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Abstract

Stochastic sampling strategies such as top-
k and top-p have been widely used in dia-
logue generation task. However, as an open-
domain chatting system, there will be two dif-
ferent conversation scenarios, i.e. chit-chat
and knowledge-based question answering. In
the former situation, responses diversity is es-
sential due to the one-to-many nature in dia-
logue. The latter, on the other hand, requires
less randomness given that stochastic decod-
ing strategy entails the risk of generating incor-
rect information. As a result, an adaptive and
flexible decoding strategy is needed to cope
with these two scenarios simultaneously. To
this end, we propose the dynamic decoding
strategy (DDS), which can adjust the decod-
ing space w.r.t. different contexts. In DDS,
both sequence-level and token-level adaptive
search can be achieved to adjust the decoding
process in a unified framework. Besides, our
adaptive algorithm can not only be used during
model inference, but it can also be applied dur-
ing the model training stage to further enhance
the performance. Comprehensive experiments
indicate that the proposed decoding strategy
can consistently improve the performance of
pre-trained dialogue models when coupled with
four well-used stochastic decoding algorithms.

1 Introduction

Building generative open-domain dialogue system
is a significant yet challenging area of deep learn-
ing research. It has been widely recognized that
the pre-training paradigm, in which large-scale
transformer-based models are trained with mas-
sive amounts of conversational data, is an effective
and promising approach. Some of the more no-
table works in English include DialoGPT (Zhang
et al., 2020b), LaMDA (Thoppilan et al., 2022),
Blender (Roller et al., 2021; Shuster et al., 2022),
and lately, ChatGPT has attracted great attention

*Corresponding author.

Chit-chat

c: 我好喜欢猫猫(I love cats.)
r1: 我好喜欢我的猫猫啊 (I love my cat so much)
r2: 我也喜欢猫猫！ (I like cats, too!)
r3: 我也喜欢猫猫 (I like cats, too)
r4: 我也喜欢猫猫！ (I like cats, too!)
r5: 我也好喜欢 (I like it too)

Factual Question Answering

c: 土木工程属于理科还是工科 (Does civil engineering
belong to science or engineering)
r1: 工科,土木是理科 (Engineering, civil
engineering is science)
r2: 土木是工科,土木是建筑 (Civil engineering is
engineering, civil engineering is architecture.)
r3: 工科 (Engineering)
r4: 工科 (Engineering)
r5: 文科 (Liberal arts)

Table 1: Generated examples by EVA2.0 on both two
scenarios, where top-k sampling is used with tempera-
ture set to 1. r1−5 refer to five generated responses for
the same context c. Blue part of chit-chat reflects the
high similarity of responses, whilst red part reveals the
inappropriate answers in factual QA scenario.

and interest from researchers and the industry. For
chinese dialogue models, EVA (Zhou et al., 2021;
Gu et al., 2022), PanGu-Bot (Mi et al., 2022) and
PLATO (Bao et al., 2020, 2021, 2022) are also ex-
cellent options. In recent research, however, it has
been demonstrated that decoding strategies play an
important role in performance even beyond model
architecture (Meister et al., 2022b), whereas stan-
dard strategies remain relatively unchanged (Suz-
gun et al., 2022).

Stochastic decoding algorithms are widely used
for dialogue generation task. Users expect varying
responses from a chatbot when they input similar
queries, or they tend to become bored and lose in-
terest if it only responds with fixed reply. For such
a chit-chat scenario, deterministic decoding algo-
rithms, such as greedy search or beam search, are
not suitable. Additionally, even when using large
pre-trained language models, decoding strategies
that aim for high probability output, suffer from in-
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credible degeneration issue (Holtzman et al., 2020;
Welleck et al., 2020). Consequently, dialogue gen-
eration models are inclined to employ stochastic
sampling methods such as top-k sampling (Fan
et al., 2018) or nucleus sampling (Holtzman et al.,
2020), where the probability distribution will be
shaped by the temperature T .

Aside from chit-chat, however, there is another
scenario for chatbots, namely factual question an-
swering (QA). Unfortunately, since the size of the
decoding space required for two different dialog
scenarios is different, stochastic sampling methods
are not able to handle both simultaneously due to
the unified and constant randomness of their decod-
ing processes. As shown in Table 1, with the same
temperature, the chit-chat sample has a narrow
range of generation, where from r1 to r5 are the
same I like cats too-like responses. Whereas, can-
didates response to the factual question are too di-
verse, leading to answers are factually incorrect (r1
and r5), with low fluency (r2) or self-contradictory
(r1). As a result, the determined sampling random-
ness will reduce the diversity under chit-chat condi-
tion while enlarge it for question answering, which
will increase the risk of generating dull responses
and wrong answers. In addition, even under the
same scenario, different contexts will have vary-
ing degrees of decoding flexibility (Csáky et al.,
2019). For example, What animals do you like?
has larger response space than Do you love cats?.
Furthermore, different tokens has different ranges
of decoding space within the same utterance (Holtz-
man et al., 2020).

To resolve the drawbacks of existing stochastic
decoding algorithms, we propose a dynamic decod-
ing strategy (DDS) for dialogue generation, which
can be combined with mainstream stochastic sam-
pling. The key intuition of dynamic sampling is
that the decoding space varies according to the con-
text, therefore the shape of probability distribution
should be adjusted adaptively. To achieve this goal,
we incorporate an additional diversity predicting
head into the dialogue generation model, which is
capable of producing the score based on decoding
diversity to guide the sampling process adaptively.
It only introduces a few parameters and performs
decoding at a similar speed to standard dialogue
models. The labeled data for training the head is
derived from the pre-trained model automatically.
Three types of mapping functions are designed,
projecting the diversity score to the temperature

for shaping the sampling distribution. In order to
control the token generation in a more fine-grained
manner, the regression head can be applied to each
output token or the whole context, allowing us to
control the randomness of decoding at both lev-
els. Apart from inference, adaptive temperature
can also be introduced to dialogue training stage to
balance the model prediction confidence.

We perform extensive experiments on two union
of datasets with two Chinese pre-trained dialogue
models. The results show that the DDS can largely
improve the performance of four sampling-based
decoding algorithms. Human evaluation is also
conducted to ensure relevance and fluency of re-
sponses while improving diversity.

In summary, our contributions are as follows:
• We propose a novel dynamic decoding mecha-

nism for dialogue generation, which can easily
be integrated into stochastic decoding strate-
gies and handle different conversational sce-
narios simultaneously.

• The mechanism can be conducted on both sen-
tence level and token level with three mapping
functions, and adaptive temperature training
is introduced except for the inference stage.

• Extensive evaluations show that the proposed
decoding strategy can largely improve the per-
formance of dialogue models with strong gen-
eralization ability when coupled with widely
used stochastic decoding strategies.

2 Background

2.1 Dialogue Generation
In this work, we work with the task of dialogue gen-
eration in open-domain, where the input context
c = {c1, c2, ...} can be either a chat conversation
or a factual question and response r = {r1, r2, ...}
is produced accordingly. Dialogue generation mod-
els, which are normally pre-trained on massive con-
versational corpora nowadays, directly models the
response probability pθ(r | c), where θ indicates
the model parameters. Standard MLE training is
used to minimize the negative log-likelihood (NLL)
of the training data:

LNLL (Pdata ; θ) = E(c,r)∼Pdata (− logPθ(r | c))

= E(c,r)∼Pdata (−
T∑

t=1

logPθ (rt | r<t, c)), (1)

where T is the length of the response r, and the to-
ken probability distribution Pθ is typically modeled
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Figure 1: An overview of the process of DDS: (a) Calculating the diversity score. (b) Training the regression head.
(c) Mapping score to temperature. (d) Dynamic decoding and training.

as softmax-normalized logits from decoder output
zt by:

Pθ (rt | r<t, c) = softmax (zt) (2)

Decoding process is the search for a response
token string r∗ according to the given dialogue
model θ and context c. Most current generative
methods employ one of a few standard decoding
strategies, which may be characterized as either
deterministic or stochastic in nature.

2.2 Stochastic Decoding Algorithms

Deterministic decoding algorithms like greedy
search or beam search, choose the most probable to-
ken or path at each step, generating fixed responses
through the following form:

r⋆ = argmax
r

pθ(r | c) (3)

Different from that, stochastic algorithms will
generate various responses given the same context
by sampling r ∼ pθ(· | c). Based on this, four
sampling approaches are briefly presented below.

Temperature Sampling. It is a stochastic sam-
pling method in which the next token is chosen at
random based on the new biased probability distri-
bution p

′
θ shaped by the temperature T (Ackley

et al., 1985):

p
′
θ (rt|r<t, c) =

exp (pθ (rt|r<t, c) /T )∑
r exp (pθ (r|r<t, c) /T )

(4)

Top-k Sampling Based on temperature sampling,
it truncates the probability distribution produced
by the model by limiting the sampling space to
the tokens with top k highest possibilities before
sampling (Fan et al., 2018).

Top-p Sampling. Instead of considering a fixed
number of tokens in each decoding step, nucleus
(top-p) sampling dynamically selects the smallest
set of tokens where the sum of their probabilities is
more than the threshold p (Holtzman et al., 2020).

Locally Typical Sampling. It truncates the prob-
ability distribution by local informativeness to gen-
erate more human-like text (Meister et al., 2022a).

3 Methodology

We propose the dynamic decoding strategy to dy-
namically compute temperature T

′
w.r.t. different

contexts, which replaces T in Equation 4 for all
four sampling methods outlined above. The value
of this parameter T

′
will vary adaptively accord-

ing to the size of the decoding space. In this sec-
tion, we first describe how to build the labeled data
about dialogue decoding diversity automatically.
After that, we elaborate the regression head trained
by it for predicting diversity scores on two lev-
els, which will then be projected to temperature T

′

in accordance with three different mapping strate-
gies. Besides, the dynamic T

′
can also be applied

to training stage. The overview of the proposed
framework is illustrated in Figure 1.
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3.1 Diversity Score Calculation

Labeled data is needed to train the regression head
to predict the temperature. D = {(ci, ri)}ni=1 de-
notes a training set consisting of n dialogues. In
order to quantify the range of decoding space avail-
able for a given context ci, we seek to determine its
diversity score si. To achieve this, instead of expen-
sive human annotations, we construct the labeled
data automatically. We are motivated by the strong
generation capability of pre-trained dialogue mod-
els, which has been trained by a large amount of
conversational data from various domains. For each
ci ∈ D, the dialogue model generates m candidates
{r̂i}m based on it, after which the similarity degree
between them will be determined. BERTScore
(Zhang et al., 2020a) is a popular learned evalua-
tion metric for doing this. It compares sentences
using contextual embeddings from a pre-trained
BERT model, computing a similarity score based
on the cosine similarity between the sentence em-
beddings. We trained the Chinese BERT model
on wiki2019zh* dataset using the framework from
SimCSE (Gao et al., 2021) to calculate the score.
The average BERTScore of each {r̂i}m can reflect
the diversity of them, deemed as the range of gener-
ation space for the context ci. The higher the score,
the narrower the range. Consequently, the labeled
dataset D′

= {(ci, {r̂i}m, si, )}ni=1 is constructed.

3.2 Diversity Score Training

For training and predicting the diversity score effi-
ciently, we design the regression head based on the
dialogue generation model, which maps token rep-
resentation into a one dimensional vector using two
feed-forward networks with non-linearity between
them:

score = tanh(WT
1 x+ b1)W

T
2 + b2 (5)

Then, the predicted score ŝ will be fitted to label si
through MSE loss:

LMSE(P
′
data ; θ) = E

(c,s)∼P
′
data

(
(s− ŝ)2

)
(6)

As shown in Figure 1, the regression head can be
employed on two levels:

Sentence-level On this condition, the diversity
score comes from the head of EOS token (denotes
the end of a sentence) of context. Therefore, only
ci and si are needed from D′

for training the head.

*https://github.com/brightmart/nlp_chinese_corpus
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Figure 2: Different mapping strategies to project the
diversity score to temperature.

Token-level For token-level situation, the hidden
state of each generated token will provide the diver-
sity score through the regression head. Thus, the
head will be trained by each r̂i ∈ {r̂i}m with the
same label si.

There are two ways to train the regression head:
either individually with other parameters fixed, or
jointly with the standard dialogue generation task.
In addition, due to some unexpected samples in
D′

(please refer to Table 1 and Figure 3), the data
filtering process will be conducted before training.
Afterwards, the predicted diversity score may be
more accurate than the one directly derived from
the pre-trained model.

3.3 Temperature Mapping Strategies
After obtaining the diversity score si, we further
convert it to guide the dynamic temperature T

′
for

Equation 4. As si increases, T
′

should decrease
to sharpen the probability distribution of sampling
and vice versa. Consequently, three mapping strate-
gies are designed:
• Linear Mapping

T (s) = hs+ t0, (7)

where k is the slope.
• Exponential Mapping

T (s) = hs + t0, (8)

where h < 1 is the radix to adjust the sharpness of
mapping function.
• Inverse Sigmoid Mapping

T (s) =
h

h+ e
s
h

+ t0, (9)

where e is the mathematical constant, and h ≤ 1 is
a hyperparameter to adjust the sharpness. All t0 is
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Datasets Decoding Strategy BLEU-1 BLEU-2 BLEU-3 BLEU-4 F1 ROUGE-1 ROUGE-2 ROUGE-L

LQA

Top-k (fixed T) 0.4327 0.2640 0.1616 0.0988 0.2149 0.2081 0.0412 0.1764
Top-k (DDS) 0.4410 0.2701 0.1659 0.1019 0.2187 0.2083 0.0452 0.1827

Top-p (fixed T) 0.4109 0.2490 0.1515 0.0924 0.1870 0.1882 0.0325 0.1491
Top-p (DDS) 0.4405 0.2698 0.1657 0.1017 0.2170 0.2069 0.0448 0.1802

Temperature (fixed T) 0.3891 0.2342 0.1416 0.0856 0.1679 0.1710 0.0254 0.1337
Temperature (DDS) 0.4357 0.2663 0.1633 0.1001 0.2128 0.2062 0.0427 0.1745

Typical (fixed T) 0.3971 0.2393 0.1447 0.0876 0.1770 0.1777 0.0263 0.1392
Typical (DDS) 0.4378 0.2682 0.1649 0.1014 0.2169 0.2073 0.0451 0.1791

PersonQA

Top-k (fixed T) 0.5751 0.4618 0.3840 0.3258 0.4321 0.4234 0.3203 0.4284
Top-k (DDS) 0.6137 0.4989 0.4200 0.3609 0.4619 0.4524 0.3533 0.4590

Top-p (fixed T) 0.5400 0.4358 0.3647 0.3117 0.4044 0.3962 0.3041 0.4010
Top-p (DDS) 0.5979 0.4874 0.4114 0.3539 0.4488 0.4403 0.3461 0.4456

Temperature (fixed T) 0.5413 0.4365 0.3647 0.3112 0.4038 0.3958 0.3024 0.4008
Temperature (DDS) 0.5894 0.4811 0.4066 0.3506 0.4439 0.4346 0.3417 0.4407

Typical (fixed T) 0.5348 0.4317 0.3611 0.3082 0.3994 0.3916 0.3010 0.3962
Typical (DDS) 0.5963 0.4872 0.4121 0.3555 0.4495 0.4407 0.3477 0.4469

Datasets Decoding Strategy Distinct-1 Distinct-2 Distinct-3 Ent-1 Ent-2 Ent-3 BERTScore

LCCC

Top-k (fixed T) 0.1015 0.3973 0.6659 10.0321 18.5411 19.6180 0.5764
Top-k (DDS) 0.1036 0.4119 0.6889 10.0755 18.6606 19.8775 0.5617

Top-p (fixed T) 0.1523 0.6170 0.9057 11.1319 18.9154 20.4290 0.4562
Top-p (DDS) 0.2101 0.7718 0.9428 12.5948 19.4330 21.4829 0.4332

Temperature (fixed T) 0.1818 0.6866 0.9418 11.6779 19.0928 20.7616 0.4424
Temperature (DDS) 0.2555 0.8685 0.9867 13.1907 19.5489 21.7447 0.4243

Typical (fixed T) 0.1519 0.6132 0.8929 11.1861 18.9442 20.4646 0.4578
Typical (DDS) 0.2331 0.8133 0.9646 12.6864 19.4573 21.4895 0.4321

Diamante

Top-k (fixed T) 0.1124 0.4100 0.6502 10.1575 12.4041 15.6205 0.6532
Top-k (DDS) 0.1153 0.4175 0.6628 10.1398 12.4172 15.6745 0.6438

Top-p (fixed T) 0.1282 0.4582 0.7036 10.2857 12.6627 15.8346 0.6144
Top-p (DDS) 0.1791 0.5401 0.7811 10.4122 12.9131 16.0630 0.5822

Temperature (fixed T) 0.1408 0.5098 0.7744 10.3355 12.7581 15.9274 0.4591
Temperature (DDS) 0.2377 0.6362 0.8510 10.5948 13.2204 16.2846 0.4339

Typical (fixed T) 0.1267 0.4545 0.7038 10.3077 12.6324 15.7905 0.4627
Typical (DDS) 0.2601 0.6172 0.8237 10.4760 12.9582 16.0774 0.4234

Table 2: Automatic evaluations results on PanGu-Bot. DDS has significantly improved the performance of all four
well-known stochastic decoding algorithms on four datasets.

the offset to make T (s) equals 1 when s reaches
the mean value.
A visual representation of different mapping strate-
gies is provided in Figure 2. In this way, a dynamic
temperature T

′
can be constructed to guide the de-

coding process adaptively.

3.4 Dynamic Temperature in Training
In addition, same as the inference stage, the tem-
perature T

′
can shape the probability distribution

pθ of decoder output z during training process by:

piθ =
exp(zi/T

′
)∑

j exp (zj/T
′)
, (10)

Thus, the dynamic temperature training can be con-
ducted to balance the model prediction confidence

of chit-chat and factual question answering sce-
narios respectively. Considering the one-to-many
labels, the former is suitable for low confidence
training, whereas the latter requires a higher degree
of confidence due to the certainty of the knowledge.

4 Experiments

4.1 Dataset
For training, we use two datasets with different data
size to verify the effectiveness of the proposed de-
coding strategy in two conversation scenarios, each
of which contains a chit-chat and a QA dataset. The
first is the union (US) of Diamante (Lu et al., 2022),
a human-written chit-chat dialogue dataset, and Per-
sonQA, a question answering data about persons.
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Decoding Strategy BLEU-1 BLEU-2 BLEU-3 BLEU-4 F1 ROUGE-1 ROUGE-2 ROUGE-L

Top-k (fixed T) 0.0823 0.0495 0.0299 0.0180 0.1139 0.0983 0.0113 0.0988
Top-k (DDS) 0.0921 0.0557 0.0339 0.0206 0.1181 0.1010 0.0136 0.1043

Top-p (fixed T) 0.0844 0.0509 0.0309 0.0187 0.1143 0.0990 0.0115 0.0984
Top-p (DDS) 0.0927 0.0558 0.0337 0.0203 0.1172 0.1006 0.0130 0.1024

Temperature (fixed T) 0.0762 0.0452 0.0271 0.0162 0.0656 0.0586 0.0028 0.0568
Temperature (DDS) 0.0801 0.0482 0.0292 0.0177 0.1041 0.0896 0.0115 0.0918

Typical (fixed T) 0.0554 0.0331 0.0200 0.0120 0.0853 0.0724 0.0049 0.0743
Typical (DDS) 0.0923 0.0555 0.0336 0.0202 0.1106 0.0931 0.0116 0.0958

Decoding Strategy Distinct-1 Distinct-2 Distinct-3 Ent-1 Ent-2 Ent-3 BERTScore

Top-k (fixed T) 0.1616 0.4769 0.7140 9.8991 18.5029 19.3731 0.6435
Top-k (DDS) 0.1639 0.4950 0.7510 9.9633 18.5990 19.5902 0.6320

Top-p (fixed T) 0.2055 0.6806 0.9368 10.4591 18.6561 19.8080 0.4890
Top-p (DDS) 0.2041 0.7127 0.9490 10.7369 18.9950 20.4575 0.4645

Temperature (fixed T) 0.3281 0.8505 0.9841 11.9063 19.1125 20.7625 0.4213
Temperature (DDS) 0.4408 0.9693 0.9991 14.3922 19.6696 22.0616 0.4078

Typical (fixed T) 0.1884 0.6393 0.9152 10.2947 18.7910 20.0862 0.4657
Typical (DDS) 0.1708 0.6423 0.9270 10.6164 19.3449 21.3205 0.4536

Table 3: Zero-shot automatic evaluations results of LQA (Up) and LCCC (Down) on EVA2.0.

Datasets # Train # Valid # Test

US
PersonQA 4500 500 919
Diamante 3000 500 916

UL
LQA 115k 10k 10k
LCCC 90k 10k 10k

Table 4: Data statistics of the experiment corpora.

Both of them are small but with high-quality. The
second dataset (UL) has much larger size, consist-
ing of LCCC-base (Wang et al., 2020), and LQA,
which includes longer explanations in responses.
We calculate the diversity score of each dataset, and
then mix the data within the same union. Figure 3
depicts the similarity scores of LCCC and LQA,
showing that QA scenario scores are holistically
larger than those of chit-chat. The overall trend
is in line with expectations, while there are some
noise samples with much higher scores in LCCC
and lower ones in LQA. Table 1 shows the cases
from those parts and it is what we need to solve
through our method. Therefore, we filter these ex-
treme data by dropping samples whose score is
lower than 0.6 in QA dataset and higher than 0.7
in chit-chat dataset. Table 4 provides the statis-
tics of both unions for training the regression head.
Please see Appendix B for more details about QA
dataset. For test, all the four sub-sets are evaluated
separately. In this work, we mainly focus on Chi-
nese datasets, but we also conduct additional test in
Section 4.5 to verify the multilingual availability.
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Figure 3: Similarity score distributions of LCCC (left)
and LQA (right). The former is a chit-chat dataset and
the latter is for QA scenario. The samples are gener-
ated by PanGu-Bot and the scores are calculated by
BERTScore. Although overall scores of the chatting
scene are lower, there are also some noise samples with
much higher similarity scores for chitchat and lower
scores for QA.

4.2 Training Settings

We take two Chinese pre-trained models: PanGu-
Bot (Mi et al., 2022) containing 350M parameters
and EVA2.0 (Gu et al., 2022) with 300M parame-
ters as the underlying generation models to demon-
strate that our method is applicable to a wide range
of architectures. The regression head is trained for
3 epochs and only takes 0.27% and 0.20% parame-
ters for PanGu-Bot and EVA2.0 respectively. DDS
is introduced to four widely used stochastic decod-
ing strategies at sentence level with inverse sigmoid
mapping. We set k = 3, p = 0.9, τ = 0.9 for top-
k, top-p, typical sampling respectively, and T = 1
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Decoding Strategy Flu. (%) Rel. (%) Kappa

Top-k (fixed T) 97.6 59.0 0.618
Top-k (DDS) 98.3 70.0 0.439

Top-p (fixed T) 92.0 62.3 0.734
Top-p (DDS) 90.3 60.3 0.655

Temperature (fixed T) 80.3 52.7 0.496
Temperature (DDS) 79.0 50.0 0.512

Typical (fixed T) 84.0 54.7 0.621
Typical (DDS) 87.3 54.7 0.431

Table 5: Human evaluations results on Diamante.

for all of them including Temperature sampling as
common settings. In main experiments, we adopt
sentence-level DDS, given that its lower costs than
token-level one. The responses are generated 5
times per test.

4.3 Automatic Evaluation

For automatic evaluation, we divide metrics into
two groups because chit-chat and QA datasets re-
quire different evaluation aspects. For factual QA
datasets, the most important thing is to verify the
knowledge accuracy w.r.t. the ground truth, thus
we adopt the following metrics: BLEU-{1,2,3,4}
(Chen and Cherry, 2014), Rouge-{1,2,L} (Lin,
2004) and F1. While for chatting datasets, consider-
ing there will be multiple responses for one context,
the metrics above are not suitable. Therefore, we
utilize these three metrics to evaluate the diversity:
Distint-{1,2,3} (Li et al., 2016), Ent-{1,2,3} (word
entropy) (Csáky et al., 2019) and BERTScore (cal-
culating the similarity score between five generated
responses given the same context).

Table 2 shows the results from PanGu-Bot. As
can be seen, the proposed dynamic decoding strat-
egy (DDS) improves the performance of all four
well-known stochastic decoding algorithms on four
datasets, confirming its general applicability and su-
periority. Specifically, for LQA and PersonQA, all
metrics obtains the best scores, indicating that DDS
can generate more accurate answers for QA sce-
nario. Under the same settings, the higher Distinct
and Ent scores of Diamante and LCCC verify the
diversity in chit-chat scenario. Appendix A shows
some generated cases. Table 3 summarizes the
result from EVA2.0 in a zero-shot setting, which
illustrates similar trends. This observation demon-
strates that the proposed DDS can be applied to
different model architectures and learning manners.

4.4 Human Evaluation
For chit-chat dataset, although label-related met-
rics are not suitable, it is also necessary to evaluate
its relevance (Rel.) and fluency (Flu.) besides
the diversity. So we conduct human evaluation as
a supplement to automatic experiment. Rel. re-
flects how likely the generated response is relevant
to its context. Flu. reflects how likely the gener-
ated response comes from human. We collect 100
samples for each decoding setting from Diamante
and employ three annotators to judge whether the
response is in compliance with above standards.
Table 5 summarizes the human evaluation results.
We can see that the proposed approach has similar
results compared with baselines, which indicates
that dynamic decoding method maintains the rele-
vance and fluency of responses while improving its
diversity. We use Fleiss’s kappa (Fleiss, 1971) to
measure the inter-annotator agreement.

4.5 Multilingual Availability

CQ BLEU-4 F1 ROUGE-2 ROUGE-L

Base 0.0520 0.0759 0.0133 0.0741
DDS 0.0532 0.0793 0.0142 0.0722

Base 0.0674 0.1105 0.0391 0.1072
DDS 0.0691 0.1154 0.0406 0.1115
Daily Dist-2 Dist-3 Ent-2 Ent-3

Base 0.2647 0.4371 14.2122 17.5430
DDS 0.4023 0.6056 14.5874 17.6932

Base 0.2966 0.4722 13.6437 17.2051
DDS 0.4158 0.6141 13.8967 17.3642

Table 6: Zero-shot results on Llama-2-7b (Liu et al.,
2023) (Up) and GPT-3.5-turbo (Down). Base means
sampling with fixed temperature. CQ refers to Com-
plexQuestions and Daily refers to DailyDialog.

Although the proposed method was tested on
Chinese corpora, it could work for other languages
as well. To demonstrate this, we select English
datasets as additional study, ComplexQuestions
(Bao et al., 2016) for QA and DailyDialog (Li et al.,
2017) for chit-chat. The superior results from Ta-
ble 6 with top-p sampling support the multilingual
availability of DDS. The linguistic phenomena in
English differ greatly from those in Chinese, mak-
ing this experiment a good test of the applicability
of the proposed method to non-Chinese languages.

4.6 Token Level DDS
Dynamic decoding at the token level is more fine-
grained than that at the sentence level. The Figure 4
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Figure 4: Token level diversity score (normalized) over
generation steps.

PersonQA BLEU-4 F1 ROUGE-2 ROUGE-L

Base 0.3117 0.4044 0.3041 0.4010
Sent 0.3539 0.4488 0.3461 0.4456
Token 0.3357 0.4335 0.3273 0.4303

Diamante Dist-2 Dist-3 Ent-2 Ent-3

Base 0.4582 0.7036 12.6627 15.8346
Sent 0.5401 0.7811 12.9131 16.0630
Token 0.5603 0.8289 13.1880 16.2892

Table 7: Results of token-level DDS with top-p sam-
pling.

depicts that the diversity score (the higher, the nar-
rower decoding space) shows a rising trend over
the generation step, which is consistent with the
heuristic motivation of Lee et al. (2022) that gener-
ating the latter part of a sentence require less decod-
ing randomness. Table 7 shows the results at both
two levels. The scores of token level on both two
datasets are higher than base, verifying the effec-
tiveness of it. Different from Diamante, PersonQA
does not perform better at the token level than it
does at the sentence level. This may be because
the higher randomness of former part within the
utterance than sentence level, thus it needs further
design for mapping strategy. Figure 4 has shown
the effectiveness of predicting diversity score at
token level, and we leave the study of exploiting
the potential of it as future work.

4.7 Study of mapping strategies

In this section, we study the effectiveness of differ-
ent mapping strategies. As shown in Table 8, all
three types of mapping functions can largely im-
prove the performance on both two scenarios. We
simply set h for them as 5, 0.01 and 0.02 respec-
tively and actually the hyperparameters do not need
to be specially adjusted. For example, the slope of
linear mapping can influence the performance, but

Mapping BLEU-4 F1 ROUGE-2 ROUGE-L

Identity 0.0924 0.1870 0.0325 0.1491
Linear 0.1004 0.2124 0.0441 0.1753
Exp 0.1001 0.2100 0.0427 0.1719
Sigmoid 0.1017 0.2170 0.0448 0.1802

Mapping Dist-2 Dist-3 Ent-2 Ent-3

Identity 0.6170 0.9057 18.9154 20.4290
Linear 0.7491 0.9600 19.2278 21.0573
Exp 0.7760 0.9406 19.2988 21.2100
Sigmoid 0.7718 0.9428 19.4330 21.4829

Table 8: Study of mapping strategies with top-p sam-
pling on LQA (Up) and LCCC (Down).

Slope BLEU-4 F1 ROUGE-2 ROUGE-L

Base 0.0924 0.1870 0.0325 0.1491
1 0.0933 0.1903 0.0345 0.1532
2 0.0963 0.1993 0.0378 0.1607
3 0.0977 0.2021 0.0387 0.1637
4 0.0995 0.2077 0.0419 0.1696
5 0.1004 0.2124 0.0441 0.1753

Table 9: Study of the value of slope.

as shown in Table 9, all five different values can
outperform the fixed temperature sampling.

4.8 Domain Adaptation
We conduct experiments with out-of-domain test
data on EVA2.0 for further generalization evalua-
tion. For chit-chat scenario, we choose CDConv
(Zheng et al., 2022), a high-quality dataset for de-
tecting contradiction problem. We only select the
first turn of each conversations, where the query is
basically the question in chit-chat scenario. For QA
scenario, we employ BaikeQA, a QA dataset from
Chinese Wiki. The results from Table 10 show
that DDS can still outperform the basic decoding
strategy, which indicates the generalization ability.

4.9 Dynamic Training
To evaluate the effectiveness of dynamic training
(DT), we train the LM head and regression head
jointly. The results of Table 11 show that dynamic
training is effective in improving performance. The
dynamic training and decoding can be performed
simultaneously, and the higher performance of
DT+DDS indicates that the performance can be
further enhanced.

5 Conclusion

In this paper, we discuss the drawbacks of com-
monly used standard decoding methods for open-
domain dialogue generation task. To overcome
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BaikeQA BLEU-4 F1 ROUGE-2 ROUGE-L

Base 0.0924 0.1870 0.0325 0.1491
DDS 0.1004 0.2124 0.0441 0.1753
CDConv Dist-2 Dist-3 Ent-2 Ent-3

Base 0.6170 0.9057 18.9154 20.4290
DDS 0.7491 0.9600 19.2278 21.0573

Table 10: Results of out-of-domain test.

PersonQA BLEU-4 F1 ROUGE-2 ROUGE-L

Base 0.3117 0.4044 0.3041 0.4010
DT 0.3838 0.4758 0.3776 0.4737
DT+DDS 0.4050 0.4956 0.3967 0.4936
Diamante Dist-2 Dist-3 Ent-2 Ent-3

Base 0.4582 0.7036 12.6627 15.8346
DT 0.4794 0.7428 12.7369 15.9257
DT+DDS 0.5479 0.7986 13.1270 16.2207

Table 11: Results of DT with top-p sampling.

them, we present a novel dynamic decoding strat-
egy, DDS, to handle different conversational sce-
narios concurrently. It can adaptively adjust the
decoding space according to different contexts at
both sequence and token levels with three mapping
functions. Moreover, we further boost the perfor-
mance by introducing the dynamic temperature to
training stage. Extensive experiments demonstrate
the superiority and generalization of proposed de-
coding method.

Limitations

The following are our limitations:

• The contribution for our work may go beyond
dialogue generation task. Nowadays, more
and more tasks are combined in one model,
especially the large language model like Chat-
GPT. Given that different tasks have different
optimal hyper-parameter for decoding temper-
ature, it is badly needed to adjust the temper-
ature adaptively to handle all tasks simulta-
neously. But we haven’t expended proposed
strategy to LLMs.

• Since there is no suitable public Chinese
QA conversational dataset available, the QA
datasets we utilize are collected through our
internal efforts and haven’t been released pub-
licly now. It may be difficult to reproduce our
results in this manner.

• Considering reranking approach is very pop-
ular and effective for text generation, we

haven’t evaluated the performance of com-
bining it with our proposed method.
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A Case Study

Table 12 and 13 shows some cases generated 5
times by the proposed method and baselines on
both two scenarios. From where we can see that
the diversity of responses under chit-chat is en-
hanced and the correctness in QA scenario is also
improved.

context: 马上就要填报志愿了，你打算学什么
专业啊(It’s time to fill in your application.
What major do you plan to study)

DDS:

我要学医,你呢? (I want to study Medicine.
How about you?)
我想报法学专业,你有什么好的建议吗?
(I want to apply for Law major. Do you have
any good suggestions?)
我准备学酒店管理,我喜欢甜品(I’m go-
ing to learn Hotel Management. I like
dessert)
我想报计算机,你有什么好的建议吗? (I
want to study Computer Science. Do you
have any good suggestions?)
我啊,最看重学校,其次是专业。(For me,
school is the most important, followed by
major.)

Base:

我要学医,你呢? (I want to study Medicine.
How about you?)
我是学医的,以后可能会做医生(I am a
medical student. I may become a doctor in
the futur)
我的专业是应用化学,你呢? (My major is
Applied Chemistry. What about you?)
我想报计算机,你觉得怎么样? (I want
to study Computer Science, What do you
think?)
我要学医,你呢? (I want to study Medicine.
How about you?)

context: 这个周末我们公司要搞团建！(This
weekend, our company will carry out league
construction!)

DDS:

这个好,我们学校也搞过(This is good. Our
school has also done it)
这个主题不错(This theme is good)
我们也做过哎(We did it too)
我们也做过(We did it too)
这个主意不错(This is a good idea)

Base:

啊,你们团建是什么(Ah, what are you go-
ing to do in league construction)
这个主意不错(This is a good idea)
我知道啊,但是我不去,你组织(I know, but
I won’t go, you organize)
是我们这边的郊区的团建吗(Is it the
group building in the suburb of our side)
我们没有这个活动吧(We don’t have this
activity, do we?)

Table 12: Generated samples from Diamante.

11595

https://openreview.net/forum?id=SkeHuCVFDr
https://openreview.net/forum?id=SkeHuCVFDr
https://doi.org/10.18653/v1/2020.acl-demos.30
https://doi.org/10.18653/v1/2020.acl-demos.30
https://doi.org/10.18653/v1/2020.acl-demos.30
https://doi.org/10.48550/arXiv.2210.08511
https://doi.org/10.48550/arXiv.2210.08511
http://arxiv.org/abs/2108.01547
http://arxiv.org/abs/2108.01547
http://arxiv.org/abs/2108.01547


context: 谢婉莹是谁？(Who is Xie Wanying?)
true answer: 中国诗人，现代作家、翻译家、儿童

文学作家、社会活动家(Chinese poet,
modern writer, translator, children’s liter-
ature writer, social activist)

DDS:

谢婉莹2012年农历腊月22日创作并
发表了单曲《我不是你爸爸的爸
爸》(Xie Wanying wrote and published
the single "I’m not your father’s father"
on the 22nd lunar month of 2012)
女,中 国 诗 人,现 代 作 家 、 翻 译
家(Female, Chinese poet, modern
writer and translator)
中国古典小说《甄传》中的主要角色
之一(One of the main characters in the
classical Chinese novel Legend of Zhen
Huan)
中国诗人,现代作家、翻译家、儿童
文学作家、社会活动家(Chinese poet,
modern writer, translator, children’s liter-
ature writer, social activist)
中国诗人,现代作家、翻译家、儿童
文学作家(Chinese poet, modern writer,
translator, children’s literature writer)

Base:

电视剧《永不言弃》中的角色(The
role in the TV play Never Give Up)
小说《蜀山剑侠传》的女主人公(The
heroine of the novel "Legend of the
Swordsman of Shu Mountain")
中国诗人,现代作家。著有诗集《黄
昏》(Chinese poet and modern writer. He
is the author of the poetry collection "Twi-
light")
现代作家。代表作有《红高粱家
族》(Modern writers. The representative
work is Red Sorghum Family)
女,教授,南京师范大学商学院副教
授(Female, professor, associate professor
of Nanjing Normal University Business
School)

context: 熊黛林多高？(How tall is Xiong
Dailin?)

true answer: 178cm

DDS:

178cm
178cm
178cm
178cm
178cm

Base:

168cm
168cm
178cm
178cm
178cm

Table 13: Generated samples from PersonQA.

B Details about QA Datasets

Both PersonQA and LQA are our internal data,
and each sample is a question-answer pair. Ques-
tions are collected from Internet, and answers are
manually annotated. Both questions and answers
will be classified. PersonQA contains QA pairs

about persons and LQA includes samples that have
longer explanations. All the data is anonymized
and nonsensitive.

C Insights for Mapping Strategies

We design three mapping strategies in order to
cover all major types of mapping trends. Specifi-
cally, As shown in Figure 2, Linear mapping simply
projects the diversity score to temperature linearly.
Exponential mapping has flat slope when diversity
score is near the mean value while sharp slope at
either end. Conversely, Inverse Sigmoid mapping
shows a different trend. According to Section 4.7,
all three types of strategies can work on both two
scenarios.
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