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Abstract

Recently, DeepNorm scales Transformers into
extremely deep (i.e.,in0 layers) and reveals
the promising potential of deep scaling. To
stabilize the training of deep models, Deep-
Norm (Wang et al., 2022a) attempts to con-
strain the model update to a constant value. Al-
though applying such a constraint can benefit
the early stage of model training, it may lead to
undertrained models during the whole training
procedure. In this paper, we propose Branch-
Norm, which dynamically rescales the non-
residual branch of Transformer in accordance
with the training period. BranchNorm not only
theoretically stabilizes the training with smooth
gradient norms at the early stage, but also en-
courages better convergence in the subsequent
training stage. Experimental results on multiple
translation tasks demonstrate that BranchNorm
achieves a better trade-off between training sta-
bility and converge performance.

1 Introduction

In recent years, Transformers (Vaswani et al., 2017)
have been developed rapidly and achieved state-of-
the-art (SOTA) performance on a wide range of
tasks. Meanwhile, the model capacity gets sub-
stantially expanded by widening the model dimen-
sion (Devlin et al., 2019; Liu et al., 2019; Lin et al.,
2021; Smith et al., 2022). Given that deep neural
models learn feature representations with multi-
ple layers of abstraction (LeCun et al., 2015), it
is more attractive to increase the capacity of the
model by scaling depths rather than widths. Un-
fortunately, due to the training instability of Trans-
formers, the depths of these SOTA models are still
relatively shallow (Kaplan et al., 2020; Hoffmann
et al., 2022).

To stabilize the training of Transformers, there
have been various efforts on better architec-
tures (Shleifer et al., 2021; Wang et al., 2022b,
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Figure 1: BLEU(%) scores on the WMT2014 En-Fr
machine translation benchmark upon fully convergent
models. The term ‘Gap’ denotes the observed decrease
in performance when DeepNorm is applied to the vanilla
Transformer.”

2023), or the implementation of proper initializa-
tion (Zhang et al., 2019a; Huang et al., 2020; Wang
et al., 2022a). Among them, the most representa-
tive approach is DeepNorm (Wang et al., 2022a),
which first scales Transformers to 1000 layers and
significantly outperforms existing shallow counter-
parts.

Specifically, DeepNorm aims to constrain the
model update to a constant level by upweighting
the residual connections in Transformer and reduc-
ing the variance of parameter initialization. As a
result, the stability of Transformers is improved in
the early training stage. However, such constraints
on the magnitude of parameter updates may ulti-
mately yield undertrained models during the subse-
quent training stage. To verify the above conjecture,
we first conduct experiments on shallow models to
ensure that all models can be trained stably to con-
vergence. As shown in Figure 1, it is observed
that DeepNorm brings a certain degree of perfor-
mance decline on vanilla Transformers, and this
issue tends to get worse when models get deeper.
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To address the above issue, we propose a sim-
ple yet effective approach to robustly scale ex-
tremely deep Transformers, named BranchNorm.
Specifically, the non-residual branch1 of the Trans-
former is dynamically rescaled according to the
training period. In the early stage of model training,
BranchNorm theoretically stabilizes the training
with smooth gradient norms. While in the subse-
quent training stage, BranchNorm progressively de-
generates into a vanilla Post-LayerNorm (i.e., Post-
LN) to promote better convergence. Experiments
on a wide range of tasks show that BranchNorm
brings consistent improvement over DeepNorm and
effectively alleviates the above undertrained issue.
Moreover, BranchNorm performs more robustly
on some key hyperparameters (e.g., warmup, and
learing rate) than DeepNorm, which makes it likely
to be a portable alternative for scaling extremely
deep Transformers.

The contributions of this paper can be summa-
rized as follows 2:

• We introduce BranchNorm, a straightforward
yet effective normalization method to stabilize
the training of extremely deep Transformers.

• BranchNorm demonstrates superior training
stability and convergence performance com-
pared to existing methods, across a series of
extremely deep models and various tasks.

• BranchNorm is able to alleviate the problem
of parameter redundancy in extremely deep
models, from the perspective of representing
similarity and sparsity of activation functions.

2 Background

In this section, we first provide a brief overview of
the difference between Post-LN and Pre-LN in, and
subsequently introduce the existing DeepNorm.

3 Intruduction of Post-LN and Pre-LN

Firstly, Wang et al. (2019); Nguyen and Salazar
(2019) observe that the position of LayerNorm (Ba
et al., 2016) has a significant effect on training sta-
bility, and propose the more stable Pre-LN variant
compared to the original Post-LN (Vaswani et al.,
2017). An example of these two architectures is

1Note that we name the residual connections in Trans-
former as ‘residual branch’ and the other branch as ‘non-
residual branch’ in this paper.

2Codes are available at https://github.com/Adaxry/
BranchNorm
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Figure 2: The architectures of Pre-Norm (i.e., Pre-LN)
and Post-Norm (i.e., Post-LN) Transformers.

shown in Figure 2. Subsequently, Liu et al. (2020)
further analyze that Pre-LN may have an exces-
sive reliance on its residual connections, which
inhibits the model from unleashing its full poten-
tial. Motivated by the above observation, we base
our approach on Post-LN in the remainder of our
experiments. Formally, within the l-th sub-layer of
the Post-LN Transformer, given the input xl, the
subsequent output xl+1 is computed as follows:

xl+1 = LN(xl + F (xl; θl)) (1)

where LN is an abbreviation for LayerNorm3, F
represents the function of the current sub-layer (at-
tention or feed-forward) and θl denotes the corre-
sponding parameters of the l-th sub-layer.

DeepNorm. DeepNorm follows the Post-
LayerNorm (i.e., Post-LN) architecture and
rescales the residual branch with a scalar factor
α > 1. Formally, the l-th sub-layer in DeepNorm
conduct calculations as follows:

xl+1 = LN(αxl + F (xl; θl)) (2)

where LN is an abbreviation for LayerNorm, F
represents the function of the current sub-layer (at-
tention or feed-forward) and θl denotes the corre-
sponding parameters of the l-th sub-layer. In addi-
tion, DeepNorm reduces the variance of the initial
parameters by scaling factor β < 1. Both the α and
β are functions of model depths, which are derived
from the assumption of constant model update. For
a standard Transformer with N -layer encoder and

3For brevity, the two learnable parameters γ and β in
LayerNorm are omitted.
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M -layer decoder, DeepNorm calculate α and β as
follows:

αencoder = 0.81(N4M)
1
16

βencoder = 0.87(N4M)
− 1

16

αdecoder = (3M)
1
4

βdecoder = (12M)−
1
4

(3)

Note that β merely affects the model initialization,
whereas α is used and remains fixed throughout
the whole training procedure. Moreover, with the
model gets deeper, DeepNorm will assign larger
value to α, which leads to the model outputs xl+1

depend too much on the residual branch αxl. In
turn, the model parameters θl on the non-residual
branch may get insufficient training.

4 Approaches

In this section, we first analyze the instability of
Post-LN from the perspective of gradient norm,
then demonstrate how DeepNorm can alleviate the
unbalanced gradients to a certain extent, and finally
introduce our proposed method BranchNorm.

4.1 Perspective of Gradient

Unbalanced gradients are mainly responsible for
the instability of Transformer4 (Wang et al., 2019;
Shleifer et al., 2021; Zhu et al., 2021), we firstly
explore the relation between gradient and model
depth following Wang et al. (2019). Given a Trans-
former with L sub-layers and the training loss E ,
the gradient for the l-th sub-layer is calculated by
the chain rule5:

∂E
∂xl

=
∂E
∂xL︸︷︷︸

irreducible

×
L−1∏

k=l

∂LN (F (xk; θk))

∂F (xk; θk)
︸ ︷︷ ︸

LN

×

L−1∏

k=l

(
1 +

∂F (xk; θk)

∂xk

)

︸ ︷︷ ︸
residual

(4)

where the gradient consists of three terms, namely
the irreducible item, the LN item and the residual

4In recent years, there are also researchers questioning this
point and providing different perspectives (Liu et al., 2020;
Wang et al., 2022a). Given that more explorations and discus-
sions are needed to make it out, we still conduct analysis from
the perspective of the gradient norm in this paper.

5More detailed derivations are listed in Appendix A.

item. It should be noted that the last two items are
multiplicative with respect to the number of model
layers L. Once L gets larger, the values of the last
two items may become very large or very small,
which can cause the gradient to vanish or explode.

Similarly, we analyze the gradient of DeepNorm
based on Equation (2), and get its gradient at the
l-th sub-layer is calculated by:

∂E
∂xl

=
∂E
∂xL︸︷︷︸

irreducible

×
L−1∏

k=l

(
∂LN (αxk + F (xk; θl))

∂ (αxk + F (xk; θl))

)

︸ ︷︷ ︸
LN

×

L−1∏

k=l

(
α+

∂F (xk; θk)

∂xk

)

︸ ︷︷ ︸
residual

(5)
As L increases, DeepNorm enhances training

stability by increasing the value of α. Theoretically,
α can go to infinity to represent the upper bound
of DeepNorm’s stability. Here, we introduce this
assumption to simplify the derivation: If α get
large enough, i.e., α → ∞, the LN item can be
approximated as

∏L−1
k=l

∂LN(αxk)
∂(αxk)

, and the residual

item can be approximated as
∏L−1

k=l α, we put them
into Equation (5) and can simplify it as follows:

∂E
∂xl

≈ ∂E
∂xL︸︷︷︸

irreducible

×
L−1∏

k=l

(
∂LN (αxk)

∂ (αxk)

)

︸ ︷︷ ︸
LN

×
L−1∏

k=l

α

︸ ︷︷ ︸
residual

=
∂E
∂xL︸︷︷︸

irreducible

×
L−1∏

k=l

(
∂LN (xk)

∂xk
· 1
α

)

︸ ︷︷ ︸
LN

×
L−1∏

k=l

α

︸ ︷︷ ︸
residual

=
∂E
∂xL︸︷︷︸

irreducible

×
L−1∏

k=l

∂LN (xk)

∂xk
︸ ︷︷ ︸

LN

(α → ∞)

(6)
When compared to the gradient of Post-LN in Equa-
tion (4), DeepNorm can approximately eliminate
the last residual item

∏L−1
k=l

(
1 + ∂F(xk;θk)

∂xk

)
. Con-

sidering that this residual item is calculated by the
multiplication of a sequence of gradients, such a
multiplication term can easily become very large
or very small as the number of model layers L
becomes large. Therefore, eliminating this term
can help to mitigate the problem of vanishing or
exploding gradients. Although a larger α in Deep-
Norm generally results in more stable gradients,
it may come at the expense of final convergence
performance, as mentioned above. Given that the

11677



Self-Attention

Feed Forward

Layer-Norm

Layer-Norm

N×

× dynamic alpha 

Self-Attention

Feed Forward

Layer-Norm

Layer-Norm

N×

× fixed alpha

× dynamic alpha × fixed alpha

BranchNorm (ours)DeepNorm (baseline)

Figure 3: Structure differences between DeepNorm and
BranchNorm: DeepNorm applies fixed α on residual
branches, while BranchNorm applies dynamic α on non-
residual branches.

unbalanced gradients generally occur during the
early training stage, it may be more appropriate if
α can be varied based on the training period.

4.2 BranchNorm
In this section, we summarize the observations
from previous sections and introduce BranchNorm:

xl+1 = LN(xl + αF (xl; θl)) (7)

As shown in Figure 3, BranchNorm is analogous
to the dual form of DeepNorm, but with two key
differences: First, our BranchNorm utilizes a dy-
namic factor (i.e., α) that allows it to normalize
gradients during the early training stage and gradu-
ally eliminate the negative effects of these normal-
izations during the later stage. In contrast, Deep-
Norm applies a fixed factor to constrain the model
updates regardless of the stage of training. Sec-
ond, unlike DeepNorm, which stabilizes model
gradients by upweighting the residual branch of
the Transformer and requires the strong assump-
tion in Equation (5), our BranchNorm directly ad-
justs the parameter branch of the Transformer (i.e.,
non-residual branch). This allows for more precise
control of model gradients, without the need for
the strong assumption introduced by DeepNorm.

To make the α in BranchNorm sensitive to the
training stage, we adopt a simple linear function6

with respect to the training step t as follow:

αt = min(1.0, t/T ) (8)
6We explore the effects of different growing strategies of

α in Section 7.1, and end up with the simplest linear one.

Figure 4: Gradient norm (solid line) and negative log
likelihood loss (nll-loss, dotted line) at the beginning of
training. BranchNorm presents a more smooth gradient.

where T is a predefined maximum number of steps
to conduct BranchNorm. At the very beginning of
training, αt is approaching 0, which means that the
model approximates the constant transformation
and gets updated with smooth gradients. Once the
training step t reaches the predefined maximum
step T , BranchNorm degenerates to the vanilla
Post-LN to achieve better convergence. Following
the theoretical analysis in the preceding sections,
we derive the gradient of BranchNorm for the l-th
sub-layer as follows:

∂E
∂xl

=
∂E
∂xL︸︷︷︸

irreducible

×
L−1∏

k=l

∂LN (xk + αF (xk; θl))

∂ (xk + αF (xk; θl))
︸ ︷︷ ︸

LN

×

L−1∏

k=l

(
1 + α

∂F (xk; θl)

∂xk

)

︸ ︷︷ ︸
residual

=
∂E
∂xL︸︷︷︸

irreducible

×
L−1∏

k=l

∂LN (xk)

∂xk
︸ ︷︷ ︸

LN

(α = 0)

(9)
At the very beginning of training, when com-
pared with the Post-LN in Equation (4), Branch-
Norm can stabilize the gradient norm through
approximately eliminating the last residual item∏L−1

k=l

(
1 + ∂F(xk;θk)

∂xk

)
. However, DeepNorm re-

quires a relatively strong assumption (α → ∞) in
Equation (6) to achieve the same purpose. Experi-
mentally, as shown in Figure 4, we observe that the
gradient of BranchNorm is smoother at the begin-
ning of training, indicating that its training process
is more stable.
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Models LN 6L-6L 18L-18L 50L-50L 100L-100L 250L-250L

Vanilla Post-LN (Vaswani et al., 2017) † Post 28.0 diverged
DS-Init (Zhang et al., 2019a) † Post 27.5 diverged
Admin (Liu et al., 2020) † Post 27.3 28.8 28.9 diverged

ReZero (Bachlechner et al., 2020) † No 27.2 28.3 28.5 diverged
R-Fixup (Zhang et al., 2019b) No 27.5 28.4 27.7 diverged
T-Fixup (Huang et al., 2020) No 27.5 28.4 27.9 diverged

Vanilla Pre-LN (Vaswani et al., 2017) † Pre 26.8 27.9 28.2 28.3 28.5
DLCL (Wang et al., 2019) † Pre 27.2 28.3 28.5 28.8 29.1
NormFormer (Shleifer et al., 2021) † Pre 27.0 28.3 28.0 28.7 diverged
Magneto (Wang et al., 2023) † Pre 27.5 28.3 28.7 27.7 27.9
DeepNorm (Wang et al., 2022a) Post 27.8 28.8 29.0 28.9 –
DeepNorm (Wang et al., 2022a) † Post 28.6 29.1 29.7 29.3 29.5

BranchNorm (ours) Post 28.9 29.8* 30.2* 30.8* 30.6*

Table 1: BLEU scores (%) on the WMT-17 En-De test set with depth-scaling. † indicates our reimplementations.
AL-BL refers to a Transformer with A-layer encoder and B-layer decoder. ‘*’ means BranchNorm is significantly
better than DeepNorm with p < 0.03.

5 Experiment Settings

We conduct extensive experiments on bilingual
translation, text summarization and language mod-
eling tasks to verify our approach. In this sec-
tion, we will describe our experimental settings
and present the main results.

5.1 Datasets and Evaluations

Machine Translation. We use the standard
WMT 2017 English-German (En-De) with 4.5M
pairs and the WMT 2014 English-French (En-Fr)
datasets with 30M pairs for bilingual translation
tasks, which is processed following the official
scripts of fairseq7. We use the multibleu.perl to
calculate cased sensitive BLEU scores for WMT
2017 En-De8 and WMT 2014 En-Fr. Besides, we
use sacreBLEU9 to calculate cased sensitive BLEU
scores for OPUS-100 and cased insensitive BLEU
scores for MultiUN following Wang et al. (2021).

Text Summarization. We use the popular
CNN/DailyMail dataset for the text summarization
task, comprising more than 300k unique articles
authored by journalists from CNN and Daily Mail.
We follow the pre-processing and post-processing
scrips of existing studies (Qi et al., 2020). For eval-
uation, we set the beam size to 4 and the length

7https://github.com/facebookresearch/fairseq
8After confirming with the authors of DeepNorm, we use

the same test set (i.e., newstest2014.) with them for a rigorous
comparison.

9https://github.com/mjpost/sacrebleu

penalty to 1.0 during inference, and report the F1
scores of ROUGE-1, ROUGE-2, and ROUGE-L
on the standard test set with 11,490 samples.

Language Modeling. We use the decoder-only
Transformer to carry out the language modeling
task. We take the popular WikiText-103 dataset,
which comprises a corpus of more than 100 million
tokens extracted from a curated set of verified good
and featured articles on Wikipedia. We report the
perplexity on the standard test set for evaluation.

5.2 Training Settings

Our experiments are based on the fairseq (Ott et al.,
2019). For all experiments, we use the standard
Transformer base setting, which sets hidden di-
mensions to 512 and feedforward inner represen-
tation to 2048 We use the encoder-decoder Trans-
former for machine translation and text summariza-
tion, while use decoder-only Transformer for lan-
guage modeling. We used the DeepNorm initializa-
tion method (Wang et al., 2022a) only for Branch-
Norm and DeepNorm, the initialization method
derived from the corresponding paper for Mag-
neto(Wang et al., 2023), and the Xavier initializa-
tion method (Glorot and Bengio, 2010) for vanilla
Pre-LN/Post-LN Transformers. All experiments
are conducted on 32 NVIDIA A100 GPUs, where
each is allocated with a batch size of approximately
16,384 tokens. All Transformer models are trained
for 100k steps with the early stop for small-scale
datasets. The maximum norm step T of Branch-
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Models LN 6L-6L 18L-18L 50L-50L 100L-100L 250L-250L 500L-500L

Vanilla Post-LN (2017) † Pre 41.5 43.25 diverged
Vanilla Pre-LN (2017) † Pre 41.0 42.5 42.7 43.1 43.3 43.2
DLCL (2019) † Pre 41.3 42.8 43.1 43.3 43.3 43.5
Magneto (2023) † Pre 41.1 42.7 43.3 43.3 43.4 43.2
DeepNorm (2022a) † Post 41.2 43.0 43.8 43.8 43.9 43.6

BranchNorm (ours) Post 41.6* 43.6* 43.9 44.2* 44.3* 44.4*

Table 2: BLEU scores (%) on the WMT-14 En-Fr test set with depth-scaling. † indicates our reimplementations.
AL-BL refers to a transformer with a A layer encoder and a B layer decoder. ‘*’ means BranchNorm is significantly
better than DeepNorm with p < 0.03.

Models LN 12L 24L 100L 500L

Performer Post 26.8 – – –
Reformer Post 26.0 – – –
Transformer-XL Post 24.0 18.3 – –
GPT-2 Pre 29.9 17.0 – –
Hybrid H3 Pre 23.7 16.9 – –
Pre-LN † Pre 24.7 20.5 17.4 16.5
DLCL † Pre 24.1 20.1 17.2 15.8
Magneto † Pre 25.8 18.9 16.6 15.3
DeepNorm † Post 24.5 17.2 14.3 14.2

BranchNorm Post 23.9 16.6 13.9 12.1

Table 3: Test perplexity scores (lower is better) on the
WikiText-103 with depth-scaling. The bolded scores
correspond to the best performance under the under the
same or comparable setups. † indicates our reimplemen-
tations, while other results are cited from corresponding
papers. AL refers to a decoder-only transformer with a
A layer decoder.

Norm in Equation (8) is set to 4,000 for all ex-
periments. More details about the model hyper-
parameters are elaborated in Appendix B.

5.3 Comparison Systems

We compare several state-of-the-art approaches for
deep Transformers, including DeepNorm (Wang
et al., 2022a), Magneto (Wang et al., 2022b, 2023),
NormFormer (Shleifer et al., 2021), ReZero (Bach-
lechner et al., 2020), DLCL (Wang et al., 2019) and
etc. To ensure that the training framework is the
same across different approaches, we implement
most of related methods following their official
source codes or original papers on Fairseq. Other
results are cited from corresponding papers.

6 Experimental Results

6.1 Results on Bilingual Translation Tasks.

Table 1 and Table 2 report the translation perfor-
mance of different methods at various model depths
on the WMT 2017 En-De and WMT 2014 En-
Fr dataset. In most cases, the training of vanilla
Post-LN Transformer gets diverged due to its own
training instability. As the model depth increases,
we observe that existing methods can stabilize the
training to varying degrees. Among them, the well-
performing existing work, DeepNorm, although ca-
pable of stably training deep models, does not fully
exploit the potential performance of these mod-
els. For instance, on the WMT14 En-Fr dataset,
deep models (e.g., 500L-500L) and shallow mod-
els (e.g., 50L-50L) trained with DeepNorm sur-
prisingly exhibit similar performance levels. In
contrast, our proposed BranchNorm consistently
outperforms in different depth settings. Further-
more, the performance improves as the number of
model layers increases, effectively mitigating the
aforementioned performance degradation problem.
Moreover, BranchNorm significantly outperforms
previous deep models by up to +1.5 BLEU given
the same model depths. Notably, on the WMT-14
En-Fr benchmark, our 1000 layer model outper-
forms existing deep models and achieves a new
SOTA performance of 44.4 BLEU.

6.2 Language Modeling

On the WikiText-103 dataset, we compared a se-
ries of strong baseline models on shallow mod-
els (i.e., 12-layer and 24-layer models), such as
Transformer-XL (Dai et al., 2019) which models
recurrent context, Performers (Choromanski et al.,
2020) with linear computational efficiency, Hybrid
H3 models (Dao et al., 2022) that improve the com-
putational efficiency of state space models, and
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Model LN RG-1 RG-2 RG-L

6L-6L structure
Post-LN Post 39.5 16.1 36.7
Mask Attention Post 41.0 18.2 37.2
Dynamic Conv Post 39.8 16.3 36.7
Pre-LN † Pre 40.2 16.7 36.8
DLCL † Pre 40.5 16.9 36.7
Magneto † Pre 39.7 16.4 36.9
DeepNorm † Post 40.9 17.6 37.2
BranchNorm (ours) Post 41.3 17.9 38.0

18L-18L structure
Pre-LN † Pre 39.7 16.9 36.3
DLCL † Pre 40.8 16.3 37.1
Magneto † Pre 40.1 17.3 37.7
DeepNorm † Post 40.8 17.8 37.9
BranchNorm (ours) Post 41.5 18.4 38.8

50L-50L structure
Pre-LN † Pre 40.3 18.2 38.1
DLCL † Pre 40.8 16.3 37.1
Magneto † Pre 40.6 17.9 37.3
DeepNorm † Post 41.2 19.6 39.6
BranchNorm (ours) Post 42.5 20.2 40.7

200L-200L structure
Pre-LN † Pre 41.1 18.9 38.9
DLCL † Pre 41.4 19.3 39.5
Magneto † Pre 42.4 17.3 39.9
DeepNorm † Post 42.2 19.8 40.8
BranchNorm (ours) Post 43.5 21.8 41.5

Table 4: F1 scores of ROUGE-1 / ROUGE-2 / ROUGE-
L on the test set of the CNN/DailyMail dataset with
model depth-scaling. ‘RG’ is an abbreviation for
‘ROUGE’. † indicates our reimplementations, while
other results are cited from corresponding papers. AL-
BL refers to a transformer with a A layer encoder and a
B layer decoder. The bolded scores correspond to the
best performance under the same or comparable setup.

so on. Experimental results at Table 3 indicate
that our BranchNorm achieves comparable perfor-
mance with existing state-of-the-art methods on
shallow models. On deeper model structures (i.e.,
100-layer and 500-layer models), we reproduce
the performance of a series of existing works for
comparison. The experimental results demonstrate
that BranchNorm exhibits superior convergence on
these extremely deep models, with improvements
of 3.2 and 2.1 points over Magneto and DeepNorm
on the 500-layer models, respectively.

6.3 Results on Text Summarization

We compare the performance of models with dif-
ferent layers in Table 4. On the commonly used
shallow model structure 6L-6L, we observe that

Figure 5: Different growth strategies of α in Branch-
Norm. Note tht α is clipped to 1.0 for all strategies.

BranchNorm demonstrat comparable performance
with various existing works, e.g., Mask Atten-
tion (Fan et al., 2021), Dynamic Convolutions (Wu
et al., 2019) and Magneto (Wang et al., 2023).
Specifically, BranchNorm achieves the best results
on two out of three metrics among all models.
On deeper structures, such as 200L-200L, Branch-
Norm exhibit a more significant performance im-
provement, with a 0.7∼2.0 ROUGE score increase
relative to the strong baseline, DeepNorm.

7 Analysis

In this section, we take the machine translation task
as an example and conduct analytical experiments
with a 200-layer (i.e., 100L-100L) Transformer on
WMT14 En-Fr dataset. We first verify the robust-
ness of BranchNorm to hyperparameters, and then
analyze the decoding speed of deep models with
shallow decoders, and finally analyze the issue of
parameter redundancy.

7.1 Hyperparameter Sensitivity
Effects of Different Growing Strategies of α.
We investigate the effects of various growing strate-
gies including the default linear strategy, which is
illustrated in Figure 5. For the 100L-100L Trans-
formers on the WMT14 En-Fr, we respectively
obtain 44.20, 44.15, and 44.21 BLEU on the lin-
ear, exp, and sigmoid strategies, indicating that our
method is robust to strategy variants, therefore, we
use the simplest linear strategy in all experiments.

Effects of Different T . We conduct experiments
to evaluate the effect of varying the different maxi-
mum norm step T for the above linear strategy in
Equation (8). A larger value of T corresponds to a
slower degradation of BranchNorm to the vanilla
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Figure 6: Effects of key hyperparameters (i.e., warmup and learning rate) on training 100L-100L models on the
WMT 2014 En-Fr dataset.

Figure 7: The sparsity of activation function of DeepNorm and BranchNorm models. The BranchNorm model is
sparser than the DeepNorm one in all layers.

Post-LN, and generally yield a more stable training
process. We vary T ∈ [100, 400, 4000, 20000] for
the 100L-100L Transformers on the WMT14 En-Fr.
Consequently, we respectively obtain 43.97, 44.05,
44.24 and 44.15 BLEU for the above settings. Over-
all, BranchNorm is insensitive to the variation of T ,
thus we finally chose the best-performing setting
(i.e., T = 4000) for all experiments.

Effects of Different Warmup and Learning Rate.
We explore the effects of key hyperparameters that
are directly related to training stability, namely,
warmup and learning rate. Results of the 100L-
100L Transformer on WMT14 En-Fr dataset are
shown in Figure 6. Our observations indicate that
BranchNorm is able to stably train a 200-layers
Transformer without the use of warmup, and ex-
hibits better tolerance for larger learning rates when
compared to DeepNorm.

7.2 Comparing with wide models of similar
parameter size

Considering that the training data scale of LLMs
is much larger than the data used in the deep mod-
els in our experiments, it is not easy to make a
direct comparison between the two lines of models.
Therefore, we trained wide and deep models with
approximately the same number of parameters on
the WMT14 En-Fr dataset, with the specific results
in Table 5. We observed that extremely deep mod-
els have certain performance advantages over wide
models under the similar number of parameters.

7.3 Deep Encoders and Shallow Decoders

It is well known that the decoding speed of the
Transformer is primarily related to the number of
decoder layers. In order to enhance the deep mod-
els for more practical applications, we further use
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Systems Hidden Size Layers #Parameters BLEU
Post-Ins 2048 1638 12L-12L 1.7B 43.41
DeepNorm 512 2048 250L-250L 1.8B 43.87
BranchNorm 512 2048 250L-250L 1.8B 44.30

Table 5: Comparing deep models with wide models of similar parameter size.

Models #Para. BLEU Speed (token/s)

50L-50L 381M 39.9 42.7
95L-5L 340M 39.6 78.6
250L-250L 1.8B 44.3 8.5
475L-25L 1.6B 44.1 15.9

Table 6: BLEU scores (%) on the WMT-14 En-Fr test
set and decoding speed (test on a V100-40G GPU).
The bolded scores correspond to the best performance
under similar number of parameters. ‘#Para.’ means
the number of model parameters. AL-BL refers to
a transformer with a A layer encoder and a B layer
decoder.

BranchNorm to train models that have a deep en-
coder and shallow decoder, which is more efficient
in inference. The experimental results on the WMT
2014 En-Fr dataset are shown in the following Ta-
ble 6. We observe that, under similar number of
parameter, the deep encoder shallow decoder struc-
ture can significantly enhance the decoding speed
with little or no damage to the translation quality.
For example, compared to the 250L-250L model,
the 475L-25L model achieves 1.8x speedup with
only 0.2 BLEU decrease. This suggests that the
deep encoder shallow decoder is a more practically
valuable structure for extremely deep models.

7.4 Parameter Redundancy

Sparsity is quantified by the percentage of nonzero
entries after the activation function (Li et al., 2022).
As shown in Figure 7, we observe that models
trained with BranchNorm had a relatively smaller
sparsity than that trained with DeepNorm. To con-
firm the effect of sparsity on the robustness and
generalization of the model, we conduct further
experiments on the MTNT (Michel and Neubig,
2018). MTNT (Machine Translation of Noisy Text)
consists of noisy comments on Reddit and pro-
fessionally sourced translations and is a testbed
for robust translation. We evaluate two 100L-
100L En-Fr models that are trained with Deep-
Norm and BranchNorm on MTNT. Consequently,
BranchNorm shows a significant improvement of
1.0 BLEU over DeepNorm, indicating that our

BranchNorm could improve model robustness by
increasing the sparsity of the model.

8 Conclusion

In this paper, we first explore the undertraining
problem of DeepNorm from a gradient perspec-
tive and propose a more flexible approach, namely
BranchNorm, which theoretically stabilizes the
training with smooth gradient norms at the early
stage. Once the early phase of training instability
is passed, BranchNorm can then degenerate to a
standard Post-LN, thus encouraging better conver-
gence performance. Experiment results on vari-
ous tasks show that BranchNorm achieves a better
trade-off between training stability and converge
performance. For instance, BranchNorm improves
DeepNorm by up to 1.5 BLEU, 1.1 ROUGE, and
2.1 perplexity on machine translation, text summa-
rization, and language modeling tasks, respectively.

Limitations

The training of deep Transformers generally re-
quires large GPU resources, for example, training
a 1,000-layer WMT14 En-Fr translation model re-
quires 1000 GPU days. In addition, deeper de-
coders can lead to slower inference, and more
model architecture design or compression tech-
niques need to be further explored to make deep
models practically deployable for applications.
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A Theoretical Proofs

A.1 Gradients of Post-LN
Given a Transformer with L sub-layers and the
training loss E , the gradient for the l-th sub-layer
is calculated by the chain rule:

∂E
∂xl

=
∂E
∂xL

∂xL
∂xl

(10)

Recursively decomposing ∂xL
∂xl

in the above equa-
tion, we have:

∂xL
∂xl

=
∂xL
∂xL−1

∂xL−1

∂xL−2
· · · ∂xl+1

∂xl
(11)

Given the Post-LN calculate the xl+1 as :

xl+1 = LN(xl + F (xl; θl)) (12)

If we name the output of residual connection as
yl = xl + F (xl; θl), we can calculate the partial
derivatives of two adjacent layers as:

∂xl+1

∂xl
=

∂xl+1

∂yl

∂yl
∂xl

=
∂LN (yl)

∂yl

(
1 +

∂F (xl; θl)

∂xl

) (13)

We put Equation (13) and Equation (11) into Equa-
tion (10) and get:

∂E
∂xl

=
∂E
∂xL︸︷︷︸

irreducible

×
L−1∏

k=l

∂LN (yk)

∂yk
︸ ︷︷ ︸

LN

×

L−1∏

k=l

(
1 +

∂F (xk; θk)

∂xk

)

︸ ︷︷ ︸
residual

(14)

the above gradient consists of three terms and the
last two items are multiplications with respect to
the number of model layers L. Once L get larger,
the gradient of Post-LN will face the risk of vanish-
ing or exploding.

A.2 Gradients of DeepNorm

DeepNorm rescales the residual branch with a
scalar multiplier α > 1, and calculates the sub-
layer as follows:

xl+1 = LN(αxl + F (xl; θl)) (15)

Follow the above process in A.1, we have the gra-
dient of DeepNorm:

∂E
∂xl

=
∂E
∂xL︸︷︷︸

irreducible

×
L−1∏

k=l

(
∂LN (αxk + F (xk; θl))

∂ (αxk + F (xk; θl))

)

︸ ︷︷ ︸
LN

×

L−1∏

k=l

(
α+

∂F (xk; θk)

∂xk

)

︸ ︷︷ ︸
residual

(16)
Given that DeepNorm assigns a relative larger
value for α to make it to amplify the output percent-
age of residual connections. Here, we introduce
an assumption to simplify the derivation: If α gets
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large enough, we can approximate the above equa-
tion as follows:

∂E
∂xl

≈ ∂E
∂xL︸︷︷︸

irreducible

×
L−1∏

k=l

(
∂LN (αxk)

∂ (αxk)

)

︸ ︷︷ ︸
LN

×
L−1∏

k=l

α

︸ ︷︷ ︸
residual

(17)
We let zk = αxk and use the chain rule, then get:

∂E
∂xl

=
∂E
∂xL︸︷︷︸

irreducible

×
L−1∏

k=l

(
∂LN (zk)

∂xk
× ∂xk

∂zk

)

︸ ︷︷ ︸
LN

×
L−1∏

k=l

α

︸ ︷︷ ︸
residual

=
∂E
∂xL︸︷︷︸

irreducible

×
L−1∏

k=l

(
∂LN (xk)

∂xk
× 1

α

)

︸ ︷︷ ︸
LN

×
L−1∏

k=l

α

︸ ︷︷ ︸
residual

=
∂E
∂xL︸︷︷︸

irreducible

×
L−1∏

k=l

∂LN (xk)

∂xk
︸ ︷︷ ︸

LN

(18)
When compared with the gradient of Post-LN in
Equation (14), DeepNorm can approximately elimi-
nate the final multiplication item, and thus mitigate
the risk of gradient vanishing or exploding to a
certain degree.

A.3 Gradients of BranchNorm
BranchNorm directly rescale the non-residual
branch in Transformer and conduct calculations
for the l-th sub-layer as:

xl+1 = LN(xl + αF (xl; θl)) (19)

Similar to the previous analysis process, we can
calculate the gradients of BranchNorm as:

∂E
∂xl

=
∂E
∂xL︸︷︷︸

irreducible

×
L−1∏

k=l

∂LN (xk + αF (xk; θl))

∂ (xk + αF (xk; θl))
︸ ︷︷ ︸

LN

×

L−1∏

k=l

(
1 + α

∂F (xk; θl)

∂xk

)

︸ ︷︷ ︸
residual

=
∂E
∂xL︸︷︷︸

irreducible

×
L−1∏

k=l

∂LN (xk)

∂xk
︸ ︷︷ ︸

LN

(α = 0)

(20)
BranchNorm can stabilize the gradient norm into
while DeepNorm require a relatively strong as-
sumption in Equation (6). Experimentally, in Fig-

ure 4, we observe corresponding smoother gradi-
ents of BranchNorm at the very beginning of train-
ing.

B Hyperparameter

C Why setting α = 0 leads to better
convergence?

The motivation for the BranchNorm proposed in
this paper, i.e., setting α < 1 in the early stages of
training to reduce the magnitude of the gradient for
stability, and removing such restriction on α in the
later stages of training and returning to the initial
state, i.e., α = 1. Below, we specifically discuss
the impact of different ranges of α values after T
training steps based on preliminary experiments
on the 100L-100L model and the WMT14 En-Fr
dataset.

What if we set α ¡ 1 after training T steps? We
first tried to select a smaller α value (specifically,
0.3, 0.5, and 0.8) after T steps (here T = 4000). In
terms of training stability, all three α settings can
stabilize training, and it is shown that the smaller
the α, the smaller the gradient magnitude. At the
same number of training steps, the models with
α = 0.3 and α = 0.5 perform significantly worse
than the model with α = 1, and although this per-
formance gap slightly decreases after final train-
ing convergence, it still exists significantly (around
2.0 BLEU). Meanwhile, the model with α = 0.8
has a slightly lower convergence performance than
the model with α = 1. Therefore, we speculate
that when α < 1, although the training gradient is
stable, it faces a similar under-trained problem as
DeepNorm, so we decide that the range of α may
need to be equal to or greater than 1.

What if we set α ¿ 1 after training T steps?
Based on the above experimental conclusions, we
naturally wonder if further increasing the value of
α to more than 1 can bring further performance
improvement (specifically, we tried α=2, 3, 5)? In-
terestingly, compared to α = 1, we did not observe
any significant performance improvements. From
the perspective of training stability, as α gradually
increases, we observed a slight increase in the aver-
age gradient norm of the overall training process,
and when α = 3 or α = 5, the model showed a
few loss spike phenomenon after the number of
training steps exceeded T , indicating that the train-
ing stability of the model was challenged to some
extent when α > 1. In summary, we believe that
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Hyperparameters Small Scale Medium Scale Large Scale

Learning rate 5e-4
Learning rate scheduler inverse sqrt
Warm-up updates 4000
Warm-up init learning rate 1e-7
Max tokens 128 × 4096
Adam ϵ 1e-8
Adam β (0.9, 0.98)
Label smoothing 0.1
Training updates 100K

Gradient clipping 0.0
Dropout 0.4 0.2 0.1
Weight decay 0.0001

Hidden size 512
FFN inner hidden size 2048
Attention heads 8

Table 7: Hyperparameters for the Transformerbase experiments on different data sizes. ‘Small Scale’: WMT17
En-De and CNN/DailyMail. ‘Medium Scale’: WMT14 En-Fr and WikiText-103. ‘Large Scale’: OPUS-100 and
MultiUN datasets.

although the setting of α = 1 is simple, it is still a
hard-to-beat and intuitive (i.e., the setting of vanilla
Transformer) experimental setting. And the experi-
mental results on multiple tasks (Tables 1 4) further
corroborate that α = 1 is a straightforward and rea-
sonable setting.
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