SCALEARN: Simple and Highly Parameter-Efficient Task Transfer
by Learning to Scale

Markus Frohmann'-
Anne Lauscher?

Carolin Holtermann®
Navid Rekabsaz*

Shahed Masoudian'>

! Johannes Kepler University Linz, > Linz Institute of Technology, Al Lab
3 Data Science Group, Universitit Hamburg
4 Thomson Reuters Labs, Zug, Switzerland

{markus.frohmann, shahed.masoudian}@jku.at, {carolin.holtermann, anne.lauscher}@uni-hamburg.de

navid.rekabsaz@thomsonreuters.com

Abstract

Multi-task learning (MTL) has shown consider-
able practical benefits, particularly when using
language models (LMs). While this is com-
monly achieved by learning n tasks under a
joint optimization procedure, some methods,
such as AdapterFusion, divide the problem into
two stages: (i) task learning, where knowledge
specific to a task is encapsulated within sets
of parameters (e.g., adapters), and (ii) trans-
fer, where this already learned knowledge is
leveraged for a target task. This separation
of concerns provides numerous benefits (e.g.,
promoting reusability). However, current two-
stage MTL introduces a substantial number
of additional parameters. We address this is-
sue by leveraging the usefulness of linearly
scaling the output representations of source
adapters for transfer learning. We introduce
SCALEARN, a simple and highly parameter-
efficient two-stage MTL method that capital-
izes on the knowledge of the source tasks by
learning a minimal set of scaling parameters
that enable effective transfer to a target task.
Our experiments on three benchmarks (GLUE,
SuperGLUE, and HumSet) and two encoder
LMs show that SCALEARN consistently out-
performs strong baselines with a small number
of transfer parameters (~ 0.35% of those of
AdapterFusion). Remarkably, we observe that
SCALEARN maintains its strong abilities even
when further reducing parameters, achieving
competitive results with only 8 transfer param-
eters per target task. Our proposed approach
thus demonstrates the power of simple scaling
as a promise for more efficient task transfer.'

1 Introduction

With the wide availability of pre-trained language
models (LMs) as the backbone of language process-
ing, multi-task learning (MTL) has shown signifi-
cant benefits, especially for tasks with possible con-

'Our code is available at https://github.com/CPIKU/
Scalearn.

ceptual commonalities (Ruder, 2017; Zhang and
Yang, 2022; Raffel et al., 2020). The traditional
paradigm in MTL is to formulate a joint optimiza-
tion objective based on a set of tasks and train a
single model to simultaneously learn and transfer
the knowledge relevant to the tasks. This joint MTL
approach can be realized by fine-tuning an LM (Liu
etal., 2019a; Stickland and Murray, 2019), or, more
recently, by using parameter-efficient, often modu-
larized, MTL approaches (Mahabadi et al., 2021b;
Zeng et al., 2023; Pilault et al., 2021; Asai et al.,
2022; Ponti et al., 2023; Caccia et al., 2022).

As an alternative to the joint MTL paradigm,
some works, such as ADAPTERFUSION (Pfeiffer
et al., 2021), clearly distinguish task training from
transfer learning, assigning dedicated parameters to
each of these aspects. In this paradigm, referred to
as two-stage MTL, first each source task is trained
separately and stored into a separate module like
an adapter (Houlsby et al., 2019), and then a task
transfer layer is trained for a given target task using
information from an arbitrary set of source tasks.
This separation of concerns between task and trans-
fer learning offers valuable benefits: (1) Learning
a separate transfer layer for each target task in a
two-stage MTL approach reduces the potentially
destructive effects of transfer learning on specific
tasks, as the transfer layer parameters correspond-
ing to each target task can independently decide
what information should be used from the avail-
able source tasks. As shown in our experiments
with encoder LMs, this supports the effectiveness
of transfer learning, making it less sensitive to task
selection. (2) Since the source tasks can simply be
taken from already trained modules (no need for re-
training), two-stage approaches promote reusabil-
ity — a principle of Green Al (Scells et al., 2022;
Schwartz et al., 2020). Further, they provide a
practical solution to cases involving issues such
as data privacy and/or fairness constraints, as a
pre-trained module can readily provide the (e.g.,

11743

Findings of the Association for Computational Linguistics: ACL 2024, pages 11743-11776
August 11-16, 2024 ©2024 Association for Computational Linguistics

https://github.com/CPJKU/ScaLearn
https://github.com/CPJKU/ScaLearn

GLUE SuperGLUE [Adapter
85.5 _——*’* 76 —___** ? ProPETL w0
________ F T e Compacter++ =
so X S ET 3 o -
] A LoRA
845 0 74 =
9] 731 @ FineTune-m
= 84.0{ FineTune___________ o ﬂ. @ Adapterm =0
&) o
3: 721 FineTune @ ProPETL-m Ij =1
83.51 Q@ HyperFormer
711 . . O HyperFormer++
1 D =
83.0 704 o $3 AdapterFusion =
—————— — * Scalearn = ?
107 10™* 1072 10° 107 107 10™* 1072 10° 102 3% ScaLearnUniform v
=
% of parameters updated Y ScaLearn++ et
* ScaLearnUniform++ D

Figure 1: Performance and parameter-efficiency of single task learning (STL), and joint/two-stage MTL methods,
evaluated on GLUE (Wang et al., 2019b) and SuperGLUE (Wang et al., 2019a) using RoBERTagxsg (Liu et al.,
2019b). The reported values for the two-stage MTL methods only consider the ones in the respective transfer layers.
The full details of the learnable parameters and performance results are provided in §5.

already debiased) functionality of the source task
even without the need to have access to its training
data (Lauscher et al., 2021; Kumar et al., 2023).
Despite these benefits, current two-stage MTL
solutions introduce significantly more learnable
parameters compared to recent joint MTL ones,
exacerbated by the linear increase in the number
of parameters with the number of target tasks. In
our experiment setup with eight target tasks using
RoBERTagasg (Liu et al., 2019b), ADAPTERFU-
SION introduces ~ 134% new parameters for trans-
fer learning, while HYPERFORMER++ (Mahabadi
et al., 2021b) conducts joint MTL by adding ~4%
(=~ 5M) trainable parameters (details in Table 1
and §5). This high number of parameters is in stark
contrast to the promise of Green Al given by the
modularized nature of two-stage MTL.

Contributions. We build on insights gained from
analyzing the effects of scaling the output represen-
tations of adapters, and introduce SCALEARN, a
novel two-stage MTL method that learns to trans-
fer the knowledge of the source adapters using a
small set of scaling parameters. For a given target
task, SCALEARN introduces parameters that scale
the output representation of each source adapter
and combine the resulting scaled representations
by simply taking the element-wise sum. This ap-
proach results in high parameter-efficiency, such
that — following the mentioned experiment set-
ting — SCALEARN only adds ~ 0.47% (=~ 0.5M)
parameters. We further introduce an even more
parameter-efficient variant via uniform scaling
(SCALEARNUNIFORM), where each scaling vector

is reduced to a single scaling parameter. Finally, by
sharing parameters across layers, we achieve our
most efficient variation (SCALEARNUNIFORM++),
only containing 64 parameters for transfer learning.

We conduct a large set of transfer learning exper-
iments on the GLUE (Wang et al., 2019b), Super-
GLUE (Wang et al., 2019a), and HumSet (Fekih
et al., 2022) benchmarks using encoder LMs,
namely the popular RoBERTa (Liu et al., 2019b)
and XLM-R (Conneau et al., 2020) models, both
in their base and large configurations.

Figure 1 summarizes our results on GLUE and
SuperGLUE, showing that SCALEARN, while pro-
viding high efficiency and the benefits of the two-
stage MTL paradigm, consistently outperforms the
baselines. The overall performance of SCALEARN
remains highly competitive in its more parameter-
efficient variations. Our results also show the ad-
vantage of two-stage models in avoiding destruc-
tive effects during transfer learning. Overall, with
SCALEARN we leverage the power of scaling as a
viable, non-destructive, simple-to-implement, and
highly parameter-efficient solution to the current
shortcomings of existing MTL methods, paving the
future for more effective and efficient task transfer.

2 Background

In task transfer learning, we consider a pre-trained
LM as well as two sets .S and T, representing the
source and target tasks, respectively. The aim of
MTL is to leverage the information of tasks in .S to
improve the generalization on tasks in 7'.

Single Task Learning (STL). In this basic set-

11744

ting, a separate set of parameters is optimized
on each task (S = T') without any knowledge
transfer between tasks. STL can be done by fine-
tuning the LM parameters or by introducing more
parameter-efficient modules into the model, such
as adapter modules (Pfeiffer adapters (Houlsby
et al., 2019; Pfeiffer et al., 2021), PROPETL (Zeng
et al., 2023), or COMPACTER++ (Mahabadi et al.,
2021a)), (IA)3 (Liu et al., 2022), prefix-tuning (Li
and Liang, 2021), or LoRA (Hu et al., 2022), each
with ©4 parameters for each task s.

Joint MTL. This approach is commonly done by
having a unified model for all tasks (S = T),
and a joint optimization objective that simultane-
ously optimizes the model using samples from all
tasks (Ruder, 2017). The general joint MTL ob-

jective can be formulated as Ljoine = 2@1 asls,
where o is the sampling weight of task s. This
optimization objective can be used to fine-tune the
parameters of an LM (Liu et al., 2019a; Stickland
and Murray, 2019; Raffel et al., 2020), or those of a
modularized architecture (Mahabadi et al., 2021b;
Pilault et al., 2021; Ponti et al., 2023). Despite the
benefit of having one unified model, the joint loss
often causes tasks to compete with each other for
learning capacity, leading to the task interference
problem (Xin et al., 2022; McCloskey and Cohen,
1989; Kirkpatrick et al., 2017). This makes the
joint MTL paradigm particularly sensitive to the
selection of tasks (Xin et al., 2022), while various
methods in the literature have aimed to address
this issue (e.g., Kendall et al. (2018); Pilault et al.
(2021); a brief review is provided in § 6).

Two-stage MTL. In contrast to joint MTL, two-
stage MTL methods optimize each target task in-
dependently, bypassing the issue of task interfer-
ence (Pfeiffer et al., 2021). Similarly to STL, a
parameter-efficient module is first learned for each
source task s with parameters ©. In principle, two-
stage MTL methods can simply use already pre-
trained modules (such as adapters), saving the costs
of re-training modules on each task. This facili-
tates the re-use of existing parameter-efficient mod-
ules for each source task,” which may vary in per-
formance and/or take into account additional con-
straints such as fairness and bias mitigation (Pfeif-
fer et al., 2023; Kumar et al., 2023; Lauscher et al.,
2021). Moreover, it also removes the need for ac-
cessing the training data of the source tasks (e.g.,

’E.g., through sharing platforms such as AdapterHub
(https://adapterhub.ml/) (Pfeiffer et al., 2020).

due to data privacy) so far as the source task’s func-
tionality is solely provided via parameter-efficient
modules. Next, given | S| (pre-trained and frozen)
source task modules, two-stage MTL methods de-
fine and optimize a transfer layer for each target
task to leverage the knowledge of source tasks to
solve the target task. This stage introduces {2; new
parameters for each target task ¢.

ADAPTERFUSION (Pfeiffer et al., 2021) intro-
duces an implementation of the two-stage approach
with strong performance (Pfeiffer et al., 2023). It
uses an attention mechanism as its transfer layer, in-
serted into each LM layer after the source adapters.
More specifically, given the output vector of each
source adapter s in each layer [, referred to as o',
the attention layer (with target task ¢ as query and
source tasks S as keys and values) learns to assign
a weight w!, to each source task. The final output
of the target task ¢ in this layer is calculated as:

|S| S|

oi = Zwéols, where Zwi = (1)

s=1 s=1

Regardless of how the weights are calculated,
the method can be seen as a weighted summation
of source output vectors, where the weights form a
categorical probability distribution.

3 SCALEARN - Learning to Scale for
Knowledge Transfer

To understand the effect of scaling the output repre-
sentations of adapters, we conducted initial experi-
ments on scaling them, both in isolation and when
combining two of them. In these experiments, we
observed that (1) scaling output vectors is an ef-
fective method for controlling the (partial or full)
activation of the knowledge contained in an adapter
module; (2) an optimal configuration of the scaling
parameter will, in many cases, lead to superior re-
sults on the target task; (3) the optimal weights do
not necessarily sum up to 1. These findings stand
in contrast to the established practice of forcing the
coefficients to sum up to 1 (e.g., as in ADAPTERFU-
SION; cf. Equation 1). We provide comprehensive
results and analyses in Appendix A.2. Overall,
these observations provide strong motivation for
a method to combine representations from several
adapters by scaling their output representations.
Based on that, we present SCALEARN, a novel
two-stage transfer learning method to combine the

11745

https://adapterhub.ml/

knowledge of source adapters by scaling their out-
put representations. Our core contribution regards
the transfer layer, built on the output of the tasks’
modular networks. Similar to Pfeiffer et al. (2021),
we utilize adapter modules for the task learning
layer. In particular, the output representation of
the adapter of source task s at layer [is defined as:
ol = U!l(ReLU(D.(z))) + 2, where 2! is the
input vector, and U! and D! denote the up- and
down-projection parameter matrices, respectively.

Our introduced SCALEARN linearly scales and
combines the output representations of source
adapters, oll, . ,of g to achieve the objective of
target task ¢.

We define two variations of the scaling opera-
tion: non-uniform which applies a scaling vector
to each output vector using the element-wise prod-
uct (SCALEARN), and the more parameter-efficient
uniform that scales each vector only with a scalar
parameter (SCALEARNUNIFORM). These varia-
tions are formulated below:

S|
SCALEARN : 0f = Y w! @ o}
s=1
1 2)
ol L
SCALEARNUNIFORM : 0} = Y wlol,
s=1

where © denotes the Hadamard product, and
wl and w! are learnable vector and scalar pa-
rameters, respectively. Inspired by previous stud-
ies (Mahabadi et al., 2021a; Zeng et al., 2023; Bai
et al., 2022; Goldberg, 2019), we further increase
parameter-efficiency by learning shared scaling pa-
rameters among all layers, formulated as follows:

S|
SCALEARN++: 0f = } w, © o},
s=1

15|

1 § : 1

SCALEARNUNIFORM++ : 0y = WOy,
s=1

3)

where, similarly, ws and w;, are learnable vec-
tor and scalar parameters, but shared among all
layers. In all the mentioned methods, to optimize
the transfer parameters €2, we use gradient descent
as an easy-to-implement and straightforward so-
lution. On the basis of our experiments, we find
that our approach provides highly competitive re-
sults on a wide range of tasks (cf. § 5). Fur-
thermore, SCALEARN models do not force any

distributional properties on the w values, as com-
monly imposed in previous work (Pfeiffer et al.,
2021; Chronopoulou et al., 2023; Xin et al., 2022)
through functions such as softmax and average.

Parameter-efficiency of SCALEARN. To have
a clear view of the parameter-efficiency of the
models, we continue by analyzing the number of
learnable parameters in the transfer layer. The
SCALEARN variant introduces dx L x |S| trans-
fer parameters for a single target task, where d
is the embedding size and L denotes the num-
ber of layers. The total number of parameters
for all target tasks then becomes dx L x |S|x |T|.
Moving to SCALEARNUNIFORM, this number re-
duces to L x |S|x|T'|. The SCALEARN++ spares
the L term and has dx|S|x|T| transfer parame-
ters. Finally, the most parameter-efficient variant
SCALEARNUNIFORM++ only adds |S|x|T’| pa-
rameters. For each task, new task head parameters
are learned jointly with the transfer parameters.
For comparison, the number of transfer parame-
ters of ADAPTERFUSION is 3xd?x Lx|T| (discard-
ing bias and task head parameters), corresponding
to the query, key, and value matrices of the attention
mechanism. Comparing the formulas, we observe
that our methods are far more parameter-efficient,
since in practice |\S| < d, and hence the d x L term
in SCALEARN becomes much smaller than d? in
ADAPTERFUSION. Compared to the joint MTL
paradigm, despite the linear increase of parameters
with |T’|, our SCALEARN * models still provide
high parameter-efficiency. This stems from the fact
that |T'| < d, and hence reducing the effect of d —
which is fully eliminated in the uniform variants —
leaves a stronger impact on parameter-efficiency.

4 Experiment Setup

Tasks and datasets. We conduct our experiments
on the GLUE and SuperGLUE benchmarks, respec-
tively, each consisting of 8 tasks, as well as on the
HumSet benchmark (Fekih et al., 2022). HumSet
is a multilingual classification dataset for humani-
tarian crisis response that consists of 5 tasks. Ad-
ditionally, we use a combination of a// GLUE and
SuperGLUE tasks resulting in 15 datasets®. It has
been shown that tasks from GLUE and SuperGLUE
particularly benefit from multi-task learning, given
their partially overlapping task formulations and
highly varying dataset sizes (Devlin et al., 2019;

3The RTE task is contained in GLUE and SuperGLUE.

11746

Parameters Parameters

Type Model

(one task) (all tasks)
FINETUNE 100.00% (125M) 800.00% (125M)
ADAPTER 0.72% (895K) 5.74% (TM)
STL PROPETL 0.77% (959K) 6.16% (8M)
COMPACTER++ 0.02% (29K) 0.19% (235K)
(1A)2 0.05% (57K) 0.37% (455K)
LORA 0.93% (1.2M) 7.50% (9.4M)
FINETUNE-M 100.00% (125M)
Joint ADAPTER-M 0.72% (895K)
MTL PROPETL-M 1.24% (1.5M)
HYPERFORMER 47.67% (59M)
HYPERFORMER++ 4.09% (5M)
Transfer () Transfer (2)
(target task t) (all target tasks)
ADAPTERFUSION 17.05% (21M) 136.40% (170M)
Two- SCALEARN 0.06% (74K) 0.47% (590K)
Stage SCALEARNUNIFORM 0.00% (96) 0.00% (768)
MTL SCALEARN++ 0.00% (6K) 0.04% (49K)
SCALEARNUNIFORM++ 0.00% (8) 0.00% (64)

Table 1: Percentage and trainable parameters per model
(excluding task head parameters) when training on 8
tasks (as in GLUE/SuperGLUE) using ROBERTagasE.

Stickland and Murray, 2019; Asai et al., 2022;
Wang et al., 2023). Complete details regarding
the benchmarks including their train/validation/test
splits are provided in Appendix A.1.

LM backbones. We use the encoder LMs
RoBERTagasg and RoBERTa; argg (Liu et al.,
2019b) on GLUE and SuperGLUE. For the experi-
ments on HumSet, following Fekih et al. (2022) we
utilize the commonly used multilingual encoder
LMs XLM-Rpasg and XLM-Rj arge (Conneau
et al., 2020) as it consists of multiple languages.
We put our focus on encoder LMs since they
have been studied extensively and are still widely
used for a variety of tasks, e.g., representation
learning (Kusupati et al., 2022; Zhao et al., 2022;
Xiao et al., 2023), sentence segmentation (Minix-
hofer et al., 2023), and as language encoder as part
of multi-modal architectures (Saharia et al., 2022;
Singh et al., 2022; Liu et al., 2023), inter alia, espe-
cially in real-time use cases due to their efficiency
and comparatively low computational demands.

Models and baselines. We conduct experiments
on four variants of our model, namely SCALEARN,
SCALEARNUNIFORM, SCALEARN++, and
SCALEARNUNIFORM++. As a direct baseline,
we compare our models with ADAPTERFUSION,
a common two-stage MTL method that shares sim-
ilar conceptual properties. We also compare our
models with ADAPTERSOUP (Chronopoulou et al.,
2023), performing weight-space averaging over
adapter weights of the 5 most similar tasks accord-
ing to their sentence similarity, adapted to our setup

(cf. Appendix A.1). In all two-stage MTL methods,
source and target tasks are the same, containing
the tasks of the underlying benchmark. For each
target task, they learn a transfer layer (except for
ADAPTERSOUP) and a new task head.

We also select a set of strong STL base-
lines: FINETUNE, fully fine-tuning the LM,
ADAPTER (Houlsby et al., 2019) learning an
adapter module for each task, PROPETL (Zeng
et al., 2023) a more memory-efficient variation
based on parameter sparsification and COM-
PACTER++ (Mahabadi et al.,, 2021a) a highly
parameter-efficient variation using parameter-
sharing between layers. In addition, we train
(IA)3 (Liu et al., 2022), learning scaling vectors
applied to the key and value matrices and interme-
diate activations in the LM’s feed-forward layer,
and LORA (Hu et al., 2022), learning low-rank
updates to the model’s weight matrices.

Furthermore, we conduct experiments on sev-
eral joint MTL baselines, namely FINETUNE-M,
ADAPTER-M, and PROPETL-M, the fully fine-
tuned, adapter-based, and ProPETL-based joint
MTL variants, respectively; and, finally, HYPER-
FORMER and HYPERFORMER++ (Karimi Ma-
habadi et al., 2021). FINETUNE-M updates all
LM parameters, ADAPTER-M adds a single adapter
module shared for all tasks, and PROPETL-M com-
bines sparse layer- and task-specific masks through
a logical OR operation. Based on task-specific em-
beddings, HYPERFORMER and HYPERFORMER++
generate module parameters by a shared hypernet-
work. In all adapter-based models, we use a re-
duction factor of 16, and, following Pfeiffer et al.
(2021), insert the modules after the feed-forward
layer of the LM. Furthermore, to allow a fair com-
parison, we adapt PROPETL-M, HYPERFORMER,
and HYPERFORMER++ to this setting by inserting
the adapters only after each feed-forward block. To
accommodate possible variations in performance,
we train each model on multiple seeds, and report
the mean and standard deviation over multiple runs.

The full details of the experiment setup regard-
ing the benchmarks and their splits, infrastructure,
training, and hyperparameters are provided in § A.1.
To further enable the reproducibility of our results,
our code, including documentation, is available
athttps://github.com/CPJKU/ScalLearn under
the MIT license.

11747

https://github.com/CPJKU/ScaLearn

Model MNLI QQP QNLI SST-2 STS-B MRPC RTE CoLA Ave.
FINETUNE 86.61¢.51 90.320.15 91.780.28 93.330.48 90.53¢.22 86.941 52 73.475.05 58.464.03 83.930.60
ADAPTER 86.500.33 90.180.11 92.250.19 93.650.71 90.230.41 86.641 07 72.899 54 58.285 50 83.830.48
PROPETL 86.190.25 88.88p48 92.05080 93.81g72 90.039.35 85.93190 74.19903 59.29997 | 83.800.42
COMPACTER++ 85‘620.42 88.840.70 91.790,39 93.580,34 89‘670454 87‘210,61 72.022,21 58.492,58 83.400,45
(I1A)3 83.78088 88.37Tp20 90.57038 93.35030 89.93030 87.111.14 72.56223 56.57539 | 82.781.36
LoRA 86.520.10 89.860.33 92.25013 94.19553 90.660.31 87.03p62 70.40833 57.55218 | 83.561.56
FINETUNE-M 84.95¢ .36 89.760.12 90.91¢.07 92.580.76 86.14¢ 53 83.420 50 80.992 54 49.121.74 82.230.41
ADAPTER-M 86-03()‘18 89.690‘01 91.580,30 93.350,41 88.710(49 86-760,92 80.261‘9(‘, 51.791,23 83.520,32
PROPETL-M 85.230.45 87.820.16 91.37052 93.880.44 90.27022 86.36182 78.580.90 H54.71112 | 83.530.31
HYPERFORMER 86.080(46 89.130‘23 91.810,07 93.160_99 90.630(32 87.010‘87 82»791,68 57.302,21 84.740_39
HYPERFORMER++ 86.380.18 88.810.29 91.999.17 93.270.11 90.800.12 87.831.42 83.750.78 54.053.30 84.610.46
ADAPTERFUSION 86.820.04 90.23001 92.48p.15 93.23095 90.37p20 88.41p49 79.49221 59.04169 | 85.01p37
ADAPTERSOUP 63.479.37 81.630.23 78.000.20 90.750.24 80.170.18 75.001 18 62.090.64 41.061 63 71.520 59
SCALEARN 86.970.09 90.320.10 92.510.17 93.880.18 90‘960.16 87.750.58 82.06137 58.471.7 85.360_55
SCALEARNUNIFORM 86.930.10 90.380.11 92'530.28 93.580.20 90.08¢.07 87.570.86 80.071.18 59.041 05 85.020.49
SCALEARN++ 87.06((3 90.04¢.12 92.031.10 94.15p30 90.62¢.13 88.210.63 80.871.05 59.82 75 | 85.350.52
SCALEARNUNIFORM++ 86.98¢ 17 90.380.01 92'530,28 94.11¢9.07 90.18p.19 87.430.63 80.04¢.99 59.450 67 85.14¢.38

Table 2: Evaluation results on GLUE using RoOBERTagasg. (Top) STL models, only learning a single task at a time.
(Middle) Joint MTL methods, learning all tasks simultaneously. (Bottom) Two-stage MTL methods, composing
the knowledge of several source adapters. The overall best results are underlined, and the best results among the

two-stage MTL models are bold.

Model ReCoRD MultiRC BoolQ WiC WSC COPA CB RTE Avg.

FINETUNE 71.61(]‘34 71.641‘15 76.801‘34 66.382_08 63.460,00 68.606,74 81.964,33 73.472‘05 71.742,32
ADAPTER 79.020 62 72.840 48 76.711 38 65.581 56 63.460.00 70.204.13 84.823 18 72.899 54 73.191.74
PROPETL 80.290.24 73.07049 76.58078 66.60165 63.460.00 70.60344 84.46386 74.19203 | 73.691.53
COMPACTER++ 77.692.67 70.440.57 75.880.96 66.461 3 63.460.00 68.304.00 87.683.62 72.029.91 72.741 96
(TA) 7527023 70.32049 76.31lp79 67.07168 63.350.32 69.30337 87.32457 72.56223 | 72.691.71
LoRA 79.60046 71.96036 76.58074 65.14;17 63.46000 68.20405 86.43317 70.40833 | 72.722.98
FINETUNE-M 72-210428 72-110.68 76.393.07 52.191.11 63‘460.00 74‘333,40 84.520,84 74‘857,42 71.262,10
ADAPTER-M 72.430.64 72.460 43 75.329.78 51.991 74 59.945 97 71.673.40 86.311 68 76.531.06 70.831 84
PROPETL-M 73.140‘19 72~070.58 73.913.27 50.730,99 59.625,44 74.003,27 82.141,46 73‘653,83 69.912,38
HYPERFORMER 65.934.47 33.543354 T74.011.10 55.491 79 52.8810.58 95.502.50 71.43714 61.739.03 58.81g.76
HYPERFORMER++ 24.508.13 19.479753 62.179.00 50.000.00 63.460.00 54.333.30 49.400.84 49.092 56 46.555.30
ADAPTERFUSION 78.820_49 71~791.67 764720,55 66.571.94 63.46.00 734104_51 82.329 35 764032_38 73.601_71
ADAPTERSOUP 64.260.13 33.624.98 68.84¢.31 58.530.60 63.46000 52.409.41 70.890.86 57.830.93 58.731.19
SCALEARN 79-520.06 73-22()‘44 77-27068 66.351_20 63.46()‘00 74.802‘15 90.892_59 78.882‘14 75.551_16
SCALEARNUNIFORM 80.13p38 71.91960 76.060.41 67.371.92 62.507 97 71.201 23 89.111 97 75.310.90 74.201 00
SCALEARN++ 80.13p09 72.71057 76.440 53 67.13124 62.269.08 75.20193 93.04514 79.03095 | 75.741 22
SCALEARNUNIFORM++ 79.799.14 71.750.38 76.130.52 67.87p89 63.46000 74.001.70 91.612.53 74.841 58 74.930.97

Table 3: Evaluation results on SuperGLUE using RoOBERTagxsg.
5 Results get task (€2;) in the first column and the same for all

5.1 Parameter-efficiency analysis

Table 1 provides a comprehensive overview of the
number of learnable parameters of the models in
our experiment setting on GLUE and SuperGLUE:
RoBERTagasE as the backbone LM, 8 source tasks,
and the same 8 tasks as target tasks (|S|=|T|=8).
Starting from the STL models, the left and right
columns report the number of trainable parameters
for one and all tasks, respectively. The joint MTL
models learn all tasks simultaneously, and hence
only contain values in the right column. For the
two-stage MTL models, we report the number of
trainable parameters of the transfer layer for one tar-

target tasks on the right (£2). We deliberately orga-
nize the transfer parameters of the two-stage mod-
els (€2) under the corresponding numbers of other
models in the right column since the two-stage
paradigm benefits from already trained adapters
and only needs to learn the transfer layer. If the
adapters should also be trained, we provide an ex-
tra comparison with the corresponding additional
parameters in Appendix A.1.

When comparing the results of the two-stage
MTL methods in the transfer layer, ADAPTER-
FUSION is expectedly far less parameter-efficient
than SCALEARN models, where SCALEARNUNI-
FORM++ only requires 64 parameters. The variants

11748

Model Sectors Pillars 1D Subpillars 1D Pillars 2D Subpillars 2D Avg.
FINETUNE 71.99¢.32 50.40¢.24 43.760.67 61.04¢.26 41.680.62 53.770.42
ADAPTER 71.38¢.28 51.021 23 43.260.82 61.430.91 42.46¢ .51 53.91¢.75
PROPETL 71.69¢.86 49.691 .30 41.630.84 60.580.91 39.851.10 52.691 .00
COMPACTER++ 69.971 .89 37.377.99 37.762.14 58.131 64 33.109.00 47.264 53
(IA)s 70.22¢.97 45.553 43 40.053.15 58.541 .38 39.271.01 50.731.99
LoORA 71.08¢.44 33.9629.41 42.750.31 60.330 .52 42'810.63 50.19¢ .23
FINETUNE-M 51-753.62 22~6512.88 13~546.06 33.2721,23 12.423_39 26.739_44
ADAPTER-M 56.202 72 28.5314.56 16.539.46 35.9017.36 18.892 64 31.219 35
PROPETL-M 59.8010.09 26.1014.36 29.577.40 37.5312.08 30.355.91 36.679.97
HYPERFORMER 71.081 .04 40.65¢.93 34.163.37 46.2214.11 32.474 46 44.925 9
HYPERFORMER++ 60.429 79 22.077.45 20.357.04 30.5519.83 18.9010.84 30.4610.99
ADAPTERFUSION 72.050.12 49.630.53 43.15¢.38 60.68¢.23 42.140.46 53.530.35
ADAPTERSOUP 56.811 90 30.09¢.40 21.84¢ .55 40.71¢.98 17.895 02 33.471.17
SCALEARN 72.360.05 51.630.61 44.06¢.37 61.520.11 42.81¢.63 -'.")4.480_35
SCALEARNUNIFORM 72.200.14 50.08¢p.79 42.970.70 60.62¢.16 41.95¢ .60 53.560.48
SCALEARN++ 72.380.27 51.660.27 44.230.50 61.660.13 42.21¢9.21 54.43¢ .28
SCALEARNUNIFORM++ 72.02¢.32 50.780.41 42.600.85 60.82¢.14 42.14¢0.72 53.670.49

Table 4: Evaluation results on HumSet using XLM-Rpaskg.

of SCALEARN add considerably fewer transfer pa-
rameters compared to the overall parameters of the
particularly efficient joint MTL methods. More-
over, the SCALEARN models still remain com-
parable when also taking into account the source
adapter parameters. Considering these results, in
the following we report and discuss the evaluation
results in transfer learning and few-shot learning
on the respective benchmarks.

5.2 Transfer Learning Performance

Results on GLUE. Table 2 shows the evalu-
ation results on the GLUE benchmark using
RoBERTagasg. The evaluation metrics are Pear-
son’s correlation for STS-B, Matthews’ correla-
tion for CoLA, and accuracy for the rest. We
average the results over several runs and report
the corresponding standard deviation in the sub-
scripts. Overall, the two-stage models obtain strong
gains, outperforming STL and joint MTL models.
Remarkably, all variants of SCALEARN, includ-
ing the highly parameter-efficient SCALEARNUNI-
FORM++ achieve similarly good results with only
a fraction of the parameters of ADAPTERFUSION.
Comparing the different variations of our method,
while SCALEARN shows the best results, the other
models also perform highly competitively.

Results on SuperGLUE. Table 3 shows the re-
sults on SuperGLUE for all methods considered.
The evaluation metrics are F1 for MultiRC and
ReCoRD and accuracy for the other tasks. We ob-
serve similar patterns on this benchmark: two-stage
models generally outperform other baselines. In
this benchmark, SCALEARN and SCALEARN++
improve upon ADAPTERFUSION by 2 percentage

points of the average results. Notably, we observe
performance drops for various joint MTL models
in comparison to other models (up to —27% when
comparing HYPERFORMER++ and ADAPTER).
This may be a signal of the sensitivity of these
models to the selection of tasks. Furthermore, the
subpar performance of AdapterSoup suggests that
calculating weights using sentence similarity is not
appropriate for our specific problem setup. In con-
trast, the other two-stage MTL models (and, in
particular, our SCALEARN models) do not show
any considerable performance decreases.

Results on HumSet. Table 4 shows the results on
HumSet using XLM-Rpasg with the F1-score as
the evaluation metric. Similarly, SCALEARN per-
forms the best among all the methods, whereas the
more parameter-efficient variants of SCALEARN
are only marginally weaker in performance. On this
benchmark, in particular, all joint MTL methods
show poor performance, highlighting the sensitiv-
ity of these methods to task selection (up to —27%
for STL and MTL versions of FINETUNE).

We conduct an ablation study on the effect on
different combinatorial operators in SCALEARN,
reported in Appendix A.3. In Appendix A.5, we
provide further experiments and analyses of the
results along with the results of GLUE and Su-
perGLUE using RoBERTa; orgg, HumSet using
XLM-RarGE, and for the combination of all tasks
from GLUE and SuperGLUE. Finally, we provide
an analysis of the scaling coefficients of SCALEAR-
NUNIFORM and SCALEARNUNIFORM++ in Ap-
pendix A.4, revealing the effect of various source
adapters on a target task.

11749

0.90 0.80 0.60
0.851 —e— Adapter . X1 0.75 1 H 82(5) x
o 0.801 —m— AdapterFusion 0.70 1 0.45 1
'€ 0.757 —x— Scalearn 0.401
D 0.70 0.651 By 0.351
= 0.65 " 0.60 0.301
©0.60 1 /’.*::/° 0.55 ,,_*/_ 0.25 1 o
2 055 {* " / ’ — 0.20 1 _—
0, o 0501 % ——" 0.15 1 x J
0.50 1 ./ : /’ L) 0:10< - !/-74l
0.45{e— 0451w 0.051 * —e
0.40 +— T T T T 0.40 T T T T 0.00 T T T T
4 16 32 100 Al 4 16 32 100 All 4 16 32 100 All

of Training Samples

(a) GLUE

(b) SuperGLUE

(c) HumSet

Figure 2: Few-shot transfer learning results with & = {4,16,32,100} training samples for each target task using the
BASE models of RoOBERTa and XLLM-R. Full results over several runs are provided in Appendix A.6.

5.3 Few-shot Transfer Learning

We further assess the applicability of SCALEARN
in a few-shot setting, where we assume that only
k = {4,16,32,100} training samples are available
for a given target task. For two-stage MTL meth-
ods, for a given benchmark, we use the source
adapters of all tasks except the one corresponding
to the target task, where we use a source adapter
trained on only k£ samples. On the basis of this set
of source adapters, we then train a transfer layer on
the target task using k data points.

Figure 2 shows the performance of ADAPTER,
ADAPTERFUSION, and SCALEARN on the GLUE,
SuperGLUE, and HumSet benchmarks, averaged
over 5 runs. We observe that SCALEARN consis-
tently outperforms ADAPTER and ADAPTERFU-
SION in all benchmarks and values of k (except for
k = 4 on HumSet) pointing to the strength of our
method for data-lean settings. We provide the full
results, including per-dataset ones, other variations
of SCALEARN, and on RoOBERTaj srgg in §A.6.

6 Related Work

Parameter-efficient task learning in NLP. Vari-
ous parameter-efficient methods have emerged as
a more sustainable alternative to full fine-tuning,
enabling modularization, efficient sharing, and
reusability of knowledge. A common modular-
ization approach is to introduce a small number
of additional parameters into an LM, realized by
various methods such as Adapters (Rebuffi et al.,
2017; Houlsby et al., 2019), Compacter (Mahabadi
et al., 2021a), and ProPETL-Adapter (Zeng et al.,
2023). Similarly, LoRA (Hu et al., 2022) injects
trainable low-rank matrices into each transformer
layer, and BitFit (Ben Zaken et al., 2022) updates
only the bias terms. Another line of research

identifies sparse subnetworks within the model to
tune (Ansell et al., 2022; Guo et al., 2021; Hauzen-
berger et al., 2023; Ansell et al., 2024), while He
etal. (2022) and Mao et al. (2022) propose to merge
various distinct modules. We refer to Pfeiffer et al.
(2023) for a full survey on this topic.

Learning by scaling. Besides the common ap-
proach of learning a feed-forward layer for a (non-)
linear transformation of an input vector, several re-
cent methods explore the merit of learning a scaling
vector applied to the input vector in various sce-
narios. Liu et al. (2022) learn a modular network
for STL that rescales LM vectors through element-
wise multiplication. Ilharco et al. (2023) and Ortiz-
Jiménez et al. (2023) introduce task arithmetic to
control LM behavior by extracting task vectors
from pre- and post-fine-tuning model weights, then
scaling and combining them to improve MTL per-
formance. Masoudian et al. (2024) learn a gating
adapter that adjusts the scaling of representations
to control the behavior of the model at inference
time. Finally, Lian et al. (2022) learn to shift and
scale the output vectors of a vision transformer
in an STL setting. Our work contributes to this
line of research by leveraging scaling for highly
parameter-efficient and effective MTL.

Joint MTL. Interference and imbalance between
tasks have been shown to impede performance in
joint MTL (Kirkpatrick et al., 2017; Kendall et al.,
2018; Pfeiffer et al., 2023). Several studies have
aimed to address these issues and improve gener-
alization. For example, (Liu et al., 2019a) learn
representations across multiple NLU tasks using
context from a semantic similarity model, and Pi-
lault et al. (2021) introduce a parameter-efficient
model that uses modules facilitating weight shar-
ing. Moreover, Stickland and Murray (2019) use
an adapter for each task while also updating the

11750

LM parameters. Zhang et al. (2022) further focus
on modularity by only activating a subset of task-
specific modules at once; however, tasks must be
mapped a priori to a given high-level skill. Ponti
et al. (2023) and Caccia et al. (2022) loosen this
constraint by learning a task-skill allocation matrix
for cross-task generalization, but rely on a multi-
task pre-training stage. Finally, Mahabadi et al.
(2021b) leverage a hypernetwork (Ha et al., 2017)
that generates modular task-specific parameters.

Two-stage MTL. Various methods have been pro-
posed to extract task-specific information and com-
pose this knowledge. Chronopoulou et al. (2023)
studies transfer learning in generative LMs by first
selecting source adapters based on different heuris-
tics and merging their weights to create a new com-
bined adapter. Holtermann et al. (2024) provide
further insights into how to combine adapters ef-
fectively and efficiently for zero-shot knowledge
compositions. Furthermore, Huang et al. (2023)
introduce LoraHub with the aim of composing
LoRA (Hu et al., 2022) modules for cross-task gen-
eralization using black-box optimization and an
additional pre-filtering stage. Asai et al. (2022) and
Wang et al. (2023) leverage continuous prompts
learned on large-scale source tasks, leading to
competitive performance in MTL benchmarks, al-
though both methods depend on the selection of
typically high-resource source tasks. In contrast
to the mentioned methods that highly depend on
the selection of tasks and/or apply the combina-
tion to the weights, Pfeiffer et al. (2021) combines
the output representations of several independent
source adapters through an attention mechanism.
Our work is directly related to this line of research
and introduces a novel highly parameter-efficient
transfer layer applied to the output representation.

7 Conclusion

We propose SCALEARN, a highly parameter-
efficient and effective two-stage MTL method lever-
aging simple scaling of output vectors. Our pro-
posed approach directly learns the coefficients that
scale the representations of source adapters and
combines them simply by taking the sum. We con-
duct transfer learning experiments using encoder
LMs on the three benchmarks of GLUE, Super-
GLUE, and HumSet, consisting of a diverse set of
tasks, domains, and languages. Our results show
that SCALEARN and even its extremely parameter-
efficient variants obtain strong improvement over

existing MTL methods without any negative cross-
task effects. We further show that these improve-
ments are also present in few-shot transfer learning.

Limitations

The first limitation of our work concerns the selec-
tion of benchmarks — we conducted experiments
only on the GLUE, SuperGLUE, and HumSet
benchmarks. While these already cover a vast num-
ber of tasks and domains of varying sizes in differ-
ent languages, they still do not fully represent the
myriad of tasks, domains, and languages within the
NLP domain. However, we strongly believe that
our findings also hold for other transfer learning
corpora, including different tasks, domains, and
languages, especially since SCALEARN * models
are agnostic concerning this selection. Related to
this aspect, we focused on transformer-based en-
coder LMs as the backbone for our experiments and
did not experiment with other architectures, e.g.,
convolutional or recurrent networks, or transformer-
based decoder LMs. Finally, we relied on adapters
as arguably the most popular modularization tech-
nique (cf. Pfeiffer et al. (2021); Chronopoulou et al.
(2023)). Due to the large number of additional ex-
periments required and related environmental con-
cerns, we did not experiment with other modular-
ization methods (e.g., LoRA or (1 A4)3). However,
our method clearly shows the usefulness of sim-
ply scaling output representations of modules for
transfer learning.

Ethical Considerations

The nature of our work is manifold, and so are
the ethical aspects touched by our research. First,
we acknowledge the potential of NLP datasets and
models for encoding unfair stereotypical (Blodgett
et al., 2020) and exclusive (Dev et al., 2021) bi-
ases that may lead to representational and alloca-
tional harms (Barocas et al., 2017). This potential
is a general property of pre-trained language mod-
els, and the models and datasets we use in this
research are no exception to this danger. We thus
strongly advise practitioners to carefully consider
the sociotechnical context before deploying any
models (with or without SCALEARN), and, aligned
with the specific deployment scenario, to take mea-
sures against unfair discrimination. Examples of
such measures include the use of bias measure-
ment (Nangia et al., 2020) and mitigation (Bordia
and Bowman, 2019) approaches. Second, the core

11751

of this work deals with efficiency aspects. On the
one hand, given the well-known relationship be-
tween model training (and inference) effort and
potential CO2 emissions (Strubell et al., 2019), our
work directly contributes to reaching the goals of
Green Al by making parameter-efficient MTL more
environmentally sustainable. On the other hand,
since the training of language models often comes
with high infrastructure requirements exclusive to
certain user groups (Bender et al., 2021), we hope
that our work also contributes to the ongoing de-
mocratization of language technology by reducing
resource-related usage barriers.

Acknowledgements

This work received financial support by the State
of Upper Austria and the Federal Ministry of Edu-
cation, Science, and Research, through grant LIT-
2021-YOU-215. This work was also funded by the
Austrian Science Fund (FWF): P36413, P33526,
and DFH-23. The work of Carolin Holtermann
and Anne Lauscher is funded under the Excellence
Strategy of the German Federal Government and
the States. The authors would like to thank Ben-
jamin Minixhofer for his invaluable feedback on
the manuscript.

References

Alan Ansell, Edoardo Ponti, Anna Korhonen, and Ivan
Vuli¢. 2022. Composable sparse fine-tuning for cross-
lingual transfer. In Proceedings of the 60th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1778—1796,
Dublin, Ireland. Association for Computational Lin-
guistics.

Alan Ansell, Ivan Vulic, Hannah Sterz, Anna Ko-
rhonen, and Edoardo M. Ponti. 2024. Scaling
sparse fine-tuning to large language models. CoRR,
abs/2401.16405.

Akari Asai, Mohammadreza Salehi, Matthew E. Pe-
ters, and Hannaneh Hajishirzi. 2022. ATTEMPT:
parameter-efficient multi-task tuning via attentional
mixtures of soft prompts. In Proceedings of the 2022
Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2022, Abu Dhabi, United
Arab Emirates, December 7-11, 2022, pages 6655—
6672. Association for Computational Linguistics.

Yue Bai, Huan Wang, Xu Ma, Yitian Zhang, Zhigiang
Tao, and Yun Fu. 2022. Parameter-efficient masking
networks. In NeurlPS.

Solon Barocas, Kate Crawford, Aaron Shapiro, and
Hanna Wallach. 2017. The problem with bias: Al-
locative versus representational harms in machine

learning. In 9th Annual Conference of the Special
Interest Group for Computing, Information and Soci-
ety.

Elad Ben Zaken, Yoav Goldberg, and Shauli Ravfogel.
2022. BitFit: Simple parameter-efficient fine-tuning
for transformer-based masked language-models. In
Proceedings of the 60th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 2:
Short Papers), pages 1-9, Dublin, Ireland. Associa-
tion for Computational Linguistics.

Emily M. Bender, Timnit Gebru, Angelina McMillan-
Major, and Shmargaret Shmitchell. 2021. On the
dangers of stochastic parrots: Can language mod-
els be too big? In Proceedings of the 2021 ACM
Conference on Fairness, Accountability, and Trans-
parency, FAccT 21, page 610-623, New York, NY,
USA. Association for Computing Machinery.

Su Lin Blodgett, Solon Barocas, Hal Daumé III, and
Hanna Wallach. 2020. Language (technology) is
power: A critical survey of “bias” in NLP. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 5454—
5476, Online. Association for Computational Lin-
guistics.

Shikha Bordia and Samuel R. Bowman. 2019. Identify-
ing and reducing gender bias in word-level language
models. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Student Research Workshop,
pages 7-15, Minneapolis, Minnesota. Association for
Computational Linguistics.

Lucas Caccia, Edoardo Ponti, Lucas Liu, Matheus
Pereira, Nicolas Le Roux, and Alessandro Sordoni.
2022. Multi-head adapter routing for data-efficient
fine-tuning. arXiv preprint arXiv:2211.03831.

Guanzheng Chen, Fangyu Liu, Zaigiao Meng, and
Shangsong Liang. 2022. Revisiting parameter-
efficient tuning: Are we really there yet? In Proceed-
ings of the 2022 Conference on Empirical Methods
in Natural Language Processing, pages 2612-2626,
Abu Dhabi, United Arab Emirates. Association for
Computational Linguistics.

Alexandra Chronopoulou, Matthew Peters, Alexan-
der Fraser, and Jesse Dodge. 2023. AdapterSoup:
Weight averaging to improve generalization of pre-
trained language models. In Findings of the Asso-
ciation for Computational Linguistics: EACL 2023,
pages 2054-2063, Dubrovnik, Croatia. Association
for Computational Linguistics.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmadn, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440—
8451, Online. Association for Computational Lin-
guistics.

11752

https://doi.org/10.18653/v1/2022.acl-long.125
https://doi.org/10.18653/v1/2022.acl-long.125
https://doi.org/10.48550/ARXIV.2401.16405
https://doi.org/10.48550/ARXIV.2401.16405
https://aclanthology.org/2022.emnlp-main.446
https://aclanthology.org/2022.emnlp-main.446
https://aclanthology.org/2022.emnlp-main.446
http://papers.nips.cc/paper_files/paper/2022/hash/427048354ac2db22d43149c51346bafd-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/427048354ac2db22d43149c51346bafd-Abstract-Conference.html
https://doi.org/10.18653/v1/2022.acl-short.1
https://doi.org/10.18653/v1/2022.acl-short.1
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.18653/v1/2020.acl-main.485
https://doi.org/10.18653/v1/2020.acl-main.485
https://doi.org/10.18653/v1/N19-3002
https://doi.org/10.18653/v1/N19-3002
https://doi.org/10.18653/v1/N19-3002
https://doi.org/10.18653/v1/2022.emnlp-main.168
https://doi.org/10.18653/v1/2022.emnlp-main.168
https://aclanthology.org/2023.findings-eacl.153
https://aclanthology.org/2023.findings-eacl.153
https://aclanthology.org/2023.findings-eacl.153
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747

Sunipa Dev, Masoud Monajatipoor, Anaelia Ovalle, Ar-
jun Subramonian, Jeff Phillips, and Kai-Wei Chang.
2021. Harms of gender exclusivity and challenges in
non-binary representation in language technologies.
In Proceedings of the 2021 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1968-1994, Online and Punta Cana, Dominican Re-
public. Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
41714186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Selim Fekih, Nicolo’ Tamagnone, Benjamin Minixhofer,
Ranjan Shrestha, Ximena Contla, Ewan Oglethorpe,
and Navid Rekabsaz. 2022. HumSet: Dataset of
multilingual information extraction and classification
for humanitarian crises response. In Findings of the
Association for Computational Linguistics: EMNLP
2022, pages 4379-4389, Abu Dhabi, United Arab
Emirates. Association for Computational Linguistics.

Yoav Goldberg. 2019. Assessing bert’s syntactic abili-
ties. CoRR, abs/1901.05287.

Demi Guo, Alexander Rush, and Yoon Kim. 2021.
Parameter-efficient transfer learning with diff prun-
ing. In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
4884-4896, Online. Association for Computational
Linguistics.

David Ha, Andrew M. Dai, and Quoc V. Le. 2017.
Hypernetworks. In 5th International Conference
on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Pro-
ceedings. OpenReview.net.

Lukas Hauzenberger, Shahed Masoudian, Deepak Ku-
mar, Markus Schedl, and Navid Rekabsaz. 2023.
Modular and On-demand Bias Mitigation with
Attribute-Removal Subnetworks. In Findings of
the Association for Computational Linguistics: ACL
(Findings of ACL).

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-
Kirkpatrick, and Graham Neubig. 2022. Towards a
unified view of parameter-efficient transfer learning.
In The Tenth International Conference on Learning
Representations, ICLR 2022, Virtual Event, April 25-
29, 2022. OpenReview.net.

Carolin Holtermann, Markus Frohmann, Navid Rekab-
saz, and Anne Lauscher. 2024. What the weight?!
a unified framework for zero-shot knowledge com-
position. In Findings of the Association for Com-
putational Linguistics: EACL 2024. Association for
Computational Linguistics.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin de Laroussilhe, Andrea Ges-
mundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for NLP. In Pro-
ceedings of the 36th International Conference on Ma-
chine Learning, ICML 2019, 9-15 June 2019, Long
Beach, California, USA, volume 97 of Proceedings
of Machine Learning Research, pages 2790-2799.
PMLR.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. LoRA: Low-rank adaptation of
large language models. In International Conference
on Learning Representations.

Chengsong Huang, Qian Liu, Bill Yuchen Lin, Tianyu
Pang, Chao Du, and Min Lin. 2023. Lorahub: Effi-
cient cross-task generalization via dynamic lora com-
position. CoRR, abs/2307.13269.

Gabriel Ilharco, Marco Tudlio Ribeiro, Mitchell Worts-
man, Ludwig Schmidt, Hannaneh Hajishirzi, and Ali
Farhadi. 2023. Editing models with task arithmetic.
In The Eleventh International Conference on Learn-
ing Representations, ICLR 2023, Kigali, Rwanda,
May 1-5, 2023. OpenReview.net.

Rabeeh Karimi Mahabadi, Sebastian Ruder, Mostafa
Dehghani, and James Henderson. 2021. Parameter-
efficient multi-task fine-tuning for transformers via
shared hypernetworks. In Proceedings of the 59th
Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 565-576, Online. Association
for Computational Linguistics.

Alex Kendall, Yarin Gal, and Roberto Cipolla. 2018.
Multi-task learning using uncertainty to weigh losses
for scene geometry and semantics. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 7482-7491.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz,
Joel Veness, Guillaume Desjardins, Andrei A. Rusu,
Kieran Milan, John Quan, Tiago Ramalho, Ag-
nieszka Grabska-Barwinska, Demis Hassabis, Clau-
dia Clopath, Dharshan Kumaran, and Raia Hadsell.
2017. Overcoming catastrophic forgetting in neural
networks. Proceedings of the National Academy of
Sciences, 114(13):3521-3526.

Deepak Kumar, Oleg Lesota, George Zerveas, Daniel
Cohen, Carsten Eickhoff, Markus Schedl, and Navid
Rekabsaz. 2023. Parameter-efficient modularised
bias mitigation via AdapterFusion. In Proceedings
of the 17th Conference of the European Chapter
of the Association for Computational Linguistics,

11753

https://aclanthology.org/2021.emnlp-main.150
https://aclanthology.org/2021.emnlp-main.150
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2022.findings-emnlp.321
https://doi.org/10.18653/v1/2022.findings-emnlp.321
https://doi.org/10.18653/v1/2022.findings-emnlp.321
http://arxiv.org/abs/1901.05287
http://arxiv.org/abs/1901.05287
https://doi.org/10.18653/v1/2021.acl-long.378
https://doi.org/10.18653/v1/2021.acl-long.378
https://openreview.net/forum?id=rkpACe1lx
https://openreview.net/forum?id=0RDcd5Axok
https://openreview.net/forum?id=0RDcd5Axok
http://proceedings.mlr.press/v97/houlsby19a.html
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://doi.org/10.48550/arXiv.2307.13269
https://doi.org/10.48550/arXiv.2307.13269
https://doi.org/10.48550/arXiv.2307.13269
https://openreview.net/pdf?id=6t0Kwf8-jrj
https://doi.org/10.18653/v1/2021.acl-long.47
https://doi.org/10.18653/v1/2021.acl-long.47
https://doi.org/10.18653/v1/2021.acl-long.47
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.1073/pnas.1611835114
https://doi.org/10.1073/pnas.1611835114
https://doi.org/10.18653/v1/2023.eacl-main.201
https://doi.org/10.18653/v1/2023.eacl-main.201

pages 2738-2751, Dubrovnik, Croatia. Association
for Computational Linguistics.

Aditya Kusupati, Gantavya Bhatt, Aniket Rege,
Matthew Wallingford, Aditya Sinha, Vivek Ra-
manujan, William Howard-Snyder, Kaifeng Chen,
Sham M. Kakade, Prateek Jain, and Ali Farhadi.
2022. Matryoshka representation learning. In Ad-
vances in Neural Information Processing Systems 35:
Annual Conference on Neural Information Process-
ing Systems 2022, NeurlPS 2022, New Orleans, LA,
USA, November 28 - December 9, 2022.

Anne Lauscher, Tobias Lueken, and Goran Glavas. 2021.
Sustainable modular debiasing of language models.
In Findings of the Association for Computational
Linguistics: EMNLP 2021, pages 4782—4797, Punta
Cana, Dominican Republic. Association for Compu-
tational Linguistics.

Quentin Lhoest, Albert Villanova del Moral, Yacine
Jernite, Abhishek Thakur, Patrick von Platen, Suraj
Patil, Julien Chaumond, Mariama Drame, Julien Plu,
Lewis Tunstall, Joe Davison, Mario gaéko, Gun-
jan Chhablani, Bhavitvya Malik, Simon Brandeis,
Teven Le Scao, Victor Sanh, Canwen Xu, Nicolas
Patry, Angelina McMillan-Major, Philipp Schmid,
Sylvain Gugger, Clément Delangue, Théo Matus-
siere, Lysandre Debut, Stas Bekman, Pierric Cis-
tac, Thibault Goehringer, Victor Mustar, Francois
Lagunas, Alexander Rush, and Thomas Wolf. 2021.
Datasets: A community library for natural language
processing. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing: System Demonstrations, pages 175—184, Online
and Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 4582—
4597, Online. Association for Computational Lin-
guistics.

Dongze Lian, Daquan Zhou, Jiashi Feng, and Xinchao
Wang. 2022. Scaling & shifting your features: A new
baseline for efficient model tuning. In NeurIPS.

Haohe Liu, Zehua Chen, Yi Yuan, Xinhao Mei, Xubo
Liu, Danilo Mandic, Wenwu Wang, and Mark D
Plumbley. 2023. AudioLDM: Text-to-audio genera-
tion with latent diffusion models. Proceedings of the
International Conference on Machine Learning.

Haokun Liu, Derek Tam, Mohammed Mugeeth, Jay Mo-
hta, Tenghao Huang, Mohit Bansal, and Colin Raffel.
2022. Few-shot parameter-efficient fine-tuning is bet-
ter and cheaper than in-context learning. In NeurIPS.

Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jian-
feng Gao. 2019a. Multi-task deep neural networks
for natural language understanding. In Proceedings

of the 57th Conference of the Association for Compu-
tational Linguistics, ACL 2019, Florence, Italy, July
28- August 2, 2019, Volume 1: Long Papers, pages
4487-4496. Association for Computational Linguis-
tics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqgi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019b.
Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In 7th International
Conference on Learning Representations, ICLR 2019,
New Orleans, LA, USA, May 6-9, 2019. OpenRe-
view.net.

Rabeeh Karimi Mahabadi, James Henderson, and Se-
bastian Ruder. 2021a. Compacter: Efficient low-rank
hypercomplex adapter layers. In Advances in Neural
Information Processing Systems 34: Annual Confer-
ence on Neural Information Processing Systems 2021,
NeurIPS 2021, December 6-14, 2021, virtual, pages
1022-1035.

Rabeeh Karimi Mahabadi, Sebastian Ruder, Mostafa
Dehghani, and James Henderson. 2021b. Parameter-
efficient multi-task fine-tuning for transformers via
shared hypernetworks. In Proceedings of the 59th
Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing, ACL/IJCNLP
2021, (Volume 1: Long Papers), Virtual Event, Au-
gust 1-6, 2021, pages 565-576. Association for Com-
putational Linguistics.

Yuning Mao, Lambert Mathias, Rui Hou, Amjad Alma-
hairi, Hao Ma, Jiawei Han, Scott Yih, and Madian
Khabsa. 2022. UniPELT: A unified framework for
parameter-efficient language model tuning. In Pro-
ceedings of the 60th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 6253—6264, Dublin, Ireland. Associa-
tion for Computational Linguistics.

Shahed Masoudian, Cornelia Volaucnik, Markus Schedl,
and Navid Rekabsaz. 2024. Effective controllable
bias mitigation for classification and retrieval using
gate adapters. In Proceedings of the 18th Confer-
ence of the European Chapter of the Association for
Computational Linguistics. Association for Compu-
tational Linguistics.

Michael McCloskey and Neal J Cohen. 1989. Catas-
trophic interference in connectionist networks: The
sequential learning problem. In Psychology of learn-
ing and motivation, volume 24, pages 109-165. Else-
vier.

Benjamin Minixhofer, Jonas Pfeiffer, and Ivan Vulic.
2023. Where’s the point? self-supervised multilin-
gual punctuation-agnostic sentence segmentation. In
Proceedings of the 61st Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:

11754

http://papers.nips.cc/paper_files/paper/2022/hash/c32319f4868da7613d78af9993100e42-Abstract-Conference.html
https://doi.org/10.18653/v1/2021.findings-emnlp.411
https://doi.org/10.18653/v1/2021.emnlp-demo.21
https://doi.org/10.18653/v1/2021.emnlp-demo.21
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353
http://papers.nips.cc/paper_files/paper/2022/hash/00bb4e415ef117f2dee2fc3b778d806d-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/00bb4e415ef117f2dee2fc3b778d806d-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/0cde695b83bd186c1fd456302888454c-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/0cde695b83bd186c1fd456302888454c-Abstract-Conference.html
https://doi.org/10.18653/v1/p19-1441
https://doi.org/10.18653/v1/p19-1441
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://proceedings.neurips.cc/paper/2021/hash/081be9fdff07f3bc808f935906ef70c0-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/081be9fdff07f3bc808f935906ef70c0-Abstract.html
https://doi.org/10.18653/v1/2021.acl-long.47
https://doi.org/10.18653/v1/2021.acl-long.47
https://doi.org/10.18653/v1/2021.acl-long.47
https://doi.org/10.18653/v1/2022.acl-long.433
https://doi.org/10.18653/v1/2022.acl-long.433
https://doi.org/10.18653/V1/2023.ACL-LONG.398
https://doi.org/10.18653/V1/2023.ACL-LONG.398

Long Papers), ACL 2023, Toronto, Canada, July 9-14,
2023, pages 7215-7235. Association for Computa-
tional Linguistics.

Nikita Nangia, Clara Vania, Rasika Bhalerao, and
Samuel R. Bowman. 2020. CrowS-pairs: A chal-
lenge dataset for measuring social biases in masked
language models. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1953—-1967, Online. As-
sociation for Computational Linguistics.

Guillermo Ortiz-Jiménez, Alessandro Favero, and Pas-
cal Frossard. 2023. Task arithmetic in the tan-
gent space: Improved editing of pre-trained models.
CoRR, abs/2305.12827.

Adam Paszke, Sam Gross, Francisco Massa, Adam

Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Pytorch: An
imperative style, high-performance deep learning li-
brary. In Advances in Neural Information Processing
Systems 32: Annual Conference on Neural Informa-
tion Processing Systems 2019, NeurIPS 2019, De-
cember 8-14, 2019, Vancouver, BC, Canada, pages
8024-8035.

Jonas Pfeiffer, Aishwarya Kamath, Andreas Riicklé,
Kyunghyun Cho, and Iryna Gurevych. 2021.
AdapterFusion: Non-destructive task composition
for transfer learning. In Proceedings of the 16th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Main Volume, pages
487-503, Online. Association for Computational Lin-
guistics.

Jonas Pfeiffer, Andreas Riicklé, Clifton Poth, Aishwarya
Kamath, Ivan Vulic, Sebastian Ruder, Kyunghyun
Cho, and Iryna Gurevych. 2020. Adapterhub: A
framework for adapting transformers. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing: System Demon-
strations, EMINLP 2020 - Demos, Online, November
16-20, 2020, pages 46-54. Association for Computa-
tional Linguistics.

Jonas Pfeiffer, Sebastian Ruder, Ivan Vulic, and

Edoardo Maria Ponti. 2023. Modular deep learning.
CoRR, abs/2302.11529.

Jonathan Pilault, Amine Elhattami, and Christopher J.
Pal. 2021. Conditionally adaptive multi-task learn-
ing: Improving transfer learning in NLP using fewer
parameters & less data. In 9th International Confer-
ence on Learning Representations, ICLR 2021, Vir-
tual Event, Austria, May 3-7, 2021. OpenReview.net.

Edoardo Maria Ponti, Alessandro Sordoni, Yoshua Ben-

gio, and Siva Reddy. 2023. Combining parameter-
efficient modules for task-level generalisation. In
Proceedings of the 17th Conference of the European

Chapter of the Association for Computational Lin-
guistics, pages 687-702, Dubrovnik, Croatia. Associ-
ation for Computational Linguistics.

Clifton Poth, Jonas Pfeiffer, Andreas Riicklé, and Iryna
Gurevych. 2021. What to pre-train on? efficient
intermediate task selection. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2021, Virtual Event
/ Punta Cana, Dominican Republic, 7-11 November,
2021, pages 10585-10605. Association for Computa-
tional Linguistics.

Yada Pruksachatkun, Jason Phang, Haokun Liu,
Phu Mon Htut, Xiaoyi Zhang, Richard Yuanzhe Pang,
Clara Vania, Katharina Kann, and Samuel R. Bow-
man. 2020. Intermediate-task transfer learning with
pretrained language models: When and why does it
work? In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
5231-5247, Online. Association for Computational
Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21:140:1-140:67.

Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea
Vedaldi. 2017. Learning multiple visual domains
with residual adapters. In Advances in Neural Infor-
mation Processing Systems 30: Annual Conference
on Neural Information Processing Systems 2017, De-
cember 4-9, 2017, Long Beach, CA, USA, pages 506—
516.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3982-3992, Hong Kong, China. Association for Com-
putational Linguistics.

Sebastian Ruder. 2017. An overview of multi-task learn-
ing in deep neural networks. CoRR, abs/1706.05098.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala
Li, Jay Whang, Emily L. Denton, Seyed Kam-
yar Seyed Ghasemipour, Raphael Gontijo Lopes,
Burcu Karagol Ayan, Tim Salimans, Jonathan Ho,
David J. Fleet, and Mohammad Norouzi. 2022. Pho-
torealistic text-to-image diffusion models with deep
language understanding. In Advances in Neural In-
formation Processing Systems 35: Annual Confer-
ence on Neural Information Processing Systems 2022,
NeurIPS 2022, New Orleans, LA, USA, November 28
- December 9, 2022.

Harrisen Scells, Shengyao Zhuang, and Guido Zuccon.
2022. Reduce, reuse, recycle: Green information
retrieval research. In Proceedings of the 45th Inter-
national ACM SIGIR Conference on Research and

11755

https://doi.org/10.18653/v1/2020.emnlp-main.154
https://doi.org/10.18653/v1/2020.emnlp-main.154
https://doi.org/10.18653/v1/2020.emnlp-main.154
https://doi.org/10.48550/arXiv.2305.12827
https://doi.org/10.48550/arXiv.2305.12827
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://doi.org/10.18653/v1/2021.eacl-main.39
https://doi.org/10.18653/v1/2021.eacl-main.39
https://doi.org/10.18653/v1/2020.emnlp-demos.7
https://doi.org/10.18653/v1/2020.emnlp-demos.7
https://doi.org/10.48550/arXiv.2302.11529
https://openreview.net/forum?id=de11dbHzAMF
https://openreview.net/forum?id=de11dbHzAMF
https://openreview.net/forum?id=de11dbHzAMF
https://aclanthology.org/2023.eacl-main.49
https://aclanthology.org/2023.eacl-main.49
https://doi.org/10.18653/v1/2021.emnlp-main.827
https://doi.org/10.18653/v1/2021.emnlp-main.827
https://doi.org/10.18653/v1/2020.acl-main.467
https://doi.org/10.18653/v1/2020.acl-main.467
https://doi.org/10.18653/v1/2020.acl-main.467
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://proceedings.neurips.cc/paper/2017/hash/e7b24b112a44fdd9ee93bdf998c6ca0e-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/e7b24b112a44fdd9ee93bdf998c6ca0e-Abstract.html
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
http://arxiv.org/abs/1706.05098
http://arxiv.org/abs/1706.05098
http://papers.nips.cc/paper_files/paper/2022/hash/ec795aeadae0b7d230fa35cbaf04c041-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/ec795aeadae0b7d230fa35cbaf04c041-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/ec795aeadae0b7d230fa35cbaf04c041-Abstract-Conference.html
https://doi.org/10.1145/3477495.3531766
https://doi.org/10.1145/3477495.3531766

Development in Information Retrieval, SIGIR ’22,
page 2825-2837, New York, NY, USA. Association
for Computing Machinery.

Roy Schwartz, Jesse Dodge, Noah A. Smith, and
Oren Etzioni. 2020. Green ai. Commun. ACM,
63(12):54-63.

Amanpreet Singh, Ronghang Hu, Vedanuj Goswami,
Guillaume Couairon, Wojciech Galuba, Marcus
Rohrbach, and Douwe Kiela. 2022. FLAVA: A foun-
dational language and vision alignment model. In
CVPR.

Asa Cooper Stickland and Iain Murray. 2019. BERT
and pals: Projected attention layers for efficient adap-
tation in multi-task learning. In Proceedings of the
36th International Conference on Machine Learning,
ICML 2019, 9-15 June 2019, Long Beach, California,
USA, volume 97 of Proceedings of Machine Learning
Research, pages 5986-5995. PMLR.

Emma Strubell, Ananya Ganesh, and Andrew McCal-
lum. 2019. Energy and policy considerations for
deep learning in NLP. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 3645-3650, Florence, Italy. Asso-
ciation for Computational Linguistics.

Tan Tenney, Dipanjan Das, and Ellie Pavlick. 2019.
BERT rediscovers the classical NLP pipeline. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4593—
4601, Florence, Italy. Association for Computational
Linguistics.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Aman-
preet Singh, Julian Michael, Felix Hill, Omer Levy,
and Samuel R. Bowman. 2019a. Superglue: A stick-
ier benchmark for general-purpose language under-
standing systems. In Advances in Neural Information
Processing Systems 32: Annual Conference on Neu-
ral Information Processing Systems 2019, NeurIPS
2019, December 8-14, 2019, Vancouver, BC, Canada,
pages 3261-3275.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019b.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In 7th In-
ternational Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net.

Zhen Wang, Rameswar Panda, Leonid Karlinsky,
Rogério Feris, Huan Sun, and Yoon Kim. 2023.
Multitask prompt tuning enables parameter-efficient
transfer learning. CoRR, abs/2303.02861.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,

Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38—45, Online. Association
for Computational Linguistics.

Shitao Xiao, Zheng Liu, Peitian Zhang, and Niklas
Muennighoff. 2023. C-pack: Packaged resources
to advance general chinese embedding.

Derrick Xin, Behrooz Ghorbani, Justin Gilmer, Ankush
Garg, and Orhan Firat. 2022. Do current multi-task
optimization methods in deep learning even help? In
NeurlPS.

Guangtao Zeng, Peiyuan Zhang, and Wei Lu. 2023.
One network, many masks: Towards more parameter-
efficient transfer learning. In Proceedings of the 61st
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 7564—
7580, Toronto, Canada. Association for Computa-
tional Linguistics.

Fan Zhang, Duyu Tang, Yong Dai, Cong Zhou,
Shuangzhi Wu, and Shuming Shi. 2022. Skillnet-
nlu: A sparsely activated model for general-purpose
natural language understanding.

Yu Zhang and Qiang Yang. 2022. A survey on multi-
task learning. IEEE Transactions on Knowledge and
Data Engineering, 34(12):5586-5609.

Wayne Xin Zhao, Jing Liu, Ruiyang Ren, and Ji-Rong
Wen. 2022. Dense text retrieval based on pretrained
language models: A survey. CoRR, abs/2211.14876.

11756

https://doi.org/10.1145/3381831
http://proceedings.mlr.press/v97/stickland19a.html
http://proceedings.mlr.press/v97/stickland19a.html
http://proceedings.mlr.press/v97/stickland19a.html
https://doi.org/10.18653/v1/P19-1355
https://doi.org/10.18653/v1/P19-1355
https://doi.org/10.18653/v1/P19-1452
https://proceedings.neurips.cc/paper/2019/hash/4496bf24afe7fab6f046bf4923da8de6-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/4496bf24afe7fab6f046bf4923da8de6-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/4496bf24afe7fab6f046bf4923da8de6-Abstract.html
https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7
https://doi.org/10.48550/arXiv.2303.02861
https://doi.org/10.48550/arXiv.2303.02861
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
http://arxiv.org/abs/2309.07597
http://arxiv.org/abs/2309.07597
http://papers.nips.cc/paper_files/paper/2022/hash/580c4ec4738ff61d5862a122cdf139b6-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/580c4ec4738ff61d5862a122cdf139b6-Abstract-Conference.html
https://aclanthology.org/2023.acl-long.418
https://aclanthology.org/2023.acl-long.418
https://doi.org/10.1109/TKDE.2021.3070203
https://doi.org/10.1109/TKDE.2021.3070203
https://doi.org/10.48550/ARXIV.2211.14876
https://doi.org/10.48550/ARXIV.2211.14876

A Appendix

A.1 Complete Experiment Details

Name |Train| |Validation| |Test|
MNLI 353,431 39,270 9,815
QQP 327,461 36,384 40,430
QNLI 94,268 10,474 5,463
SST-2 60,614 6,734 872
STS-B 5,174 574 1,500
MRPC 3,301 366 408
RTE 2,241 249 271
CoLA 7,695 855 1,043
ReCoRD 100,730 10,000 10,000
MultiRC 24,518 2,724 4,848
BoolQ 8,484 942 3,270
WiC 4,885 542 638
WSC 498 55 104
COPA 360 40 100
CB 225 25 56
Sectors 117,435 16,039 15,147
Pillars 1D 117,435 16,039 15,147
Subpillars 1D | 117,435 16,039 15,147
Pillars 2D 117,435 16,039 15,147
Subpillars 2D | 117,435 16,039 15,147

Table 5: Number of used samples for each dataset and
used split. (Top) GLUE tasks. (Middle) SuperGLUE
tasks. (Bottom) HumSet tasks.

Dataset Details. As has been mentioned, we are
using the GLUE, SuperGLUE, and HumSet bench-
marks for our experiments. Table 6 summarizes
the tasks contained in each of the datasets. We use
the datasets library (Lhoest et al., 2021) to load
each dataset for our experiments. We set the max-
imum length of the input sequence to 128 tokens
for all tasks in GLUE, SuperGLUE, and HumSet.
However, for MultiRC and ReCoRD, we set the
maximum length to 324 and 256, respectively, due
to their significantly longer context lengths. Note
that we treat HumSet as five separate tasks, fol-
lowing (Fekih et al., 2022). The GLUE and Super-
GLUE benchmarks only contain the training and
validation split publicly, so we follow Chen et al.
(2022) and use 10% of the training samples from
the training split as the validation set and the re-
maining 90% for training. We split the datasets
with the datasets library (Lhoest et al., 2021) us-
ing seed 42 and shuffle the samples. Then, the
original validation split is taken as the test set on
which we report the performance of all models. For
HumSet, we use the original train/validation/test
splits, as all of them are publicly available, includ-
ing labels. Details about the train/validation/test
splits can be found in Table 5.

Computing Infrastructure. We run all experi-
ments with ROBERTagasg and XLM-Rgasg on a
single Nvidia GTX1080Ti GPU and Intel Xeon
CPU E5-2640 v4 CPUs, and the experiments with
ROBERTay srge and XLM-Rparge on a single
Nvidia RTX5000 GPU and Intel Xeon Silver 4216
CPUs.

Implementation Details. We use PyTorch (Paszke
et al., 2019) for all experiments. For the joint
multi-task learning methods, we adapt the code-
base of Karimi Mahabadi et al. (2021) and
Zeng et al. (2023), both of which rely on
the transformers (Wolf et al., 2020) library.
For all other models, we make use of the
adapter-transformers library (Pfeiffer et al.,
2020) library, a wrapper around the transformers
library. Our code is released under the MIT Li-
cense, ensuring open access to the community for
further development.

Training and optimization. We train all methods
with a batch size of 32. All STL and two-stage
MTL methods are trained for a maximum of 30
epochs with early stopping and patience of 5. * We
use 10 seeds for low-resource and 3 seeds for high-
resource tasks when using ROBERTagasg, and on
5 and 2 seeds for low- and high-resource tasks, re-
spectively, when using ROBERTay orge. We define
tasks with more than 10k training samples as high-
resource and as low-resource otherwise. All joint
MTL models are trained on 3 seeds. We report the
mean and standard deviations across all runs. We
use the AdamW (Kingma and Ba, 2015; Loshchilov
and Hutter, 2019) optimizer with default PyTorch
hyperparameters (weight decay = 0.01, 51 = 0.9,
Ba =10.99, ¢ =1-10"5). We use seeds {0, 1} for
instances with two seeds, {0, 1,27} for instances
with three seeds, seeds {0, 1,2, 3,47} for instances
with five seeds, and {0,1,2,3,4,5,6,7,8,9} for
instances with ten seeds.

Single-task learning hyperparameters. We train
FINETUNE with a learning rate of 2e-5, ADAPTER
with a learning rate of 3e-4, COMPACTER++ with
a learning rate of 3e-3, and PROPETL with a learn-
ing rate of 1e-3, a mask learning rate of 5e-3, a spar-
sity rate of 0.5, and a weight decay of 0.1, which
we found to be the most suitable for our setup. Fur-
thermore, we train (/A)3 with a learning rate of
Se-3. For LORA, we use a learning rate of 3e-4 in

*The exception is ReCoRD, which we train on 3 epochs
due to its size.

11757

Name Category Task Domain Metric

MNLI GLUE NLI various accuracy

QQP GLUE paraphrase detection social QA accuracy & F1
QNLI GLUE NLI Wikipedia accuracy
SST-2 GLUE sentiment analysis Movie Reviews accuracy
STS-B GLUE sentence similarity various Pearson & Spearman corr.
MRPC GLUE paraphrase detection news accuracy & F1
RTE GLUE NLI News, Wikipedia accuracy
CoLA GLUE acceptability various Matthews’ corr.
ReCoRD SuperGLUE cloze-style QA news (CNN, Daily Mail) F1 & EM
MultiRC SuperGLUE QA various Fl1 & EM
BoolQ SuperGLUE boolean QA Wikipedia accuracy

WwiC SuperGLUE word sense disambiguation lexical databases accuracy

WSC SuperGLUE coreference / commonsense fiction books accuracy
COPA SuperGLUE commonsense reasoning various accuracy

CB SuperGLUE NLI various accuracy
Sectors HumSet classification humanitarian crisis response F1 & precision
Pillars 1D HumSet classification humanitarian crisis response F1 & precision
Subpillars 1D | HumSet classification humanitarian crisis response F1 & precision
Pillars 2D HumSet classification humanitarian crisis response F1 & precision
Subpillars 2D | HumSet classification humanitarian crisis response F1 & precision

Table 6: Details of all datasets. Lexical databases for WiC include WordNet, VerbNet, Wiktionary. For datasets
where two metrics are officially used, we use the underlined metric as our main metric. (Top) GLUE tasks. (Middle)

SuperGLUE tasks. (Bottom) HumSet tasks.

Parameters

Model (one task)

Parameters
(all tasks)

Task (©) + Transfer (2)
(source adapters + transfer layers)

ADAPTERFUSION 17.05% (21M)

SCALEARN 0.06% (74K)
SCALEARNUNIFORM 0.00% (96)
SCALEARN++ 0.00% (6K)
SCALEARNUNIFORM++ 0.00% (8)

136.40% (170M)
0.47% (590K)
0.00% (768)
0.04% (49K)
0.00% (64)

5.74% + 136.40% =142.14% (177M)
5.74% + 0.47% =6.21% (8M)
5.74% + 0.00% =5.74% (TM)
5.74% + 0.04% =5.79% (TM)
5.74% + 0.00% =5.74% (TM)

Table 7: Percentage and number of trainable parameters for Two-Stage MTL models in total.

combination with rank » = 32 and scaling factor
o = 64. Moreover, we follow Hu et al. (2022) and
apply LoRA on the query and value matrices of the
transformer. Each of them is trained with a linear
learning rate decay.

For RoBERTay orge, We add a linear learning
rate warmup for the first 10% of training, as we
notice it improves stability. For early stopping,
we use the loss on the validation set, except for
HumSet, where we use the Fl-score, and in the
few-shot setting, where we use the main metric for
the respective dataset, as shown in Table 6. In the
few-shot setting, we train for a maximum of 1,000
steps, apply an early stopping patience of 20, and
use a maximum of 5,000 samples for validation.
Note that, while the layer normalization parame-
ters of the LM have also been updated (Mahabadi
et al., 2021a,b), following Pfeiffer et al. (2021), we
keep them frozen. This approach improves modu-
larity, while still allowing LMs to efficiently adapt

to new tasks. Note that the same hyperparameters
as outlined here are also used for ADAPTER in our
probing analyses (cf. Appendix A.2).

Joint MTL hyperparameters. In all joint multi-
task learning methods, we sample tasks with con-
ventional temperature-based sampling with temper-
ature 7 = 10, following Mahabadi et al. (2021b)
and Zeng et al. (2023). Specifically, a task is sam-
/T, where p; = —At—,
2im1 Ve
Ny the number of training samples of task ¢, and
7 = 10. Using this sampling strategy, we train each
model for a total of 375,000 steps to ensure con-
vergence and evaluate every 7,500 steps. We train
each model with early stopping and patience of 10.
In the end, the model checkpoint with the lowest
average validation loss is loaded and evaluated on
the test set. We train FINETUNE-M with a learning
rate of 2e-5, ADAPTER-M, HYPERFORMER, and
HYPERFORMER++ with a learning rate of 3e-4,

pled with probability p;

11758

and PROPETL-M with a learning rate of 3e-4 and
a mask learning rate of 3e-3, a sparsity rate of 0.3,
and no weight decay. We train each of them with
a linear learning rate warmup for the first 10% of
training, followed by a linear learning rate decay.
For the remaining hyperparameters of PROPETL-
M, HYPERFORMER, and HYPERFORMER++, we
follow the respective original implementations, but
always use a reduction factor of 16 for a fair com-
parison.

Two-stage MTL hyperparameters. We train each
variant of SCALEARN * with a learning rate of
6e-3 and train ADAPTERFUSION with a learning
rate of Se-5, following Pfeiffer et al. (2021). Both
SCALEARN * and ADAPTERFUSION are trained
with a linear learning rate decay and no warmup.
Early stopping is the same as in the single-task
learning setting. We initialize the parameters
of SCALEARN * with V' (%,0.001),% and apply
a dropout rate of 0.3 to increase robustness for
SCALEARN and SCALEARN++. For AdapterSoup,
we first calculate the cosine similarity of sentence
embeddings for each task from the training set us-
ing the sentence-transformers (Reimers
and Gurevych, 2019) library and the
all-mpnet-base-v2 model. In contrast to
Chronopoulou et al. (2023), who only select 100
samples for each domain, we select 10000 samples
for each task, as our sequences corresponding to
tasks are meaningfully shorter than the sequences
corresponding to domains. Using these similarities,
we select the top 5 most similar tasks to the target
task, normalize the similarity scores to obtain the
weights, and perform weight-space averaging of
the adapter parameters, following Chronopoulou
et al. (2023). Note that we also include the corpus
of the target task when calculating the similarities
for weight-space averaging, and hence also the
target adapter during weight-space averaging, and
train a new task head on the target task to allow
a more fair comparison to other two-stage MTL
methods. We use a learning rate of 3e-4 when
training the target task head with ADAPTERSOUP.

Efficiency of two-stage MTL methods. We pro-
vide a comprehensive comparison of all trainable
parameters of two-stage MTL methods if all the
adapters should also be trained in Table 7.

*We also test out {N (%,0.001), N (£,0.001),
N (1,0.001)}.

A.2 Analysis on Scaling Output
Representations

As mentioned in § 3, we conducted preliminary
experiments in which we scaled the output repre-
sentations of adapters — in isolation and combin-
ing two of them each. We use the GLUE (Wang
et al., 2019b) and SuperGLUE (Wang et al., 2019a)
benchmarks (cf. Appendix A.1) and train a Pfeiffer
adapter (Pfeiffer et al., 2021) on each task using
the encoder LM RoBERTagasg (Liu et al., 2019b).
In our probing-like setup (Tenney et al., 2019), we
freeze both the backbone and adapter weights and
train a new task head on target task ¢ each time
we change the scaling factor. For full clarity, we
first show the effect of scaling output representa-
tions of adapters on a subset of tasks from GLUE
and SuperGLUE in Figure 3, and then show the
remaining ones in Figure 5 as well as Figure 6.
Complete descriptions of the datasets, hyperparam-
eters, and training procedure are provided in § 4
and Appendix A.1.

We start by analyzing the performance change
of a target task when scaling the output representa-
tions of the adapter of one given source task. We
define w; as the scaling value in the range of [0, 1],
multiplied by the output representations o, of the
source task s in all layers, such that o} = w;ol. Fig-
ure 3 (Top) shows the probing results on four target
tasks (each column), given various scaling weights
applied to four source tasks (one of which is the
respective target task). The results show that, while
increasing the scaling weights generally improves
the performance, the optimal value is not necessar-
ily at ws = 1. In particular, there exist instances
with 0 < wg < 1 reaching better performance than
ws = 1. This suggests that partial knowledge trans-
fer of tasks may be more beneficial. Notably, and
as also reported in previous studies (Poth et al.,
2021; Pruksachatkun et al., 2020), some source
tasks such as MNLI show strong transfer learning
abilities.

Next, we go one step further by assessing the
scaled combination of the output vectors of two
adapters. We focus on MNLI as one of the source
tasks given its observed benefit in transfer learning,
and set the second source adapter (denoted by s)
to the one corresponding to the target task. We
use two scaling parameters wynL1 and ws to scale
o1 and o, respectively. The resulting output
vector is defined as: oé = wsoé—FwMNuofv[NLI. Fig-
ure 3 (Bottom) shows the results for various values

11759

0.95 0.8 0.9 0.8 T —
09 —® - MNLI —®- MNLI —®- MNLI _q —e- MNLI ~
91 e ontt e | e AN e e . _
¢ QNle .—-——_:?1 0.75 ¢ QNle) e Tin 085 ¢ QNL! ./ 0.75 ¢ QNL! . o—d
2 0.85{ —x=- MuItiRC - 2=~ =%= MultiRC .-¢ 4 —%= MultiRC '/,__ =% - MultiRC o/»_ B
I —e— CB I —e— COPA - *—q —e— MRPC ~ & “¢-% 079 _e- rre Y 7T
5 08 ; li e 0.7 £ . 0.8 b e A
v 4 x7 ‘0 e 0.651 / L P
S / ‘i / SIS S S & / ;
< 0.75 Ve ¢ 7 /) 7~ - / | R
; % 0.65 e 0751 4 .- i foodTT——
0.7 MageT s e T e S LTI &t 061 f== s,
pe®C T Ty ._/_’,‘(.:_—»x———""--—»x-———x-»x p—= =4
0.65 . 0.55
0.00.1 0.3 0.5 0.7 0.91.0 0.00.1 0.3 0.5 0.7 0.91.0 0.00.1 0.3 0.5 0.7 0.91.0 0.00.1 0.3 0.5 0.7 0.91.0
Ws Ws Ws Ws
0.95 ‘ 0.8 ‘ 0.9 J 0.8 T T e - 1
ot —e i Sep=in
0.9 R i o beow=zZ oI I s =T 075
Y f==4 0.75- e AT TTIIIIISAY 0.85 o~ - o——o—¢
20851 yd . 1 L b ettt -
© 08 —o— wuny = 0.0 07 —o— wuni = 0.0 0.8 prow=T AT —e— Wy = 0.0 0.79 /—'— Wy = 0.0
3 wuny = 0.3 : wuny = 0.3 ' pe wuny = 0.3 0.651 ° Wy = 0.3
£ 0.75 / Wuny = 0.5 ./ Wuny = 0.5 Wuny = 0.5 ’ Wy = 0.5
07 /. => = wuny = 0.7 0.65 / => = wuny = 0.7 0.75 py —> = wuny = 0.7 0.6 => = wuny = 0.7
.7 o~
> —a= Wy = 1.0 o —a= wuny = 1.0 g -x= wuny = 1.0 —* -x= wuny = 1.0
0.65 0.61 0.7 0.55
0.00.1 03 05 0.7 0.91.0 0.00.1 0.3 0.5 0.7 0.91.0 0.00.1 0.3 0.5 0.7 0.91.0 0.00.1 0.3 0.5 0.7 091.0
Wes Wcora WMRPC WRTE
(a) CB (b) COPA (¢) MRPC (d) RTE

Figure 3: Probing results of 4 target tasks in various transfer learning conditions. (Top) Effect of scaling the
output representations of adapters by weight w, using different source adapters. (Bottom) Effect of combining
independently scaled output representations of two adapters trained on the target task and MNLI, respectively. Each

point shows the mean over 5 seeds.

of wmnLr and ws. Combining the information en-
capsulated within multiple adapters through scaling
can result in improved performance. Interestingly,
in some cases, the best combination of wy1 and
ws does not add up to 1, i.e., wy + ws # 1. These
initial experiments — while only covering a simple
combination of up to two source tasks — provide
insights into the benefits of scaling representations
for transfer learning.

A.3 Ablation Study

Table 8 shows the effect of adding constraints
on the distributional values of scaling coeffi-
cient in SCALEARN, evaluated on GLUE using
RoBERTagasg. In particular, we change the orig-
inal SCALEARN model by adding the constraints
mean and softmax over the source task dimension,
thus enforcing ELS:lI w! = 1. The results indicate
that both constraints reduce average performance
compared to those having no constraints, confirm-
ing our choice of directly learning the scaling coef-
ficients without imposing any restrictions.

A.4 Scaling Coefficient Visualizations

SCALEARNUNIFORM and SCALEARNUNI-
FORM++ utilize uniform scaling and learn
coefficients that are directly used to scale the
output representations of the source adapters. In
the following, we leverage this characteristic to
provide an analysis of the potential degrees of ef-
fects of source tasks on target tasks. We present the
adapter weights learned using RoBERTagasg for
GLUE and SuperGLUE, and using XLM-Rpasg

for HumSet with the random seed set to @.

The learned coefficients of each LM layer on
GLUE, SuperGLUE, and HumSet of SCALEAR-
NUNIFORM are shown in Figure 7, Figure 8, and
Figure 9, respectively. The weights reveal that in
most cases, the actual target task adapter is acti-
vated most strongly across the layers. Among the
source tasks, most weights are close to 0, while
some source tasks also show high values, particu-
larly in some of the higher layers of the LM. Inter-
estingly, some of the scaling coefficients go beyond
or even below 1, which would not have been possi-
ble in the traditional paradigm where scaling coef-
ficients combining multiple vectors are restricted
to sum up to 1.

The learned weights on GLUE, SuperGLUE, and
HumSet of SCALEARNUNIFORM++ are shown in
Figure 10. SCALEARNUNIFORM++ also mostly
activates the actual target task adapter, whereas this
effect is comparatively weaker in SuperGLUE and
stronger in HumSet. As is the case with SCALEAR-
NUNIFORM, many scaling coefficients exceed or
go below 1.

A.5 Additional Results

More results using RoOBERTagagg. Table 12
shows the results when training on the combination
of all GLUE and SuperGLUE tasks, resulting in a
total of 15 tasks.

Results using ROBERTay srgg. We further vali-
date our method and its variations on the encoder
LM RoBERTaj orge. Table 9 shows the corre-

11760

Model Constraint MNLI QQP QNLI SST-2 STS-B MRPC RTE CoLA Avg.

SCALEARN None (original) 86.970.09 90.320.10 92.510.17 93.880.18 90.96¢16 87.75055 82.06137 58.47176 85.360 55
SCALEARN Mean 87.030‘01 90.36()_30 92.340‘09 92.601_38 90.620‘25 87.11()_79 79-211,82 59.872(95 84.89()‘95
SCALEARN Softmax 86.850.05 90.600,05 92.74¢.22 93.750.08 90.66¢.10 85.831.09 79.281 04 58.431 98 84.770.58

Table 8: Effect of adding various constraints to the scaling values of SCALEARN, evaluated on GLUE using
RoBERTagasg. The constraints mean and softmax are applied over the task dimension, enforcing Z‘Sill wl =1.

The best results are shown in bold.

0.90 41 085 0.60
0.85{ —e— Adapter ~1 0.804 5 823 x
o 0.5730: —m— AdapterFusion 0.754 0.451
£ 0751 —x— Scalearn =% 0.704 0.40 1
0 0.701 e ' 0.351
= 0.651 = 0.65 A /z 0.304
5 0.60 1 / ¢ 0.601 0.25 1
90 55 { & . U y 0.204 /:
< 0.50] 0.551 &< 0151 */.
. pr | =" 0.101 x
0.45 1 _~ 0.50 /! :74._./
0.051 %
oole——— v Joasle=— ; — 0,001~ — ‘
4 16 32 100 Al 4 16 32 100 Al 4 16 32 100 Al
of Training Samples
(a) GLUE (b) SuperGLUE (c) HumSet

Figure 4: Few-shot learning results (k = {4,16,32,100}) comparing ADAPTER, ADAPTERFUSION, and SCALEARN
using RoBERTa; srge on three benchmarks. We show the mean across 5 seeds. For ADAPTERFUSION and
SCALEARN, we assume that there is a Pfeiffer adapter trained on the target task on k samples and a Pfeiffer adapter

trained on all samples for all other tasks available.

sponding results, including all baselines, on the
GLUE benchmark. Table 10 shows the results on
SuperGLUE. Table 11 shows the results on Hum-
Set. Finally, Table 13 shows the results when train-
ing on the combination of all GLUE and Super-
GLUE tasks, resulting in a total of 15 tasks.

A.6 Complete Few-Shot Results

To obtain a more complete understanding of the
few-shot capabilities of ADAPTER, ADAPTERFU-
SION, and SCALEARN, we show few-shot transfer
learning results for each dataset, as well as for every
variant of SCALEARN (cf. § 5.3).

Few-shot results using ROBERTaggg. Table 14
shows the few-shot transfer learning performance
of the methods on the GLUE benchmark using
k = {4,16,32,100} samples. Table 15 shows
the performance of the methods on SuperGLUE.
Table 16 shows the performance of the methods
on HumSet (on XLM-R)gasg. Finally, Table 17
shows the results when training on the combination
of all GLUE and SuperGLUE tasks, resulting in
|S| = 15 source tasks.

Few-shot results using RoOBERTay arge. Fig-
ure 4 provides an overview, comparing the
few-shot learning capabilities of ADAPTER,
ADAPTERFUSION, and SCALEARN when using
RoOBERTa; orge. Moreover, Table 18 shows the
few-shot learning performance of the methods on

the GLUE benchmark using k£ = {4,16,32,100}
samples. Table 19 shows the performance of
the methods on SuperGLUE. Table 20 shows
the performance of the methods on HumSet (on
XLM-Ry arge). Finally, Table 21 shows the results
when training on the combination of all GLUE and
SuperGLUE tasks.

11761

COPA
-4~ WSsC
RTE
—+- MRPC
CoLA
-&- WiC
STS-B .
~e- Boolq <L 0.61 K3
SST-2 0.55 N\
—-e- QQP 0.5 q
ReCoRD g 45— T T T T
—-e— CB 0.00.1 03 05 07 0910
Ws
(a) CB
0.75
cB
-4:- WSC 0.7
RTE
—+- MRPC «3’0 651
Co,A (%
-&- WiC 3
sTs-B O 0.61
~@ - BoolQ <
SST-2 0.55 1
-&- QQP
ReCoRD 0.5 +— . . . —
—@— COPA 0.00.1 0.3 0.5 0.7 0.91.0
Ws
(b) COPA
0.9
cB o—1
—4¢:- COPA 0.85 1 -
wsc _~
—+ - RTE O s /0
Co,A [& pe
-¢- wic 3 e il %
sTsB & 0.751 CER Y 5.
-o- ssT2 < 2=2e=9
QQP T A A —— =y
-e- QNLI
MultiRC 0.65 *— i i i —
=4~ ReCoRD 0.00.1 0.3 0.5 0.7 0.91.0
—e— MRPC Ws
(c) MRPC
0.75 3 P
CB -
—¢-- COPA 0.71 o/
WSsC /
~4- MRPC 5‘065‘ S -9
ColLA © % _’/_’0—-—"“1
-®- WiC 2 p
STS-B O B e
-e- Boolq < A
SST-2 ==
-e- QQP
ReCoRD T T T T T 7
—e— RTE 0.00.1 03 05 07 0910
Ws
(d) RTE
0.65
COPA L TR 7Tt AT
o ST e
RTE - 0.6 \+\ RN ‘Il‘
—+- MRPC O \\’\ /!
Col,A © AT
-¢- WiC a 0.55 1 RN
STS-B O o
~@ - BoolQ < 0.5 AN |
SST-2 : *
—-e- QQP Ny
ReCoRD 45— i i i —
—o— WSC 0.00.1 03 05 07 0910
Ws
(e) WSC

Figure 5: Effect of scaling the output representations o
of adapters by weight w, using different source adapters
from all other tasks from GLUE and SuperGLUE. Each

point shows the mean over 5 seeds.

0.65

[S 7; e e @
pr—aea N "
a A“‘“'As§ , A,/
© Y —e— wynu = 0.0
3 067 Wwne = 0.3
<L() Wy = 0.5
=» = wuny = 0.7
== wuny = 1.0
0.55 +— T T T —
0.001 03 05 0.7 0910
Wwsc
(a) WSC
c 0.6 p—r|
2 0554 s e TEL
B 054 — ool
(9] PL s
Coas| A -
8 0.41 M- _ o7 == wypy = 0.0 4
b7 0.35*,/,/’ Wy = 0.3
% 0.3 1//, /,A‘” Wune = 0.5
£025{ _~ =»= Wy = 0.7
B 024" —a= wuny = 1.0
= 0.15+— : : : —
0.001 03 05 0.7 0910
WcoLa
(b) CoLA
0.7
3 0.651
© wwunu = 0.0
3 Wy = 0.3
<L(, 0.6 Wy = 0.5
Wy = 0.7
—a= wuny = 1.0
0.55 T T T —
0.00.1 03 05 0.7 0910
Wwic
(c) WiC
g 0.95 T
® 0.91 azEVEes SEEERCE
9 0.85 prew==2g
§ 081 —o— wuny = 0.0
0 0.751 Wiy = 0.3
S orf f s = 03
n =»= wuny = 0.7
8 0.65 ¥ == wuyy = 1.0
& 0.6+— : : : —
0.00.1 03 05 0.7 0910
WsTs-B
(d) STS-B
0.75 N p————
0.7 ity St |
0.65 1 /‘/
061 _u%°"8
- 0-052:::/' —e— wyny = 0.0
w - Wune = 0.3
0.45
044 o W = 0:5
0.35 1 =»= wuny = 0.7
0.3 =a= wWyny = 1.0
0.25*— : : : —
0.00.1 03 05 0.7 0910
Wmultire
(e) MultiRC
0.8
PR——E
4075 W o=
3 -
© == Wuni = 0.0
5 07y o P
b »“'A"‘%‘, Wy = 0.5
0'65’./. =>= wyny = 0.7
—a= wyny = 1.0
0.6 — T T T —
0.00.1 03 05 0.7 0910
WBoolQ
(f) BoolQ

L Figure 6: Effect of combining

from GLUE and SuperGLUE.
mean over 5 seeds.

11762

independently scaled
output representations of two adapters trained on the
target task and MNLI, respectively, on additional tasks
Each point shows the

C
Q\Qg §0.280.05-0.06-0.01-0.24-0.39-0.090.03-0.19-0.21-0.020.09

(/o\y. §0.11-0.00-0.040.32-0.110.34 0.38-0.080.040.16 0.05 0.23

N
v 0@’ 0360.470.690.460.710.330.640.67.0
©
w = OOQ £0.16 0.04 0.100.18 0.11-0.07-0.160.26-0.07-0.000.32
=)
3 3 4
O 5 (,’} £0.100.120.150.09 0.100.24 0.21 0.06 0.28 0.17 0.13(0:74
o © >
v &' £0.310.21-0.04-0.080.17 0.20-0.050.04 0.16 0.14-0.000.17
[
&
§\$ 6-0.03-0 0.270.04-0.010.23-0.120.26 0.04
Q’_\Q’ - 0.650.290.26 0.600.380.42 0.44 0.150.250.17 0.28
01 2 3 45 6 7 8 91011
Layer
V4
©
w
=)
=3 9
(D —
3
o
0
4 5 6 7 8 9 1011
Layer
& |
&
Q(’
§“Q~ E-0.04-0.08-0.090.24-0.00-0.020.01-0.20-0.36-0.19-0.!
?.
A
% <
© N\
w O@’
2 o
o £ 4
=] (,)(9
S . »
n (:){’)’ £0.08-0.090.04 0.05 0.01-0.010.03 0.13-0.100.15-0.090.18
&
\‘\$ £0.07 0.01-0.020.01-0.00-0.040.00-0
0? -1.04 0.980.990.980.941.021.01 0.950.93 1.10 0.96 JU%N
Q
01 2 3 45 6 7 8 91011
Layer
Q'SQ’ 0.00-0.11-0.110.01 0.06-0.42-0.000.16-0.170.10/0.33 0.11
Q(J
X 0.08-0.31-0.07-0.030.10-0.15-0.030.24-0.46-0.31-0.100.06|
v (’0\y~ 0.04-0.150.170.02-0.200.07-0.330.07 0.14-0.10-0.390.17
wn
N
w Q N4 0.07 0.100.10-0.050.12 0.13 0.000.25 0.10/0:72 0.32 0.40
Q
2 [J]
| o]]
O = () 7-0.080.04-0.04-0.080.01-0.08-0.02-0.120.16 0.14 0.57
> O
S o
n ‘9(,’)\' 0.110.080.01-0.020.08 0.15 0.02 0.03/0.07 0.39/0.59 0.70

0.01/0.150.21 0.04 0.02-0.070 0.110.100.33 0.06 0.40|

N
é\/
=
g
é‘o -1.120.951.331.231.27 1.00 1.19 0.89 0.88 (slpiv(ra Ne}va}

0

3456 7 8 91011
Layer

1 2

Figure 7: SCALEARNUNIFORM scaling coefficients on GLUE using RoBERTagssg on seed 0. Target tasks are

shown in the last index of each heatmap.

£0.10-0.24-0.14-0.14-0.150.05-0.

%
%,

@
qu -1.411.331.11 1.72 (RGESEE 1.06/0.91 (o]t}

0

5 6 7
Layer

12 3 4 8 9 10 11

01 23456 7 8 91011
Layer

0.11-0.010.02-0.23-0.060.030.050.07-0.360.10 0.28 0.13|

04-0.060.110.01 0.28-0.040.10-0.050.41-0.56-0.0!

s 0.13/0.32-0.070.04-0.330.13-0.21-0.000.40 0.24-0.41-0.14

0.03 0.03-0.04—0.0[@0.15

01-0.08-0.20-0.07-0.190.000.15 0.330.33|

v
%‘:} -1.091:061.16/1202/1.10 1.35 1.13 @881 1.23 1.241.33

01 23456 7 8 91011
Layer

&((’ 0.16-0.020.04-0.110.10-0.340.27-0.19-0.27-1.208 Mo} 0.26|

D
®$\’ -0.981.010.991.001.000.961.011.091.021.11 1.17 [z}

12 3 456 7 8 91011

Layer

0

11763

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

BT 0 |

Sm

Sm

Sm

0.210.130.230.360.290.190.340.380.270.230.210.32 (JQ’ £ 0.280.650.200.27-0.39-0.010.010.34-0.00-0.130.060.16

1.0
0.260.320.230.220.220.220.230.290.220.210.210.22 QOQ?.

0.8
0.250.240.270.330.220.170.180.150.190.190.260.30 $(’)(I £0.480.020.350.490.33-0.11-:0.020.080.160.100.320.02

£0.010.060.070.070.030.02-0.030.000.270.17-0.170.07 0.6

.150.480.180.370.440.460.140.26 0.4 ©

SuperGLUE
Source Task

0.190.090.470.480.460.420.460.460.250.280.01/0.66

0.2
0.280.240.130.200.130.180.210.230.180.180.130.26

0.530.570.570.530.550.490.490.450.500.450.46 0.40| 0.0

01 2 3 456 7 8 91011

0123456 7 8 91011
Layer Layer

SuperGLUE
Source Task

0123456 7 8 91011
Layer Layer

1.
¥ 0
&
o 0.8
w
=N 0.6
() v <)
s 5 Q{" 0.04-0.330.060.270. ©
=] o @ 0.4
v“"\
O 0.2
(}0

&

s\ -0.931.371.491.081.041.120.88 1Lis 0.0

0123456 7 8 91011 0123456 7 8 91011
Layer Layer

Q~
¢
g RPSE(0 00.67FIELL0.47 0.660.520.690. :
1.0
& & 0.120.130.270.180.110.130.150.160.160.100.03-0.0 0.8
0.210.240.130.400.270.220.260.200.260.16 0.6
o 080.080.060.170.240.310.150.300.240.150.24 0.4 ©
< 0.220.160.160.150.180.260.430.280.300.180.060.45|
0.2
b o b o g . 0.190.240.200.210.310.300.230.200.200.480.370.39
¥ .790. I b 0.430.320.150.290.360.350.380.410.490.470.580.06 0.0
. . ‘
0123456 7 8 9 1011
&
<
o

1.0
0.8
w v 0.120.18-0.090.250.11-0.130.06-0.260.21-0.420.62-0.14
=) wn
- Ig G 0.06-0.170.0: 0,05-0.070.010.070.09-0.62—0.95E b 0.6
? g e
8_ 5 £-0.030.01-0.100.140.030.020.18-0.16:0.120.45-0.440.09 0.4 i
S .
a 3
0.2
< 0.860.960.940.950.940.92 0.910.870.94[sNeE] 0.0
» QS
01 23 456 7 8 91011 0123456 7 8 91011
Layer Layer

Figure 8: SCALEARNUNIFORM scaling coefficients on SuperGLUE using RoOBERTagasg on seed 0. Target tasks
are shown in the last index of each heatmap.

11764

1.4
0.020.06-0.030.02 0.02 0.04-0.010.01-0.00-0.03-0.050.17

£-0.04-0.04-0.090.02-0.06-0.06-0.04-0.04-0.04-0.090.05 0.01

1.2
0.05 0.03-0.000.03-0.00-0.000.03 0.01-0.010.09 0.04-0.12 0.03-0.02-0.01-0.01-0.02-0.02-0.07-0.04-0.01-0.020.07 0.01 1.0
v
%2}
o
g 8 0.8
E 8 0.17 0.14 0.16 0.16 0.08 0.12 0.10 0.08 0.07 0.07 0.13/0.83| s
w0
> £ 0.6
T 3
wn
0.4
0.2
0.0
1.2
1.0
0.11 0.09 0.13 0.06 0.05 0.07 0.06 0.03 0.03-0.020.07 0.50 0.01-0.020.02-0.030.03-0.02-0.060.00-0.010.03 0.01 0.14 0.8
v .
wn
"
©
& F 0.6
E 8 £-0.030.00-0.02-0.00-0.00-0.05-0.01-0.00-0.000.01 0.00-0.07 £-0.000.02-0.020.02-0.01-0.000.02-0.05-0.03-0.010.04 0.57|
S5 = “
T 3 0.4
(5]
0.02-0.05-0.03-0.03-0.000.01-0.02-0.02-0.02-0.040.01 0.31. 0.07 0.12 0.01 0.04 0.06 0.02 0.05 0.04 0.00 0.01-0.050.04
0.2
© P
.\\\'a -1.011.011.011.031.040.991.021.041.051.071.191.22 \,b(" -0.951.050.96 1.07 1.07 0.99 1.13 1.07 1.06 1.05 1.06 1.24 0.0
5 <
012 3 456 7 8 9 1011 01 2 3 456 7 8 9 1011
Layer Layer
+0.02-0.01 0.05-0.17-0.10-0.02-0.03 0.03-0.05-0.04-0.130.16 1.50
1.25
.01-0.01-0.03-0.06-0.010.01-0.04-0.03 0.20
1.00

0.19 0.19 0.22 0.21 0.22 0.14 0.08 0.02 0.08 0.09 0.06 0.21 0.75 lne

HumSet
Source Task

0.02 0.03-0.02-0.03-0.070.02-0.05-0.03-0.02-0.04-0.01 0.23

2 345 6 7 8 9 1011
Layer

Figure 9: SCALEARNUNIFORM scaling coefficients on HumSet using XLM-Rpasg on seed 0. Target tasks are
shown in the last index of each heatmap.

PN 038 -0.20-0.08-0.060.05 0.00-0.06-0.05 & o.74‘o.29 0.09 0.18-0.12-0.08-0.050.04
<
\“QS 10.00-0.06-0.020.03-0.08 (’o‘lv 0.13/0.59/0.29 0.05 0.07-0.010.00 0.04
Y
o (Jo\? £10.03-0.11-0.030.06-0.11 \g—;(’ L0.01 0.24.0.16—0.06 0.03-0.01-0.00)
N
= §§V 0.60 0.04 0.10@0.08 0.02 0.01 0.05 R\ 0.090.18-0.030. 0.09-0.02-0.07]
IS © g
SR g 0-03-0.030.01 0.01 .01-0. S @
35] @ <
3 = <
wn &g, .gg,
) S
] > KUK
< &
4 s
Q~

SuperGLUE

Target Task

Figure 10: SCALEARNUNIFORM++ scaling coefficients on GLUE, SuperGLUE, and HumSet using RoBERTagasg
for GLUE and SuperGLUE and XLLM-Rgasg for HumSet on seed 0.

11765

Model MNLI QQP QNLI SST-2 STS-B MRPC RTE CoLA Avg.

FINETUNE 89.570.36 89.751.03 93.910.43 95.300.65 91.89¢.35 86.271.15 81.523.19 60.152.89 86.041 96
ADAPTER 89.620.18 89.870.67 94.130.06 95.24¢.08 91.81¢9.29 87.822.11 81.232.92 64.071.97 86.721.04
PROPETL 89.78p24 89.23077 94.32000 9541900 91.45039 87.650.73 84.55914 65.85919 | 87.28y.81
COMPACTER++ 89.150.67 87.332.39 92.931 42 95.410.00 91.46¢ 35 87.841.93 79.71458 65.662.08 86.191 59
(IA)3 88.690.61 87.790.72 91.72079 94.950.16 91.390.45 86.37165 80.79316 64.703.20 | 85.801.34
LoRA 89.660.27 89.660.10 94.200.28 95.47024 91.98p.13 87.701.14 80.51203 63.80271 | 86.62056
FINETUNE-M 87.950.39 89.82¢.77 92.580.32 94.880.94 87.040.68 81.371.00 84.361.19 55.320.78 84.16¢.7¢
ADAPTER-M 89.100(36 89.350(09 93.640‘05 94-900,17 88.400,32 83.09()‘25 86.640‘00 56.380‘79 85.190,25
PROPETL-M 88.98p.33 89.030.15 94.140.11 95.15005 91.56023 87.831.10 88.4H0.29 60.99103 | 87.010.41
HYPERFORMER 89.660.40 90.15063 93.950.13 95.800.62 91.68¢.35 86.601.92 86.280.29 61.184.7¢ 86.911 05
HYPERFORMER++ 89.790.21 89.54¢.43 93.950.54 95.220.11 91.629.29 88.071.86 86.281 06 65.160.61 87.450 64
ADAPTERFUSION 89.570_17 90.880.06 94.150,04 95.870.00 91.860.15 88.970_78 85.701.13 66.391 83 87.930_52
ADAPTERSOUP 65.830.51 82.370.00 74.061 01 93.980.24 81.671.63 73.370.51 67.271.63 43.701 62 72.780.89
SCALEARN 90.099.09 90.51g926 94.18003 9541016 92.320.15 88.090.82 87.08p54 65.40062 | 87.91055
SCALEARNUNIFORM 90.11¢.04 90.050.28 94.23p08 95.410.16 92.119.06 88.631.72 84.403.93 66.980 58 87.740.86
SCALEARN++ 90.310.10 90.590.03 94.050_03 95.93021 92.48¢ 15 88.481_26 86.281 05 67.130_59 88.16¢.43
SCALEARNUNIFORM++ 90.08¢.01 90.49¢.02 94.12¢ 16 95.18¢.16 9212909 90.05054 84.981 32 64.970.85 87.750.39

Table 9: Evaluation results on GLUE using RoOBERTay arge. (Top) STL models, only learning a single task at a time.
(Middle) Joint MTL methods, learning all tasks simultaneously. (Bottom) Two-stage MTL methods, composing
the knowledge of several source adapters. The overall best results are underlined, and the best results among the
two-stage MTL models are shown in bold.

Model ReCoRD MultiRC BoolQ WiC WSC COPA CB RTE Avg.

FINETUNE 81.60195 79.03902 81.650930 69.72916 63.460.00 52.00828 90.362.99 81.52319 74.929 97
ADAPTER 88.520.09 80.730.69 82.360.72 69.161 31 63.250.64 71.9013.63 92.681 78 81.232.92 78.732.72
PROPETL 87.86259 81.19999 81.61g8s 69.62916 63.46p.00 69.001896 94.11404 84.55914 78.923.97
COMPACTER++ 88.340.97 79.180.29 79.536.13 69.261 51 62.261 43 79.009.74 87.507.48 79'714.58 78.104.02
(IA)3 87.47021 7791043 80.97075 68.65255 60.58p.00 77.00000 90.00391 80.79316 | 77.931.35
LORA 88.300.36 79.100.29 78.02388 68.46207 62.12146 76.601920 92.86179 80.51203 | 73.5811.06
FINETUNE-M 83.570.81 78.080.55 81.700.65 53.030.37 49.369 50 86.672.36 82.142.92 83.879.01 74.804.39
ADAPTER-M 86.760.32 75.150‘24 77.182,22 51.571(12 53.219‘75 67.671,25 80~951,68 77.381,36 71.232(24
PROPETL-M 84.830.40 79.600.37 82.021.11 55.330.46 59.629 .05 86.674.03 88.102.23 85.560.29 T7.719.94
HYPERFORMER 84.381 00 79.680.97 81.870.97 53.819 48 63.463 64 82.336.94 83.932.53 86.880.90 77.043.05
HYPERFORMER++ 13.660.00 40.214021 71.50933 49.1498¢ 62.98048 54.00300 67.8617.86 66.971968 | 53.2911.43
ADAPTERFUSION 89.21p17 80.52p24 82.21p30 69.091635 63.46063 81.201607 95.71g9s 86.061 07 | 80.93265
ADAPTERSOUP 70.330.28 38.4212.42 73.200.16 62.231.17 63.46.00 54.505.74 68.751.03 61.373.97 61.533.06
SCALEARN 87.850,01 78.400(70 80.292(52 68.561(68 62.980(68 85.403‘78 92.861‘79 84.910_59 80.16147
SCALEARNUNIFORM 88.850.22 80.420.06 81.85¢.21 69.914 15 61.540.00 82.003 08 90.001 .60 84.041 66 79.831.00
SCALEARN++ 88.280.23 80.76p55 83.080.31 69.591 g9 62.980 68 87.80; 19 91.071.79 85.700.32 81.16¢ .36
SCALEARNUNIFORM++ 88.85(.20 80.700.04 82.13p21 70.19p26 62.980.68 83.602.88 91.079.80 84.841 2 80.541 02

Table 10: Evaluation results on SuperGLUE using ROBERTay arGk.

11766

Model Sectors Pillars 1D Subpillars 1D Pillars 2D Subpillars 2D Avg.
FINETUNE 72.99¢.17 51.380.39 44.84¢ .89 61.90¢9.20 43.499 .86 54.92¢ 50
ADAPTER 72.290.59 49.311 .97 45.250.03 62.580.67 44.360.66 54.760.65
PROPETL 73.200.32 51.580.40 45.100.92 61.529 99 41.98¢.70 54.680.92
COMPACTER++ 61.7712.63 8.175.92 6.3711.00 20.3994.91 15.369.71 22.4111.43
(14)3 64.72183 3826727 26.77a70 B55.5Tias 3l.1lysz | 43.2931s
LoRA 72.220.82 52.150.25 0.000.00 61.341 35 0.000.00 37.140 48
FINETUNE-M 59.047 g6 22.9519.78 10.755.31 29.7691 .25 9.651.95 26.439 69
ADAPTER-M 65.667.13 37.6511.95 28.517.80 43.4016.06 27.444 g3 40.535.78
PROPETL-M 70.561.06 41.586_27 35-913.46’ 42.2014.55 29.676_92 43.986_45
HYPERFORMER 47.7490.79 29.0611.7¢ 22.16g 44 35.9217.37 22.5810.58 31.4913.77
HYPERFORMER++ 0.009.00 0.000.00 0.009.00 0.009.00 0.000.00 0.009.00
ADAPTERFUSION 72.530.45 51.330.23 43.750.52 62.310.25 42.789 11 54.54¢.71
ADAPTERSOUP 52~541.61 24-072.18 20.62¢.08 31.161 40 12.840.49 28.251 19
SCALEARN 73.32008 53.94¢.13 44149 75 63.89¢.16 44.75¢.47 56.01¢ .32
SCALEARNUNIFORM 72.560.20 50.590.10 44.629.00 62.660.00 45.16¢.00 55.120.06
SCALEARN++ 73.180.04 51.41¢ 36 44.10¢.09 63.370.02 45.43(.94 55.500.15
SCALEARNUNIFORM++ 73.02¢.29 50.84¢.30 44.88 39 62.870.01 44.45¢.02 55.21¢.18

Table 11: Evaluation results on HumSet using XLM-R[ArGE-

11767

-HDAV Ty GOy Sursn sysel g 1HIdng pue gNTO [JO UONBUIqUIOD 3Y) UO SI[NSI uonen[eaq ¢ [qel,

L50gppg | 8609gTge 08lpze8 8900109 9%060°0L B0gzgs €809p08 990788 | 6Vlegrgg PEIL L pg 88026788 Cl0gIge 0000gge 600T6°ge 0V0GH06 PIOQT'06 ++WMOLINONIVEATIVOS
€609 8 | 0806776 O1Tog'68 g9 EYlOp69 61Tge8 6CO0pT08 £l0gg.g | STggTL9 0T1grgg 9600L .8 010GgTZe ''CT9T6 6T W6 £607g 06 “CU€T06 ++NIVATVOS
08°0¢9pR | €87200°66 €006 000z9°6¢ LFC8TTOL TOF0C8 L000gr08 000pgeg | 90Tggrgg 6ETeggg fllegrgg 00gTge 8000LTGE 690p8'e6 S00p¢06 V006006 IWAOAININYAVITVOS
SUIORF8 | 10%g6'e6 “CT00T6 0LTEL99 80T9r0L 6L0gprg 69080708 TPOgpag | t€TlozL9 9TIgLeR LEIgEe] El0Gzge L909e'g6 1€086'e6 8900L 68 €10L9°68 NIVATVOS
60Tgp g9 | LR’ TL 8EQGHG 89086759 90lpcgy G0gpgL 1€0gere 00060Q9 | Letgroy 06tpgeg €60TgL W09y 000p0pe 000TLgL 000Tp g 00067 LG dNOS¥ALdVAY
W0Toppe | 6629¢06 9€€09'88 TLle9g9 Cllpge9 VE0ppg8 080ggigL 0009ZT68 | €Tger99 8Fggiag elgTge PT08)'g6 000p9'g6 SOO0pTp6 L60g8706 ¢106L°68 NOISNJ¥ALdVAY
8Tz z8 | 89Tgep8 0670068 LT9g'19 0¢Tge g I809Tgg L€08u°6L VIO9TGR | Wlpggg VLOGORR PFlgL9’ TE00R 6 080.6°g6 TTOLEH6 06006 TE0GL 68 YANIOJ4HdAH
vileT08 | lpgra8 60fggroe 4Pelegray 9600z Tg 68Tggg) 61098ty Ll0cgieg | £8°€9gT)G PLOOpr9g eOTT98 090pprp6 610g0ge 9¢069'e6 €00Ggeg VE0g68S W-TLAd0dd
Oy | Elge08 YO0gee8 TETEgeG L0T69'qg €90ggrog ee0Tg L, eI R | elgeug 6Ulgggg WIgprag 1EOTReR FEORT'G 10066 0607006 E00€ 68 W-YH1dVaV
ELIQy) | 49fcgTg O0VEL9T)) TLLT0RG 040ppgg EL06G'RL 6€0L0'GL 9E0RpEL | 0ERpIIG 190gTpR 90fggieL 9LO0TRGR 940076 8TORpEe 8001868 010gz'gR IN-EINN LANI]
1iegcgg | 6LTogge @@6lpggL Wlgrg9 L0C9pg9 888gp.gL 6C0pT6L 000pgg] | 14T0ggg €0CIco8 P8 ETORG'T6 YEOLpGe 8600z e 0109968 L7099'68 VI0T
0eg) 18 | 660006 64100 L 0008g'09 9Cc9'R9 SL0.6708 EVOTELL EOLprL8 | 08EQLE9 9TEGL 08 99T e98 POeeT6 9T0ge 6 640zl 16 ©406LL8 19069'88 (V1)
6920g°g | 8V'L0GL8 TL600'6L EMloge9 '€Tog69 ET9eg6L 620QT6L L60pgeg | 80T99'qo 8EVTL6L €ClpgLR SE09p 16 000TpGe CVleG6 6Elegl8 L90GT68 ++AALOVANOD
0rerpeg | OTITRE 96810069 0009prgg 9TTgge9 98019 Tg BOUBT TR 69C9g .8 | OCggrgg FlEggpg €40gg g 680cprg 0007p'ge 600zepe LL0gze8 TE08L°68 TLAJO¥d
Blegge | 8189¢6 EYEI0E TL T90gge9 EI9T'e9 eL09ggg 690g 08 600gge] | L67Tu09 WTggrg ITeggrag 6201816 800pgige 00eTy6 L90.8'68 8107968 YALIVAY
Ty | 6629g'06 S€800°ce 0009pe9 9TTgreo 080gorTg W0gpreL SLT9T8 | 68%gro9 6lEgeTl ST g9’ 606816 900ege £V016'e6 £0TgL68 980868 ANNLANIL

“3ay a0 \Z: (0)0) JSM M Orog DYNIMIA @YD VI0D AR JoT: b: 14\ 4q-SIS T-1SS I'INO P (0]0] T'ININ PPOIN

‘PIOq UI UMOYS 2Ie S[opoul LA 9381s-0M] 9y} SUOWE SJ[NSAI }saq) pue
‘pauI[ISpuUN Ik SINSAI 159q [[BIA0 Y, ‘siaidepe 90In0s [BIAAS JO a3pamouy o) 3ursodwod ‘spoypaut LA 93e1s-0m], (Wwonog) A[snosueinwils syse} [[e SUIuIes] ‘spoyiou LA
Jutof (S[PPIA) "own © Je sk} 9[3uls ® Jurured] AJuo ‘spepowr 1S (dop) dSVEe g goy Suisn sysel gN1HIedng pue g 10 [[8 JO UONBUIqUOD JY) UO SINSAI uonen[eay gl 2[qel,

L0GeOg | SX0TZe6 SLIOZEL SEIRLT9 TOTgEL9 690zzigL 1€09agL 9900R'6L | 060EEGE 9606L08 9F0LGUR TTOZE06 ITOT9F6 £0ge'E6 PEO9T06 LU0ZR'0R ++WMOAINANAVATYOS
U090 T8 | €Tz TG 0T06'6L 0U9FEG SSTepL9 LEOpELL LE09TTL 1E0R¢'6L | 0TEHGE 0600p08 0TTE'e8 OT0cL06 OFOpOV6 SUODBTE LET9¢68 100p6OR +HHNAIVATYOS
LOjG0 | FYIEG'e6 OVR0EEL SN05z'e9 LUZ0R9 0gpgL GU00G'TL SU0G'08 | £ROL6'8¢ 0g08 660L6u8 U109T06 0FOREF6 “60T0°z6 0109g°06 L00Z0L8 WMOAINANAVATVOS
SUGETE | P1L0°06 LCF09°08 Y0GFED O0LT9r99 SEUGERL T0L97L SVO0gRL | Wiggee 691ee I8 40Tg'e8 (VULE06 FOGT6 008,76 H008.°68 008608 NAVATVOS
660pggg | ELOETTL STTOgEg 19T0gg9 O%09g'ge EEOpG'RY 99lgoige G009 | LLTesop f60g0'6e YOLGTL UGG 9T090'T6 9E090LL £00Z0'E8 PY0RO'RS dnos¥ALAVaY
0TIZg 6L | OYGLGER TO0ETL 009FTE9 TEToEg9 1X0gg9L ILOTrgL FE099'RL | EIL9RG IpgRL 00lGgug 100p06 69079'e6 910geE6 TORT'06 0F0Z¢OR NOISNJ¥ALAVAY
60TpRL | VIILGR TO000L LETOG09 9FIZ0'Gs F0069L 690RTTL OVOER'TL | FUEORGG S6OGTER IWITRRR S00R06 STOTEE6 CTOTLT6 OFOR068 AU0zg0R +HIENNOJNAIAH
0TpLL | VTILGR IO SEOL6RG FSTeRTe R9T0ggL LOTGCTL ELORTTL | TITOG 60%gg Ty 180cggg L606G6R TEOTR'E6 COL8T6 OV0ze's8 V05008 HANAOANAAH
ORT00LL | Vl0gUR LPOgErLL TVUlgeg TTRIG R0gre) 90geg) LS0gg0L | £9EGep TSERLGL SU0Gg9g SOTE06 SF00GE6 LE09GT6 SFOTT'RY U007 GR W-1LEdO¥d
80gG'gL | CTpTEg OMlegel OFIRTE9 SYOZGEG 0ROgy'GL 6E0OTTL PEOGL'GY | SUIRR'RF FYLL08 9K0geGy 1F0.0'88 SVOLZEG FEORE'T6 LI00L68 IEOPT'OR W-¥ALdVayY
006G | ETpTER 9T00EL %SUGouG TEToEEe OV09R'0L WOREIL 160T0p9 | SOTezep l66108 10199'68 9N0Zg0R FRUgp'e6 SEOPETTE 9E0RT06 C0ZR'GR W-ANNLANIA
67iggRL | LUEEp9R 0T0giRY 0009peg LUIprgy PR0RGOL 9F096 L 009'6L | STTEgLg FESOpOL W080u8 18099°06 FPOSTVG £1063E6 fFO98'68 O0ZCOR VY01
OVITTRL | L7ZgUR LER0E69 TE0GEeg SVTL0°L9 6KOTEQL 6YOge0L EE0LZGL | 6RCLgog fEEgeEL PUIITLR 0R0GeR OFOge'eG SEOLG06 0F0Le'sy 10TREER ¢(V1)
@igpRL | W9ER9UR 00T0g'R9 WUGTED £9Tgpig9 9608yl LSOppOL L9T60°AL | SSTER'RG TEgoEL 1901Zu8 YUL96R TEOR'E6 OFOGLT6 OLOpR'SY Y0goGR +HIALOVANOD
1WIgo6L | RGPS TYEQ0L O0O09FED 9109799 SL0RggL GVOIOEL TEOGZOR | L0%Gz6g PUTEITL leGeR SF0g006 CLOIR'E6 080G0°z6 SORR'SR STUT0R 118d0odd
SeIggR) | SUEZRTR FIT0g0L OUOOFED 99IReGy SEIILoL SOpgEL W0g0'6L | 09TRERG TYEGRTL LTpo9g WOzi06 140g9'e6 610gzE6 NORT06 EE00¢OR ¥dLdvay
WiZTRL | FETOGTR TL909'R9 OUGTEG S07ge'g9 TETOROL STTpoIL SSOTOTL | f0T9pRg €0epeL Tpe9R G0eq06 SVOge'e6 SE0RLT6 STOZEO6 1€0TO0R ANNLANIA

“3av a9 VdOD ISM M Oloog JUVBIMA - dI0D™ V10D CAR. | IdIAN 4q-SLS LSS I'INO d00 TININ PPOIN

11768

Model Samples MNLI QQP QNLI SST-2 STS-B MRPC RTE CoLA Avg.

ADAPTER 4 33.65139 63.279.11 50.530.04 50.920.00 32.129.93 68.380.00 52.71¢.00 2.933 .88 44.311 84
ADAPTER 16 34.78058 63.180.00 50.46¢.29 57.181.23 55.5310.12 68.380.00 53.721.29 0.250.56 47.941 75
ADAPTER 32 33.560.66 63.180.00 51.860.33 70.469.25 73.78130 68.38p.00 54.58181 0.000.00 51.980.50
ADAPTER 100 40.71967 71.74050 58.77413 85.00205 82.51;191 73.09107 56.17195 21.69394 | 61.215.04
ADAPTER All 864500,33 90.180_11 92.250_19 93.650_71 90.230_41 864641.07 72.892_54 584282,50 83.830_98
ADAPTERFUSION 4 33.94909 T72.01539 52.369.75 50.920.00 7717244 72.99408 52.780.16 2.793.54 51.872.58
ADAPTERFUSION 16 49-122.76 76.261.20 61.951104 59.296.12 83.511.79 78.280,37 60.652 27 0.921 82 58.753.42
ADAPTERFUSION 32 43.893_17 76.450.83 78.350.75 68.265.11 70.7230.12 78871.63 60.874.48 1.914.07 59.916.30
ADAPTERFUSION 100 47‘225.48 7723174 77.805_43 85.289 42 85.811 .64 78.431_34 70.041_17 13.957.80 | 66.97338
ADAPTERFUSION All 86.820.04 90.230.01 92.480_15 93.230.95 90.370_20 88.410_49 79.49291 59.04169 | 85.010.72
SCALEARN 4 35.599.13 76.24p38 62.30458 52.68066 85.34009s 75.00159 52.71go0 4.250.83 | 55.511.39
SCALEARN 16 51.21p84 76.850.19 65.03137 64.01g90 86.18p38 79.07068 62.74174 7.5la36 | 61.581.06
SCALEARN 32 51.91p36 76.1909.18 73.63046 69.56395 86.340.44 75.980.30 65.42150 8.561.70 | 63.451.03
SCALEARN 100 57.880.34 T77.25039 73.97973 83.9717¢ 87.81¢.28 7838136 69.17170 13.31171 | 67.721 03
SCALEARN All 86.970.09 90.320.10 92.51g.17 93.88p.18 90.96¢.16 87.750.58 82.061.37 58.4717 | 85.360.55
SCALEARN++ 4 34.05178 75.50056 59.88474 52.25070 85.20080 72.9914¢ 52.7lgo0 3.872.90 | 54.551 .53
SCALEARN++ 16 50.52142 T76.30060 60.40304 62.207.99 85.960.30 78.04158 61.59998 9.002,05 | 60.501 49
SCALEARN++ 32 52.301.35 75.Tlpes 72.01262 71.90237 86.04p37 76.18107 63.680.94 7.54303 | 63.171.55
SCALEARN++ 100 56.160.83 76.6007¢ 61.66515 83.071.92 87.24p20 77.89119 65.05995 11.50747 | 64.901.81
SCALEARN++ All 87.06003 90.04p12 92.031.10 94.15030 90.62913 88.21p63 80.87105 59.820.78 | 85.350.52
SCALEARNUNIFORM 4 3417167 76.620.62 55.259 01 52.481 37 84.47.97 75.44175 52.710.00 5.091 50 54.531.24
SCALEARNUNIFORM 16 49.55191 76.600.32 66.691 07 65.059 49 85.830.40 77.65109 61.81195 10.96945 | 61.771.36
SCALEARNUNIFORM 32 51.501.92 76.28¢ .56 72.840 54 71.495 38 86.01¢.43 75.88103 63.75116 11.15918 | 63.617.28
SCALEARNUNIFORM 100 55.061.03 76.94038 70.42998 81.63p.90 86.22045 75.93154 64.62102 15.54995 | 65.791.35
SCALEARNUNIFORM All 86.930.10 90.370.11 92.430p36 93.58020 90.08p.07 87.57p86 80.07118 59.04105 | 85.01¢.49
SCALEARNUNIFORM++ 4 34.862.18 76.08()_38 53.363.84 51.791,09 83.121(63 74.801‘[)5 52.71()(0() 44342‘15 53.881.54
SCALEARNUNIFORM++ 16 50.090.81 76.130.25 61.353.09 62.591 59 85.550.40 76.420.720 62.60070 11.94304 | 60.831.32
SCALEARNUNIFORM++ 32 50.961.64 76.150.47 70.240.96 71.975.06 85.670.41 7441066 62.24066 12.85949 | 63.061.17
SCALEARNUNIFORM++ 100 48.961.99 76.770.34 60.643 67 81.900.67 85.660.63 75.691.17 63.54153 15.905.99 | 63.631.62
SCALEARNUNIFORM++ All 86.980.17 90.380.01 92.53p28 94.11p07 90.18p.19 87.43p63 80.040.99 59.45067 | 85.14¢.38

Table 14: Complete few-shot transfer learning results on GLUE with k£ = {4,16,32,100} training samples for each
target task using ROBERTapasE.

11769

Model Samples ReCoRD Multi BoolQ WiC WSC COPA CB RTE Avg.

ADAPTER 4 9.652.79 24.92¢.71 62.050.07 4944196 41.921904 50.20363 62.14g 19 52.71p.00 44.13435
ADAPTER 16 13.826.06 37.485.48 62.170.00 50.531.18 42.505.46 53.005.48 69.295 93 53.721.99 | 47.813.86
ADAPTER 32 17.64127¢ 38.55374 62.16003 52.26178 36.54900 51.20239 70.711.60 54.581.81 | 47.953.01
ADAPTER 100 37.69251 51.563.89 61.511 27 54.041,01 50.3810.12 58.405(18 73.934‘11 56.171,95 55.463,77
ADAPTER All 79.020 62 72.84¢.48 76.71138 65.581 56 63.460.00 70.204.13 84.823.18 72.89254 | 73.191.74
ADAPTERFUSION 4 8.512.73 44.5094 40 62.16003 50.311.04 38.083.44 50.402.19 51.072.40 52.641.31 | 44.71469
ADAPTERFUSION 16 13.711075 48.861498 62.12997 50.16784 38.46430 56.80720 67.86399 52.9237; | 48.865.88
ADAPTERFUSION 32 26.791435 46.3915‘53 62.03p.34 52.23¢.87 37.121,29 59.605 56 68.932.71 54.662,35 50.975.55
ADAPTERFUSION 100 34.0213 55 43.524.01 61.831.45 54.61107 43.85g 78 64.203 83 74.643.43 59.711.63 | 54.554.72
ADAPTERFUSION All 78.820.49 71.791.67 76.72055 66.571.24 63.460.00 73.104.51 82.322.85 76.032.38 | 73.601.71
SCALEARN 4 2837653 31.5311093 61.63002 49.72039 49.62534 T71.80449 66.791148 52.710.00 | 51.52505
SCALEARN 16 31.075(24 49.977‘42 60.92121 51.500.49 51.355.95 69.005.24 72.862‘33 54.221,31 55.113.69
SCALEARN 32 34.806.48 44.283 71 61.700.22 50.530.94 48.083 68 68.609.34 76.072.04 56.751.18 | 55.104.07
SCALEARN 100 40.821.95 58.929.98 62.111.16 53.890.99 61.929.91 69.002.74 86.791.60 61.371.71 | 61.851.74
SCALEARN All 79.520.06 73.220.44 7727068 66.351.20 63.460.00 74.802.15 90.892.59 78.882.14 | 75.551.16
SCALEARNUNIFORM 4 22.64¢.41 29.696.54 61.72025 49.84p86 44.62571 70.60230 70.36448 52.71g0 | 50.273.32
SCALEARNUNIFORM 16 30.011.08 50.32790 61.72103 5248070 49.81724 66.80217 73.93370 54.51275 | 54.953.23
SCALEARNUNIFORM 32 30.845.74 45.75547 6141932 51.57073 48.27¢61 71.40230 75.Tlpos 55.380.75 | 55.042.86
SCALEARNUNIFORM 100 35.501.94 58.74o59 61.360.99 52.79958 56.97798 65.002.00 82.86324 59.21198 | 59.05258
SCALEARNUNIFORM All 80.130.38 71.91¢.60 76.060.41 67.371.22 62.501.27 71.201 23 89.111.97 75.310.90 | 74.201.00
SCALEARN++ 4 27.534.00 11.11618 60.92159 4994050 44.62571 70.00224 62.50828 52.71p.00 | 47.42356
SCALEARN++ 16 25.78280 49.431003 59.86201 52.01p62 49.42g62 71.801.10 74.64343 56.681.17 | 54.953.83
SCALEARN++ 32 34.002.31 39.99510 59.80063 52.04053 42.50399 T73.60456 75.71160 56.390.86 | 54.252.45
SCALEARN++ 100 37.323.39 58.721.98 60.43222 53.230.61 62.121 87 66.201.30 85.712.19 59.061.89 | 60.351.84
SCALEARN++ All 80.130.09 72.Tlg57 76.44053 67.131924 62.262.98 75.201.093 93.04214 79.030.95 | 75.741.92
SCALEARNUNIFORM++ 4 23.04g.12 29.11902 61.020.41 49.62141 46.73454 67.60568 66.43560 52.71p.00 | 49.533.85
SCALEARNUNIFORM++ 16 26.674.91 53.00s.69 61.061.41 52.160.67 50.967.10 67.402.97 74.294.66 54.802.74 | 55.044.14
SCALEARNUNIFORM++ 32 30.621 .27 49.46¢ 35 59.881.47 51.69970 44.62370 67.20164 78.21p80 56.90107 | 54.82913
SCALEARNUNIFORM++ 100 294779.96 58.402.35 60.770.01 53.2671 87 61.153.76 63.202.77 80.000.80 57.181.74 57.973_02
SCALEARNUNIFORM++ All 79.79014 71.75038 76.13p52 67.87089 63.46000 74.00170 91.61253 74.84158 | 74.930.97

Table 15: Complete few-shot transfer learning results on SuperGLUE with k£ = {4,16,32,100} training samples for
each target task using ROBERTagasE.

11770

Model Samples Sectors Pillars 1D Subpillars 1D Pillars 2D Subpillars 2D Avg.

ADAPTER 4 5.782.05 4.211 16 0.69¢.34 11.072.07 3.580.49 5.071.92
ADAPTER 16 8.226.291 2.599 98 0.780.42 8.424 12 2.591.34 4.529 g7
ADAPTER 32 4.651 88 2.309.71 0.820.15 5.967.43 2.971 50 3.349.74
ADAPTER 100 44.261 99 10.599 .70 0.009.00 25.261 36 0.01¢.02 16.022 46
ADAPTER All 71.38¢.28 51.021 23 43.260 .82 61.430.91 42.46¢ .51 53.91¢.75
ADAPTERFUSION 4 13.601 .29 7.209.19 2.45¢.37 16.249 77 8.161.00 9.531.53
ADAPTERFUSION 16 13.271 .27 8.380.99 217067 15.989 41 7.630.73 9.481 .91
ADAPTERFUSION 32 12.591 .91 6.411.79 2.24¢ 95 13.673.94 7.121.00 8.401.78
ADAPTERFUSION 100 8.03136 423275 1.770.54 32.024 30 5.071.39 10.225.05
ADAPTERFUSION All 72.05¢0.12 49.630.53 43.150 38 60.68¢.23 42.14¢ 46 53.530.35
SCALEARN 4 5.561 27 4.54¢ 57 1.12¢.23 12.999.2¢ 3.950.85 5.630.64
SCALEARN 16 13.219.74 8.900.41 3.680.16 18.300.60 7.400.53 10.300.49
SCALEARN 32 16.64¢.43 16.48¢.74 7.230.37 26.39¢.34 11.119.47 15.579.47
SCALEARN 100 34.04136 26.31g67 13.271.06 30.681 20 14.430.39 23.750.94
SCALEARN All 72.360.05 51.63061 44.06¢ .37 61.52¢.11 42.81¢.63 54.48 35
SCALEARNUNIFORM 4 5.351.00 4.320.17 1.03¢.20 13.24¢.43 3.780.64 5.54¢ .50
SCALEARNUNIFORM 16 13.65¢.47 8.690.59 3.64¢.13 17.511.93 7.590.13 10.22¢.51
SCALEARNUNIFORM 32 15.34¢ 52 16.721.099 6.980.34 25.750.48 10.580.19 15.07¢.52
SCALEARNUNIFORM 100 33.400 .63 25.480.71 13.430.64 29.44¢ 75 14.92 62 23.330.68
SCALEARNUNIFORM All 72.200.14 50.08¢.79 42.979.70 60.62¢.16 41.95¢ 60 53.560.48
SCALEARN++ 4 5.421,47 4.660,45 1.16¢.33 13.17()‘17 3.621.94 5.61.73
SCALEARN++ 16 13.550.71 8.890.16 3.620.09 18.621 19 7.730.98 10.480 47
SCALEARN++ 32 16.27¢.82 16.351 62 7.270.13 26.08¢.51 10.70¢.28 15.330.67
SCALEARN++ 100 33.760.49 25.830.74 13.270.66 30.11¢.51 14.370.61 23.470.60
SCALEARN++ All 72.380.27 51.66¢.97 44.230 50 61.660.13 42.219.01 54.43¢ 08
SCALEARNUNIFORM++ 4 5.271.18 4.370.14 1.08¢.09 13.209.50 3.561.15 5.500.61
SCALEARNUNIFORM++ 16 13.470.77 9.04¢ 58 3.600.10 17.41¢ 59 7.500.33 10.200. 47
SCALEARNUNIFORM++ 32 15.24¢ 35 16.75¢.72 7.31¢.28 26.230.83 10.61¢.27 15.23¢.49
SCALEARNUNIFORM++ 100 39.229 98 26.220.74 13.761.11 30.340.63 14.56¢ 59 24.821 91
SCALEARNUNIFORM++ All 72.02¢.32 50.780.41 42.600.85 60.820.14 42.14¢ 70 53.67¢.49

Table 16: Complete few-shot transfer learning results on HumSet with k£ = {4,16,32,100} training samples for each
target task using XLM-RpasE.

11771

Sursn yse) 10313 yoea 10§ sordwres Suturen {001‘ZE 9Ty} = Yy WM syse) N TOHIeANS pue 1O [[8 JO UONBUIqUIOD I} UO SI[NSaI SUTUIRS] IojsueI) 10ys-maf ajo[dwo) :/ 1 9[qeL,

HSVER AGOY

7206g08 | 401366 “Alogl SOTRLT9 TOTGeL9 690zzigL €09 gL 9900g'6L 060ggree 960608 9FOLeL8 TLOzE06 0196 TOsE'E6 TEO9T°06 A'0zg'98 [V ++WMOAINANAVATYOS
DTOTZY | EL098 Be0gey LUgpRs ETepeq 100Lg9 660zg6g SUELgeg A0epgr felegeg KWlgges S009eg f0Mpe'gy L00L'09 S0%zgL Clipes 001 ++WMOAINONMVATYOS
DTuZ09 | Oe9g0g VElop0L 009GTTS gL OpTgg f6T6gug logiag SYRORTT S0LTG9 089es 96066108 900cEL MOIREGy fE00LeL OFleG6r TE ++WMOAINOANMVETYOS
WEGpgg | ETgEL ST969 06Nezeh f0TL0GS SYORT9 OVSLee 999p0'9g AAEeeg WN6L09 OVIIGBL BTzl ETpog9 TROgoes 090gges lpgigg 91 ++WMOAINOANMYATYOS
WrGET0g | FEELTL WT0gTIL 0%ezeh gy e SU609 660NTET9e O4S9gT T STELgy 0001 g SVOGpOL AVILggg 'Elee'1s f£Tggpe W0lopeL flepsg 4 +HWAOAINANAVATYOS
04090'18 | 6z V6 99N06'6L 0099 Sleplg HOpgruL HO9TIL 1E0RGT6L 90Tggeg 0000y <UM1geg 9106106 *¥Op0p6 S0008'G6 Ll9¢6s 00698 NIV +HNAVATVOS
Flggp9 | T0CLT6 OFlogal OFFpOeS BAOTTOG 9lggr09 SSELgLC OPeoeg OSTperel SUege9 LOpgrgL Wigprgg T0g6'gy “lgoig9 9S06pi9L 1eMge8g 001 +HNAVATVOS
ey g | FVEELTR STeORTL ¥ELLIOP Ogpes S9logT9 OUSgreg Olope P0gTT Tles'ey fUlpeel 9401668 PAPeprl 6019 WIETL 0%06r ce +HNAVATVOS
9eGyge | MEpgeL EEOpeL WORgLy 09l6ges “lgr09 fSLlogog OlTepgr SSTogel AUpgeg TIpT'eL TUIRY08 0%0ziee ASleges f006gaL Gelggey 91 +HNAVATVOS
TEegeTe | fTTLeeL Wlogel TYTiger A01Re0g 90z0g9 P0l9ger 0TI06r 0FRe'e 000TLgg LT99'69 OTEeL0L 1F096'0¢ 99TLpRG ATPE6TL TROETog v +HNAVATVOS
700608 | Blee'e6 OTPogel S0gze9 A40.089 W0gprgL €006 TL STOgor08 FROL6'8¢ 60Nug08 660L67L8 T09T'06 OF08¢'p6 L50T0°g6 009z'06 L00z0'L8 MV WHOAINOANAVATVOS
0lGLrg9 | T0%00°06 ONO0p 1L W%ggg Mlgpag 900zgg SIpTee OFRe'Rg TETRGT Wlgeeg MOpereL #06ep8 SOleertg @lpTirg OMOoriuL TAOIRLG 001 WAOIINONAVATVOS
WTEEeS | LSETERL 6LT09'9 CETgegr ELTRG “9009719 fetoggs SOfgTeg OMTperel OMOse'g9 LML SOgpIs CtpgmL %0gprg9 OVOpTgL Mlergp o ce WAOAINANAVATYOS
CEERELG | 0L6RL OLTORTL EUSgpeg L006Tge S60TT9 Mhigiey O49eriog A9lREl OM1g09 Slpges SETpTLL P16G LOpgree f00g9L 60606 91 WAOAINANAVATYOS
L6ELGTG | 99€00°0L 6TOR'0L TOTTeg'sy TS0zegg @0Lc09 E40Tggiee OAGo9T SKTLL 0001Lgg OMOGgoL £669gg9 Tegre L6Trgieg TOp9pL €TTREIGE v WAOAINONIVATYOS
906ETT8 | 1IL096 T09'08 1€09peg OLT9rgg STO6gRL eVOLgiL SO00ggL MTzeteg 096GT8 SA0Tgeg 600L6'06 €0G9p6 £008Lg6 S008.68 008698 NIV NAVATYOS
061,1°99 | XE0006 STOPTL %9690 TOTpELe Elgpeg FOTL6g POTIEOp TEEGG'ST S0CGoTL el EL06TA8 Topgs L0M1eeL FVO9pLL lop09 001 NAVATYOS
Wepgrg | 86008 SLlogL OMieLT Clogtpe MO9eg TEEGoLy A0Tegre L4eR6El G4oT'e9 fUIGoGL Geleges 9TgLuL M90ppgg Te0gTgL 0Sligeg ge NAVATVOS
egggs | OMeIgey “ToggL Fl9gegy S60gpgg 0600, 069pup ESELpreg SCCreTT g9 GUlrgpL Ollgoes M9fegrgg Pleguc 960ggrgL L009u1¢ 91 NAVATVOS
ey e | 96TLGeL TER00'GL TEOReGy B408pg FEOpgT9 ETIpgy 0%9ppe Weggy CP0L T S0TgggL TSTOgtgL FLURLeg MSTRT09 LET0TEL TULLGLE v NAIVATVOS
“lgg6L | 0fLge8 SOfogpL 0009pg9 TETogrgg 1A0gggy 1A0Tugy FE099ig) EMIig9e #9lpgrg) 00lRuR WO9p06 090z9e6 OM0gees THO8T'06 C0%¢98 MV NOISN4d1dVAY
BEIpe9 | 8L TOPTL M9697cs TOC90Re TSO9pg9 TPIRR0c %N16er FLTulee U9 fTTogLL ASTepiog €9Ugeey SMogL LeTLL9L S6T0T'9Y 001 NOISN¥d1dVaY
TSTUGG | TREpLTL ¥O0ggy WLgee OTegpe H0807¢9 LO8p9Te BLTopel MTeET M96L09 S6EeogL GKTLTpR 99919 OFIgproL 0S9ggr0L AATeper ce NOISN¥dLdVAY
TTeRepe | L0l0gLg 090889 S¥IpG Iy 8Tegpg TTOL0g9 ©690es EH9L9T 9FIow ATTOReg I6fepiL fO0preg 96Tgoge TOigriae 6LTgggL LeEeggp 91 NOISN¥ALdVAY
AE0g | 29800009 1080899 9tfagge Yeergs 000,19 SOTOTe SteTAT Muey %0%gLeg €1TGLe9 MpgLL %0g0Te EYEROpIG R0 Sllg0ee 14 NOISNYALIVAY
8eIgggL | STEgg g E1T0g0L 0009pe9 99TRGqy SETTLgL SVOpggL @0go6L 09CRrRg TteR'GL L0Tp9r9g TO0gg06 M40g9e6 6T0cge6 'TOST06 f£00¢98 NV AALAVAY
L0egpree | MgeeL SUSopeg rOIRer0g WOpope Llremy Sfgee WEegug VOTe9 T W0TLTOG LNe0eL 1ETIGEs CR00'es E1TLuge 0S0p ML HTTrop 001 VALIVAY
16l996p | 09T1L00L SFEgTe 000pg9g SMlggigg 009T'gg PARgegg OLElpgur 0000070 ISIRepg 000gergy OFIg ey SlgproL fE09grTg 000gTgg 9909geg e VALIVAY
begyLy | %669 S00'gs 0gey SUlegog 000L1g9 SSSpLe 09l 990ggg Glgueg 0008grgg elllggeg fTRIug (T0gpgg 0008T'gg 8€0RLpE 9] ¥d1dVay
FE99ey CUSpIe9 $R0g0g MOClge Ty Cpper L0609 “9%67e 64Pco6 S¥Ege'e 000TLge 0008gR9 SOgrge 000760 T00ggrog MMOLge9 Flegreg v REREALL

Bay L) Vd0D OSM OIM O/ed BN @D VTI0D 4L OddW 9-SIS TISS TINO d00 IINW sojdureg PPON

11772

Model Samples MNLI QQP QNLI SST-2 STS-B MRPC RTE CoLA Avg.

ADAPTER 4 34.090.48 62.002.54 50.461 12 50.92¢.00 10.022.34 68.330.11 51.482.74 3.473.01 41.351 54
ADAPTER 16 35.121 00 63.11¢.18 49.59¢.24 59.383.42 12.415.51 68.380.00 52.641.06 2.553.07 42.901 81
ADAPTER 32 34.05094 63.88140 51.300.98 74.70259 27.161389 68.77971 51.62175 7.471036 | 47.374.08
ADAPTER 100 41.392(59 71-350.81 53-75118 83.672‘22 76.844_07 69.071(43 564972_3() 30.965(72 60.502‘55
ADAPTER All 89.620.18 89.870.67 94.130.06 95.240.08 91.81¢.29 87.82911 81.23592 64.071.97 | 86.721.04
ADAPTERFUSION 4 39.266.48 79.280.71 65.1311.67 51.03923 76.401207 69.9597¢ 54.08307 4.931 85 55.014.85
ADAPTERFUSION 16 49.94g89 80.37p.13 78.85367 56.65352 83.960.85 7750162 7047404 16.083.34 | 64.233.99
ADAPTERFUSION 32 56.1210_53 80.010_25 80.551_30 75.297,71 85.360_87 77.11,1_44 784703_5/1 6~778.63 67.494,56
ADAPTERFUSION 100 60.841399 78.863.07 85.09¢.80 85.441 g7 88.09¢.39 81.86163 84.40260 34.69270 | 74.913.99
ADAPTERFUSION All 89.570.17 90.88p.06 94.150.04 95.870.00 91.860.15 88.97p78 85.70113 66.391.83 | 87.930.52
SCALEARN 4 45.65475 79.590.24 66.97383 52.061.12 81.94217 72.06237 52.71900 3.14131 | 56.771.97
SCALEARN 16 57.54150 80.04g58 77.24p85 62.5992.91 85.081.83 76.42270 69.752.56 4.233.10 64.112.0p
SCALEARN 32 60.951,59 79.95[),34 77.72()(94 74.131‘53 88.50(),27 76.911,59 77~911.83 5.142.0(} 67.651‘23
SCALEARN 100 69.181.320 80.80p.21 83.6499¢ 84.20p9s 89.25040 77.60178 82.96093 10.80143 | 72.301.17
SCALEARN All 90.099.09 90.51p26 94.18p.03 95.41016 92.320.15 88.090.82 87.08951 65.40262 | 87.91055
SCALEARNUNIFORM 4 45.73520 79.74p34 67.95357 5241139 81.59189 72.21296 52.710.00 3.251.02 56.951 96
SCALEARNUNIFORM 16 57.611.01 79.810.31 74.551.75 57.439 44 85.320.85 75.341.19 68.811.91 1.929 57 62.601 41
SCALEARNUNIFORM 32 58.861.71 80.060.14 75.861.12 73.601.06 86.61¢.33 74.661.16 77.911.12 5.664.15 66.651 35
SCALEARNUNIFORM 100 63.511 39 80.34¢.21 74.982 50 81.441 48 87.360.24 76.47196 81.371.87 14.98197 | 70.067 28
SCALEARNUNIFORM All 90.11p04 90.05028 94.230085 95.41p0.16 92.11p.06 88.63172 84.40393 66.98055 | 87.740.86
SCALEARN++ 4 44-54&16 79.580_41 66-902.38 51.700,75 80.803_59 71.86154 524710_00 3.780_89 56.481,72
SCALEARN++ 16 56.711,57 80.110.37 73.801,36 60.163,41 85.171,14 75.203,15 69.822,07 2.853,64 62.982,09
SCALEARN++ 32 58.871.51 79.090.49 75.920.89 73.12397 87.450.32 75.691.18 77.330.90 5.474.01 66.611 57
SCALEARN++ 100 65.071.14 80.230.33 78.820_81 82.001 .89 88.01p.84 76.621_16 81.81260 12.11278 | 70.581 44
SCALEARN++ All 90.31(),10 90.59[)‘03 94.05(}((]3 95.93[)‘24 92.48(),15 88.481,26 86.281,()5 67.13(},59 88.16[)‘43
SCALEARNUNIFORM++ 4 44.48 38 79.42p58 66.59406 51.46057 82.15117 73.22112 52.719.00 2.34¢ 52 56.551 55
SCALEARNUNIFORM++ 16 56.631.44 79.530.45 72.95297 56.94101 85.14966 75.61l209 68.86185 0.8024¢ | 62.06153
SCALEARNUNIFORM++ 32 57.683.31 79~470_42 73.781_89 75.150.96 86.640.56 76.651.49 78.340.66 1.782_84 66.191 52
SCALEARNUNIFORM++ 100 56.721.49 78.91¢.82 66.115 .51 83.750.58 85.530.82 74.332.49 81.68251 20.84314 | 68.481.79
SCALEARNUNIFORM++ All 90.080.01 90.490.02 94.120.16 95.18p.16 92.12p.09 90.05054 84.98135 64.970.85 | 87.750.39

Table 18: Complete few-shot transfer learning results on GLUE with k£ = {4,16,32,100} training samples for each
target task using ROBERTay arGE-

11773

Model Samples ReCoRD Multi BoolQ WiC WSC COPA CB RTE Avg.

ADAPTER 4 15.583.93 31.781580 61.83058 49.750.56 50.383.93 49.605.59 53.934.96 51.48274 45.54539
ADAPTER 16 17.427 91 4046308 61.64954 51.38137 54.042.30 53.605.46 61.073.19 52.641.06 | 49.033.03
ADAPTER 32 22.041470 41.11597 62.17901 52.88191 47.69376 66.20760 67.502.33 51.62175 | 51.404.66
ADAPTER 100 31.0119.22 51.934.04 62.170.00 55.962.03 52.885.81 65.2013.86 82.14565 56.972.30 | 57.28¢.73
ADAPTER All 88.520.09 80.730,69 82.360.72 69.167 31 63.250.64 71.9013.63 92.681 .78 81.232.92 | 78.732.72
ADAPTERFUSION 4 19.214.17 24.079035 61.779.18 50.631.49 43.2712.03 57.007.42 61.4311.75 52.71p.00 | 46.267.17
ADAPTERFUSION 16 14.285.34 28.094.31 61.51p.35 51.103.13 47.319.96 66.2012.44 77.864.48 53.211.37 | 49.955 09
ADAPTERFUSION 32 18.8211.93 37.6810.93 64.97364 52.82139 4442335 62401024 78.21445 58.05421 | 52.17g.27
ADAPTERFUSION 100 55-421.38 59.980.03 71.062,02 56.021.25 55.585.33 76.4013,22 84.644,11 57.622,71 64.593.75
ADAPTERFUSION All 89.21¢.17 80.52¢.24 82.21p.30 69.091 68 63.460.68 81.2016.07 95.71¢.98 86.061.07 | 80.932.65
SCALEARN 4 32.723.66 5849159 61.90930 51.661.61 55.583 66 71.006.36 7750004 52.719.00 | 57.69303
SCALEARN 16 36.713.11 53.373.7¢ 61.82056 53.511.09 50.195.54 77.407.13 77.864.11 55.883.01 | 58.343.54
SCALEARN 32 36.723.37 57.304,03 61.470,75 53.262 .98 49.045,73 80.603.05 80.007 49 57.625,12 59.503.23
SCALEARN 100 54.2112.46 59.790,30 68.783.12 51.881.84 57.121‘37 81.805.97 85.002.04 65.343,44 65.493 88
SCALEARN All 87.850.01 7840070 80.29250 68.56165 62.980.6s 85.403.78 92.861.79 84.91p59 | 80.161 47
SCALEARNUNIFORM 4 33.125.16 59.47094 61.51101 5091164 63.460.00 68.003.08 78.93233 52.71p00 | 58.51177
SCALEARNUNIFORM 16 32.752.12 54.657.16 62.11p.15 52.260.85 52.123.49 72.001 .87 81.792.65 54.445 40 | 57.769.71
SCALEARNUNIFORM 32 35.303.67 58.223 35 61.760,61 54.672(40 51.926.04 76.402,97 80.002.93 58.925.58 | 59.653.51
SCALEARNUNIFORM 100 41.505 85 60.019.10 61.969.76 51.851.91 58.271.75 72.405 37 85.002.04 60.651.05 | 61.452.97
SCALEARNUNIFORM All 88.850.22 80.42¢.06 81.850.21 69.911 15 61.540.00 82.003.08 90.001.60 84.041.66 | 79.831.00
SCALEARN++ 4 33.871.90 56.11347 61.75021 51.32166 60.583.96 68.006.04 78.21233 52.7Tlpgo | 57.822.45
SCALEARN++ 16 35.360.48 53.715,41 61.93039 52.790.17 50.772,99 71-403.78 80.004.07 55.232.75 57.652,51
SCALEARN++ 32 38.871.77 59.950.00 61.94p81 54.61206 46.923.92 78.602.30 79.642.71 53.143.49 | 59.21205
SCALEARN++ 100 43.154.43 59.950.00 63.360.98 52.01p.73 57.123.93 75.204.15 86.792.04 62.245 63 | 62.489 .08
SCALEARN++ All 88.280.23 80.76p58 83.08p.31 69.59189 62.980 68 87.801.10 91.071.79 85.700.32 | 81.160.86
SCALEARNUNIFORM++ 4 33.871.90 56.11347 61.75021 51.32166 60.583.96 68.006.04 78.21533 52.7Tlpgo | 57.822.45
SCALEARNUNIFORM++ 16 35.360.48 53.715,41 61.930.39 52.79¢.17 50.772,99 71.403.78 80.004.07 55.232.75 | 57.652.51
SCALEARNUNIFORM++ 32 38.871.77 59.950.00 61.94981 54.61206 46.923.99 78.602.30 79.642.71 53.143.49 | 59.21205
SCALEARNUNIFORM++ 100 43.154.43 59.950.00 63.360.98 52.01¢.73 57.123.93 75.204.15 86.792.04 62.249 68 | 62.489 .98
SCALEARNUNIFORM++ All 88.850.22 80.700.04 82.13p21 70.19026 62.98¢.68 83.602.88 91.072.80 84.84102 | 80.541 02

Table 19: Complete few-shot transfer learning results on SuperGLUE with k£ = {4,16,32,100} training samples for
each target task using ROBERTay arGE-

11774

Model Samples Sectors Pillars 1D Subpillars 1D Pillars 2D Subpillars 2D Avg.

ADAPTER 4 4.800.60 4.330.18 0.609.08 10.871.79 2.560.56 4.630.63
ADAPTER 16 712911 1.351.85 0.450.32 11.08¢.59 2.820.82 4.561 14
ADAPTER 32 6.603.91 0.58¢.54 0.520.24 11.821 44 2.400.92 4.391 97
ADAPTER 100 24.6613.33 12.383.57 0.009.00 16.217.14 3.132.91 11.274.19
ADAPTER All 72.290'59 494311‘27 45.250,03 62.58¢.67 44~360.66 54.760'65
ADAPTERFUSION 4 12.439 84 7.580.95 2.11p.12 14.59¢ 57 7.101.13 8.761.12
ADAPTERFUSION 16 11.069 41 6.499 35 2.300.26 13.081.04 6.331.79 7.851.57
ADAPTERFUSION 32 11.903.19 6.409 61 2.500.60 13.230.90 6.161.54 8.041 77
ADAPTERFUSION 100 31.925 40 17.749 59 1.94¢ 40 31.445 39 8.083.78 18.225 99
ADAPTERFUSION All 72.530.45 51.330.23 43.750 52 62.31¢.25 42.789.11 54.54¢.71
SCALEARN 4 5.520.93 4.940.291 1.300.2¢ 13.590.46 3.81p.90 5.830.55
SCALEARN 16 12.05¢.80 7.780.31 3.240.09 20.101 33 6.199.30 9.870.57
SCALEARN 32 16.340.63 15.74¢ 95 6.54¢ .29 24.92¢ 40 10.54¢.33 14.82¢ 50
SCALEARN 100 24.609.97 24.361.80 11.370.40 34.269 54 15.630.64 22.051 97
SCALEARN All 73.320.08 53.949. 13 44.140.75 63.890.16 44.750.47 56.019.32
SCALEARNUNIFORM 4 4.920.61 4.84¢.9¢ 1.25¢.30 13.05¢ 48 3.41p.11 5.49¢.35
SCALEARNUNIFORM 16 11.58¢ .45 7.780.53 3.150.19 20.119.30 5.790.16 9.680.33
SCALEARNUNIFORM 32 15.45¢.00 15.480.64 6.540 52 24.220 16 9.700.17 14.280.30
SCALEARNUNIFORM 100 21.91¢.00 23.312.49 10.600.22 36.445 o5 15.270.13 21.519.98
SCALEARNUNIFORM All 72.56¢.20 50.590.10 44.620.00 62.66¢. 09 45.16¢.00 55.120.06
SCALEARN++ 4 4.900.40 4.950.90 1.45¢.9¢ 13.480.52 3.370.50 5.630.38
SCALEARN++ 16 12.45¢ 65 8.479.77 3.290.13 21.011 12 6.550.37 10.350.61
SCALEARN++ 32 16.61¢ 57 15.801.00 6.710.29 24.76¢.32 10.31¢.36 14.84¢ 51
SCALEARN++ 100 24.44 95 23.950.40 11.36¢.65 35.181 28 15.770.77 22.14¢.81
SCALEARN++ All 73.180.04 51.41¢.36 44.100.09 63.370.02 45.430.24 55.500.15
SCALEARNUNIFORM++ 4 4.920.61 4.84¢.9¢ 1.25¢.30 13.050.48 3.41p.11 5.49¢.35
SCALEARNUNIFORM++ 16 11.58¢ 45 7.780.53 3.150.19 20.119.30 5.790.16 9.680.33
SCALEARNUNIFORM++ 32 15.45¢.00 15.480 .64 6.540 52 24.220 16 9.700.17 14.280.30
SCALEARNUNIFORM++ 100 21.91¢.00 23.312.49 10.600.22 36.445 05 15.270.13 21.519.98
SCALEARNUNIFORM++ All 73.02¢.20 50.84¢ .30 44.88 39 62.870.01 44.45¢ 02 55.219.18

Table 20: Complete few-shot transfer learning results on HumSet with k£ = {4,16,32,100} training samples for each
target task using XLM-Ry ArGE-

11775

Sursn yse} 1081} yoeo J0J sojdwres Suturen {Q01°2€ 91y} = ¥ WM syse) g 1HIedng pue IO [[€ JO UOHIRUIQUIOD dY} UO SI[NSAI SuruIed] Jojsuel) joys-maj o3o[dwo)) 1z 9[qeL,

*HOUVTp AR e ES N

LE0gppg | 8609g'ce 08Toge8 8I00T09 98060°0L Be0gg8 £09p08 990888 OFlggrcg FETLLpg 8801698 CL0gIge 000pgrge 600166 O10GH 06 FIOOT 06 nv ++WIOAININIVETVOS
8609 | €0TL9'T6 9TTL908 PETEL9g LL0ppee 09C1L99 090009 @legrgy 0%grog lieng €00TRL 681gRreg 68081¢g 1916zR9 68°097'gL SETHTRS 001 ++WIOAININIVATVOS
102¢):19 | 0720698 L9907%8 SEEIGGy t0goge L90pgp9 WIREreg 660gzpe L0TyLg OUTpTL) L1969 WT[g9L OVegppL 0EpT99 990L.09) STGLRG 43 ++WIOAININYVATVOS
90€9,"QC | TG pg TL96L 108QYGE PITI9ge Y8IgG09 ELTIGLG VE999ge TETege 08TzeroL %O0p0oe9 6LT96'R9 TEOER09 SLTRGE9 8€010°LL 66TH00G 91 ++WIOAININYVETVOS
697G pG | L9EpT g8 00700°GL 8€EQr09 TETgGIe 99C6p6c VTpGee OTTQLge LELgrg UEpG0g €60p0'69 S699GGr 690.,8°T¢ TE0R9T9 TETRL69 TRELYLY 14 ++WIOJININYVETVOS
£60e9p8 | 0806z %6 OTT0g68 'TTgec9 E9T0F69 96T1Ge8 6OpToR £T0ggr)g SeTgprrg 00Tyzrgg 9600L7.8 OV0cege TTEIOPE £906TF6 €60g706 L408T 06 nv ++NAVATYOS
LT91°69 | CITEY'88 8Y0ggrgg T8Tepgg OLTgpgc CElgge) 9R0z9ig9 09Tpoeg 6€T96LT 160p6°6L SVOp0EL OVTIEL'G8 L9Tgrps 61T19°9L 84TgggL 9TTRGGY 001 ++NAVATYOS
61129°g9 | 0001,g8 00Tppo98 LVEGT'GE 960ggroe F60L.g9 000ggee 96CGpge EYCEpL SCTgpg) OLTegioL 09Tp6LL 6EEG0'EL 89TR6'89 TLORO'8L £LT109°9G 43 ++NAVATVOS
ere) Qg | 90T01gy STIL9eg £6900°0¢ E9ETR'ee SVOpgr09 88°08'9¢ 6lggegr 16Cggrg L8y 9 lpprgg 680G L9 89T6R09 W90gpg9 190egrgL 9ET00G 91 ++NIVATVOS
198G gg | 67Pee 08 FE900'8L T6T90 0 L90¢z1e YETe6 09 8USgIee f9%9gge Tegg 000TLgg @r0gergg 908gg1g L009g70g 04€ggrge 64269 1) 91TGY QY 12 ++NAVATVOS
080978 | €8200°66 ETOp 06 000g9'6G LRz 0L 9T0p0E8 000G 08 000pgeg 90legrgg 6tecgreg ellgergg €00gTge 8000LGe 69086 S00pG 06 T0060°06 nv INIOAININIVATVOS
Blp0gy | 0l9zge '8ggrgg 00CgpLg 6LORTHG FETgRY 0086°6G CEORQRy GliegT 9UIEE 08 6lp6eL SL0gzag LPleggg SLToggL FTOTIR6L 8€1g9g9 001 INIOAININIVEATVIS
ereg9 | €0T1g9g 0880018 £4988'cg Wlgpgc 16pgp9 SEEET9e @0geree 69Tgprg 16019, @90Tgr0L L0M9zrg) E60ggg) Tlegzo9 W60¢ogL S6TTHGE 43 INIOAININIVEATVOS
E6TQT°6C | CLE06°98 L9ige08 Perwp L0Tgpge 941609 8YURTLG 0TLTpreg 080gTg 6LEQTr0L L€00gie9 LETRTL9 8EEGYe9 OVEL 19 L80geLL L600pIG 91 INYOAININIVEATVOS
YOEOQ PG | 949Re Ll E9TL9TLL 00TIO'RG 960pgiOc 8Cgg09 9eegeLe W0Tggrge 66Tggre LLTpIIg 86069 9ULpTGy 89Cggeg £07RpT9 1ETQp69 9LTRE6E 14 INMOAININIVATVOS
8UTOR P8 | 70%g6'e6 CT00 16 64TeL99 80T9T(L 6L0gpeg 69080708 PYOgpeg €8T0ziL9 9TTQLeg LETQreg £T067ge L909¢Ge 1608666 8900L'68 €170,9°68 nv NAVATYOS
6978981, | 6474016 807geg8 TIELE'RG 69TpL9c 0Ty, TR09g 9 10Tgor9g TTVOg0g 1€0cL08 PTOTgrgL 90Tgpeg €6°02.°98 €V06p G EE006T08 99TEGR9 001 NAVATYOS
Tgppg | SUVIg9g 8Y0gepg 00969 LG SETITLC T0TL069 BYEIgee L9Tgepe 6Tg9y E9T L TTTgo0L 8806LT8 ©PTGYGL 6EEQpGL 68Tgp08 €60.°8¢ 43 NAVATYOS
LUeQG 19 | ©47pgr L8 28CL9T)8 90BLTHG TETgyge 487ggT9 0TCgoeg MATgape £6Fegg €9T0g69 €60.8'99 089ggy) TLT0geL 80Cggg9 180.0'8L FACORGS 91 NIVATVOS
ey | EVVIger) TleggL VESlgype EETgp e OTEpQr09 89%ggLg 86Tggge OVERG0 LTHTTG P1O0gg9 L€LugLg 19TgLgg 6L06R ¢ COTIRITL E6TIQegR ¥ NIVATVOS
WToppg | 66%9e706 96€09'88 24199 ClTpg69 PEO0pE8 080¢g6L 0009ge8 1EMgerg9 8Figgreg “0gTe’ PT0Q0g6 000p9ge SOOpTH6 L40g806 CL0GL 68 nv NOISNAYALIVAY
TG0, | L9%e6e8 1€L00¢8 990p6T6G 99C0pe6G 680ggieL E8IQU99 LYETQRR €lerce L9PITTIR 0LCQETeL 6€0997)8 S€T1g'9g 00lpTgR EFPge'gL L8'976°g9 00T NOISNAYALIVAY
107Gy | 9%y g Sllegpg 666g9 Lc EETCTQp9 @6ET999 0Ter Ly 90LTTOE E8EeQRT S8TL 9L VETREeL OLIGTRR 19%ger6L CPigeL OVTTLQL L66g9gg 43 NOISNJYALIVAY
€eL 09 | CLE9L6L E09.908 eTITR9e 00Cgge 10Ggpgg 19%6g¢p I8CloRTg TEYGE6T 19L0p°0L 0496eTL LUIpgeg 10pTRe 08°0gu gL 190pegL 60TRTeR 91 NOISNJIALIVAY
09EQygG | €4018'¢L €09.9'6L €88coeg W0pTge 160gTT9 10Fgpog 890lgegg ClEpgg 000TLgg 0008y 60,708 6LlgE T L9Tg0Te 089QTL9 06EQEee 14 NOISNJYALIVAY
810878 | 841896 €906 TL L€T6LG9 ETOT'69 “L09ggg 690gs 08 600gggy L67Tu0p9 @6legyg MeggL8 660116 800pgige 0gTH6 290,868 8107968 v YALIVAY
627g06C | 99T e 98EIOpCY I89RREe £0T9gge 000LTg9 OTgEIe @GlIQTg YL96'0e 0FTLE'9G 8VIL069 LOTRRt9L ©eTL9eg SUlgree I80cerL 69C6E TR 001 YALAVAY
VEVRZ6Y | €6T0GL9 09L0g799 9LEE9TLY 16TRgge T00LTg9 TSIy OLVIpQgg 9E0TLprL SLTggrre 1402)°99 O8€Igrug 6970LpL 860pgTe 0VIgR'eg PE0GoTE 43 YALAVAY
1egerey | 6U640'19 99p9ee 0ETROpg LET1ReTIg YEORQTg 80EQpop TelgpAl L0fcgg 90Tpggg 000gergg TSTHET VEREeG Fe0GgeR STOTTg9 00Tgyige 91 YALAVAY
WEIG gy 96Tee e 69%9'6F £688g0g 990G 6y 8Y0gg g 08€TgiTe E6'EQergT T0E prg PATRp TG TV0geg9 VETgoor 000z60g CUI9R0S EP00°z9 8TO60°vE 14 YALAVAY

8ay a0 A7 (0%0) JoSM om Oloog DN ageddy vied CAR: JdIN q-SLS T-LSS I'INO d00 I'ININ so[dweg [PPOIN

11776

