
Findings of the Association for Computational Linguistics: ACL 2024, pages 11727–11742
August 11-16, 2024 ©2024 Association for Computational Linguistics

Knowledge Fusion By Evolving Weights of Language Models

Guodong Du1 Jing Li1* Hanting Liu2 Runhua Jiang2

Shuyang Yu2 Yifei Guo2 Sim Kuan Goh2* Ho-Kin Tang1*

1Harbin Institute of Technology, Shenzhen, China
2Xiamen University Malaysia

duguodong7@gmail.com jingli.phd@hotmail.com
simkuan.goh@xmu.edu.my denghaojian@hit.edu.cn

Abstract

Fine-tuning pre-trained language models, par-
ticularly large language models, demands ex-
tensive computing resources and can result in
varying performance outcomes across different
domains and datasets. This paper examines the
approach of integrating multiple models from
diverse training scenarios into a unified model.
This unified model excels across various data
domains and exhibits the ability to generalize
well on out-of-domain data. We propose a
knowledge fusion method named Evolver, in-
spired by evolutionary algorithms, which does
not need further training or additional training
data. Specifically, our method involves aggre-
gating the weights of different language mod-
els into a population and subsequently gener-
ating offspring models through mutation and
crossover operations. These offspring models
are then evaluated against their parents, allow-
ing for the preservation of those models that
show enhanced performance on development
datasets. Importantly, our model evolving strat-
egy can be seamlessly integrated with existing
model merging frameworks, offering a versa-
tile tool for model enhancement. Experimental
results on mainstream language models (i.e.,
encoder-only, decoder-only, encoder-decoder)
reveal that Evolver outperforms previous state-
of-the-art models by large margins. The code
is publicly available at https://github.com/
duguodong7/model-evolution.

1 Introduction

Due to the high training costs of large language
models, it is common practice to fine-tune already
pre-trained language models to adapt them for spe-
cific applications. This fine-tuning approach often
allows us to achieve excellent performance in spe-
cific data domains or tasks at a relatively lower
cost (Chen et al., 2021). However, the challenge
lies in the fact that fine-tuning (Dodge et al., 2020)

* Corresponding authors.

the same model in different task scenarios may re-
sult in performance variations, meaning that the re-
sults may not be satisfactory when testing the same
model in different contexts. Therefore, our objec-
tive is to integrate knowledge from models trained
in different scenarios to enhance the model’s per-
formance in cross-domain or cross-task scenarios
(Wortsman et al., 2022b), without the need for fur-
ther training or extra training data.

Mainstream knowledge fusion methods can be
divided into two main categories. The first in-
volves extensive training on large datasets across
multiple tasks to learn new model parameters with
shared representations, such as in multi-task learn-
ing. The second relies on fusing existing models
from specific scenarios without requiring extensive
data. While multi-task learning generally improves
overall performance, it has significant drawbacks:
the need for abundant annotated data for all tasks
and the complexity and time consumption of the
training phase, especially with dataset combina-
tions (Ruder, 2017). In contrast, model merging
methods do not require retraining models and do
not raise concerns about data privacy. In this pa-
per, we primarily delve into the second category
of methods and introduce an innovative model evo-
lution approach inspired by Darwinian evolution
theory (Shafiee et al., 2018). In short, we compare
our model evolution approach with other prevalent
knowledge fusion methods, detailing their distinct
features in Table 1.

In fact, the problem of model merging can be
reformulated as an optimization problem that aims
to find the most valuable information for knowl-
edge fusion in order to achieve better outcomes
than any individual model alone. For instance, (Jin
et al., 2023) employed a simple linear regression ap-
proach for optimization, while model soups (Worts-
man et al., 2022a) implemented a greedy search
method. In this paper, we consider the adoption of
a more robust evolutionary algorithm for optimiza-

11727

https://github.com/duguodong7/model-evolution
https://github.com/duguodong7/model-evolution


Ensemble Model Merging Multitask Learning Federated Learning Model Soups Model Evolution (ours)

Retraining ✗ ✗ ✓ ✓ ✗ ✗

High Memory Cost ✓ ✗ ✗ ✗ ✗ ✗

Round(s) Single Single Single Multiple Greedy Greedy
Data No A Few Examples Train Datasets Private Dev Datasets Dev Datasets

Key Technique Inference Matrices Computing Distribution Back-Propagation Search Evolution
Peak GPU Memory ✗ ✓ ✓ ✓ ✗ ✗

Table 1: Comparison of different knowledge fusion methods. Round means the number of times the models are
edited when implementing a certain knowledge fusion method. Peak GPU memory is used to compare the GPU
memory requirements.

tion. Evolutionary algorithms offer several advan-
tages, including their outstanding performance in
handling complex, high-dimensional, and nonlin-
ear problems, as well as their relative insensitivity
to local optima. Traditionally, evolutionary algo-
rithms are primarily used in neural architecture
search (NAS) (Awad et al., 2020). However, in
this paper, we pioneer their application to the selec-
tion of important weights in language models for
knowledge fusion.

As shown in Figure 1, our approach first pro-
cesses models fine-tuned in different environments
as an initial population. We then generate a new
population through mutations and recombination
among different individuals within the popula-
tion. Subsequently, we validate the performance
of the new population on development environ-
ment datasets and preserve elite individuals for
updating. After evolving with enough generations,
we select individuals with the best performance as
the evolved model. Our evolutionary algorithm is
firmly rooted in the task vector (Ilharco et al., 2022)
methodology, wherein we derive the differential
vectors between two individuals during the muta-
tion operation. We delve deeper into the task vector
concept from two distinct perspectives. Firstly, we
employ a scaling factor (F ), to search and regulate
the weights of the difference vectors. This is crucial
for aligning the expectations of model outputs, as
illustrated in (Yu et al., 2023). Secondly, we utilize
the crossover ratio (Cr), to maintain a certain level
of sparsity, thereby preventing interference among
different individuals, as demonstrated in (Yadav
et al., 2024). Additionally, by conducting random
searches for crossover parameters, we are able to
obtain more optimal per-parameter coefficients for
model merging.

We conduct knowledge fusion experiments
across various difficulty levels, employing differ-
ent types of models, such as RoBERTa, DeBERTa,
T5 and GPT2. These experiments cover sentiment
classification tasks in diverse data domains, as well
as benchmark tasks from the GLUE dataset. The

Figure 1: Key idea illustration. The key idea in our
model evolution method is to aggregate multiple mod-
els f1..N from various environments into a population,
which is then iteratively updated through greedy evolu-
tionary rounds.

experimental results consistently demonstrate that
our proposed method effectively enhances perfor-
mance across all experimental settings. Further-
more, our approach can be synergistically com-
bined with previous model merging methods (e.g.,
fisher (Matena and Raffel, 2022), regmean (Jin
et al., 2023)), resulting in further improvements in
knowledge fusion performance. This combined ap-
proach significantly outperforms baseline methods
and previous techniques. Notably, our method also
exhibits superior generalization performance when
applied to data domains beyond the scope of multi-
ple datasets. To summarize, our key contributions
include:

• Innovative model evolution method: We
propose a novel knowledge fusion method
from an evolutionary perspective, by evolv-
ing weights of language models.

• Improved knowledge fusion performance:
Our method consistently enhances knowledge
fusion performance across a broad spectrum
of data domains and tasks.

11728



• Effective integration with existing model
merging methods: Our approach can be ef-
fectively enhanced and augmented through
the integration of existing model merging tech-
niques.

2 Related Work

2.1 Knowledge Fusion

Numerous studies have shown that aggregating
knowledge from multiple datasets can enhance the
performance of a single model across various data
domains and different tasks (Poth et al., 2021). This
approach is also applicable to out-of-domain data
(Wang et al., 2020b). (Frankle et al., 2020) demon-
strated the effectiveness of simple weight averaging
in model fusion, exhibiting better performance than
pre-training methods. (Matena and Raffel, 2022)
proposed fisher-weighted averaging to merge mod-
els with different architectures, taking into account
the importance of each parameter. (Jin et al., 2023)
investigated model fusion using regression mean,
re-weighting, and linearly combining rows within
the weight matrix. (Wortsman et al., 2022a) intro-
duced greedy soup, a technique to obtain robust
results by searching for different average weights
from multiple fine-tuned models. (Ilharco et al.,
2022) proposed the concepts of task vectors to im-
prove pre-trained models on multi-tasks and (Yadav
et al., 2023) worked on the interference problems
of task vectors to avoid the loss of valuable in-
formation. In addition to these knowledge fusion
methods that do not require training, there are many
knowledge fusion strategies that require complex
training environments. Multi-task learning, as ex-
plored by (Ruder, 2017), improves performance
across various tasks by sharing knowledge. Fed-
erated learning (Wang et al., 2020a) is a collab-
orative decentralized privacy-preserving technol-
ogy designed to overcome the challenges of data
silos and data sensitivity. Our evolutionary algo-
rithm is firmly rooted in the task vector (Ilharco
et al., 2022) methodology, wherein we derive the
differential vectors between two individuals dur-
ing the mutation operation. The methodology of
task vectors has recently emerged as a promising
approach for model merging and knowledge fu-
sion, as evidenced by studies such as (Yadav et al.,
2024; Ortiz-Jimenez et al., 2024). These investi-
gations underscore the capacity of differential vec-
tors, acquired through differentiation of pre-trained
and fine-tuned models, to facilitate model editing.

Overall, our approach harnesses the power of task
vectors to enhance model merging and knowledge
fusion, offering insights into both the theoretical
and practical aspects of this methodology.

2.2 Evolutionary algorithms

Of particular relevance to our work is evolving al-
gorithms (EAs), which provide an alternative path
for addressing optimization problems in deep neu-
ral networks (DNNs) without relying on gradient
information. The fundamental idea behind EAs is
to combine the structures and weights of a group
of neural networks and continually evolve them
in the direction of improved global fitness to en-
hance model performance. These methods encom-
pass genetic algorithms (Montana et al., 1989), ge-
netic programming (Suganuma et al., 2017), dif-
ferential evolution (DE) (Pant et al., 2020; Jiang
et al., 2024), and evolutionary strategies (Salimans
et al., 2017), among others. Neuro-evolution tech-
niques, such as NEAT (Neuro Evolution of Aug-
menting Topologies) (Stanley and Miikkulainen,
2002), have demonstrated the ability to design sim-
pler neural network architectures for improved per-
formance, particularly in reinforcement learning
tasks. However, it’s important to note that EA meth-
ods typically perform well on small datasets and
small-scale DNNs (Piotrowski, 2014). When ap-
plied to large-scale datasets, these methods tend
to converge slowly and may even fail to con-
verge (Piotrowski, 2014). In this paper, we propose
model evolution which is motivated by the fact that
model merging is neither amenable to traditional
gradient-based optimization methods, nor are sim-
ple techniques like grid search sufficient. There-
fore, we turn to evolutionary algorithms, which
show promise for effectively addressing the model
fusion problem.

3 Evolving Weights of Language Models

The goal of model evolution is to combine multi-
ple fine-tuned language models into a more pow-
erful single model. We achieve this by simulating
the evolution process of a neural network popu-
lation, as shown in Figure 2. We use the same
pre-trained checkpoint and fine-tune it in different
environments to create the initial population. As all
individuals share the same model architecture, this
enables our evolution algorithm to perform muta-
tions and recombinations among individuals within
the parameter space.

11729



Figure 2: The process of evolving weights of language models. Evolver involves aggregating the weights of
language models into a population and generating offspring models through mutation and crossover operations.

3.1 Evolutionary Strategy: Evolver

Population Initialization. For the optimization
problem of model merging, an original set of in-
dividuals (population) is initialized. The parame-
ters of each of N models are flattened into a one-
dimensional vector, forming a set of candidate so-
lutions. In this way, we obtain a set of candidate
individuals represented by θ = θi, i = 1, ..., N .
Here, N denotes the size of the population, and
θi = (θi,1, θi,2, ..., θi,d) represents each candidate
individual, where d is the dimension.

Evolution Process. We simulate the evolution
process of a population of neural networks using
the differential evolution algorithm (Pant et al.,
2020). Each generation consists of three main steps:
mutation, crossover, and updating.

Mutation: For each candidate individual θi, we
randomly select two other candidate individual θr1
and θr2 , where r1 and r2 are two distinct random
integers less than or equal to m. We use a scaling
factor F to adjust the differences between θr1 and
θr2 , and then add them to θi to obtain the mutated
solution θ⋆i = θi + F × (θr1 − θr2), where F is
used to control the weights of the difference vector
in the new parameter set.

Crossover: The computation for crossover is as
follows:

θ⋆i,j =

{
θ⋆i,j if rand(0, 1) ≤ Cr,

θi,j otherwise.
(1)

where Cr is the pre-set crossover degree threshold
between the new individual and the parent solution,
and the setting of the threshold Cr can impact the
ratio of elements selected in a mutated solution.

Updating: Throughout the process, we convert
the offspring population vectors into models and
conduct inference to get performance scores for
these models on the development dataset. As
demonstrated in the equation below, We sequen-
tially evaluate the performance scores of offspring
individuals in comparison to their parent one by
one. If an offspring performs better, we then re-
place the corresponding parent individual with it,
thereby updating the parent population.

θi =

{
θ⋆i score(θ⋆g

i ) > score(θg
i )

θi otherwise.
(2)

3.2 Integration with Other Merging Methods.
Our proposed model evolution method can be in-
tegrated with any other model merging technique.
Specifically, we can select the optimal individual
from the updated population as the outcome of the
evolution process, which we refer to as a simple
Evolver. Furthermore, we can also apply other
model merging techniques to the updated popu-
lation as a further improvement measure. Such
integration can be implemented both at the stage of
obtaining the final evolved model and during the
calculation of the updated population’s scores for
iterative updates. This process has been summa-
rized as Algorithm 1 and is detailed in the flowchart
provided in Appendix A.

3.3 Computation Efficiency
Memory Analysis: The memory expanse during
our model evolution is mainly related to the size
of the population:

∑N
i=1 d, where N represents

the number of populations, d is the dimension of
the model parameter space. Since we avoid inner
product matrices computing as in previous model

11730



Algorithm 1 Integrating Model Evolver with Other
Model Merging Methods

1: When inference with the updadted population
2: if this is a simple evolver
3: then
4: evaluate the performance of individual θ⋆i ,
5: else
6: merging θ⋆i with other individuals with a

specific merging method,
7: evaluate the performance of merged model.

merging methods such as fisher and regmean, and
the parameters is updated mainly through forward
propagation of greedy models, the peak GPU mem-
ory consumption is consequently lower.

Time Consumption: We hereby provide the for-
mula and key definitions required to calculate the
runtime. The total evolving time can be calculated
as T = G×N × (t1+L× t2) ≈ G×N ×L× t2,
where t1 ≪ t2 in practice. Here, G is the total
generations for updating, N is the population size,
t1 is the time for mutation and crossover for each
individual, L is the number of samples of devel-
opment datasets, t2 is the time for inference of a
sample on one model.

4 Experimental Setup

4.1 Evaluation Settings

Problems. We primarily consider the following
three main advantages when testing our proposed
model evolution method: Firstly, we anticipate
that our evolved model fM , created by integrating
knowledge from individual models f1..N finetuned
on diverse datasets D1..N , will have competitive
performance across various data sources without
necessitating separate models for each domain or
task. Then, by evolving different models excelling
in various tasks Dt

1..Nt
, we aim to enhance multi-

task handling capacity, avoiding the complexity of
retraining as in MTL, while enabling cross-task in-
ferencing within a single model. Lastly, our goal is
for the evolved model fM to excel in generalizing
to out of distributio (OOD) test sets Do

1..No
, thereby

enabling it to effectively handle new and unfore-
seen data from domains or tasks not encountered
during training. D1..N .

Datasets. We use the GLUE datasets (Wang et al.,
2018) as the cornerstone of our investigation into
the performance of evolved models. This inquiry

encompasses two key dimensions: training for non-
independent and identically distributed (non-i.i.d.)
partitions and training for disparate tasks. Detailed
dataset information and additional experimental
results are available in Appendix D.

Implementation. We use Hugging Face’s trans-
former library (Wolf et al., 2019) to access
pre-trained language models and conduct fine-
tuning. All our models, denoted as fi, follow
the same architecture and employ identical pre-
trained model weights θ for initialization, as de-
scribed in (McMahan et al., 2017). Our experi-
ments include various pre-trained models as start-
ing points, such as RoBERTa-base (Liu et al.,
2019), the lightweight DistilBert (Khanuja et al.,
2021) and well-established model DeBERTa-large-
v3 (He et al., 2022). Besides the models with
encoder-only architecture, we also conduct experi-
ments with encoder-decoder architecture, T5-base-
v1.1 (Raffel et al., 2020) and decoder-only archi-
tecture, GPT2 (Radford et al., 2019) and large
language model MiniCPM (Hu et al., 2024).

Population Initialization. The initial population
for model evolution is created through fine-tuning a
model with the same initialization but on different
data domains or various tasks. While fine-tuning
DistilBERT-base, RoBERTa-base, and DeBERTa-
large, we maintained a constant initial learning rate
of 1e-5. Throughout our experiments, we consis-
tently utilized the AdamW optimizer with a warm
up learning rate during the initial 6% of training.
Our model training utilized a batch size of 16 and
encompassed 10 epochs for the GLUE task and 30
epochs for the emotion classification task.

4.2 Compared Methods

We mainly compare Evolver with existing merg-
ing methods, including simple, fisher (Matena and
Raffel, 2022) , regmean (Jin et al., 2023) , greedy
soup (Wortsman et al., 2022a) and TIES (Yadav
et al., 2023). To gain a better grasp of the ad-
vantages of model merging, we show the perfor-
mance prior to model evolution, the average perfor-
mance of the population (Avg.f1..N ) and the best-
performing individual (Best.f1..N ), more details is
shown in Appendix D.3. Moreover, we provide
the performance for the model trained on a spe-
cific task domain-specific. We also compare with
model ensembling, where the logits from predic-
tions are extracted, averaged, and then subjected

11731



to the argmax operation. Lastly, we use multi-task
learning (MTL) as a benchmark.

5 Experimental Results

We assess the performance dynamics of the model
evolution method across a range of scenarios with
varying levels of complexity. These scenarios in-
clude: (1) performance across different data do-
mains used for fine-tuning individual models. (2)
performance across different tasks, when individ-
ual models are specialized in only one task. (3)
OOD generalization performance on datasets from
previously unseen domains.

5.1 Model Evolving Across Data Domains

Evolving All Domain-Specific Models. We con-
duct experiments of evolving five domain-specific
models for emotion classification, and the results
are recorded in Table 2. Multi-task learning (MTL)
achieves performance similar to that of domain-
specific models, suggesting that a single model has
the capability to acquire knowledge from multiple
domains. Besides, model soup approach, which
greedily selects fusion objects, leads to some im-
provements over the best individual. However,
these improvements are relatively marginal com-
pared to model merging methods.

We compare model evolution with three other
knowledge merging methods. The basic version
of model evolution outperformed fisher method
and achieved performance that is comparable to
regmean on some tasks. Furthermore, we explore
the combined use of model evolution and model
merging methods, demonstrating that our approach
further enhances existing model merging methods
and consistently yields improvements across dif-
ferent models. Also, we demonstrate results with
shared and different classification head initializa-
tion (Same Head Init/Diff Head Init). It can be
observed that fisher and regmean produce unstable
and highly variable results with different initializa-
tion, while the performance of the model evolution
method is less affected by this factor. Therefore,
our proposed model evolution method shows more
stable performance when deploying and maintain-
ing a single model across multiple domains.

Evolving Pairwise Domain-Specific Models In
addition to the fusion experiment involving all the
models, we also consider pairwise domain-specific
models for knowledge fusion in the context of the
emotion classification task. After pairing models

from a set of 5, we conduct 10 (C25 ) runs with all
the same methods described in section 5.1. The
result of these 10 runs are averaged and recorded
in Table 3. We observe clear differences between
model evolution and model merging methods, with
the TIES-evolver achieving the best performance
when combining pairwise models finetuned from
different domains.

Evolving Models Trained on Non-i.i.d. Parti-
tions. We adopt synthetic data divisions to sim-
ulate non-independent and identically distributed
(non-i.i.d.) partitions of the same dataset, across
the 8 tasks included in the GLUE benchmark.
Given the inconsistency in the performance of reg-
mean and fisher methods under different seeds,
we choose to average the result of eight different
random seeds. The results in Figure 3 indicate
that the implementation of model evolution outper-
formed previous methods on all tasks, with clear
improvements observed particularly on cola and
mnli datasets. Details of this section are shown in
Appendix D.4.

Figure 3: Result of model evolution on non-i.i.d. parti-
tions of GLUE benchmark datasets.

Figure 4: Result of model evolution across different
pairwise tasks on GLUE benchmark.

5.2 Evolving Models Across Different Tasks
Here we examine the effectiveness of model evolu-
tion in merging models finetuned on different tasks.
We use the RoBERTa-base model and train indi-

11732



Encoder-Decoder Encoder-only Decoder-only

Method T5-base
RoBERTa-base

Same / Diff Head Init.
DistilBERT-base

Same / Diff Head Init.
DeBERTa-large

Same / Diff Head Init.
GPT2 MiniCPM

Avg. f1..N 32.07 26.08 24.55 27.68 23.35 35.12
Best. f1..N 34.08 29.27 29.91 31.93 26.76 37.23
Ensemble 33.95 38.77 / 27.73 26.51 / 25.43 29.88 / 29.27 26.82 37.05

Greedy Soup 34.10 30.34 30.11 31.93 26.76 37.31

Simple 39.47 23.18 23.70 3.75 21.54 42.44
Evolver (ours) 41.25 33.27 / 30.04 28.95 / 26.29 23.90 / 21.55 23.41 44.76

Fisher 39.12 26.09 / 22.43 26.39 / 22.61 12.83 / 20.42 24.93 \
Fisher_Evolver (ours) 40.36 28.41 / 25.71 27.63 / 24.75 17.22 / 22.95 25.66 \

RegMean 40.24 38.74 / 32.58 33.37 / 28.29 38.33 / 18.92 30.14 \
RegMean_Evolver (ours) 41.83 39.87 / 34.28 35.67 / 31.11 39.58 / 21.79 32.26 \

TIES 41.24 39.66 / 35.32 35.55 / 30.14 39.22 / 21.67 32.11 45.81
TIES_Evolver (ours) 43.16 41.33 / 37.42 37.12 / 31.48 40.61 / 23.24 33.56 46.24

Domain-Specific 49.31 51.38 48.79 52.81 47.62 54.32
MTL 48.98 47.73 45.23 51.77 44.31 52.14

Table 2: In-domain performance when merging emotion classification models. The initial population are all 5 domain specific
models or pairwise models. \ indicates the original merging methods can not been conducted due to high GPU cost. Bold
numbers indicate the best performance across different model merging algorithms. All the results we reported are averages of
trials conducted with 5 different random seeds.

Model Simple Evolver TIES TIES_Evolver

T5-base 38.82 40.21 46.35 47.92
RoBERTa-base 37.78 39.13 45.56 46.89

DistillBERT-base 36.76 38.85 42.09 43.22
DeBERT-large 38.11 39.46 45.87 46.78

GPT2 36.33 38.25 41.85 42.62
MiniCPM 40.22 42.71 47.02 48.83

Table 3: In-domain performance when merging pairwise
domain-specific emotion classification models. All the results
we reported are averages of 10 (C2

5 ) runs after paring models
from a set of 5.

vidual models with the complete training data for
each task in the GLUE benchmark. Following this,
we randomly select two task-biased individuals to
conduct pairwise model evolution. Specifically, we
exclude the parameters in task-specific headers due
to their potential dimension variance depending on
tasks. We summarize the results of eight different
task pairs in Figure 4, which show that our model
evolution strategy performs effectively when fusing
knowledge from diverse tasks.

5.3 Model Evolving for Out-of-Domain
Generalization

For Out-of-Domain (OOD) generalization, we can
obtain the same conclusion as our in-domain ex-
periments, indicating that model evolving leads to
improvements in OOD generalization performance,
as summarized in Table 4. We notice that in the
case of RoBERTa-base and DistilBERT models ini-
tialized with different heads, the basic Evolver has
outperformed fisher-evolver and regmean-evolver.

A plausible explanation for this is that previous
methods may suffer from the negative impact of
extremely poor-performing individual models. In
contrast, model evolution possesses an elimina-
tion mechanism that effectively removes poorly-
performed individual models during the competi-
tion process. This ensures that only models with su-
perior performance are retained and merged. Con-
sequently, model evolution can reduce the negative
impact of under-performing models on the merged
results.

5.4 Mutation and Crossover

We also test the impact of different values of scale
factor F for mutation and crossover ratio Cr, as
shown in Figure 5. Due to the inherent randomness
in the search process of evolutionary algorithms,
we conducted each experiment using four different
random seeds and then calculated the average re-
sults. In general, the study findings indicate that
the performance of the evolutionary algorithm im-
proves as the parameters F or Cr increase until
reaching 0.5. However, when F or Cr exceeds
0.5, there is minimal improvement in performance,
and no clear pattern is observed. Therefore, in
all experiments conducted in this paper, we have
consistently used F = 0.5 and Cr = 0.5.

In addition, regmean method requires decreas-
ing the non-diagonal items of the inner product
matrices by multiplying a scalar α. Since the ef-
fectiveness of the regmean-evolver method can be
influenced by the hyperparameter α, we also test

11733



Encoder-Decoder Encoder-only Decoder-only

Method T5-base
RoBERTa-base

Same / Diff Head Init.
DistilBERT-base

Same / Diff Head Init.
DeBERTa-large

Same / Diff Head Init.
GPT2 MiniCPM

Avg. f1..N 30.12 20.92 19.69 21.17 18.63 35.24
Best. f1..N 37.41 29.46 29.55 31.07 27.88 38.93
Ensemble 27.92 11.36 / 10.90 9.60 / 9.19 11.09 / 9.26 8.77 29.54

Greedy Soup 15.42 13.43 15.26 4.67 11.61 31.70

Simple 38.61 11.56 13.21 0.24 10.25 40.21
Evolver (ours) 39.26 17.53 / 17.16 19.02 / 18.42 13.33 / 12.78 15.87 42.48

Fisher 37.72 16.21 / 14.28 17.77 / 15.69 5.57 / 27.61 15.16 \
Fisher_Evolver (ours) 38.87 16.98 / 15.44 18.85 / 17.36 15.46 / 30.41 16.34 \

RegMean 39.46 21.09 / 14.12 18.97 / 16.21 15.92 / 4.88 20.33 \
RegMean_Evolver (ours) 41.13 23.41 / 16.45 21.44 / 18.31 18.49 / 11.27 22.07 \

TIES 40.48 22.63 / 16.34 19.76 / 17.52 16.88 / 14.72 21.92 41.35
TIES_Evolver (ours) 42.53 24.11 / 19.02 22.64 / 19.06 18.74 / 16.31 22.75 42.86

MTL 37.64 27.41 25.63 31.45 25.26 44.62

Table 4: Out-of-domain Performance. All the results we reported are averages of trials conducted with 5 different random seeds.

0 10 20 30 40 50 60 70
Generation

0.24

0.26

0.28

0.30

0.32

Test Score vs Generations

f = 0.01
f = 0.05
f = 0.1
f = 0.15
f = 0.2
f = 0.3
f = 0.4
f = 0.5
f = 0.6
f = 0.7
f = 0.8
f = 0.9

(a) evolver with different F
when Cr=0.5.

0 10 20 30 40 50 60 70
Generation

0.350

0.355

0.360

0.365

0.370

0.375

0.380

Test Score vs Generations

f = 0.01
f = 0.05
f = 0.1
f = 0.15
f = 0.2
f = 0.3
f = 0.4
f = 0.5
f = 0.6
f = 0.7
f = 0.8
f = 0.9

(b) regmean-evolver with
different F when Cr=0.5.

0 10 20 30 40 50 60 70
Generation

0.24

0.26

0.28

0.30

0.32
Test Score vs Generations

cr = 0.01
cr = 0.05
cr = 0.1
cr = 0.15
cr = 0.2
cr = 0.3
cr = 0.4
cr = 0.5
cr = 0.6
cr = 0.7
cr = 0.8
cr = 0.9

(c) evolver with different Cr
when F=0.5.

0 10 20 30 40 50 60 70
Generation

0.350

0.355

0.360

0.365

0.370

0.375

0.380

Test Score vs Generations

cr = 0.01
cr = 0.05
cr = 0.1
cr = 0.15
cr = 0.2
cr = 0.3
cr = 0.4
cr = 0.5
cr = 0.6
cr = 0.7
cr = 0.8
cr = 0.9

(d) regmean-evolver with
different Cr when F=0.5.

Figure 5: Result of RoBERTa-base when evolving all
domain specific models on emotion datasets with differ-
ent with different scale factor F and crossover ratio Cr.

the performance of regmean-evolver under differ-
ent α parameters, as shown in Figure 6.

5.5 Integration with Coefficient Search

The coefficient search is a promising scheme to im-
prove the model merging performance, by search-
ing the optimal α. The proposed model evolution
can also be integrated with the coefficient search
method by searching the optimal scale factor f .
We have performed the grid search of α and f with
intervals of 0.05 from 0.1 to 0.9. We present the re-
sult in Table 5. In the setting of Simple, Fisher and
RegMean, the results show that a default version of
evolver (with scale factor f = 0.5, cr = 0.5) out-
performs the coefficient search results. Notably, the
integration with scale factor search further boosts
the performance of the evolver, which is worth
further investigation. Especially, the crossover ra-

* 0.050.1 0.2 0.3 0.50

10

20

30

40
Test Score of RoBERTa-base

In Domain regmean
In Domain reg_evolver
OOD regmean
OOD reg_evolver

* 0.050.1 0.2 0.3 0.5

15

20

25

30

35
Test Score of DistilBERTa-base

Figure 6: The improvement of regmean-evolver with
different scale α on the emotion dataset when evolving
all domain specific models. ∗ denotes results of simple
evolver.

tio Cr in model evolution could also be the sub-
ject of coefficient search. Many adaptive schemes
are also available in the realm of evolution algo-
rithms, like SADE (Qin and Suganthan, 2005) and
SHADE (Tanabe and Fukunaga, 2013), providing
a possibility of future algorithmic development.

5.6 Analysis

We demonstrate the evolutionary process when
combined with other model fusion methods. From
Figure 7, we can observe that when model evolver
is combined with fisher or regmean method, the
upper bounds of the evolutionary approach can be
enhanced. Additionally, we present the test results
of the evolutionary algorithm on the development
dataset. It is evident that as individual models are
trained on the development dataset, their perfor-
mance on the test set gradually improves. This
indicates that our model evolution method indeed
has the ability to optimize and learn.

In addition, we visualize a two dimensional slice
of the average test accuracy landscape when evolv-

11734



Model
Simple

(coefficient search)
Evolver

(scale factor search)
Fisher

(coefficient search)
Fisher_Evolver

(scale factor search)
RegMean

(coefficient search)
RegMean_Evolver

(scale factor search)

RoBERTa-base 37.78 (38.83) 39.13 (39.98) 37.11 (38.96) 40.34 (41.23) 46.56 (46.82) 46.89 (47.03)
DistillBERT-base 36.76 (37.63) 38.85 (39.67) 34.52 (37.54) 40.37 (41.31) 43.09 (43.14) 43.22 (43.31)

T5-base 38.82 (39.91) 40.21 (41.11) 38.08 (39.22) 41.46 (42.55) 47.35 (47.84) 47.92 (48.06)

Table 5: Coefficient Search Result when merging pairwise emotion classification models. Simple, Fisher and RegMean are
model merging algorithms for comparison. All the results we reported are averages of 10 (C2

5 ) runs after paring models from a
set of 5.

Init 10 20 30 40 50 60
Generation

0.20

0.25

0.30

0.35

0.40
Test Score of RoBERTa-base

reg-evolver test
fisher-evolver test
evolver test
reg-evolver dev
fisher-evolver dev
evolver dev

Init 10 20 30 40 50 60
Generation

0.20

0.25

0.30

0.35
Test Score of DistilBERTa-base

Figure 7: In-domain score of model evolution on the
emotion dataset with all domain specific models.

ing pairwise fine-tuned T5 models, as shown in
Figure 8. In this experiment, we use the zero-shot
initialization and fine-tune twice, independently, to
produce task vectors on MRPC and STSB datasets.
We analyze the positions of the model results after
fusion by different methods in their corresponding
landscapes. Methods like TIES and other merg-
ing approaches typically process the task vectors
of models on different tasks and then perform a
direct weighted average. This results in a fixed
relative scale among different tasks during model
fusion. However, from the landscape, we can see
that the optimal fusion performance usually has dif-
ferent preferences for different tasks. Our proposed
model evolution method can dynamically update
the scales of different tasks to promote better model
fusion effects.

The proposed model evolution also has some
advantages in other aspects: (1) Model evolution
can leverage the benefits of a larger population size
without being significantly affected by individuals
with extremely poor performance. This advantage
is a result of the survival of the fittest mechanism
in the model evolution process. By favoring those
with most effective performance, we reduce the
influence of individuals with extreme differences,
leading to a more robust and reliable system. (2)
Model evolution method can effectively maintain
low peak GPU memory usage. This is primarily
attributed to its sequential forward inference of indi-
vidual models, as opposed to most previous model
merging techniques that require additional GPU
memory for computing inner product matrices in

0.6

0.8

1.0

1.2

1.4

Simple Averaging

y=x

TIES Merging

y=x

0.6 0.8 1.0 1.2 1.4

0.6

0.8

1.0

1.2

1.4

Evolver (Ours)

y=x

0.6 0.8 1.0 1.2 1.4

TIES_Evolver (Ours)
y=x

53.90

61.00

62.00

63.00

64.00

66.00

67.00

70.50

scale of task vector on MRPC dataset

sc
al

e 
of

 ta
sk

 v
ec

to
r o

n 
ST

SB
 d

at
as

et

Figure 8: The average performance of merged T5 model
on MRPC and STSB test dataset. By observing the den-
sity and distribution range of the contour lines, it is
evident that our evolver method performs better. Addi-
tionally, previous methods typically utilize a uniform
scale across different task vectors, whereas the evolved
model exhibits a preference for varying scales deter-
mined through iterative evolution rounds.

the model parameter space. This advantage sig-
nificantly reduces GPU memory consumption and
extends the range of feasible solutions for large-
scale language models.

6 Conclusions

We introduce a novel knowledge fusion method,
called model evolution, inspired by evolutionary
algorithms. This approach significantly boosts the
performance of model merging in diverse NLP
contexts. Model evolution stands out by aggregat-
ing model weights into a population and updating
it with superior offspring models, all without re-
quiring extra training data. The most significant
contribution of our work lies in our experimental
discovery that knowledge fusion can benefit from
searching per-model and per-parameter coefficients.
This type of search-based, gradient-free optimiza-
tion algorithm proves to be an effective tool for
model merging and warrants greater attention in the
research community. Our extensive experiments
validate its superiority over previous techniques.

11735



Limitation

The limitations of the model evolution method can
be summarized in three main aspects: (1) the ne-
cessity for a high-quality development dataset with
consideration for data privacy, (2) the requirement
for a cautious selection of hyperparameters F and
Cr, (3) and the significance of conducting further
theoretical analysis of evolutionary algorithm prin-
ciples. Future research offers several promising
directions. Firstly, exploring advanced optimiza-
tion strategies within evolutionary algorithms, in-
cluding adaptive approaches and hyperparameter
selection based on historical performance, holds
the potential for enhancing the method’s effective-
ness. Secondly, extending knowledge fusion to
a more complex training environment by consid-
ering hyperparameters, multimodal and exploring
different training methods like unsupervised or su-
pervised learning can provide a comprehensive un-
derstanding of its applicability. Thirdly, arithmetic
operations in (Ilharco et al., 2022) for model edit
can be analyzed. Lastly, evaluating the approach
on larger language models can provide insights into
its scalability.

Ethical Considerations

Our approach has been evaluated on GLUE. We
explicitly claim that the applicability of our method
and findings may be confined to similar datasets
or domains. The performance of our method on
other specific datasets or domains remains uncer-
tain. Thus, there are potential risks when apply-
ing our method to privacy-sensitive or high-risk
datasets. We should be cautious and verify whether
the method generates correct answers.

Acknowledgements

This work was supported in part by
Shenzhen College Stability Support Plan
(GXWD20231128103232001), Department
of Science and Technology of Guangdong
(2024A1515011540), Shenzhen Start-Up Re-
search Funds (HA11409065), National Natural
Science Foundation of China (12204130),
the Ministry of Higher Education Malaysia
through the Fundamental Research Grant
Scheme (FRGS/1/2023/ICT02/XMU/02/1),
and Xiamen University Malaysia through
Xiamen University Malaysia Research
Fund (XMUMRF/2022-C10/IECE/0039 and
XMUMRF/2024-C13/IECE/0049).

References
Cecilia Ovesdotter Alm, Dan Roth, and Richard Sproat.

2005. Emotions from text: machine learning for
text-based emotion prediction. In Proceedings of
conference on empirical methods in natural language
processing (EMNLP), pages 579–586.

Noor Awad, Neeratyoy Mallik, and Frank Hutter. 2020.
Differential evolution for neural architecture search.
arXiv preprint arXiv:2012.06400.

Daniel Cer, Mona Diab, Eneko Agirre, Inigo Lopez-
Gazpio, and Lucia Specia. 2017. Semeval-2017
task 1: Semantic textual similarity-multilingual and
cross-lingual focused evaluation. arXiv preprint
arXiv:1708.00055.

Ben Chen, Bin Chen, Dehong Gao, Qijin Chen, Chengfu
Huo, Xiaonan Meng, Weijun Ren, and Yang Zhou.
2021. Transformer-based language model fine-
tuning methods for covid-19 fake news detection. In
Combating Online Hostile Posts in Regional Lan-
guages during Emergency Situation: First Inter-
national Workshop, CONSTRAINT, pages 83–92.
Springer.

Jesse Dodge, Gabriel Ilharco, Roy Schwartz, Ali
Farhadi, Hannaneh Hajishirzi, and Noah Smith. 2020.
Fine-tuning pretrained language models: Weight ini-
tializations, data orders, and early stopping. arXiv
preprint arXiv:2002.06305.

Bill Dolan and Chris Brockett. 2005. Automati-
cally constructing a corpus of sentential paraphrases.
In Third International Workshop on Paraphrasing
(IWP2005).

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel
Roy, and Michael Carbin. 2020. Linear mode con-
nectivity and the lottery ticket hypothesis. In Pro-
ceedings of the International Conference on Machine
Learning (ICML), pages 3259–3269.

Danilo Giampiccolo, Bernardo Magnini, Ido Dagan, and
William B Dolan. 2007. The third pascal recognizing
textual entailment challenge. In Proceedings of the
ACL-PASCAL workshop on textual entailment and
paraphrasing, pages 1–9.

Pengcheng He, Jianfeng Gao, and Weizhu Chen. 2022.
Debertav3: Improving deberta using electra-style pre-
training with gradient-disentangled embedding shar-
ing. In Proceedings of the Eleventh International
Conference on Learning Representations (ICLR).

Shengding Hu, Yuge Tu, Xu Han, Chaoqun He, Ganqu
Cui, Xiang Long, Zhi Zheng, Yewei Fang, Yuxi-
ang Huang, Weilin Zhao, et al. 2024. Minicpm:
Unveiling the potential of small language models
with scalable training strategies. arXiv preprint
arXiv:2404.06395.

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Worts-
man, Suchin Gururangan, Ludwig Schmidt, Han-
naneh Hajishirzi, and Ali Farhadi. 2022. Edit-
ing models with task arithmetic. arXiv preprint
arXiv:2212.04089.

11736



Runhua Jiang, Guodong Du, Shuyang Yu, Yifei Guo,
Sim Kuan Goh, and Ho-Kin Tang. 2024. Cade: Co-
sine annealing differential evolution for spiking neu-
ral network. arXiv preprint arXiv:2406.02349.

Xisen Jin, Xiang Ren, Daniel Preotiuc-Pietro, and
Pengxiang Cheng. 2023. Dataless knowledge fusion
by merging weights of language models. In Pro-
ceedings of the Eleventh International Conference on
Learning Representations (ICLR).

Simran Khanuja, Melvin Johnson, and Partha Talukdar.
2021. Mergedistill: Merging language models using
pre-trained distillation. In Findings of the Associa-
tion for Computational Linguistics (ACL-IJCNLP),
pages 2874–2887.

Yanran Li, Hui Su, Xiaoyu Shen, Wenjie Li, Ziqiang
Cao, and Shuzi Niu. 2017. Dailydialog: A manually
labelled multi-turn dialogue dataset. arXiv preprint
arXiv:1710.03957.

Vicki Liu, Carmen Banea, and Rada Mihalcea. 2017.
Grounded emotions. In Proceedings of the Seventh
International Conference on Affective Computing and
Intelligent Interaction (ACII), pages 477–483.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Michael S Matena and Colin A Raffel. 2022. Merging
models with fisher-weighted averaging. Advances in
Neural Information Processing Systems (NeurIPS),
35:17703–17716.

Brendan McMahan, Eider Moore, Daniel Ramage,
Seth Hampson, and Blaise Aguera y Arcas. 2017.
Communication-efficient learning of deep networks
from decentralized data. In Artificial intelligence and
statistics, pages 1273–1282. PMLR.

Saif Mohammad. 2012. # emotional tweets. In Proceed-
ings of the Sixth International Workshop on Semantic
Evaluation (SemEval 2012), pages 246–255.

Saif Mohammad and Felipe Bravo-Marquez. 2017.
Wassa-2017 shared task on emotion intensity. In
Proceedings of the 8th Workshop on Computational
Approaches to Subjectivity, Sentiment and Social Me-
dia Analysis, pages 34–49.

Saif M Mohammad, Xiaodan Zhu, Svetlana Kiritchenko,
and Joel Martin. 2015. Sentiment, emotion, purpose,
and style in electoral tweets. Information Processing
& Management, 51(4):480–499.

David J Montana, Lawrence Davis, et al. 1989. Train-
ing feedforward neural networks using genetic al-
gorithms. In Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI), vol-
ume 89, pages 762–767.

Guillermo Ortiz-Jimenez, Alessandro Favero, and Pas-
cal Frossard. 2024. Task arithmetic in the tangent
space: Improved editing of pre-trained models. Ad-
vances in Neural Information Processing Systems
(NeurIPS), 36.

Millie Pant, Hira Zaheer, Laura Garcia-Hernandez,
Ajith Abraham, et al. 2020. Differential evolution:
A review of more than two decades of research.
Engineering Applications of Artificial Intelligence,
90:103479.

Adam P Piotrowski. 2014. Differential evolution algo-
rithms applied to neural network training suffer from
stagnation. Applied Soft Computing, 21:382–406.

Clifton Poth, Jonas Pfeiffer, Andreas Rücklé, and Iryna
Gurevych. 2021. What to pre-train on? efficient
intermediate task selection. In Proceedings of the
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 10585–10605.

A Kai Qin and Ponnuthurai N Suganthan. 2005. Self-
adaptive differential evolution algorithm for numeri-
cal optimization. In IEEE congress on evolutionary
computation, volume 2, pages 1785–1791.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. The Journal of Machine Learning Research,
21(1):5485–5551.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 2383–
2392.

Sebastian Ruder. 2017. An overview of multi-task
learning in deep neural networks. arXiv preprint
arXiv:1706.05098.

Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor,
and Ilya Sutskever. 2017. Evolution strategies as a
scalable alternative to reinforcement learning. arXiv
preprint arXiv:1703.03864.

Klaus R Scherer and Harald G Wallbott. 1994. Evidence
for universality and cultural variation of differential
emotion response patterning. Journal of personality
and social psychology, 66(2):310.

Hendrik Schuff, Jeremy Barnes, Julian Mohme, Sebas-
tian Padó, and Roman Klinger. 2017. Annotation,
modelling and analysis of fine-grained emotions on
a stance and sentiment detection corpus. In Pro-
ceedings of the 8th Workshop on Computational Ap-
proaches to Subjectivity, Sentiment and Social Media
Analysis, pages 13–23.

11737



Mohammad Javad Shafiee, Akshaya Mishra, and
Alexander Wong. 2018. Deep learning with darwin:
Evolutionary synthesis of deep neural networks. Neu-
ral Processing Letters, 48(1):603–613.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 conference on empirical
methods in natural language processing (EMNLP),
pages 1631–1642.

Kenneth O Stanley and Risto Miikkulainen. 2002.
Evolving neural networks through augmenting
topologies. Evolutionary computation, 10(2):99–
127.

Carlo Strapparava and Rada Mihalcea. 2007. Semeval-
2007 task 14: Affective text. In Proceedings of the
Fourth International Workshop on Semantic Evalua-
tions (SemEval-2007), pages 70–74.

Masanori Suganuma, Shinichi Shirakawa, and Tomo-
haru Nagao. 2017. A genetic programming approach
to designing convolutional neural network architec-
tures. In Proceedings of the genetic and evolutionary
computation conference (GECCO), pages 497–504.

Ryoji Tanabe and Alex Fukunaga. 2013. Success-
history based parameter adaptation for differential
evolution. In IEEE congress on evolutionary compu-
tation, pages 71–78.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R Bowman. 2018.
Glue: A multi-task benchmark and analysis platform
for natural language understanding. In Proceedings
of the International Conference on Learning Repre-
sentations (ICLR).

Hongyi Wang, Mikhail Yurochkin, Yuekai Sun, Dim-
itris Papailiopoulos, and Yasaman Khazaeni. 2020a.
Federated learning with matched averaging. arXiv
preprint arXiv:2002.06440.

Jing Wang, Mayank Kulkarni, and Daniel Preoţiuc-
Pietro. 2020b. Multi-domain named entity recog-
nition with genre-aware and agnostic inference. In
Proceedings of the 58th annual meeting of the asso-
ciation for computational linguistics (ACL), pages
8476–8488.

Alex Warstadt, Amanpreet Singh, and Samuel Bow-
man. 2019. Neural network acceptability judgments.
Transactions of the Association for Computational
Linguistics (TACL), 7:625–641.

Adina Williams, Nikita Nangia, and Samuel R Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In NAACL-
HLT.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,

and Jamie Brew. 2019. Huggingface’s transformers:
State-of-the-art natural language processing. ArXiv,
abs/1910.03771.

Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre,
Rebecca Roelofs, Raphael Gontijo-Lopes, Ari S Mor-
cos, Hongseok Namkoong, Ali Farhadi, Yair Carmon,
Simon Kornblith, et al. 2022a. Model soups: averag-
ing weights of multiple fine-tuned models improves
accuracy without increasing inference time. In Pro-
ceedings of the International Conference on Machine
Learning (ICML), pages 23965–23998.

Mitchell Wortsman, Gabriel Ilharco, Jong Wook
Kim, Mike Li, Simon Kornblith, Rebecca Roelofs,
Raphael Gontijo Lopes, Hannaneh Hajishirzi, Ali
Farhadi, Hongseok Namkoong, et al. 2022b. Robust
fine-tuning of zero-shot models. In Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 7959–7971.

Prateek Yadav, Derek Tam, Leshem Choshen, Colin
Raffel, and Mohit Bansal. 2023. Ties-merging: Re-
solving interference when merging models. In Thirty-
seventh Conference on Neural Information Process-
ing Systems (NeurIPS).

Prateek Yadav, Derek Tam, Leshem Choshen, Colin A
Raffel, and Mohit Bansal. 2024. Ties-merging: Re-
solving interference when merging models. Ad-
vances in Neural Information Processing Systems
(NeurIPS), 36.

Le Yu, Bowen Yu, Haiyang Yu, Fei Huang, and Yongbin
Li. 2023. Language models are super mario: Absorb-
ing abilities from homologous models as a free lunch.
arXiv preprint arXiv:2311.03099.

11738



Appendix

A Explanation of Model Evolution

In this section, we provide a more comprehensive
explanation of the principles underlying the Differ-
ential Evolution algorithm, furthermore, we offer
an in-depth elucidation of the mutation process,
providing a visual representation in Figure 9 to en-
hance clarity and understanding. Overall, the fun-
damental principle of the differential evolution al-
gorithm involves randomly selecting three distinct
individuals, performing a mutation operation to
create a new candidate solution, using a crossover
operation to refine the solution, and replacing the
original solution if the new one performs better.
This iterative process continues until certain stop-
ping criteria are met.

To better illustrate our model evolution method,
we have created a flowchart as shown in algo-
rithm 2. The details of combining our proposed
method with other models are provided in Step 3.
The approach involves calculating an overall score
by using model merging on the mutated individu-
als along with the non-mutated individuals in the
current evolution. In contrast, the simple evolver
determines the success of mutation based on the
score of individual entities, while the combined ap-
proach assesses it based on the score of the entire
population after individual mutation.

Figure 9: An illustration of the mutation process in
difference evolution.

B Preliminaries

Fisher-weighted averaging (fisher) (Matena and
Raffel, 2022) examines the importance of each
weight Fi associated with each label by comput-
ing the norm of the logarithmic likelihood gra-
dient. Specifically, the posterior probabilities of

each model are interpreted as gaussian distribu-
tions p(θ|θi, Fi), where the parameters θ for model
i correspond to the Fisher information matrix Fθ.
Finally, the fisher information for each parameter is
used to perform a weighted average of the parame-
ters, integrating the parameters of different models
into a single model.

Regression mean (regmean) (Jin et al., 2023)
expands the solution of a linear optimization prob-
lem to K models where Wi, i ∈ K, denoted
as WM = (

∑i∈K
i XT

i Xi)
−1

∑i∈K
i (XT

i XiWi).
Each transformer model f (j) linear layer’s corre-
sponding X

(j)
i is captured along with per-weights

and its input inner product matrix, to compute
the merged weights and produced merged model
fM (x) = W T

Mx. The scale of XT
i Xi exhibits sub-

stantial variation across different models. Addition-
ally, a control mechanism is applied by multiplying
XT

i Xi by α = 1
1+γ .

Model soups (greedy soup) (Wortsman et al.,
2022a). Initially, models are ranked based on
their development dataset scores. Subsequently,
model parameters θi are chosen through a greedy
search, and their inclusion in the gradient is de-
termined by comparing the average validation set
accuracy before and after their addition. The
merged model’s parameters can be represented as
θS = average(ingredients).

TIES merging (TIES) (Yadav et al., 2023). This
method is based on the concept of task vectors (Il-
harco et al., 2022) and address the problem of two
major sources of interference: (a) interference due
to redundant parameter values and (b) disagreement
on the sign of a given parameter’s values across
models. This method proposed TRIM, ELECT
SIGN & MERGE (TIES-MERGING), which in-
troduces three novel steps when merging models:
(1) resetting parameters that only changed a small
amount during fine-tuning, (2) resolving sign con-
flicts, and (3) merging only the parameters that are
in alignment with the final agreed-upon sign

C Impact of Development Dataset

The availability of development datasets directly
impacts the effectiveness of our model evolution ap-
proach. However, many publicly available datasets
either do not provide development sets or widely
use them as test sets. In our case, the development
set of the GLUE dataset is used as a test set, so we

11739



Algorithm 2 Model Evolution
1: Step 1 - Initializing the Population
2: Initialize population Θ ▷ A population of candidate solutions
3: generation← 0 ▷ Initialize generation counter
4: converged← False ▷ Convergence flag
5: while not converged do
6: Step 2 - Evolution Process: Mutation and Recombination
7: for each candidate solution θi in Θ do
8: Randomly select θr1 and θr2 ▷ Select random solutions
9: F ← Random scaling factor ▷ Control parameter for mutation

10: Cr ← Random crossover rate ▷ Control parameter for recombination
11: Compute mutated solution θ⋆i using θi, θr1, θr2, and F
12: Perform recombination of θ⋆i based on Cr and θi
13: Step 3 - Model Inference
14: if not combined with other model merging methods then
15: Evaluate the performance of θ⋆i on development data
16: else
17: Merging θ⋆i with other models
18: Evaluate the performance of merged model on development data
19: end if
20: end for
21: Step 4 - Updating the Population
22: converged← True ▷ Assume convergence
23: for each candidate solution θi in Θ do
24: if θ⋆i outperforms θi then ▷ Comparing performance
25: Replace θi with θ⋆i ▷ Update population
26: converged← False ▷ Reset convergence flag
27: end if
28: end for
29: generation← generation+ 1 ▷ Increment generation counter
30: end while

11740



utilize a small portion of the training dataset (ap-
proximately 5%) for model evolution. For non-i.i.d.
partition methods, we also use only a subset of the
same training data samples. In the case of the uni-
fied emotion dataset, we separately extract 10% of
data from each of the five high-resource datasets for
model evolution, following the same partitioning
method as employed in (Jin et al., 2023).

For our model evolution approach, the quality
of the development dataset can significantly im-
pact performance, making the selection of a high-
quality development dataset a crucial consideration.
To address this, we conducted experiments on the
emotion dataset using different lengths of model
evolution methods. We performed experiments
with both the simple evolver and regmean evolver,
evolving all five domain-specific models. The ex-
perimental results are shown in Table 6, indicating
that even with a short development dataset, model
evolution can still be effective. However, as the
length of the development dataset increases, the
performance of model evolution tends to improve.
Additionally, we included the test scores of simple
methods as baselines for comparison.

Length None 1/4 1/2 1

Evolver 23.18 30.14 32.03 33.27

Regmean_Evolver 38.74 39.43 39.57 39.87

Table 6: The performance of model evolution with
different length of development dataset. None means
evolver is not conduct and the test score of simple aver-
aging and regmean method is recorded.

D Dataset, Metrics and Training Details

D.1 Emotion Classification Datasets

In order to investigate the performance of the senti-
ment classification task, we selected a diverse and
challenging set of datasets. Among them, Daily-
Dialogs (Li et al., 2017), CrowdFlower, TEC (Mo-
hammad, 2012), Tales-Emotion (Alm et al., 2005),
and ISEAR (Scherer and Wallbott, 1994) is utilized
to train domain-specific model. For acessing OOD
generalization performance, we use Emoint (Mo-
hammad and Bravo-Marquez, 2017), SSEC (Schuff
et al., 2017), ElectoralTweets (Mohammad et al.,
2015), GroundedEmotions (Liu et al., 2017), and
AffectiveText (Strapparava and Mihalcea, 2007).
For OOD evaluation, we focus exclusively on the
fundamental emotions: anger, disgust, fear, joy,

Train Dev Test

In-domain
DialyDialog 72,085 10,298 20,596
CrowdFlower 27,818 3,974 7,948
TEC 14,735 2,105 4,211
Tales-Emotion 10,339 1,477 2,955
ISEAR 5,366 766 1,534

Out-of-domain
Emoint 7,102
SSEC 4,868
ElectoralTweets 4,056
GroundedEmotions 2,585
AffectiveText 1,250

Table 7: Statistics of emotion classification datasets.

sadness, and surprise. A detailed overview of the
datasets and statistics is provided in Table 7.

D.2 GLUE Benchmark Datasets

For the GLUE dataset, we utilized multiple tasks,
including CoLA (Warstadt et al., 2019), SST-
2 (Socher et al., 2013), MRPC (Dolan and Brockett,
2005), STS-B (Cer et al., 2017), MNLI (Williams
et al., 2018),QNLI (Rajpurkar et al., 2016), QQP,
and RTE (Giampiccolo et al., 2007). These tasks
cover various natural language understanding prob-
lems such as text classification, text similarity, and
natural language inference. To assess our merged
models, we tested them on the official development
sets. We performed experiments by training models
on non-i.i.d. partitions, creating various partition
scenarios through random sampling. Each partition
is uniformly sub-sampled to yield a total of 1,000
training examples per partition.

D.3 Definitions and Metrics

The performance of individual models involved in
merging are reported: (1) the average performance
of all individual models (Avg. f1..N ); (2) the per-
formance of the best single individual model (Best.
f1..N ), as determined by using the validation set;
(3) the performance of the individual models cor-
responding to the training data set for each test set
(Domain-Specific).

In evaluating merged models trained for non-
i.i.d. partitions of the same dataset, we assessed
their performance using a unified test set charac-
terized by a joint distribution of all partitions. For
merged models trained across different domains
or tasks, we measured their performance across
individual domains or tasks incorporated into the

11741



Initial Population for Evolving T5-base RoBERTa-base DistilBERT-base DeBERTa-large GPT2 MiniCPM

All Domain Specifis Models on Emotion Datasets 24.5 19.2 18.7 21.3 20.1 28.1
Pairwise Models on Emotion Datasets 9.3 7.3 7.1 8.1 7.6 13.2
None-iid Pairwise Models on GLUE Benchmark 7.2 5.7 5.5 6.2 5.9 10.6
Cross Tasks Pairwise Models on GLUE Benchmark 8.7 7.1 6.8 7.8 7.5 12.6

Table 8: Time cost (in the unit of minutes) of RegMean_Evolver on different experiments with 20 generations. T5-base is
tested on single A800 GPU and other models are tested on single A6000 GPU. The time cost is mainly related to the size of
model and the length of development dataset when conducting model evolution.

merger and derived their macro-average. Similarly,
when evaluating out-of-domain performance, we
computed the macro-average of their performance
across the out-of-domain test set.

D.4 Merging Models Trained on Non-i.i.d.
Partitions.

Merging models initially trained on non-i.i.d. par-
titions of the same dataset is started, which is
achieved by simulating synthetic data splits across
the 8 tasks within the GLUE benchmark. Each
task involves dividing the training data into two
partitions, each containing 1,000 training examples
with distinct label distributions. Following this, we
perform fine-tuning on these two partitions for 8
pairs of individual models and merge each pair of
models. The evaluation of these merged models
takes place on the official validation sets, which
portray a joint distribution of both partitions.

D.5 Time Cost
We report the time cost of the scheme of model
evolution, as shown in Table 8. T5-base model
and MiniCPM model are tested on single NVIDIA
A800 80G GPU and other models are tested on
single RTX A6000 48G GPU. We find that all task
of model evolution can be completed within half
an hour, which is very cost-efficient in improving
the model performance without further training.

11742


