
Findings of the Association for Computational Linguistics: ACL 2024, pages 11628–11638
August 11-16, 2024 ©2024 Association for Computational Linguistics

Addressing Entity Translation Problem via Translation Difficulty and
Context Diversity

Tian Liang1∗ Xing Wang2† Mingming Yang2 Yujiu Yang1† Shuming Shi2 Zhaopeng Tu2

1Shenzhen International Graduate School, Tsinghua University 2Tencent AI Lab
{liangt21@mails,yang.yujiu@sz}.tsinghua.edu.cn

{brightxwang,shanemmyang,shumingshi,zptu}@tencent.com

Abstract

Neural machine translation (NMT) systems of-
ten produce inadequate translations for named
entities. In this study, we conducted prelimi-
nary experiments to examine the factors affect-
ing the translation accuracy of named entities,
specifically focusing on their translation diffi-
culty and context diversity. Based on our ob-
servations, we propose a novel data augmenta-
tion strategy to enhance the accuracy of named
entity translation. The main concept behind
our approach is to increase both the context
diversity and translation probability for the tar-
geted named entity pair. To achieve this, we
construct additional samples for named entities
that exhibit high translation difficulty or low
context diversity and use the augmented train-
ing data to re-train the final translation model.
Furthermore, we propose an entity-aware ma-
chine translation metric that prefers the trans-
lation output to generate more accurate named
entities. Our experimental results demonstrate
significant improvements over the baseline in
terms of general translation performance and
named entity translation accuracy across var-
ious test sets, such as WMT news translation
and terminology test sets.

1 Introduction

Neural machine translation (NMT) that leverages
the sequence-to-sequence learning paradigm to
transform a source sentence into a target sentence
has made significant advancements in recent years.
However, previous studies have demonstrated that
the translation of low-frequency named entities
(e.g., person name, location, organization), which
plays a central role in improving the customer ex-
perience for commercial translation systems, con-
tinues to pose a significant challenge for NMT sys-
tems (Koehn and Knowles, 2017; Yan et al., 2018).

∗Work done during internship at Tencent AI Lab.
†Xing and Yujiu are co-corresponding authors.

Numerous techniques have been proposed to
improve the accuracy of named entity transla-
tion. These techniques include 1) substituting
entity translation in a post-processing step (Lu-
ong et al., 2015), 2) utilizing neural translation
memory (Wang et al., 2017; Gu et al., 2018; He
et al., 2021), 3) employing named entity tag em-
bedding (Ugawa et al., 2018a; Moussallem et al.,
2019), 4) applying lexically constrained decod-
ing (Hokamp and Liu, 2017a; Post and Vilar,
2018a; Wang et al., 2022a), and 5) utilizing an in-
teractive translation mechanism (Weng et al., 2019;
Xiao et al., 2022). Most of these techniques explic-
itly decouple the named entity translation from the
process of translating the entire sentence.

Along this line, we decompose the sentence into
the named entity and its context. We performed
preliminary experiments on large-scale in-house
data, which allowed us to identify two factors that
impact the translation accuracy of named entities:

• translation difficulty: entities comprising high-
frequency words are more easily translated
than those composed of low-frequency words,
since NMT models tend to struggle with
translating low-frequency words (Koehn and
Knowles, 2017).

• context diversity: diverse and rich context in-
formation can prevent overfitting and boost
the generalization capability of NMT models
for named entities.

Based on the above observations, we propose a
novel data augmentation strategy to improve the
translation accuracy of named entities. Specifically,
given bilingual entity pairs, we first compute the
translation difficulty and context diversity scores
based on the training corpus. Next, we select the
bilingual context from the bilingual sentence pair
and combine it with the bilingual entity pair to cre-
ate synthetic parallel samples. The basic idea is to
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generate additional synthetic samples for the entity
pair that exhibits high translation difficulty or low
context diversity. Consequently, these synthetic
parallel samples are used to boost the context di-
versity and the translation probability associated
with the named entity pair. Finally, we use the aug-
mented training data to re-train the final translation
model.

We also propose a lexical-based entity-aware ma-
chine translation metric to evaluate the quality of
translations containing named entities more effec-
tively. The proposed metric assigns a high score
for the translation outputs with greater accuracy in
named entity translation. We adopt the widely-used
BLEU (Post, 2018) and ChrF++ (Popović, 2017)
to our entity-aware machine translation metric and
find that the proposed entity-aware entity metric
correlates better with human judgment than the
original metrics.

To evaluate the effectiveness of our data strategy,
we conducted extensive machine translation exper-
iments on WMT20 (Barrault et al., 2020) news
translation and WMT21 (Alam et al., 2021) termi-
nology translation with general decoding (without
lexical constraint). Experimental results demon-
strate that the proposed approach outperforms sev-
eral strong baselines in terms of BLEU and named
entity translation accuracy. Furthermore, our strat-
egy can be applied to lexically constrained decod-
ing scenarios. We implement the state-of-the-art
template-based approach (Wang et al., 2022a) on
top of our strategy and find that our strategy can
improve the context translation performance while
maintaining the entity translation accuracy.

Our main contributions are:

• We conduct experiments on an in-house test
set to identify two key factors influencing the
accuracy of named entity translation: transla-
tion difficulty and context diversity.

• We propose a novel data augmentation strat-
egy to improve the accuracy of named entity
translation. Our approach involves generating
synthetic samples for entity pairs with high
translation difficulty or low context diversity.

• The strength of our data augmentation method
lies in providing theoretically guided augmen-
tation strategies and maintaining a balance
between computational cost and performance
improvement.

• We propose an entity-aware machine transla-
tion metric that prefers the translation output
to generate more accurate named entities.

2 Preliminary Experiment

To understand the main characteristics of entity
translation in NMT, we performed preliminary ex-
periments on large-scale in-house data 1 to empiri-
cally demonstrate that the accuracy of entity trans-
lation is strongly correlated to two of its attributes,
namely, translation difficulty and contextual diver-
sity.

Notations. Let C = {(xi,yi)}Ni=1 denotes the
authentic parallel data, where xi and yi are source
and target sentences, and N denotes the total num-
ber of sentence pairs. Let E = {(uj ,vj)}Mj=1 de-
notes the collection of named entity pairs, where
M is the number of entity pairs. Furthermore,
MX 7→Y refers to a well-trained translation model
that trained on C.

Translation Difficulty. Translation difficulty
refers to how difficult the level of complexity is
associated with translating an entity pair using a
translation model without any contextual informa-
tion. We employ normalized sentence-level prob-
ability as the metric for calculating the translation
difficulty score to measure this difficulty score.

T (u, v) = 1− pMX 7→Y (v|u) (1)

where the pMX 7→Y (v|u) is the sentence-level prob-
ability normalized by the length of target entity
phrase v.

A high translation difficulty score indicates that
it is hard to generate the entity translation correctly
for the translation model MX 7→Y .

Context Diversity. Context diversity refers to the
entropy of diverse contexts associated with the en-
tity pair in the training corpus. In accordance with
Mikolov et al. (2013), we employ the surrounding
words in the source sentences to represent the con-
text and calculate the context diversity score for the
entity pair based on the entropy of the context.

C(u, v) = −
H∑

h=0

p(ch|u, v) log p(ch|u, v) (2)

1The built in-house data will be publicly available at
https://github.com/Skytliang/EntityTranslation.
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Testset Sentence Sentences with Entity Entity Entity Occurrence

WMT 2020 2,000 696 340 1,143
In-House 101,515 101,515 20,303 125,544

Table 1: The statistics of entities in the WMT2020 and In-house test sets.

where p(ch|u, v) is the estimated probability of the
context ch of the entity pair (u, v), and is computed
as follows,

p(ch|u, v) =
count(ch|u, v)∑H
h=0 count(ch|u, v)

(3)

where count(ch|u, v) denotes the frequency of the
context ch appears around the entity pair (u, v) in
training corpus, and H is the number of context.

2.1 Experimental Setup

Data. We conducted experiments on the WMT20
Chinese-to-English translation task. We first uti-
lized TexSmart (Liu et al., 2021)2 to recognize Chi-
nese named entities and used unsupervised neural
aligner Mask-Align (Chen et al., 2021a)3 to obtain
word alignments. Then, we collect bilingual named
entity pairs using the source Chinese entities and
word alignment information to build the named
entity dictionary D.

To ensure the quality of the named entity dictio-
nary D, we excluded entity pairs that appeared less
than five times in the training corpus. We observed
that most dictionary entity pairs (83.4%) consti-
tuted one-to-one translations, meaning each named
entity had only one translation. This preliminary
work only considers the entity pair in one-to-one
translation mode.

Due to the insufficiency of named entities in the
general news translation test set (only 34.8% of the
WMT20 Chinese-to-English translation test sen-
tences contained named entities), we constructed a
new entity translation test set for the preliminary ex-
periment to evaluate entity translation performance
more accurately. Specifically, for each entity pair in
the dictionary D, we randomly selected five bilin-
gual sentence pairs containing the entity pair from
our in-house data. Entity pairs for which five test
samples could not be collected were excluded from
the test set.

We show the data statistics of WMT20 and in-
house test set in Table 1. The in-house data offers

2https://ai.tencent.com/ailab/nlp/texsmart/en/
3https://github.com/THUNLP-MT/Mask-Align
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Figure 1: The attribute value of the centroid and the
percentage of entity pairs for each group are presented.
The points, arranged in a left-to-right order, represent
the groups in terms of their accuracy 0%,20%,...,100%.

three key advantages: 1) An extensive collection of
sentences; 2) A diverse range of entities, ensuring
each sentence contains entities; and 3) A compre-
hensive evaluation system, with each entity being
present in five test sentences, facilitates to assess
the translation accuracy in various contexts.

Feature Computation. For each entity pair in
the dictionary D, we first employed a Transformer-
Big model (Vaswani et al., 2017) to train the transla-
tion model MX 7→Y . Subsequently, this translation
model was utilized to calculate the translation dif-
ficulty score. Then, we followed Mikolov et al.
(2013) to set the context window size to 3 (i.e.,
concatenating the three preceding tokens and three
succeeding tokens to denote the context ch) to cal-
culate the context diversity score.

Entity Translation Accuracy. We use Exact-
Match Accuracy (Anastasopoulos et al., 2021) to
measure entity translation accuracy. This metric
considers only those entity translations that appear
in the output translation as correct predictions.

2.2 Result
We computed the translation accuracy for each pair
of entities, representing it as a percentage (i.e., 0%,
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20%, ..., 100%) and categorized the entities into six
groups based on this criterion. For better visualiza-
tion, we calculated the centroid of each group using
Euclidean distance. Figure 1 illustrates the attribute
values of the centroid, along with the correspond-
ing percentage of entity pairs for each group.

Our findings indicate that 1) most entity pairs ex-
hibit a high translation accuracy, 85.5% (the right
two points in Figure 1, 15.0% + 70.5% = 85.5%) of
entity pairs have an accuracy rate higher than 80%.
2) The accuracy of entity translation predominantly
depends on both the difficulty of translation and the
diversity of the context. Entity pairs with challeng-
ing translations and limited contextual variation
(represented as sample points in the upper left area
of Figure 1) demonstrate lower accuracy.

Our work aims to identify the named entity pairs
with low translation accuracy and improve entity
translation performance. As shown in Figure 1, our
preliminary experiment revealed that entity pairs
exhibiting high translation difficulty scores and low
context diversity scores generally possess low trans-
lation accuracy. In Section 3, we will apply a novel
data augmentation technique to improve the trans-
lation accuracy of these particular entity pairs.

3 Methodology

In this section, we present a novel data augmen-
tation strategy to improve the accuracy of named
entity translation. The translation model training
processing of our strategy includes following steps:

(1) Entity-Pair Dictionary Collection We use
the named entity toolkit and the unsupervised
word alignment toolkit to obtain the bilingual
entity pair dictionary. It should be noted that
This step can be skipped if an existing entity-
pair dictionary is available.

(2) Translation Model Training We use the con-
ventional Transformer model to train the trans-
lation model, which will be used to compute
the normalized sentence-level probability for
the named entity pair.

(3) Feature Computation For each entity pair in
the entity-pair dictionary, we use the transla-
tion model to compute the difficult score as
described in Eq.(1) and we follow Mikolov
et al. (2013) to set the context window size
to 3 to calculate the context diversity score as
described in Eq.(2).

Name #Training #Test

News Zh-to-En 20,000,000 2,000
Terminology En-to-Fr 15,523,986 2,100
Terminology En-to-Zh 19,637,866 2,100

Table 2: The statistics of the data used in our translation
experiments.

(4) Augmentation Size Computation We use
translation difficulty and context diversity
scores to compute the augmentation factor r
for each entity pair,

r(u, v) =
T (u, v)

C(u, v)
(4)

We calculate the augmentation size Naug =
r(u, v) ∗N for the entity pair (u, v), where N
is a pre-define hyper-parameter.

(5) Data Agumentation We randomly select
Naug sentence pairs from the training data
and replace its entity pair with the augmented
entity pair (u, v) to construct the synthetic par-
allel samples. This replacement is limited to
entity pairs with identical entity tags to ensure
semantic consistency.

(6) Final Translation Model Training We com-
bine the original training data with the aug-
mented data and train the final translation
model from scratch.

4 Experiment

4.1 Experimental Setup

Data. We conducted experiments on Chinese-to-
English translation and used WMT20 news trans-
lation test sets to evaluate the proposed approach.
Additionally, we utilized the WMT21 terminology
translation (Alam et al., 2021) for targeted evalu-
ation. We follow the approach outlined by Wang
et al. (2022a) to handle entity pairs in the one-to-
many translation mode. The statistics of the data
are described in Table 2.

Comparison Systems. We use the following ap-
proaches as baseline methods in comparison.

• BASELINE We use the Transformer-
Big (Vaswani et al., 2017) to train the baseline
system.
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Source Target

ORIGINAL SAMPLE bushi fangwen moxige Bush visits Mexico
PLACEHOLDER PER fangwen moxige PER visits Mexico
TERMMIND $ bushi / Bush $ fangwen moxige Bush visits Mexico
TEMPLATE C0 bushi $ C0 X0 $ X0 fangwen moxige C0 Bush $ C0 Y0 $ Y0 visits Mexico
OUR bushi he shalong juxing huitan Bush held a talk with Sharon

Table 3: Examples for various named entity translation approaches. The target named entity pairs are underlined
word “bushi” “Bush”.

• PLACEHOLDER (Luong et al., 2015) that em-
ploys entity tags as placeholders to replace
the named entity pairs within the training data.
PLACEHOLDER adopts a post-processing step
to recover the named entities.

• TERMMIND (Wang et al., 2021) that adopts
the code-switching strategy to incorporate
named entity translation into the source sen-
tence. TERMMIND promotes the translation
model to copy the named entity translation to
the target sentence.

• TEMPLATE (Wang et al., 2022a) that rear-
ranges the target sentence of named entities
and context through a template in the train-
ing data. As for generation, TEMPLATE uses
the named entities as the constrained prefix to
decode the context part.

System Training. We used the open-source
toolkit Fairseq (Ott et al., 2019) to implement the
model. Specifically, we chose TRANSFORMER-
BIG as our model, which consisits of an encoder of
6 layers and a decoder of 6 layers. We followed the
settings in the original works to train the models.
In brief, we trained the TRANSFORMER model for
25K steps with 131K (4096 × 32) tokens per batch.
We warmed up it for 10K steps and decayed the
learning rate based on the inverse square root of
the update number. We used 8 Nvidia V100 GPUs
to conduct the experiments and averaged the last
five checkpoints to achieve strong performance.

Table 3 shows the data examples for the listed
approaches. We adopted the same training settings
but different data construction methods for these
approaches. In our augmentation step, we obtained
context templates while constructing the dictionary
D as introduced in Section 2.1. It is important
to note that these two steps are performed simul-
taneously, and excessive additional computing re-
sources are not required.

To make a fair comparison, we conduct exper-
iments with the same bilingual dictionary D for
all systems. For PLACEHOLDER, we add a post-
processing step to the BASELINE system. For TER-
MMIND and TEMPLATE, we follow Wang et al.
(2021) and Wang et al. (2022a) to train the mod-
els. For the proposed data augmentation approach,
we use the BASELINE to compute the normalized
sentence-level probability for the translation diffi-
culty T (u, v). In addition, we set the pre-define
hyper-parameter N in Section 3 to 350.

Evaluation. For the automatic evaluation, we
used SacreBLEU (Post, 2018), NIST (Dodding-
ton, 2002), COMET (Rei et al., 2020) and
BLEURT (Sellam et al., 2020) for the sentence eval-
uation. we followed Alam et al. (2021) to adopt
Exact-Match Accuracy (Acc), Window Overlap
(Overlap), and Terminology-biased TER (1-TERm)
to perform named entity evaluation.

We also performed a human evaluation to assess
the quality of the translated outputs. We randomly
chose 200 sentences from the test set and tasked
the annotators with comparing our system against
the baseline to determine which system output ex-
hibited superior quality.

Furthermore, we proposed an entity-aware ma-
chine translation metric that prefers the translation
output to generate more accurate named entities,
and used the proposed entity-aware metric to eval-
uate the sentence quality.

4.2 Result

Table 4 presents the experimental results for
Chinese-to-Enlgish translation. In the general de-
coding scenario, where lexical constraints are not
applied, all systems significantly improve entity
translation accuracy over the baseline. In the
lexically constrained decoding scenario, PLACE-
HOLDER achieves the highest extract-match accu-
racy, with a score of 95.46 in the WMT20 test
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Method Sentence Evaluation Entity Evaluation

BLEU NIST COMET BLEURT Acc Overlap 1-TERm

General Decoding
BASELINE 27.93 9.62 32.30 59.52 81.58 41.08 42.31
TERMMIND 27.25 9.60 30.38 58.99 87.47 39.91 41.46
OUR 27.95 9.63 32.90 59.70 90.23 42.13 42.59

Lexically Constrained Decoding
PLACEHOLDER 27.34 9.61 31.63 59.25 95.46 40.58 42.32
TEMPLATE 27.07 9.60 32.01 59.44 98.68 40.58 41.67
+OUR 28.30 9.65 33.44 59.97 98.89 42.77 42.99

Table 4: Translation performance and entity translation accuracy of WMT20 Chinese-to-English translation.

Method WMT 2020

BASELINE OUR COMPARABLE

ANNOTATOR 1 64 98 38
ANNOTATOR 2 49 103 48
TOTAL 113 201 86

Table 5: Human Evaluation of Chinese-to-English translation. Intra-agreement Scott’s Pi: 62.68%.

Method English-to-French English-to-Chinese

BLEU Acc Overlap 1-TERm BLEU Acc Overlap 1-TERm

General Decoding
BASELINE 45.31 84.99 32.45 56.73 39.08 64.36 35.61 43.49
TERMMIND 44.39 90.10 32.88 57.13 38.69 79.86 37.66 44.85
OUR 45.48 94.60 33.24 57.97 39.44 84.86 41.14 46.43

Lexically Constrained Decoding
PLACEHOLDER 44.23 96.22 33.29 57.12 38.75 97.02 39.06 45.88
TEMPLATE 44.62 99.35 33.87 58.23 40.32 100.00 42.81 49.40
+OUR 45.94 99.53 34.31 58.86 40.67 100.00 43.28 50.04

Table 6: Translation performance and Terminology Translation performance on WMT21 Terminology testsets.

set. OUR achieves the best overall performance
by enhancing entity translation accuracy while pre-
serving the BLEU score.

We conducted a human evaluation of the
WMT20 Chinese-to-English translation. Table 5
provides a comprehensive account of the human
evaluation. The human evaluation results further
support the notion that the proposed strategy yields
translation output of superior quality compared to
the baseline system.

On the WMT21 terminology translation task, as
shown in Table 6, our approach also outperforms
the baseline system, TERMMIND and TEMPLATE

in both English-to-French and English-to-Chinese

translation tasks, demonstrating the effectiveness
and universality of the proposed approach.

4.3 Ablation Study

In the ablation study, we analyze the impact of
Translation Difficulty (Factor T) and Context Di-
versity (Factor C) as described in section 2.

As shown in Table 7, both Factor T and C make
significant contributions to the translation accuracy
of entities. We find that the impact of factor C on
performance is greater. In other words, entities are
coupled with certain specific contexts and entity
translation errors usually occur when encountering
other less common contexts. In our understanding,
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Method Sentence Evaluation Entity Evaluation

BLEU NIST COMET BLEURT Acc Overlap 1-TERm

General Decoding
OUR 27.95 9.63 32.90 59.70 90.23 42.13 42.59

W/O FACTOR T 28.10 9.64 32.65 59.57 84.05 41.39 42.37
W/O FACTOR C 27.86 9.62 32.71 59.63 82.82 41.32 42.40

Lexically Constrained Decoding
TEMPLATE + OUR 28.30 9.65 33.44 59.97 98.89 42.77 42.99

W/O FACTOR T 27.47 9.61 32.45 59.51 97.85 42.18 42.36
W/O FACTOR C 27.33 9.61 32.24 59.46 98.71 41.86 42.00

Table 7: Ablation study of WMT20 Chinese-to-English translation.

we consider T to be the translation difficulty of
the entity itself. For example, some entities can
be translated literally and are easily learned by the
model even if they do not appear frequently.

However, for some non-literal and challenging
entities, we aim to enrich their context to help trans-
late them better. We regard T as an internal factor
of entities and C as an external factor. Previous
work only considers lexical constraints while ignor-
ing the causes of entity translation errors, which is
also the motivation of our work.

5 Entity-aware Machine Translation
Evaluation

We propose a simple and effective entiy-aware
evaluation metric for assessing machine transla-
tion quality. The main idea involves considering
the translation accuracy of the entities during the
calculation of the evaluation score, using both the
translation output and the reference translation. In
particular, when determining the value, if an entity
matches the translation output, its weight will be
correspondingly increased.

We apply the entiy-aware evaluation strategy on
the SacreBLEU (Post, 2018) and ChfF+ (Popović,
2017). We assign an entity-aware weight of 4,
which entails calculating the values of the n-grams
(words or characters) by proportionally increas-
ing the weights of the values present in the match-
ing entities. We conducted experiments WMT19
metric tasks4 on four high-resource pairs (from
Chinese/zh, German/de, Russian/ru, Finnish/fi to
English/en) and three low-resource pairs (from Gu-
jarati/gu, Kazakh/kk, Lithuanian/lt to English/en).
To make a fair comparison, we adopt the tok-

4https://www.statmt.org/wmt19/metrics-task.html

enizer_13a5 to tokenize the text and apply the Stan-
ford NER system6 to tokenized text.

Table 8 lists the system-level human correlation
results on WMT19 metric tasks. We observe that
our entity-aware evaluation metric achieves better
human correlation compared to the corresponding
baseline system for most high-resource language
pairs, with the exception of Finnish.

For the experiments in Table 4 and Table 6,
we apply the entity-aware SacreBLEU and ChfF+
to the high-resource pairs (Chinese-to-English,
English-to-French and English-to-Chinese) and ob-
serve the proposed approach OUR achieves im-
provements over the baseline system in terms of
the entity-aware evaluation metric.

6 Related Work

Decoding Algorithm One line of approaches
to lexically constrained NMT focuses on modi-
fying the decoding algorithm to impose lexical
constraints. Hokamp and Liu propose grid beam
search (GBS) algorithm, which takes target-side
pre-specified translation as lexical constraints at
each decoding step. However, the decoding speed
of GBS scales linearly with the number of con-
straints. To reduce the computation complexity,
Post and Vilar propose the dynamic beam allo-
cation (DBA) method, which limits the decoding
complexity by dynamically providing a fixed size
of beam to the decoder. VDBA (Hu et al., 2019)
gives a fast version of DBA and supports batched
decoding. A potential issue with these methods is
the lack of consideration for translation fidelity, as
there is no indication of a matching source for each

5https://github.com/mjpost/sacrebleu/blob/master/sacrebleu/
tokenizers/tokenizer_13a.py

6https://nlp.stanford.edu/software/CRF-NER.shtml
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Method High resource Low resource Avg
zh–en de–en ru–en fi–en avg gu–en kk–en lt–en avg

SACREBLEU 80.7 79.4 81.3 98.5 85.0 97.5 91.2 96.7 95.1 89.3
+Entity 83.2 85.5 85.4 98.5 88.2 97.2 88.3 97.2 94.2 90.8

CHRF+ 85.1 86.0 87.8 99.2 89.5 96.1 76.9 93.4 88.8 89.2
+Entity 87.6 89.0 89.4 96.3 90.6 92.8 82.1 95.2 90.0 90.3

Table 8: WMT19 system-level human correlation (Pearson), for to English systems. We follow Agrawal et al.
(2021) to remove the outlier systems.

pre-specified translation. Hasler et al. use decoder
attentions to match target-side constraints and their
corresponding source words. There are also several
other constrained decoding algorithms that utilize
word alignments to impose constraints(Song et al.,
2020; Chen et al., 2021b). Although the alignment-
based decoding methods are faster than previous
works, they remain significantly slower compared
to the standard beam search algorithm.

Annotating Strategy Another line of studies fo-
cus on annotating named entities to provide type
and annotating information. Li et al. introduces
more linguistic features by inserting special tokens
before and after entities in the source sentence.
Other researchers (Ugawa et al., 2018b; Modrze-
jewski et al., 2020) add entity embeddings when
encoding the source sentence, helping models dif-
ferentiate constrained and unconstrained tokens.
Dinu et al. use source factors successfully to en-
force terminology. Xie et al. attach entity classi-
fiers to the transformer and design an adaptive loss
function for named entities. To make NMT models
better learn from and cope with lexical constraints,
Wang et al. propose to leverage attention modules
to explicitly integrate vectorized lexical constraints.
Although these works enhance the representation
of sentences, they still face a scalability challenge
as they attempt to adapt the architecture of NMT
models for this task.

Lexical Constraint Moreover, researchers have
shown the benefit of editing the training data to
induce constraints. Luong et al. use annotated unk
tags to present the out-of-vocabulary (OOV) words
in training corpora, where the correspondence be-
tween source and target unk symbols are obtained
from word alignment. Output unk tags are replaced
by the corresponding target constraints in a post-
processing stage. Further research (Crego et al.,
2016; Yan et al., 2019) extends unk tags symbols

to specific symbols that can present name entities.
Due to the loss of word meaning when represent-
ing them with placeholder tags, these methods may
hinder next-token prediction in the generation pro-
cess. Target Lemma Annotation (TLA)(Bergmanis
and Pinnis, 2021) annotates source entity words
with their target language lemmas instead of mean-
ingless symbols to fix the problem of word mean-
ing loss for placeholders. TermMind (Wang et al.,
2021), TADA (Ailem et al., 2021) and Kakao (Bak
et al., 2021) use a similar method to TLA be-
sides minor difference. To enhance the proportion
of constrained target words’ occurrences, Code-
Switching (Song et al., 2019) directly replaces the
source words with their target translations, allow-
ing the model to learn lexicon translations by copy-
ing source-side target words. However, it also in-
troduces many target-side tokens and expands the
source-side vocabulary. Zeng et al. add target
constraints as a prefix of the decoder input to fix
the problem of larger vocabulary size for Code-
Switching. Further, (Wang et al., 2022a) proposes
a template-based translation framework to handle
constraints, achieving high match accuracy while
maintaining the inference speed.

7 Conclusion

We demonstrate that the translation accuracy of
named entities is influenced by both their level of
translation difficulty and the diversity of contextual
information. We propose a novel data augmenta-
tion strategy that boosts the translation probability
and the context diversity of the targeted named
entity pair. Experimental results show that the pro-
posed strategy outperforms the baseline in terms of
general translation performance and entity transla-
tion accuracy. We also propose an entity-aware ma-
chine translation metric that prefers the translation
output to generate more accurate named entities.
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Limitations

A limitation of this work is that our method can
not cope with one-to-many (entity with more than
one translation candidate) constraints. Moreover,
efficiently applying the proposed data augmenta-
tion strategy to large-scale training data remains a
future challenge.
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