.460.00 52.402.41 70.890.86 57.830.93 58.731.19
SCALEARN 79.520.06 73.220.44 77.270.68 66.351.20 63.460.00 74.802.15 90.892.59 78.882.14 75.551.16
SCALEARNUNIFORM 80.130.38 71.910.60 76.060.41 67.371.22 62.501.27 71.201.23 89.111.97 75.310.90 74.201.00
SCALEARN++ 80.130.09 72.710.57 76.440.53 67.131.24 62.262.28 75.201.93 93.042.14 79.030.95 75.741.22
SCALEARNUNIFORM++ 79.790.14 71.750.38 76.130.52 67.870.89 63.460.00 74.001.70 91.612.53 74.841.58 74.930.97

Table 3: Evaluation results on SuperGLUE using RoBERTaBASE.

5 Results

5.1 Parameter-efficiency analysis

Table 1 provides a comprehensive overview of the
number of learnable parameters of the models in
our experiment setting on GLUE and SuperGLUE:
RoBERTaBASE as the backbone LM, 8 source tasks,
and the same 8 tasks as target tasks (|S|= |T |=8).
Starting from the STL models, the left and right
columns report the number of trainable parameters
for one and all tasks, respectively. The joint MTL
models learn all tasks simultaneously, and hence
only contain values in the right column. For the
two-stage MTL models, we report the number of
trainable parameters of the transfer layer for one tar-

get task (Ωt) in the first column and the same for all
target tasks on the right (Ω). We deliberately orga-
nize the transfer parameters of the two-stage mod-
els (Ω) under the corresponding numbers of other
models in the right column since the two-stage
paradigm benefits from already trained adapters
and only needs to learn the transfer layer. If the
adapters should also be trained, we provide an ex-
tra comparison with the corresponding additional
parameters in Appendix A.1.

When comparing the results of the two-stage
MTL methods in the transfer layer, ADAPTER-
FUSION is expectedly far less parameter-efficient
than SCALEARN models, where SCALEARNUNI-
FORM++ only requires 64 parameters. The variants
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Model Sectors Pillars 1D Subpillars 1D Pillars 2D Subpillars 2D Avg.

FINETUNE 71.990.32 50.400.24 43.760.67 61.040.26 41.680.62 53.770.42
ADAPTER 71.380.28 51.021.23 43.260.82 61.430.91 42.460.51 53.910.75
PROPETL 71.690.86 49.691.30 41.630.84 60.580.91 39.851.10 52.691.00
COMPACTER++ 69.971.89 37.377.99 37.762.14 58.131.64 33.109.00 47.264.53
(IA)3 70.220.97 45.553.43 40.053.15 58.541.38 39.271.01 50.731.99
LORA 71.080.44 33.9629.41 42.750.31 60.330.52 42.810.63 50.196.23

FINETUNE-M 51.753.62 22.6512.88 13.546.06 33.2721.23 12.423.39 26.739.44
ADAPTER-M 56.202.72 28.5314.56 16.539.46 35.9017.36 18.892.64 31.219.35
PROPETL-M 59.8010.09 26.1014.36 29.577.40 37.5312.08 30.355.91 36.679.97
HYPERFORMER 71.081.04 40.656.93 34.163.37 46.2214.11 32.474.46 44.925.98
HYPERFORMER++ 60.429.79 22.077.45 20.357.04 30.5519.83 18.9010.84 30.4610.99

ADAPTERFUSION 72.050.12 49.630.53 43.150.38 60.680.23 42.140.46 53.530.35
ADAPTERSOUP 56.811.90 30.090.40 21.840.55 40.710.98 17.892.02 33.471.17
SCALEARN 72.360.05 51.630.61 44.060.37 61.520.11 42.810.63 54.480.35
SCALEARNUNIFORM 72.200.14 50.080.79 42.970.70 60.620.16 41.950.60 53.560.48
SCALEARN++ 72.380.27 51.660.27 44.230.50 61.660.13 42.210.21 54.430.28
SCALEARNUNIFORM++ 72.020.32 50.780.41 42.600.85 60.820.14 42.140.72 53.670.49

Table 4: Evaluation results on HumSet using XLM-RBASE.

of SCALEARN add considerably fewer transfer pa-
rameters compared to the overall parameters of the
particularly efficient joint MTL methods. More-
over, the SCALEARN models still remain com-
parable when also taking into account the source
adapter parameters. Considering these results, in
the following we report and discuss the evaluation
results in transfer learning and few-shot learning
on the respective benchmarks.

5.2 Transfer Learning Performance

Results on GLUE. Table 2 shows the evalu-
ation results on the GLUE benchmark using
RoBERTaBASE. The evaluation metrics are Pear-
son’s correlation for STS-B, Matthews’ correla-
tion for CoLA, and accuracy for the rest. We
average the results over several runs and report
the corresponding standard deviation in the sub-
scripts. Overall, the two-stage models obtain strong
gains, outperforming STL and joint MTL models.
Remarkably, all variants of SCALEARN, includ-
ing the highly parameter-efficient SCALEARNUNI-
FORM++ achieve similarly good results with only
a fraction of the parameters of ADAPTERFUSION.
Comparing the different variations of our method,
while SCALEARN shows the best results, the other
models also perform highly competitively.

Results on SuperGLUE. Table 3 shows the re-
sults on SuperGLUE for all methods considered.
The evaluation metrics are F1 for MultiRC and
ReCoRD and accuracy for the other tasks. We ob-
serve similar patterns on this benchmark: two-stage
models generally outperform other baselines. In
this benchmark, SCALEARN and SCALEARN++
improve upon ADAPTERFUSION by 2 percentage

points of the average results. Notably, we observe
performance drops for various joint MTL models
in comparison to other models (up to −27% when
comparing HYPERFORMER++ and ADAPTER).
This may be a signal of the sensitivity of these
models to the selection of tasks. Furthermore, the
subpar performance of AdapterSoup suggests that
calculating weights using sentence similarity is not
appropriate for our specific problem setup. In con-
trast, the other two-stage MTL models (and, in
particular, our SCALEARN models) do not show
any considerable performance decreases.

Results on HumSet. Table 4 shows the results on
HumSet using XLM-RBASE with the F1-score as
the evaluation metric. Similarly, SCALEARN per-
forms the best among all the methods, whereas the
more parameter-efficient variants of SCALEARN

are only marginally weaker in performance. On this
benchmark, in particular, all joint MTL methods
show poor performance, highlighting the sensitiv-
ity of these methods to task selection (up to −27%
for STL and MTL versions of FINETUNE).

We conduct an ablation study on the effect on
different combinatorial operators in SCALEARN,
reported in Appendix A.3. In Appendix A.5, we
provide further experiments and analyses of the
results along with the results of GLUE and Su-
perGLUE using RoBERTaLARGE, HumSet using
XLM-RLARGE, and for the combination of all tasks
from GLUE and SuperGLUE. Finally, we provide
an analysis of the scaling coefficients of SCALEAR-
NUNIFORM and SCALEARNUNIFORM++ in Ap-
pendix A.4, revealing the effect of various source
adapters on a target task.
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Figure 2: Few-shot transfer learning results with k = {4,16,32,100} training samples for each target task using the
BASE models of RoBERTa and XLM-R. Full results over several runs are provided in Appendix A.6.

5.3 Few-shot Transfer Learning

We further assess the applicability of SCALEARN

in a few-shot setting, where we assume that only
k = {4,16,32,100} training samples are available
for a given target task. For two-stage MTL meth-
ods, for a given benchmark, we use the source
adapters of all tasks except the one corresponding
to the target task, where we use a source adapter
trained on only k samples. On the basis of this set
of source adapters, we then train a transfer layer on
the target task using k data points.

Figure 2 shows the performance of ADAPTER,
ADAPTERFUSION, and SCALEARN on the GLUE,
SuperGLUE, and HumSet benchmarks, averaged
over 5 runs. We observe that SCALEARN consis-
tently outperforms ADAPTER and ADAPTERFU-
SION in all benchmarks and values of k (except for
k = 4 on HumSet) pointing to the strength of our
method for data-lean settings. We provide the full
results, including per-dataset ones, other variations
of SCALEARN, and on RoBERTaLARGE in §A.6.

6 Related Work

Parameter-efficient task learning in NLP. Vari-
ous parameter-efficient methods have emerged as
a more sustainable alternative to full fine-tuning,
enabling modularization, efficient sharing, and
reusability of knowledge. A common modular-
ization approach is to introduce a small number
of additional parameters into an LM, realized by
various methods such as Adapters (Rebuffi et al.,
2017; Houlsby et al., 2019), Compacter (Mahabadi
et al., 2021a), and ProPETL-Adapter (Zeng et al.,
2023). Similarly, LoRA (Hu et al., 2022) injects
trainable low-rank matrices into each transformer
layer, and BitFit (Ben Zaken et al., 2022) updates
only the bias terms. Another line of research

identifies sparse subnetworks within the model to
tune (Ansell et al., 2022; Guo et al., 2021; Hauzen-
berger et al., 2023; Ansell et al., 2024), while He
et al. (2022) and Mao et al. (2022) propose to merge
various distinct modules. We refer to Pfeiffer et al.
(2023) for a full survey on this topic.

Learning by scaling. Besides the common ap-
proach of learning a feed-forward layer for a (non–)
linear transformation of an input vector, several re-
cent methods explore the merit of learning a scaling
vector applied to the input vector in various sce-
narios. Liu et al. (2022) learn a modular network
for STL that rescales LM vectors through element-
wise multiplication. Ilharco et al. (2023) and Ortiz-
Jiménez et al. (2023) introduce task arithmetic to
control LM behavior by extracting task vectors
from pre- and post-fine-tuning model weights, then
scaling and combining them to improve MTL per-
formance. Masoudian et al. (2024) learn a gating
adapter that adjusts the scaling of representations
to control the behavior of the model at inference
time. Finally, Lian et al. (2022) learn to shift and
scale the output vectors of a vision transformer
in an STL setting. Our work contributes to this
line of research by leveraging scaling for highly
parameter-efficient and effective MTL.

Joint MTL. Interference and imbalance between
tasks have been shown to impede performance in
joint MTL (Kirkpatrick et al., 2017; Kendall et al.,
2018; Pfeiffer et al., 2023). Several studies have
aimed to address these issues and improve gener-
alization. For example, (Liu et al., 2019a) learn
representations across multiple NLU tasks using
context from a semantic similarity model, and Pi-
lault et al. (2021) introduce a parameter-efficient
model that uses modules facilitating weight shar-
ing. Moreover, Stickland and Murray (2019) use
an adapter for each task while also updating the
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LM parameters. Zhang et al. (2022) further focus
on modularity by only activating a subset of task-
specific modules at once; however, tasks must be
mapped a priori to a given high-level skill. Ponti
et al. (2023) and Caccia et al. (2022) loosen this
constraint by learning a task-skill allocation matrix
for cross-task generalization, but rely on a multi-
task pre-training stage. Finally, Mahabadi et al.
(2021b) leverage a hypernetwork (Ha et al., 2017)
that generates modular task-specific parameters.

Two-stage MTL. Various methods have been pro-
posed to extract task-specific information and com-
pose this knowledge. Chronopoulou et al. (2023)
studies transfer learning in generative LMs by first
selecting source adapters based on different heuris-
tics and merging their weights to create a new com-
bined adapter. Holtermann et al. (2024) provide
further insights into how to combine adapters ef-
fectively and efficiently for zero-shot knowledge
compositions. Furthermore, Huang et al. (2023)
introduce LoraHub with the aim of composing
LoRA (Hu et al., 2022) modules for cross-task gen-
eralization using black-box optimization and an
additional pre-filtering stage. Asai et al. (2022) and
Wang et al. (2023) leverage continuous prompts
learned on large-scale source tasks, leading to
competitive performance in MTL benchmarks, al-
though both methods depend on the selection of
typically high-resource source tasks. In contrast
to the mentioned methods that highly depend on
the selection of tasks and/or apply the combina-
tion to the weights, Pfeiffer et al. (2021) combines
the output representations of several independent
source adapters through an attention mechanism.
Our work is directly related to this line of research
and introduces a novel highly parameter-efficient
transfer layer applied to the output representation.

7 Conclusion

We propose SCALEARN, a highly parameter-
efficient and effective two-stage MTL method lever-
aging simple scaling of output vectors. Our pro-
posed approach directly learns the coefficients that
scale the representations of source adapters and
combines them simply by taking the sum. We con-
duct transfer learning experiments using encoder
LMs on the three benchmarks of GLUE, Super-
GLUE, and HumSet, consisting of a diverse set of
tasks, domains, and languages. Our results show
that SCALEARN and even its extremely parameter-
efficient variants obtain strong improvement over

existing MTL methods without any negative cross-
task effects. We further show that these improve-
ments are also present in few-shot transfer learning.

Limitations

The first limitation of our work concerns the selec-
tion of benchmarks – we conducted experiments
only on the GLUE, SuperGLUE, and HumSet
benchmarks. While these already cover a vast num-
ber of tasks and domains of varying sizes in differ-
ent languages, they still do not fully represent the
myriad of tasks, domains, and languages within the
NLP domain. However, we strongly believe that
our findings also hold for other transfer learning
corpora, including different tasks, domains, and
languages, especially since SCALEARN * models
are agnostic concerning this selection. Related to
this aspect, we focused on transformer-based en-
coder LMs as the backbone for our experiments and
did not experiment with other architectures, e.g.,
convolutional or recurrent networks, or transformer-
based decoder LMs. Finally, we relied on adapters
as arguably the most popular modularization tech-
nique (cf. Pfeiffer et al. (2021); Chronopoulou et al.
(2023)). Due to the large number of additional ex-
periments required and related environmental con-
cerns, we did not experiment with other modular-
ization methods (e.g., LoRA or (IA)3). However,
our method clearly shows the usefulness of sim-
ply scaling output representations of modules for
transfer learning.

Ethical Considerations

The nature of our work is manifold, and so are
the ethical aspects touched by our research. First,
we acknowledge the potential of NLP datasets and
models for encoding unfair stereotypical (Blodgett
et al., 2020) and exclusive (Dev et al., 2021) bi-
ases that may lead to representational and alloca-
tional harms (Barocas et al., 2017). This potential
is a general property of pre-trained language mod-
els, and the models and datasets we use in this
research are no exception to this danger. We thus
strongly advise practitioners to carefully consider
the sociotechnical context before deploying any
models (with or without SCALEARN), and, aligned
with the specific deployment scenario, to take mea-
sures against unfair discrimination. Examples of
such measures include the use of bias measure-
ment (Nangia et al., 2020) and mitigation (Bordia
and Bowman, 2019) approaches. Second, the core
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of this work deals with efficiency aspects. On the
one hand, given the well-known relationship be-
tween model training (and inference) effort and
potential CO2 emissions (Strubell et al., 2019), our
work directly contributes to reaching the goals of
Green AI by making parameter-efficient MTL more
environmentally sustainable. On the other hand,
since the training of language models often comes
with high infrastructure requirements exclusive to
certain user groups (Bender et al., 2021), we hope
that our work also contributes to the ongoing de-
mocratization of language technology by reducing
resource-related usage barriers.
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A Appendix

A.1 Complete Experiment Details

Name |Train| |Validation| |Test|
MNLI 353,431 39,270 9,815
QQP 327,461 36,384 40,430
QNLI 94,268 10,474 5,463
SST-2 60,614 6,734 872
STS-B 5,174 574 1,500
MRPC 3,301 366 408
RTE 2,241 249 277
CoLA 7,695 855 1,043

ReCoRD 100,730 10,000 10,000
MultiRC 24,518 2,724 4,848
BoolQ 8,484 942 3,270
WiC 4,885 542 638
WSC 498 55 104
COPA 360 40 100
CB 225 25 56

Sectors 117,435 16,039 15,147
Pillars 1D 117,435 16,039 15,147
Subpillars 1D 117,435 16,039 15,147
Pillars 2D 117,435 16,039 15,147
Subpillars 2D 117,435 16,039 15,147

Table 5: Number of used samples for each dataset and
used split. (Top) GLUE tasks. (Middle) SuperGLUE
tasks. (Bottom) HumSet tasks.

Dataset Details. As has been mentioned, we are
using the GLUE, SuperGLUE, and HumSet bench-
marks for our experiments. Table 6 summarizes
the tasks contained in each of the datasets. We use
the datasets library (Lhoest et al., 2021) to load
each dataset for our experiments. We set the max-
imum length of the input sequence to 128 tokens
for all tasks in GLUE, SuperGLUE, and HumSet.
However, for MultiRC and ReCoRD, we set the
maximum length to 324 and 256, respectively, due
to their significantly longer context lengths. Note
that we treat HumSet as five separate tasks, fol-
lowing (Fekih et al., 2022). The GLUE and Super-
GLUE benchmarks only contain the training and
validation split publicly, so we follow Chen et al.
(2022) and use 10% of the training samples from
the training split as the validation set and the re-
maining 90% for training. We split the datasets
with the datasets library (Lhoest et al., 2021) us-
ing seed 42 and shuffle the samples. Then, the
original validation split is taken as the test set on
which we report the performance of all models. For
HumSet, we use the original train/validation/test
splits, as all of them are publicly available, includ-
ing labels. Details about the train/validation/test
splits can be found in Table 5.

Computing Infrastructure. We run all experi-
ments with RoBERTaBASE and XLM-RBASE on a
single Nvidia GTX1080Ti GPU and Intel Xeon
CPU E5-2640 v4 CPUs, and the experiments with
RoBERTaLARGE and XLM-RLARGE on a single
Nvidia RTX5000 GPU and Intel Xeon Silver 4216
CPUs.

Implementation Details. We use PyTorch (Paszke
et al., 2019) for all experiments. For the joint
multi-task learning methods, we adapt the code-
base of Karimi Mahabadi et al. (2021) and
Zeng et al. (2023), both of which rely on
the transformers (Wolf et al., 2020) library.
For all other models, we make use of the
adapter-transformers library (Pfeiffer et al.,
2020) library, a wrapper around the transformers
library. Our code is released under the MIT Li-
cense, ensuring open access to the community for
further development.

Training and optimization. We train all methods
with a batch size of 32. All STL and two-stage
MTL methods are trained for a maximum of 30
epochs with early stopping and patience of 5. 4 We
use 10 seeds for low-resource and 3 seeds for high-
resource tasks when using RoBERTaBASE, and on
5 and 2 seeds for low- and high-resource tasks, re-
spectively, when using RoBERTaLARGE. We define
tasks with more than 10k training samples as high-
resource and as low-resource otherwise. All joint
MTL models are trained on 3 seeds. We report the
mean and standard deviations across all runs. We
use the AdamW (Kingma and Ba, 2015; Loshchilov
and Hutter, 2019) optimizer with default PyTorch
hyperparameters (weight decay = 0.01, β1 = 0.9,
β2 = 0.99, ϵ = 1 · 10−6). We use seeds {0,1} for
instances with two seeds, {0,1,2} for instances
with three seeds, seeds {0,1,2,3,4} for instances
with five seeds, and {0,1,2,3,4,5,6,7,8,9} for
instances with ten seeds.

Single-task learning hyperparameters. We train
FINETUNE with a learning rate of 2e-5, ADAPTER

with a learning rate of 3e-4, COMPACTER++ with
a learning rate of 3e-3, and PROPETL with a learn-
ing rate of 1e-3, a mask learning rate of 5e-3, a spar-
sity rate of 0.5, and a weight decay of 0.1, which
we found to be the most suitable for our setup. Fur-
thermore, we train (IA)3 with a learning rate of
5e-3. For LORA, we use a learning rate of 3e-4 in

4The exception is ReCoRD, which we train on 3 epochs
due to its size.
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Name Category Task Domain Metric

MNLI GLUE NLI various accuracy
QQP GLUE paraphrase detection social QA accuracy & F1
QNLI GLUE NLI Wikipedia accuracy
SST-2 GLUE sentiment analysis Movie Reviews accuracy
STS-B GLUE sentence similarity various Pearson & Spearman corr.
MRPC GLUE paraphrase detection news accuracy & F1
RTE GLUE NLI News, Wikipedia accuracy
CoLA GLUE acceptability various Matthews’ corr.

ReCoRD SuperGLUE cloze-style QA news (CNN, Daily Mail) F1 & EM
MultiRC SuperGLUE QA various F1 & EM
BoolQ SuperGLUE boolean QA Wikipedia accuracy
WiC SuperGLUE word sense disambiguation lexical databases accuracy
WSC SuperGLUE coreference / commonsense fiction books accuracy
COPA SuperGLUE commonsense reasoning various accuracy
CB SuperGLUE NLI various accuracy

Sectors HumSet classification humanitarian crisis response F1 & precision
Pillars 1D HumSet classification humanitarian crisis response F1 & precision
Subpillars 1D HumSet classification humanitarian crisis response F1 & precision
Pillars 2D HumSet classification humanitarian crisis response F1 & precision
Subpillars 2D HumSet classification humanitarian crisis response F1 & precision

Table 6: Details of all datasets. Lexical databases for WiC include WordNet, VerbNet, Wiktionary. For datasets
where two metrics are officially used, we use the underlined metric as our main metric. (Top) GLUE tasks. (Middle)
SuperGLUE tasks. (Bottom) HumSet tasks.

Model Parameters
(one task)

Parameters
(all tasks)

Task (Θ) + Transfer (Ω)
(source adapters + transfer layers)

ADAPTERFUSION 17.05% (21M) 136.40% (170M) 5.74% + 136.40% =142.14% (177M)
SCALEARN 0.06% (74K) 0.47% (590K) 5.74% + 0.47% =6.21% (8M)
SCALEARNUNIFORM 0.00% (96) 0.00% (768) 5.74% + 0.00% =5.74% (7M)
SCALEARN++ 0.00% (6K) 0.04% (49K) 5.74% + 0.04% =5.79% (7M)
SCALEARNUNIFORM++ 0.00% (8) 0.00% (64) 5.74% + 0.00% =5.74% (7M)

Table 7: Percentage and number of trainable parameters for Two-Stage MTL models in total.

combination with rank r = 32 and scaling factor
α = 64. Moreover, we follow Hu et al. (2022) and
apply LoRA on the query and value matrices of the
transformer. Each of them is trained with a linear
learning rate decay.

For RoBERTaLARGE, we add a linear learning
rate warmup for the first 10% of training, as we
notice it improves stability. For early stopping,
we use the loss on the validation set, except for
HumSet, where we use the F1-score, and in the
few-shot setting, where we use the main metric for
the respective dataset, as shown in Table 6. In the
few-shot setting, we train for a maximum of 1,000
steps, apply an early stopping patience of 20, and
use a maximum of 5,000 samples for validation.
Note that, while the layer normalization parame-
ters of the LM have also been updated (Mahabadi
et al., 2021a,b), following Pfeiffer et al. (2021), we
keep them frozen. This approach improves modu-
larity, while still allowing LMs to efficiently adapt

to new tasks. Note that the same hyperparameters
as outlined here are also used for ADAPTER in our
probing analyses (cf. Appendix A.2).

Joint MTL hyperparameters. In all joint multi-
task learning methods, we sample tasks with con-
ventional temperature-based sampling with temper-
ature τ = 10, following Mahabadi et al. (2021b)
and Zeng et al. (2023). Specifically, a task is sam-
pled with probability p

1/τ
t , where pt = Nt∑τ

i=1 Nt
,

Nt the number of training samples of task t, and
τ = 10. Using this sampling strategy, we train each
model for a total of 375,000 steps to ensure con-
vergence and evaluate every 7,500 steps. We train
each model with early stopping and patience of 10.
In the end, the model checkpoint with the lowest
average validation loss is loaded and evaluated on
the test set. We train FINETUNE-M with a learning
rate of 2e-5, ADAPTER-M, HYPERFORMER, and
HYPERFORMER++ with a learning rate of 3e-4,
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and PROPETL-M with a learning rate of 3e-4 and
a mask learning rate of 3e-3, a sparsity rate of 0.3,
and no weight decay. We train each of them with
a linear learning rate warmup for the first 10% of
training, followed by a linear learning rate decay.
For the remaining hyperparameters of PROPETL-
M, HYPERFORMER, and HYPERFORMER++, we
follow the respective original implementations, but
always use a reduction factor of 16 for a fair com-
parison.

Two-stage MTL hyperparameters. We train each
variant of SCALEARN * with a learning rate of
6e-3 and train ADAPTERFUSION with a learning
rate of 5e-5, following Pfeiffer et al. (2021). Both
SCALEARN * and ADAPTERFUSION are trained
with a linear learning rate decay and no warmup.
Early stopping is the same as in the single-task
learning setting. We initialize the parameters
of SCALEARN * with N

(
2
T , 0.001

)
,5 and apply

a dropout rate of 0.3 to increase robustness for
SCALEARN and SCALEARN++. For AdapterSoup,
we first calculate the cosine similarity of sentence
embeddings for each task from the training set us-
ing the sentence-transformers (Reimers
and Gurevych, 2019) library and the
all-mpnet-base-v2 model. In contrast to
Chronopoulou et al. (2023), who only select 100
samples for each domain, we select 10000 samples
for each task, as our sequences corresponding to
tasks are meaningfully shorter than the sequences
corresponding to domains. Using these similarities,
we select the top 5 most similar tasks to the target
task, normalize the similarity scores to obtain the
weights, and perform weight-space averaging of
the adapter parameters, following Chronopoulou
et al. (2023). Note that we also include the corpus
of the target task when calculating the similarities
for weight-space averaging, and hence also the
target adapter during weight-space averaging, and
train a new task head on the target task to allow
a more fair comparison to other two-stage MTL
methods. We use a learning rate of 3e-4 when
training the target task head with ADAPTERSOUP.

Efficiency of two-stage MTL methods. We pro-
vide a comprehensive comparison of all trainable
parameters of two-stage MTL methods if all the
adapters should also be trained in Table 7.

5We also test out {N
(

1
T
, 0.001

)
, N

(
3
T
, 0.001

)
,

N (1, 0.001)}.

A.2 Analysis on Scaling Output
Representations

As mentioned in § 3, we conducted preliminary
experiments in which we scaled the output repre-
sentations of adapters – in isolation and combin-
ing two of them each. We use the GLUE (Wang
et al., 2019b) and SuperGLUE (Wang et al., 2019a)
benchmarks (cf. Appendix A.1) and train a Pfeiffer
adapter (Pfeiffer et al., 2021) on each task using
the encoder LM RoBERTaBASE (Liu et al., 2019b).
In our probing-like setup (Tenney et al., 2019), we
freeze both the backbone and adapter weights and
train a new task head on target task t each time
we change the scaling factor. For full clarity, we
first show the effect of scaling output representa-
tions of adapters on a subset of tasks from GLUE
and SuperGLUE in Figure 3, and then show the
remaining ones in Figure 5 as well as Figure 6.
Complete descriptions of the datasets, hyperparam-
eters, and training procedure are provided in § 4
and Appendix A.1.

We start by analyzing the performance change
of a target task when scaling the output representa-
tions of the adapter of one given source task. We
define ωs as the scaling value in the range of [0, 1],
multiplied by the output representations ol

s of the
source task s in all layers, such that ol

t = ωso
l
s. Fig-

ure 3 (Top) shows the probing results on four target
tasks (each column), given various scaling weights
applied to four source tasks (one of which is the
respective target task). The results show that, while
increasing the scaling weights generally improves
the performance, the optimal value is not necessar-
ily at ωs = 1. In particular, there exist instances
with 0 < ωs < 1 reaching better performance than
ωs = 1. This suggests that partial knowledge trans-
fer of tasks may be more beneficial. Notably, and
as also reported in previous studies (Poth et al.,
2021; Pruksachatkun et al., 2020), some source
tasks such as MNLI show strong transfer learning
abilities.

Next, we go one step further by assessing the
scaled combination of the output vectors of two
adapters. We focus on MNLI as one of the source
tasks given its observed benefit in transfer learning,
and set the second source adapter (denoted by s)
to the one corresponding to the target task. We
use two scaling parameters ωMNLI and ωs to scale
ol

MNLI and ol
s, respectively. The resulting output

vector is defined as: ol
t = ωso

l
s+ωMNLIo

l
MNLI. Fig-

ure 3 (Bottom) shows the results for various values
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Figure 3: Probing results of 4 target tasks in various transfer learning conditions. (Top) Effect of scaling the
output representations of adapters by weight ωs using different source adapters. (Bottom) Effect of combining
independently scaled output representations of two adapters trained on the target task and MNLI, respectively. Each
point shows the mean over 5 seeds.

of ωMNLI and ωs. Combining the information en-
capsulated within multiple adapters through scaling
can result in improved performance. Interestingly,
in some cases, the best combination of ωMNLI and
ωs does not add up to 1, i.e., ωt + ωs ̸= 1. These
initial experiments – while only covering a simple
combination of up to two source tasks – provide
insights into the benefits of scaling representations
for transfer learning.

A.3 Ablation Study
Table 8 shows the effect of adding constraints
on the distributional values of scaling coeffi-
cient in SCALEARN, evaluated on GLUE using
RoBERTaBASE. In particular, we change the orig-
inal SCALEARN model by adding the constraints
mean and softmax over the source task dimension,
thus enforcing

∑|S|
s=1ω

l
s = 1. The results indicate

that both constraints reduce average performance
compared to those having no constraints, confirm-
ing our choice of directly learning the scaling coef-
ficients without imposing any restrictions.

A.4 Scaling Coefficient Visualizations
SCALEARNUNIFORM and SCALEARNUNI-
FORM++ utilize uniform scaling and learn
coefficients that are directly used to scale the
output representations of the source adapters. In
the following, we leverage this characteristic to
provide an analysis of the potential degrees of ef-
fects of source tasks on target tasks. We present the
adapter weights learned using RoBERTaBASE for
GLUE and SuperGLUE, and using XLM-RBASE

for HumSet with the random seed set to 0.
The learned coefficients of each LM layer on

GLUE, SuperGLUE, and HumSet of SCALEAR-
NUNIFORM are shown in Figure 7, Figure 8, and
Figure 9, respectively. The weights reveal that in
most cases, the actual target task adapter is acti-
vated most strongly across the layers. Among the
source tasks, most weights are close to 0, while
some source tasks also show high values, particu-
larly in some of the higher layers of the LM. Inter-
estingly, some of the scaling coefficients go beyond
or even below 1, which would not have been possi-
ble in the traditional paradigm where scaling coef-
ficients combining multiple vectors are restricted
to sum up to 1.

The learned weights on GLUE, SuperGLUE, and
HumSet of SCALEARNUNIFORM++ are shown in
Figure 10. SCALEARNUNIFORM++ also mostly
activates the actual target task adapter, whereas this
effect is comparatively weaker in SuperGLUE and
stronger in HumSet. As is the case with SCALEAR-
NUNIFORM, many scaling coefficients exceed or
go below 1.

A.5 Additional Results

More results using RoBERTaBASE. Table 12
shows the results when training on the combination
of all GLUE and SuperGLUE tasks, resulting in a
total of 15 tasks.

Results using RoBERTaLARGE. We further vali-
date our method and its variations on the encoder
LM RoBERTaLARGE. Table 9 shows the corre-
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Model Constraint MNLI QQP QNLI SST-2 STS-B MRPC RTE CoLA Avg.

SCALEARN None (original) 86.970.09 90.320.10 92.510.17 93.880.18 90.960.16 87.750.58 82.061.37 58.471.76 85.360.55
SCALEARN Mean 87.030.01 90.360.30 92.340.09 92.601.38 90.620.25 87.110.79 79.211.82 59.872.95 84.890.95
SCALEARN Softmax 86.850.05 90.600.05 92.740.22 93.750.08 90.660.10 85.831.09 79.281.04 58.431.98 84.770.58

Table 8: Effect of adding various constraints to the scaling values of SCALEARN, evaluated on GLUE using
RoBERTaBASE. The constraints mean and softmax are applied over the task dimension, enforcing

∑|S|
s=1 ω

l
s = 1.

The best results are shown in bold.
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Figure 4: Few-shot learning results (k = {4,16,32,100}) comparing ADAPTER, ADAPTERFUSION, and SCALEARN
using RoBERTaLARGE on three benchmarks. We show the mean across 5 seeds. For ADAPTERFUSION and
SCALEARN, we assume that there is a Pfeiffer adapter trained on the target task on k samples and a Pfeiffer adapter
trained on all samples for all other tasks available.

sponding results, including all baselines, on the
GLUE benchmark. Table 10 shows the results on
SuperGLUE. Table 11 shows the results on Hum-
Set. Finally, Table 13 shows the results when train-
ing on the combination of all GLUE and Super-
GLUE tasks, resulting in a total of 15 tasks.

A.6 Complete Few-Shot Results

To obtain a more complete understanding of the
few-shot capabilities of ADAPTER, ADAPTERFU-
SION, and SCALEARN, we show few-shot transfer
learning results for each dataset, as well as for every
variant of SCALEARN (cf. § 5.3).

Few-shot results using RoBERTaBASE. Table 14
shows the few-shot transfer learning performance
of the methods on the GLUE benchmark using
k = {4,16,32,100} samples. Table 15 shows
the performance of the methods on SuperGLUE.
Table 16 shows the performance of the methods
on HumSet (on XLM-R)BASE. Finally, Table 17
shows the results when training on the combination
of all GLUE and SuperGLUE tasks, resulting in
|S| = 15 source tasks.

Few-shot results using RoBERTaLARGE. Fig-
ure 4 provides an overview, comparing the
few-shot learning capabilities of ADAPTER,
ADAPTERFUSION, and SCALEARN when using
RoBERTaLARGE. Moreover, Table 18 shows the
few-shot learning performance of the methods on

the GLUE benchmark using k = {4,16,32,100}
samples. Table 19 shows the performance of
the methods on SuperGLUE. Table 20 shows
the performance of the methods on HumSet (on
XLM-RLARGE). Finally, Table 21 shows the results
when training on the combination of all GLUE and
SuperGLUE tasks.
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Figure 5: Effect of scaling the output representations ol
s

of adapters by weight ωs using different source adapters
from all other tasks from GLUE and SuperGLUE. Each
point shows the mean over 5 seeds.
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Figure 6: Effect of combining independently scaled
output representations of two adapters trained on the
target task and MNLI, respectively, on additional tasks
from GLUE and SuperGLUE. Each point shows the
mean over 5 seeds.
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Figure 7: SCALEARNUNIFORM scaling coefficients on GLUE using RoBERTaBASE on seed 0. Target tasks are
shown in the last index of each heatmap.
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Figure 8: SCALEARNUNIFORM scaling coefficients on SuperGLUE using RoBERTaBASE on seed 0. Target tasks
are shown in the last index of each heatmap.

11764



0 1 2 3 4 5 6 7 8 9 10 11
Layer

Pill
ars

 1D

Su
bp

illa
rs 

1D

Pill
ars

 2D

Su
bp

illa
rs 

2D

Se
cto

rs

Hu
m

Se
t

So
ur

ce
 Ta

sk

0.02 0.06-0.030.02 0.02 0.04-0.010.01-0.00-0.03-0.050.17

0.05 0.03-0.000.03-0.00-0.000.03 0.01-0.010.09 0.04-0.12

0.08 0.03 0.01 0.02 0.04 0.00 0.02-0.000.02 0.02 0.07 0.38

0.03 0.01-0.02-0.000.00 0.03-0.03-0.020.01 0.02-0.040.20

1.00 1.12 1.05 1.13 0.99 1.24 1.12 1.07 1.17 1.07 1.00 1.44

0 1 2 3 4 5 6 7 8 9 10 11
Layer

Se
cto

rs

Su
bp

illa
rs 

1D

Pill
ars

 2D

Su
bp

illa
rs 

2D

Pill
ars

 1D

-0.04-0.04-0.090.02-0.06-0.06-0.04-0.04-0.04-0.090.05 0.01

-0.03-0.02-0.01-0.01-0.02-0.02-0.07-0.04-0.01-0.020.07 0.01

0.17 0.14 0.16 0.16 0.08 0.12 0.10 0.08 0.07 0.07 0.13 0.83

-0.03-0.01-0.04-0.050.02-0.050.02-0.03-0.02-0.03-0.020.06

1.02 0.98 0.98 1.08 1.01 1.03 1.07 1.00 1.02 1.00 1.03 1.45
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

s

0 1 2 3 4 5 6 7 8 9 10 11
Layer

Se
cto

rs

Pill
ars

 1D

Pill
ars

 2D

Su
bp

illa
rs 

2D

Su
bp

illa
rs 

1D

Hu
m

Se
t

So
ur

ce
 Ta

sk

0.03-0.030.01-0.03-0.010.01-0.020.01-0.04-0.05-0.040.02

0.11 0.09 0.13 0.06 0.05 0.07 0.06 0.03 0.03-0.020.07 0.50

-0.030.00-0.02-0.00-0.00-0.05-0.01-0.00-0.000.01 0.00-0.07

0.02-0.05-0.03-0.03-0.000.01-0.02-0.02-0.02-0.040.01 0.31

1.01 1.01 1.01 1.03 1.04 0.99 1.02 1.04 1.05 1.07 1.19 1.22

0 1 2 3 4 5 6 7 8 9 10 11
Layer

Se
cto

rs

Pill
ars

 1D

Su
bp

illa
rs 

1D

Su
bp

illa
rs 

2D

Pill
ars

 2D

-0.070.02-0.00-0.11-0.050.00-0.03-0.000.04-0.030.06-0.19

0.01-0.020.02-0.030.03-0.02-0.060.00-0.010.03 0.01 0.14

-0.000.02-0.020.02-0.01-0.000.02-0.05-0.03-0.010.04 0.57

0.07 0.12 0.01 0.04 0.06 0.02 0.05 0.04 0.00 0.01-0.050.04

0.95 1.05 0.96 1.07 1.07 0.99 1.13 1.07 1.06 1.05 1.06 1.24 0.0

0.2

0.4

0.6

0.8

1.0

1.2

s

0 1 2 3 4 5 6 7 8 9 10 11
Layer

Se
cto

rs

Pill
ars

 1D

Su
bp

illa
rs 

1D

Pill
ars

 2D

Su
bp

illa
rs 

2D

Hu
m

Se
t

So
ur

ce
 Ta

sk

-0.02-0.01 0.05 -0.17-0.10-0.02-0.03 0.03 -0.05-0.04-0.13 0.16

0.01 0.01 -0.04-0.01-0.01-0.03-0.06-0.01 0.01 -0.04-0.03 0.20

0.19 0.19 0.22 0.21 0.22 0.14 0.08 0.02 0.08 0.09 0.06 0.21

0.02 0.03 -0.02-0.03-0.07 0.02 -0.05-0.03-0.02-0.04-0.01 0.23

0.98 1.02 1.00 0.99 1.05 0.89 1.04 0.94 1.10 1.01 1.16 1.72 0.00

0.25

0.50

0.75

1.00

1.25

1.50

s

Figure 9: SCALEARNUNIFORM scaling coefficients on HumSet using XLM-RBASE on seed 0. Target tasks are
shown in the last index of each heatmap.
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Figure 10: SCALEARNUNIFORM++ scaling coefficients on GLUE, SuperGLUE, and HumSet using RoBERTaBASE
for GLUE and SuperGLUE and XLM-RBASE for HumSet on seed 0.
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Model MNLI QQP QNLI SST-2 STS-B MRPC RTE CoLA Avg.

FINETUNE 89.570.36 89.751.03 93.910.43 95.300.65 91.890.35 86.271.15 81.523.19 60.152.89 86.041.26
ADAPTER 89.620.18 89.870.67 94.130.06 95.240.08 91.810.29 87.822.11 81.232.92 64.071.97 86.721.04
PROPETL 89.780.24 89.230.77 94.320.09 95.410.00 91.450.39 87.650.73 84.552.14 65.852.10 87.280.81
COMPACTER++ 89.150.67 87.332.39 92.931.42 95.410.00 91.460.35 87.841.23 79.714.58 65.662.08 86.191.59
(IA)3 88.690.61 87.790.72 91.720.79 94.950.16 91.390.45 86.371.65 80.793.16 64.703.20 85.801.34
LORA 89.660.27 89.660.10 94.200.28 95.470.24 91.980.13 87.701.14 80.512.03 63.802.71 86.620.86

FINETUNE-M 87.950.39 89.820.77 92.580.32 94.880.94 87.040.68 81.371.00 84.361.19 55.320.78 84.160.76
ADAPTER-M 89.100.36 89.350.09 93.640.05 94.900.17 88.400.32 83.090.25 86.640.00 56.380.79 85.190.25
PROPETL-M 88.980.33 89.030.15 94.140.11 95.150.05 91.560.23 87.831.10 88.450.29 60.991.03 87.010.41
HYPERFORMER 89.660.40 90.150.63 93.950.13 95.800.62 91.680.35 86.601.22 86.280.29 61.184.76 86.911.05
HYPERFORMER++ 89.790.21 89.540.43 93.950.54 95.220.11 91.620.29 88.071.86 86.281.06 65.160.61 87.450.64

ADAPTERFUSION 89.570.17 90.880.06 94.150.04 95.870.00 91.860.15 88.970.78 85.701.13 66.391.83 87.930.52
ADAPTERSOUP 65.830.51 82.370.00 74.061.01 93.980.24 81.671.63 73.370.51 67.271.63 43.701.62 72.780.89
SCALEARN 90.090.09 90.510.26 94.180.03 95.410.16 92.320.15 88.090.82 87.080.54 65.402.62 87.910.55
SCALEARNUNIFORM 90.110.04 90.050.28 94.230.08 95.410.16 92.110.06 88.631.72 84.403.93 66.980.58 87.740.86
SCALEARN++ 90.310.10 90.590.03 94.050.03 95.930.24 92.480.15 88.481.26 86.281.05 67.130.59 88.160.43
SCALEARNUNIFORM++ 90.080.01 90.490.02 94.120.16 95.180.16 92.120.09 90.050.54 84.981.32 64.970.85 87.750.39

Table 9: Evaluation results on GLUE using RoBERTaLARGE. (Top) STL models, only learning a single task at a time.
(Middle) Joint MTL methods, learning all tasks simultaneously. (Bottom) Two-stage MTL methods, composing
the knowledge of several source adapters. The overall best results are underlined, and the best results among the
two-stage MTL models are shown in bold.

Model ReCoRD MultiRC BoolQ WiC WSC COPA CB RTE Avg.

FINETUNE 81.601.25 79.030.02 81.650.30 69.722.16 63.460.00 52.008.28 90.362.99 81.523.19 74.922.27
ADAPTER 88.520.09 80.730.69 82.360.72 69.161.31 63.250.64 71.9013.63 92.681.78 81.232.92 78.732.72
PROPETL 87.862.59 81.190.99 81.610.86 69.622.16 63.460.00 69.0018.96 94.114.04 84.552.14 78.923.97
COMPACTER++ 88.340.97 79.180.29 79.536.13 69.261.51 62.261.43 79.009.74 87.507.48 79.714.58 78.104.02
(IA)3 87.470.21 77.910.43 80.970.75 68.652.55 60.580.00 77.000.00 90.003.91 80.793.16 77.931.35
LORA 88.300.36 79.100.29 78.028.88 68.462.07 62.121.46 76.6019.22 92.861.79 80.512.03 73.5811.06

FINETUNE-M 83.570.81 78.080.55 81.700.65 53.030.37 49.369.50 86.672.36 82.142.92 83.872.01 74.802.39
ADAPTER-M 86.760.32 75.150.24 77.182.22 51.571.12 53.219.75 67.671.25 80.951.68 77.381.36 71.232.24
PROPETL-M 84.830.40 79.600.37 82.021.11 55.330.46 59.629.05 86.674.03 88.102.23 85.560.29 77.712.24
HYPERFORMER 84.381.00 79.680.97 81.870.97 53.812.48 63.468.64 82.336.94 83.932.53 86.880.90 77.043.05
HYPERFORMER++ 13.660.00 40.2140.21 71.509.33 49.140.86 62.980.48 54.003.00 67.8617.86 66.9719.68 53.2911.43

ADAPTERFUSION 89.210.17 80.520.24 82.210.30 69.091.68 63.460.68 81.2016.07 95.710.98 86.061.07 80.932.65
ADAPTERSOUP 70.330.28 38.4212.42 73.200.16 62.231.17 63.460.00 54.505.74 68.751.03 61.373.97 61.533.06
SCALEARN 87.850.01 78.400.70 80.292.52 68.561.68 62.980.68 85.403.78 92.861.79 84.910.59 80.161.47
SCALEARNUNIFORM 88.850.22 80.420.06 81.850.21 69.911.15 61.540.00 82.003.08 90.001.60 84.041.66 79.831.00
SCALEARN++ 88.280.23 80.760.58 83.080.31 69.591.89 62.980.68 87.801.10 91.071.79 85.700.32 81.160.86
SCALEARNUNIFORM++ 88.850.22 80.700.04 82.130.21 70.190.26 62.980.68 83.602.88 91.072.82 84.841.02 80.541.02

Table 10: Evaluation results on SuperGLUE using RoBERTaLARGE.
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Model Sectors Pillars 1D Subpillars 1D Pillars 2D Subpillars 2D Avg.

FINETUNE 72.990.17 51.380.39 44.840.89 61.900.20 43.490.86 54.920.50
ADAPTER 72.290.59 49.311.27 45.250.03 62.580.67 44.360.66 54.760.65
PROPETL 73.200.32 51.580.40 45.100.92 61.522.29 41.980.70 54.680.92
COMPACTER++ 61.7712.63 8.175.92 6.3711.00 20.3924.91 15.362.71 22.4111.43
(IA)3 64.721.83 38.267.27 26.772.79 55.571.48 31.112.53 43.293.18
LORA 72.220.82 52.150.25 0.000.00 61.341.35 0.000.00 37.140.48

FINETUNE-M 59.047.86 22.9512.78 10.755.31 29.7621.25 9.651.25 26.439.69
ADAPTER-M 65.667.13 37.6511.25 28.517.80 43.4016.06 27.441.68 40.538.78
PROPETL-M 70.561.06 41.586.27 35.913.46 42.2014.55 29.676.92 43.986.45
HYPERFORMER 47.7420.72 29.0611.76 22.168.44 35.9217.37 22.5810.58 31.4913.77
HYPERFORMER++ 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00

ADAPTERFUSION 72.530.45 51.330.23 43.750.52 62.310.25 42.782.11 54.540.71
ADAPTERSOUP 52.541.61 24.072.18 20.620.28 31.161.40 12.840.49 28.251.19
SCALEARN 73.320.08 53.940.13 44.140.75 63.890.16 44.750.47 56.010.32
SCALEARNUNIFORM 72.560.20 50.590.10 44.620.00 62.660.00 45.160.00 55.120.06
SCALEARN++ 73.180.04 51.410.36 44.100.09 63.370.02 45.430.24 55.500.15
SCALEARNUNIFORM++ 73.020.20 50.840.30 44.880.39 62.870.01 44.450.02 55.210.18

Table 11: Evaluation results on HumSet using XLM-RLARGE.
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Model Samples MNLI QQP QNLI SST-2 STS-B MRPC RTE CoLA Avg.

ADAPTER 4 33.651.39 63.270.11 50.530.04 50.920.00 32.129.28 68.380.00 52.710.00 2.933.88 44.311.84
ADAPTER 16 34.780.58 63.180.00 50.460.20 57.181.23 55.5310.12 68.380.00 53.721.29 0.250.56 47.941.75
ADAPTER 32 33.560.66 63.180.00 51.860.33 70.462.25 73.781.30 68.380.00 54.581.81 0.000.00 51.980.80
ADAPTER 100 40.712.67 71.740.50 58.774.13 85.002.25 82.511.21 73.091.27 56.171.95 21.693.94 61.212.24
ADAPTER All 86.500.33 90.180.11 92.250.19 93.650.71 90.230.41 86.641.07 72.892.54 58.282.50 83.830.98

ADAPTERFUSION 4 33.942.09 72.015.39 52.362.75 50.920.00 77.172.44 72.994.28 52.780.16 2.793.54 51.872.58
ADAPTERFUSION 16 49.122.76 76.261.20 61.9511.04 59.296.12 83.511.79 78.280.37 60.652.27 0.921.82 58.753.42
ADAPTERFUSION 32 43.893.17 76.450.83 78.350.75 68.265.11 70.7230.12 78.871.63 60.874.48 1.914.27 59.916.30
ADAPTERFUSION 100 47.225.48 77.231.74 77.805.43 85.282.42 85.811.64 78.431.34 70.041.17 13.957.80 66.973.38
ADAPTERFUSION All 86.820.04 90.230.01 92.480.15 93.230.95 90.370.20 88.410.49 79.492.21 59.041.69 85.010.72

SCALEARN 4 35.592.13 76.240.38 62.304.58 52.680.66 85.340.98 75.001.59 52.710.00 4.250.83 55.511.39
SCALEARN 16 51.210.84 76.850.19 65.031.37 64.010.90 86.180.38 79.070.68 62.741.74 7.512.36 61.581.06
SCALEARN 32 51.910.36 76.190.18 73.630.46 69.563.25 86.340.44 75.980.39 65.421.50 8.561.70 63.451.03
SCALEARN 100 57.880.34 77.250.39 73.970.73 83.971.76 87.810.28 78.381.36 69.171.70 13.311.71 67.721.03
SCALEARN All 86.970.09 90.320.10 92.510.17 93.880.18 90.960.16 87.750.58 82.061.37 58.471.76 85.360.55

SCALEARN++ 4 34.051.78 75.500.56 59.884.74 52.250.70 85.200.80 72.991.46 52.710.00 3.872.20 54.551.53
SCALEARN++ 16 50.521.42 76.300.60 60.403.04 62.201.99 85.960.30 78.041.58 61.590.98 9.002.05 60.501.49
SCALEARN++ 32 52.301.35 75.710.65 72.012.62 71.902.37 86.040.37 76.181.07 63.680.94 7.543.03 63.171.55
SCALEARN++ 100 56.160.83 76.600.76 61.665.15 83.071.92 87.240.20 77.891.19 65.052.95 11.501.47 64.901.81
SCALEARN++ All 87.060.03 90.040.12 92.031.10 94.150.30 90.620.13 88.210.63 80.871.05 59.820.78 85.350.52

SCALEARNUNIFORM 4 34.171.67 76.620.62 55.252.01 52.481.37 84.470.97 75.441.75 52.710.00 5.091.50 54.531.24
SCALEARNUNIFORM 16 49.551.21 76.600.32 66.691.07 65.052.42 85.830.40 77.651.09 61.811.95 10.962.45 61.771.36
SCALEARNUNIFORM 32 51.501.92 76.280.56 72.840.54 71.492.38 86.010.43 75.881.03 63.751.16 11.152.18 63.611.28
SCALEARNUNIFORM 100 55.061.23 76.940.38 70.422.28 81.630.90 86.220.45 75.931.54 64.621.02 15.542.95 65.791.35
SCALEARNUNIFORM All 86.930.10 90.370.11 92.430.36 93.580.20 90.080.07 87.570.86 80.071.18 59.041.05 85.010.49

SCALEARNUNIFORM++ 4 34.862.18 76.080.38 53.363.84 51.791.09 83.121.63 74.801.05 52.710.00 4.342.15 53.881.54
SCALEARNUNIFORM++ 16 50.090.81 76.130.25 61.353.09 62.591.52 85.550.40 76.420.72 62.600.70 11.943.04 60.831.32
SCALEARNUNIFORM++ 32 50.961.64 76.150.47 70.240.96 71.972.06 85.670.41 74.410.66 62.240.66 12.852.49 63.061.17
SCALEARNUNIFORM++ 100 48.961.99 76.770.34 60.643.67 81.900.67 85.660.63 75.691.17 63.541.53 15.902.99 63.631.62
SCALEARNUNIFORM++ All 86.980.17 90.380.01 92.530.28 94.110.07 90.180.19 87.430.63 80.040.99 59.450.67 85.140.38

Table 14: Complete few-shot transfer learning results on GLUE with k = {4,16,32,100} training samples for each
target task using RoBERTaBASE.
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Model Samples ReCoRD Multi BoolQ WiC WSC COPA CB RTE Avg.

ADAPTER 4 9.652.79 24.926.71 62.050.27 49.441.26 41.9212.04 50.203.63 62.148.12 52.710.00 44.134.35
ADAPTER 16 13.826.06 37.488.48 62.170.00 50.531.18 42.505.46 53.005.48 69.292.93 53.721.29 47.813.86
ADAPTER 32 17.6412.76 38.553.74 62.160.03 52.261.78 36.540.00 51.202.39 70.711.60 54.581.81 47.953.01
ADAPTER 100 37.692.61 51.563.89 61.511.27 54.041.01 50.3810.12 58.405.18 73.934.11 56.171.95 55.463.77
ADAPTER All 79.020.62 72.840.48 76.711.38 65.581.56 63.460.00 70.204.13 84.823.18 72.892.54 73.191.74

ADAPTERFUSION 4 8.512.73 44.5024.40 62.160.03 50.311.04 38.083.44 50.402.19 51.072.40 52.641.31 44.714.69
ADAPTERFUSION 16 13.7110.75 48.8614.98 62.120.27 50.161.84 38.464.30 56.807.22 67.863.99 52.923.71 48.865.88
ADAPTERFUSION 32 26.7914.35 46.3916.63 62.030.34 52.230.87 37.121.29 59.605.86 68.932.71 54.662.35 50.975.55
ADAPTERFUSION 100 34.0213.55 43.524.01 61.831.45 54.611.07 43.858.78 64.203.83 74.643.43 59.711.63 54.554.72
ADAPTERFUSION All 78.820.49 71.791.67 76.720.55 66.571.24 63.460.00 73.104.51 82.322.85 76.032.38 73.601.71

SCALEARN 4 28.376.53 31.5311.93 61.630.22 49.720.39 49.625.34 71.804.49 66.7911.48 52.710.00 51.525.05
SCALEARN 16 31.076.24 49.977.42 60.921.21 51.500.49 51.355.25 69.005.24 72.862.33 54.221.31 55.113.69
SCALEARN 32 34.806.48 44.283.71 61.700.22 50.530.94 48.088.68 68.609.34 76.072.04 56.751.18 55.104.07
SCALEARN 100 40.821.25 58.922.28 62.111.16 53.890.99 61.922.21 69.002.74 86.791.60 61.371.71 61.851.74
SCALEARN All 79.520.06 73.220.44 77.270.68 66.351.20 63.460.00 74.802.15 90.892.59 78.882.14 75.551.16

SCALEARNUNIFORM 4 22.646.41 29.696.54 61.720.25 49.840.86 44.625.71 70.602.30 70.364.48 52.710.00 50.273.32
SCALEARNUNIFORM 16 30.011.08 50.327.20 61.721.03 52.480.70 49.817.24 66.802.17 73.933.70 54.512.75 54.953.23
SCALEARNUNIFORM 32 30.845.74 45.755.47 61.410.32 51.570.73 48.276.61 71.402.30 75.710.98 55.380.75 55.042.86
SCALEARNUNIFORM 100 35.501.94 58.742.59 61.360.99 52.790.58 56.977.98 65.002.00 82.863.24 59.211.28 59.052.58
SCALEARNUNIFORM All 80.130.38 71.910.60 76.060.41 67.371.22 62.501.27 71.201.23 89.111.97 75.310.90 74.201.00

SCALEARN++ 4 27.534.00 11.116.18 60.921.59 49.940.50 44.625.71 70.002.24 62.508.28 52.710.00 47.423.56
SCALEARN++ 16 25.782.80 49.4310.93 59.862.01 52.010.62 49.428.62 71.801.10 74.643.43 56.681.17 54.953.83
SCALEARN++ 32 34.002.31 39.995.10 59.800.63 52.040.53 42.503.99 73.604.56 75.711.60 56.390.86 54.252.45
SCALEARN++ 100 37.323.39 58.721.28 60.432.22 53.230.61 62.121.87 66.201.30 85.712.19 59.061.89 60.351.84
SCALEARN++ All 80.130.09 72.710.57 76.440.53 67.131.24 62.262.28 75.201.93 93.042.14 79.030.95 75.741.22

SCALEARNUNIFORM++ 4 23.048.12 29.112.02 61.020.41 49.621.41 46.734.54 67.605.68 66.438.60 52.710.00 49.533.85
SCALEARNUNIFORM++ 16 26.674.91 53.008.69 61.061.41 52.160.67 50.967.10 67.402.97 74.294.66 54.802.74 55.044.14
SCALEARNUNIFORM++ 32 30.621.27 49.466.35 59.881.47 51.690.70 44.623.70 67.201.64 78.210.80 56.901.07 54.822.13
SCALEARNUNIFORM++ 100 29.779.96 58.402.35 60.770.91 53.261.87 61.153.76 63.202.77 80.000.80 57.181.74 57.973.02
SCALEARNUNIFORM++ All 79.790.14 71.750.38 76.130.52 67.870.89 63.460.00 74.001.70 91.612.53 74.841.58 74.930.97

Table 15: Complete few-shot transfer learning results on SuperGLUE with k = {4,16,32,100} training samples for
each target task using RoBERTaBASE.
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Model Samples Sectors Pillars 1D Subpillars 1D Pillars 2D Subpillars 2D Avg.

ADAPTER 4 5.782.05 4.211.16 0.690.34 11.072.07 3.580.49 5.071.22
ADAPTER 16 8.226.21 2.592.28 0.780.42 8.424.12 2.591.34 4.522.87
ADAPTER 32 4.651.88 2.302.71 0.820.15 5.967.43 2.971.52 3.342.74
ADAPTER 100 44.261.22 10.599.70 0.000.00 25.261.36 0.010.02 16.022.46
ADAPTER All 71.380.28 51.021.23 43.260.82 61.430.91 42.460.51 53.910.75

ADAPTERFUSION 4 13.601.29 7.202.19 2.450.37 16.242.77 8.161.00 9.531.53
ADAPTERFUSION 16 13.271.27 8.380.99 2.170.67 15.982.41 7.630.73 9.481.21
ADAPTERFUSION 32 12.591.91 6.411.79 2.240.25 13.673.94 7.121.00 8.401.78
ADAPTERFUSION 100 8.031.36 4.232.75 1.770.54 32.024.30 5.071.32 10.222.05
ADAPTERFUSION All 72.050.12 49.630.53 43.150.38 60.680.23 42.140.46 53.530.35

SCALEARN 4 5.561.27 4.540.57 1.120.23 12.990.26 3.950.85 5.630.64
SCALEARN 16 13.210.74 8.900.41 3.680.16 18.300.60 7.400.53 10.300.49
SCALEARN 32 16.640.43 16.480.74 7.230.37 26.390.34 11.110.47 15.570.47
SCALEARN 100 34.041.36 26.310.67 13.271.06 30.681.20 14.430.39 23.750.94
SCALEARN All 72.360.05 51.630.61 44.060.37 61.520.11 42.810.63 54.480.35

SCALEARNUNIFORM 4 5.351.09 4.320.17 1.030.20 13.240.43 3.780.64 5.540.50
SCALEARNUNIFORM 16 13.650.47 8.690.59 3.640.13 17.511.23 7.590.13 10.220.51
SCALEARNUNIFORM 32 15.340.52 16.721.09 6.980.34 25.750.48 10.580.19 15.070.52
SCALEARNUNIFORM 100 33.400.63 25.480.71 13.430.64 29.440.78 14.920.62 23.330.68
SCALEARNUNIFORM All 72.200.14 50.080.79 42.970.70 60.620.16 41.950.60 53.560.48

SCALEARN++ 4 5.421.47 4.660.45 1.160.33 13.170.17 3.621.24 5.610.73
SCALEARN++ 16 13.550.71 8.890.16 3.620.09 18.621.10 7.730.28 10.480.47
SCALEARN++ 32 16.270.82 16.351.62 7.270.13 26.080.51 10.700.28 15.330.67
SCALEARN++ 100 33.760.49 25.830.74 13.270.66 30.110.51 14.370.61 23.470.60
SCALEARN++ All 72.380.27 51.660.27 44.230.50 61.660.13 42.210.21 54.430.28

SCALEARNUNIFORM++ 4 5.271.18 4.370.14 1.080.09 13.200.50 3.561.15 5.500.61
SCALEARNUNIFORM++ 16 13.470.77 9.040.58 3.600.10 17.410.59 7.500.33 10.200.47
SCALEARNUNIFORM++ 32 15.240.35 16.750.72 7.310.28 26.230.83 10.610.27 15.230.49
SCALEARNUNIFORM++ 100 39.222.98 26.220.74 13.761.11 30.340.63 14.560.59 24.821.21
SCALEARNUNIFORM++ All 72.020.32 50.780.41 42.600.85 60.820.14 42.140.72 53.670.49

Table 16: Complete few-shot transfer learning results on HumSet with k = {4,16,32,100} training samples for each
target task using XLM-RBASE.
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Model Samples MNLI QQP QNLI SST-2 STS-B MRPC RTE CoLA Avg.

ADAPTER 4 34.090.48 62.002.54 50.461.12 50.920.00 10.022.34 68.330.11 51.482.74 3.473.01 41.351.54
ADAPTER 16 35.121.00 63.110.18 49.590.24 59.383.42 12.415.51 68.380.00 52.641.06 2.553.07 42.901.81
ADAPTER 32 34.050.94 63.881.40 51.300.98 74.702.59 27.1613.89 68.770.71 51.621.75 7.4710.36 47.374.08
ADAPTER 100 41.392.59 71.350.81 53.751.18 83.672.22 76.844.07 69.071.48 56.972.30 30.965.72 60.502.55
ADAPTER All 89.620.18 89.870.67 94.130.06 95.240.08 91.810.29 87.822.11 81.232.92 64.071.97 86.721.04

ADAPTERFUSION 4 39.266.48 79.280.71 65.1311.67 51.030.23 76.4012.07 69.952.76 54.083.07 4.931.85 55.014.85
ADAPTERFUSION 16 49.948.89 80.370.13 78.853.67 56.653.82 83.960.85 77.501.62 70.474.04 16.083.34 64.233.29
ADAPTERFUSION 32 56.1210.53 80.010.25 80.551.30 75.297.71 85.360.87 77.114.44 78.703.54 6.778.63 67.494.66
ADAPTERFUSION 100 60.8413.22 78.863.07 85.090.80 85.441.87 88.090.39 81.861.63 84.402.62 34.692.72 74.913.29
ADAPTERFUSION All 89.570.17 90.880.06 94.150.04 95.870.00 91.860.15 88.970.78 85.701.13 66.391.83 87.930.52

SCALEARN 4 45.654.75 79.590.24 66.973.83 52.061.12 81.942.17 72.062.37 52.710.00 3.141.31 56.771.97
SCALEARN 16 57.541.50 80.040.58 77.240.85 62.592.91 85.081.83 76.422.70 69.752.56 4.233.10 64.112.00
SCALEARN 32 60.951.59 79.950.34 77.720.94 74.131.58 88.500.27 76.911.69 77.911.83 5.142.00 67.651.28
SCALEARN 100 69.181.32 80.800.21 83.642.26 84.200.98 89.250.40 77.601.78 82.960.93 10.801.43 72.301.17
SCALEARN All 90.090.09 90.510.26 94.180.03 95.410.16 92.320.15 88.090.82 87.080.54 65.402.62 87.910.55

SCALEARNUNIFORM 4 45.735.20 79.740.34 67.953.57 52.411.39 81.591.89 72.212.26 52.710.00 3.251.02 56.951.96
SCALEARNUNIFORM 16 57.611.01 79.810.31 74.551.75 57.432.44 85.320.85 75.341.10 68.811.21 1.922.57 62.601.41
SCALEARNUNIFORM 32 58.861.71 80.060.14 75.861.12 73.601.06 86.610.33 74.661.16 77.911.12 5.664.15 66.651.35
SCALEARNUNIFORM 100 63.511.39 80.340.21 74.982.50 81.441.48 87.360.24 76.471.26 81.371.87 14.981.27 70.061.28
SCALEARNUNIFORM All 90.110.04 90.050.28 94.230.08 95.410.16 92.110.06 88.631.72 84.403.93 66.980.58 87.740.86

SCALEARN++ 4 44.544.16 79.580.41 66.902.38 51.700.75 80.803.59 71.861.54 52.710.00 3.780.89 56.481.72
SCALEARN++ 16 56.711.57 80.110.37 73.801.36 60.163.41 85.171.14 75.203.15 69.822.07 2.853.64 62.982.09
SCALEARN++ 32 58.871.51 79.090.49 75.920.89 73.123.27 87.450.32 75.691.18 77.330.90 5.474.01 66.611.57
SCALEARN++ 100 65.071.14 80.230.33 78.820.81 82.001.89 88.010.84 76.621.16 81.812.60 12.112.78 70.581.44
SCALEARN++ All 90.310.10 90.590.03 94.050.03 95.930.24 92.480.15 88.481.26 86.281.05 67.130.59 88.160.43

SCALEARNUNIFORM++ 4 44.484.38 79.420.58 66.594.06 51.460.57 82.151.17 73.221.12 52.710.00 2.340.52 56.551.55
SCALEARNUNIFORM++ 16 56.631.44 79.530.45 72.952.27 56.941.01 85.140.66 75.612.09 68.861.85 0.802.46 62.061.53
SCALEARNUNIFORM++ 32 57.683.31 79.470.42 73.781.89 75.150.96 86.640.56 76.651.49 78.340.66 1.782.84 66.191.52
SCALEARNUNIFORM++ 100 56.721.49 78.910.82 66.112.51 83.750.58 85.530.82 74.332.49 81.682.51 20.843.14 68.481.79
SCALEARNUNIFORM++ All 90.080.01 90.490.02 94.120.16 95.180.16 92.120.09 90.050.54 84.981.32 64.970.85 87.750.39

Table 18: Complete few-shot transfer learning results on GLUE with k = {4,16,32,100} training samples for each
target task using RoBERTaLARGE.
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Model Samples ReCoRD Multi BoolQ WiC WSC COPA CB RTE Avg.

ADAPTER 4 15.583.93 31.7815.80 61.830.58 49.750.56 50.388.93 49.605.59 53.934.96 51.482.74 45.545.39
ADAPTER 16 17.427.21 40.463.08 61.640.54 51.381.37 54.042.30 53.605.46 61.073.19 52.641.06 49.033.03
ADAPTER 32 22.0414.70 41.115.21 62.170.01 52.881.91 47.693.76 66.207.60 67.502.33 51.621.75 51.404.66
ADAPTER 100 31.0119.22 51.934.94 62.170.00 55.962.03 52.885.81 65.2013.86 82.145.65 56.972.30 57.286.73
ADAPTER All 88.520.09 80.730.69 82.360.72 69.161.31 63.250.64 71.9013.63 92.681.78 81.232.92 78.732.72

ADAPTERFUSION 4 19.214.17 24.0720.35 61.770.18 50.631.49 43.2712.03 57.007.42 61.4311.75 52.710.00 46.267.17
ADAPTERFUSION 16 14.285.34 28.094.31 61.510.35 51.103.13 47.319.26 66.2012.44 77.864.48 53.211.37 49.955.09
ADAPTERFUSION 32 18.8211.93 37.6810.93 64.973.64 52.821.39 44.423.36 62.4010.24 78.214.45 58.054.21 52.176.27
ADAPTERFUSION 100 55.421.38 59.980.03 71.062.02 56.021.25 55.585.33 76.4013.22 84.644.11 57.622.71 64.593.75
ADAPTERFUSION All 89.210.17 80.520.24 82.210.30 69.091.68 63.460.68 81.2016.07 95.710.98 86.061.07 80.932.65

SCALEARN 4 32.723.66 58.491.59 61.900.30 51.661.61 55.588.66 71.006.36 77.502.04 52.710.00 57.693.03
SCALEARN 16 36.713.11 53.373.76 61.820.56 53.511.09 50.195.54 77.407.13 77.864.11 55.883.01 58.343.54
SCALEARN 32 36.723.37 57.304.03 61.470.75 53.262.28 49.045.73 80.603.05 80.001.49 57.625.12 59.503.23
SCALEARN 100 54.2112.46 59.790.30 68.783.12 51.881.84 57.121.87 81.805.97 85.002.04 65.343.44 65.493.88
SCALEARN All 87.850.01 78.400.70 80.292.52 68.561.68 62.980.68 85.403.78 92.861.79 84.910.59 80.161.47

SCALEARNUNIFORM 4 33.125.16 59.470.94 61.511.01 50.911.64 63.460.00 68.003.08 78.932.33 52.710.00 58.511.77
SCALEARNUNIFORM 16 32.752.12 54.657.16 62.110.15 52.260.85 52.123.49 72.001.87 81.792.65 54.443.40 57.762.71
SCALEARNUNIFORM 32 35.303.67 58.223.85 61.760.61 54.672.40 51.926.04 76.402.97 80.002.93 58.925.58 59.653.51
SCALEARNUNIFORM 100 41.505.85 60.010.10 61.960.76 51.851.21 58.271.75 72.405.37 85.002.04 60.651.05 61.452.27
SCALEARNUNIFORM All 88.850.22 80.420.06 81.850.21 69.911.15 61.540.00 82.003.08 90.001.60 84.041.66 79.831.00

SCALEARN++ 4 33.871.90 56.113.47 61.750.21 51.321.66 60.583.96 68.006.04 78.212.33 52.710.00 57.822.45
SCALEARN++ 16 35.360.48 53.715.41 61.930.39 52.790.17 50.772.99 71.403.78 80.004.07 55.232.75 57.652.51
SCALEARN++ 32 38.871.77 59.950.00 61.940.81 54.612.06 46.923.22 78.602.30 79.642.71 53.143.49 59.212.05
SCALEARN++ 100 43.154.43 59.950.00 63.360.98 52.010.73 57.123.23 75.204.15 86.792.04 62.242.68 62.482.28
SCALEARN++ All 88.280.23 80.760.58 83.080.31 69.591.89 62.980.68 87.801.10 91.071.79 85.700.32 81.160.86

SCALEARNUNIFORM++ 4 33.871.90 56.113.47 61.750.21 51.321.66 60.583.96 68.006.04 78.212.33 52.710.00 57.822.45
SCALEARNUNIFORM++ 16 35.360.48 53.715.41 61.930.39 52.790.17 50.772.99 71.403.78 80.004.07 55.232.75 57.652.51
SCALEARNUNIFORM++ 32 38.871.77 59.950.00 61.940.81 54.612.06 46.923.22 78.602.30 79.642.71 53.143.49 59.212.05
SCALEARNUNIFORM++ 100 43.154.43 59.950.00 63.360.98 52.010.73 57.123.23 75.204.15 86.792.04 62.242.68 62.482.28
SCALEARNUNIFORM++ All 88.850.22 80.700.04 82.130.21 70.190.26 62.980.68 83.602.88 91.072.82 84.841.02 80.541.02

Table 19: Complete few-shot transfer learning results on SuperGLUE with k = {4,16,32,100} training samples for
each target task using RoBERTaLARGE.
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Model Samples Sectors Pillars 1D Subpillars 1D Pillars 2D Subpillars 2D Avg.

ADAPTER 4 4.800.60 4.330.18 0.600.08 10.871.72 2.560.56 4.630.63
ADAPTER 16 7.122.11 1.351.85 0.450.32 11.080.59 2.820.82 4.561.14
ADAPTER 32 6.603.21 0.580.54 0.520.24 11.821.44 2.400.92 4.391.27
ADAPTER 100 24.6613.33 12.383.57 0.000.00 16.211.14 3.132.91 11.274.19
ADAPTER All 72.290.59 49.311.27 45.250.03 62.580.67 44.360.66 54.760.65

ADAPTERFUSION 4 12.432.84 7.580.95 2.110.12 14.590.57 7.101.13 8.761.12
ADAPTERFUSION 16 11.062.41 6.492.35 2.300.26 13.081.04 6.331.79 7.851.57
ADAPTERFUSION 32 11.903.19 6.402.61 2.500.60 13.230.90 6.161.54 8.041.77
ADAPTERFUSION 100 31.925.40 17.742.59 1.940.42 31.442.30 8.083.78 18.222.90
ADAPTERFUSION All 72.530.45 51.330.23 43.750.52 62.310.25 42.782.11 54.540.71

SCALEARN 4 5.520.93 4.940.21 1.300.26 13.590.46 3.810.90 5.830.55
SCALEARN 16 12.050.80 7.780.31 3.240.09 20.101.33 6.190.30 9.870.57
SCALEARN 32 16.340.63 15.740.95 6.540.29 24.920.40 10.540.33 14.820.52
SCALEARN 100 24.600.97 24.361.80 11.370.40 34.262.54 15.630.64 22.051.27
SCALEARN All 73.320.08 53.940.13 44.140.75 63.890.16 44.750.47 56.010.32

SCALEARNUNIFORM 4 4.920.61 4.840.26 1.250.30 13.050.48 3.410.11 5.490.35
SCALEARNUNIFORM 16 11.580.45 7.780.53 3.150.19 20.110.32 5.790.16 9.680.33
SCALEARNUNIFORM 32 15.450.00 15.480.64 6.540.52 24.220.16 9.700.17 14.280.30
SCALEARNUNIFORM 100 21.910.00 23.312.49 10.600.22 36.442.05 15.270.13 21.510.98
SCALEARNUNIFORM All 72.560.20 50.590.10 44.620.00 62.660.00 45.160.00 55.120.06

SCALEARN++ 4 4.900.40 4.950.20 1.450.26 13.480.52 3.370.50 5.630.38
SCALEARN++ 16 12.450.65 8.470.77 3.290.13 21.011.12 6.550.37 10.350.61
SCALEARN++ 32 16.610.57 15.801.00 6.710.29 24.760.32 10.310.36 14.840.51
SCALEARN++ 100 24.440.95 23.950.40 11.360.65 35.181.28 15.770.77 22.140.81
SCALEARN++ All 73.180.04 51.410.36 44.100.09 63.370.02 45.430.24 55.500.15

SCALEARNUNIFORM++ 4 4.920.61 4.840.26 1.250.30 13.050.48 3.410.11 5.490.35
SCALEARNUNIFORM++ 16 11.580.45 7.780.53 3.150.19 20.110.32 5.790.16 9.680.33
SCALEARNUNIFORM++ 32 15.450.00 15.480.64 6.540.52 24.220.16 9.700.17 14.280.30
SCALEARNUNIFORM++ 100 21.910.00 23.312.49 10.600.22 36.442.05 15.270.13 21.510.98
SCALEARNUNIFORM++ All 73.020.20 50.840.30 44.880.39 62.870.01 44.450.02 55.210.18

Table 20: Complete few-shot transfer learning results on HumSet with k = {4,16,32,100} training samples for each
target task using XLM-RLARGE.
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