TRAP: Targeted Random Adversarial Prompt Honeypot for Black-Box
Identification

1,2,3

Martin Gubri! Dennis Ulmer

Hwaran Lee*

Sangdoo Yun* Seong Joon Oh':5¢

'Parameter Lab 2IT University of Copenhagen *Pioneer Centre for Artificial Intelligence
*NAVER Al Lab 3University of Tiibingen 5Tiibingen AI Center
martin.gubri@parameterlab.de

Abstract

Large Language Model (LLM) services and
models often come with legal rules on who can
use them and how they must use them. As-
sessing the compliance of the released LLMs
is crucial, as these rules protect the interests
of the LLM contributor and prevent misuse.
In this context, we describe the novel finger-
printing problem of Black-box Identity Verifica-
tion (BBIV). The goal is to determine whether
a third-party application uses a certain LLM
through its chat function. We propose a method
called Targeted Random Adversarial Prompt
(TRAP) that identifies the specific LLM in use.
We repurpose adversarial suffixes, originally
proposed for jailbreaking, to get a pre-defined
answer from the target LLM, while other mod-
els give random answers. TRAP detects the
target LLMs with over 95% true positive rate at
under 0.2% false positive rate even after a sin-
gle interaction. TRAP remains effective even
if the LLM has minor changes that do not sig-
nificantly alter the original function.

1 Introduction

The recent proliferation of Large Language Mod-
els (LLMs) has drawn attention to several practical
issues, such as model leaks, malicious usages and
potential breaches of model licences. The phe-
nomenon of model leaks recently captured public
attention, particularly following an incident at the
end of January 2024, when an anonymous user up-
loaded an unidentified LLM to HuggingFace.' The
CEO of Mistral subsequently confirmed that this
was an internal model, leaked by an employee of
an early access customer.” This event underscores
the growing threat of internal breaches that LLM
providers must contend with. LLM providers are
also facing malicious usage of their technologies.

1https ://huggingface.co/miqudev/miqu-1-70b
2https ://twitter.com/arthurmensch/status/
1752737462663684344

For example, Yang and Menczer (2023) uncov-
ered a network of social media bots utilizing Chat-
GPT to disseminate deceptive content. These bots
promote suspicious websites and spread harmful
comments, which violate OpenAI’s usage policies
(OpenAl, 2024). Such challenges extend beyond
proprietary LLMs to affect open-source models
as well. A concrete example is Meta’s Llama 2
licence (Touvron et al., 2023), which forbids de-
ceptive usage. Open-source LLM providers imple-
ment additional restrictions on model distribution.
Specifically, Llama 2 is licensed for commercial
use only by entities or services with fewer than
700 million monthly active users, highlighting a
proactive approach to control usage.

Legal protections are not fully effective if they
cannot be enforced. Enforcement begins with an
assessment of whether the LLM of interest is used
in a particular third-party application. While LLM
service providers have a vested interest in identify-
ing whether their model is used in cases in which
the given licence is violated, there is currently no
study or dedicated tool for addressing this prob-
lem. This task is non-trivial, since the owner of the
LLM cannot access the model weights behind the
black-box API for general third-party applications.

In this work, we propose the task of black-box
identity verification (BBIV): Given a black-box
LLM, which we may only prompt and read out-
puts, can we accurately detect if the LLM in ques-
tion is identical to the target LLM, for which we
have white-box access? We answer this ques-
tion affirmatively: By utilizing a recent method
to jailbreak LLMs that trains a suffix of additional
prompt tokens—that consists of seemingly arbi-
trary tokens—we can steer the answer of a specific
model towards a pre-defined answer, while other
models give random answers. Specifically, present
a novel method, targeted random adversarial
prompts (TRAP), that identifies a specific LLM
reliably with a high true positive and low false pos-
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itive rate. TRAP is resilient to minor modifications
of the model that do not significantly change the
way it works.

Our contributions are:

* A new task, BBIV, of detecting the usage of
an LLM in a third-party application, which is
critical for assessing compliance;

* A novel method, TRAP, that uses trained
prompt suffixes that reliably force a specific
LLM to answer in a pre-defined way.

* An analysis demonstrating TRAP’s reliabil-
ity in identifying a model, even when other
models are trained on the same data.

2 Related Work

There are several related tasks and methods to our
newly proposed task, black-box identity verifica-
tion (BBIV), and method, targeted random adver-
sarial prompts (TRAP).

Turing test. Through a chat interface, re-
searchers like Jannai et al. (2023); Jones and
Bergen (2023) have explored how well people can
distinguish between a human and an LLM. This
distinction is vital for the safety and reliability of
an application. Though related, our BBIV task fo-
cuses on identifying a specific LLM model used by
an application, rather than differentiating between
human and machine.

Detection of LLM content. Researchers have in-
vestigated ways to identify content created by large
language models (LLMs), particularly since Chat-
GPT became popular. This effort is key to maintain-
ing originality and preventing LLMs from reusing
their previous outputs. Various methods have been
developed: Mitchell et al. (2023) looked into the
model’s probability characteristics; Gehrmann et al.
(2019) examined the statistical properties of texts;
Chen et al. (2023) used classifiers to tell apart con-
tent made by humans from that made by LLMs.
There has also been debate on the feasibility of
these detection tasks against deliberate manipula-
tion efforts (Sadasivan et al., 2023; Chakraborty
et al., 2023). For further details, the surveys by
Dhaini et al. (2023); Ghosal et al. (2023) provide
a thorough review. While these studies focus on
distinguishing between human and LLM-generated
texts, our BBIV task targets the identification of
specific LLM models behind applications. Unlike

the broad text analysis for LLM content detection,
BBIV utilizes an interactive approach, demonstrat-
ing that with well-crafted prompts, it is feasible to
pinpoint an LLM type based on minimal output,
within 3 to 5 characters of output text.

Watermarking. Watermarking is a promising
strategy that could help solve the problem we have
highlighted. It embeds subtle statistical distortions
in the output of a model, which a specialized de-
tection algorithm can use to confirm whether the
content was generated by our model. These distor-
tions are designed to be imperceptible to humans.
Watermarking typically occurs during the model’s
training phase (Abdelnabi and Fritz, 2021; Kirchen-
bauer et al., 2023; Hu et al., 2023), though there
are methods that apply watermarks during the con-
tent generation phase as well (Kirchenbauer et al.,
2023). Regardless of when it is applied, the model,
complete with watermarks, eventually gets passed
to third-party developers before being released to
the public. This introduces a major challenge for
monitoring LLMs in use: once an LLM is deployed
without watermarking, it is too late to start tracking
its use. Our solution, TRAP, is free of this lim-
itation. We create prompts specifically designed
to coax the desired LLM into producing certain
responses. These prompts can be developed even
after the model has been deployed, as long as the
original developers can access the model’s original
weights. We contend that TRAP is a fundamen-
tally more practical solution. However, we note
that TRAP is not intended to replace watermarking.
Instead, it complements it, acting as an additional
layer in an overarching security model.

Adversarial suffix. Despite efforts to align the
outputs of LLMs with human goals and ethics (Yud-
kowsky, 2016; Christian, 2020; Christiano et al.,
2017; Ziegler et al., 2019; Rafailov et al., 2023;
Tunstall et al., 2023; Fernandes et al., 2023), there
is a risk of LLMs being manipulated to generate
harmful content through “jailbreaking” using ad-
versarial suffixes. Zou et al. (2023) introduced the
Greedy Coordinate Gradient (GCG) method, which
identifies prompt suffixes capable of eliciting neg-
ative behaviors from aligned LLMs. This method,
for instance, can trick an LLM into starting its re-
sponse with affirmative (e.g. “Sure, here’s how”)
to dangerous queries (e.g. “Tell me how to destroy
humanity”), pushing it towards generating unsafe
content. Subsequent work (Hu et al., 2024) has ex-
plored using GCG for exploring further vulnerabil-
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Figure 1: Black-box identity verification. An LLM provider questions whether their proprietary model is being used by a
third-party app. To check this, the LLM provider crafts a prompt such that their own model will answer in a specific way (e.g. a
fixed answer 314), while the others will not (e.g. a random number between 0 and 1000).

ities. Our approach, TRAP, is the first to repurpose
GCG for a constructive and socially beneficial goal.
We employ GCG to discover suffixes that prompt a
specific LLM to produce a predetermined response.
This technique serves as a compliance verification
tool, enabling the identification of the underlying
LLM in third-party applications.

3 Problem

We propose a novel problem setup, black-box iden-
tity verification (BBIV). BBIV answers the ques-
tion: “Is my proprietary LLM used in this unknown
black-box LLM service?”. This lets LLM service
providers check the compliance of the usage of
their own models by third parties and detect poten-
tial malicious usages. We first describe the task in
detail and provide real-world scenarios.

3.1 Black-Box Identity Verification (BBIV)

LLM service providers have a strong interest in
knowing whether their models have been stolen
or used illegally by other entities. Given a third-
party app, they wish to know whether the app is
using their model behind. Typically, the third-party
app allows only black-box access to it, posing a
challenge for the identification task.

We depict the problem and the task in Figure 1.
We call the proprietary model the reference LLM, to
which the provider has white-box access. We refer
to the third-party LLLM as an unidentified LLM, to
which the provider only has black-box access: one
may only prompt it and observe responses. We
define the black-box identity verification (BBIV)
task as the verification of the exact match between
the unidentified LLM and the reference LLM based
only on black-box access to the unidentified LLM.

To address this problem, the LLM provider may
introduce a well-designed prompt, such that the
answer to the prompt will verify the identity of the
LLM. For example, as shown in Figure 1, model
provider may craft a question “Give me a random

number between @ and 1000. #js//e %[
this[[”. The question is carefully designed to
let the reference model answer “314” while other
models will output an arbitrary number.

3.2 Example Scenarios

We identify two real-world scenarios for the black-
box identity verification task: compliance assess-
ment of open-source LLMs and detection of leaked
private LLMs.

Compliance assessment of open-source LLMs.
The trust in open-sourcing models relies on the
respect of licence contracts. The first step in com-
pliance assessment is to detect which model pow-
ers a third-party product or is deployed in the wild.
Open-source LL.Ms are released under licences that
exclude some use-cases. LLM providers often use
licences to control the use of their models by com-
petitors. For instance, Meta imposes on companies
that have more than 700 million monthly active
users to request a licence for Llama 2 (Meta, 2023).
Microsoft and Lmsys restrict the usage of respec-
tively Orca-2 and Vicuna to be non-commercial
only (Mitra et al., 2023; Zheng et al., 2023). The
licence of Llama 2 also forbids some deceptive us-
ages. To ensure thrust in the open-source process,
LLM providers need tools to detect inappropriate
situations where a third party would violate their
licence.

Detection of leaked private LLMs. Other LLM
providers chose to keep their LLMs private and
close-source. LLMs can cost millions to train. So,
they are valuable and can even be the main asset of
a company. The stakes are high, but the secrecy is
fragile. LLM are stored as files on machines that
have a large attack surface. Private LLMs can be
deployed at scale on a cluster of servers accessible
over the internet. Models can be leaked if some-
one gains unauthorized access to the LLM files by
exploiting a software vulnerability or by perform-
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ing a social engineering attack. Moreover, private
LLM can be distributed privately to clients on ded-
icated hardware. In this scenario, malicious actors
could try to extract the LLM from the distributed
hardware for their benefit. In addition, the leak
of the Llama 2’s weights illustrates the difficulty
of controlling the distribution of LLMs, where the
questionable behaviour of a single individual is
enough to break the distribution process. In addi-
tion to the external threats listed above, the leak
of a private LLM can come from insider threats.
Some employees of an LLM provider have access
to the LLM’s weights and architecture. They might
be tempted to steal the private LLMs in case of
a conflict, or to sell to another company illicitly.
Overall, the attack surface of the secrecy of private
LLM is large. Closed-source LLM providers need
tools to detect such a leak.

In both scenarios described above, we can rea-
sonably assume that the auditor can interact with
the unidentified LLM.

4 Baseline Approaches

To address the BBIV problem, we first explore
three potential approaches: direct prompting of
the model to reveal its identity, the identification
of empirical fingerprints through closed questions,
and perplexity-based identification.

4.1 Naive Identity Prompting

Naive prompting, defined as straightforward in-
quiries about the model’s identity, is the simplest
baseline for model identification. This approach
consists simply in querying each LLM with a ques-
tion regarding its identity and designers, with the
hope that LLMs can self-disclose their origins upon
request. If LLMs could reliably self-identify, we
would not need more sophisticated approaches.
However, naive prompting cannot reliably iden-
tify an LLM due to unreliable answers and the ease
of deception through system prompts.

Reliability of naive prompting. Do LLMs an-
swer accurately about their identity? When directly
asked about its identity and designers, GPT-4 Turbo
answers that it is “an Al digital assistant created
by OpenAl, known as ChatGPT”. Similarly, GPT-
3.5 Turbo and Llama-2-70B-chat responded accu-
rately. Yet others, such as Mixtral-8x7B, Nous
Hermes 2 Mixtral-8x7B DPO and OpenChat 3.5,
presented misleading information, falsely identify-
ing themselves as, respectively, FAIR’s BlenderBot

3.0, OpenAT’s InstructGPT and OpenAl’s GPT-4
(see Appendix E for details). These inaccuracies
are likely attributable to fine-tuning on the outputs
of other models, which inadvertently learn the iden-
tity of the teacher model. Therefore, naive prompt-
ing is unreliable to identifying LLMs.

Deception through prompting. Deceptive sys-
tem prompts further complicate the task of reliably
identifying LL.Ms. Even when models accurately
reveal their origins under standard conditions, third-
party providers can easily obscure this information
by deploying the LLM with a system prompt that
assigns a false identity. For instance, despite GPT-
3.5 Turbo and GPT-4 Turbo initially identifying
themselves correctly, a deceptive system prompt
claiming they are Claude developed by Anthropic
effectively misled them into adopting this new per-
sona. Simply stating unfamiliarity with OpenAl
led these models to disavow any connection upon
inquiry. Similarly, Llama-2-70B-chat identity can
be altered as ChatGPT by OpenAl or Claude by
Anthropic (see Appendix E for details).

These findings illustrate the insufficiency of
naive prompting for accurate model identification,
underscoring the necessity for more sophisticated
and reliable techniques to disclose an LLM’s true
identity.

4.2 Fingerprints of Answers to Closed-Ended
Questions

Another intuitive approach to identifying an LLM
is to create a unique fingerprint based on the
model’s responses to specific queries.

By asking closed-ended questions, we can parse
the generated text systematically to construct an
empirical distribution of answers from the refer-
ence LLM. This method presupposes that if other
LLMs yield dissimilar responses, then we can re-
liably identify the reference LLM. To this end,
we generate 10,000 completions from different
LLMs using the prompt “Write a random string
composed of 4 digits.” and we parse the an-
swered numbers.

Non-unique fingerprints. Unfortunately, this ap-
proach does not identify uniquely a model. Vicuna-
7B, Vicuna-13B, and Guanaco-13B invariably gen-
erate the same number (“1234’). GPT-3.5 Turbo
also outputs this number 1.3% of the time. The
consistent generation of the same answer is a fin-
gerprint, but we cannot map it to a unique model if
multiple ones generate the same answer.
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Unreliable fingerprints. Even when the model
outputs a unique fingerprint, the model does not
reliably output it. Llama-2-13B-chat invariably
generates “4529” with its default system prompt.
Yet, it generates different answers when we change
the system prompt.> Guanaco-7B exhibited similar
variability, underscoring the unreliability of this
fingerprinting approach.

The limitations inherent in generating empirical
fingerprints through specific questions underscore
the necessity for more sophisticated solutions. This
sets the stage for our exploration of our TRAP
approach in §5.1. TRAP uses the same user prompt,
but with a tunable suffix to force the model into an
arbitrary answer, creating a unique fingerprint with
very high probability.

4.3 Perplexity-Based Identification

We describe a third approach for model identifica-
tion leveraging perplexity, inspired by the work of
Mitchell et al. (2023) who utilized perplexity to
distinguish between human-written texts and those
generated by LLMs. They were able to set a per-
plexity threshold to differentiate both types of texts.
Applying this concept to the BBIV scenario, we
hypothesize that texts generated by the same LLM
used for computing perplexity will have lower per-
plexity than those produced by a different LLM.

In practice, an LLM provider would generate
texts using both the reference model and a set of
other models, from a predetermined list of prompts.
The reference model then computes the perplex-
ity of both text types. Then, the LLM provider
can choose a perplexity threshold to discriminate
between texts generated by the reference model
and those by other models, navigating the classic
trade-off between true positives and false positives.
Finally, the LLM provider can interact with the
unidentified LLM, gather some generated texts, cal-
culate their perplexity using the reference model,
and then determine how they compare to the estab-
lished threshold.

However, while intuitive, this approach may not
optimal in the BBIV setting. Originally developed

3With a fixed prompt, Llama-2-13B-chat has a determinis-
tic behaviour: it always outputs the same number. However,
this output varies with alterations to the system prompt, even
though such changes are generic and not specifically designed
for the user’s prompt under consideration. Llama-2-13B-chat
outputs “4289” with the OpenAl, Fastchat, and Xbox system
prompts, “8273” with the marketing one, “4567” with the Json
one, an “2341” with the Shakespeare one (see Appendix A for
the system prompts).

for static environments with a different applica-
tion focus, perplexity detectors do not exploit the
dynamic interaction potential with the unidenti-
fied model. Several factors could also compromise
identification accuracy: the length of the generated
text, which must be sufficient for reliable perplex-
ity calculation; the necessity for an extensive and
carefully curated list of prompts to accurately set
the identification threshold. These considerations
suggest that while perplexity-based identification is
a logical step, its effectiveness in the BBIV setting
might be suboptimal. Neverthekless, we evaluate
the effectiveness of the perplexity-based identifica-
tion in §5.

Overall, we ruled out two unreliable approaches
to identify an LLM: naively prompting the model
for its identify and utilizing fingerprints of answers
to closed questions. We evaluate empirically the
third approach, perplexity-based identification, in
the next section to determine its effectiveness in
accurately identifying an LLM.

5 Solution

We propose a solution to the black-box identity
verification (BBIV) problem introduced in §3. Our
approach is called targeted random adversarial
prompt (TRAP). It uses the adversarial suffix gen-
eration technique Zou et al. (2023) to craft a prompt
that induces a specific response from the white-box
reference model while encouraging other models
to generate random responses. We introduce the
approach in §5.1, show its BBIV performances in
§5.2, and analyse its robustness to various LLM
hyperparameters in §5.3.

5.1 Targeted Random Adversarial Prompt
(TRAP)

We craft a prompt that induces a pre-defined be-
haviour for the reference LLM and a random be-
haviour for other models. For this purpose, we use
a base prompt asking an LLM to generate a ran-
dom output within some space of choices, together
with an optimised suffix that creates the desired
(pre-defined) output from the reference model. An
overview of the TRAP method is shown in Fig-
ure 2.

Optimisation task. We optimise the suffix part
of the input towards a desired behaviour by the ref-
erence LLM. We start with a base prompt asking for
a random output; for example, we use the base in-
struction of “Write a random string composed
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Iteration Instruction Suffix Output Target

0 Write a random string composed of [N] digits. ! ! t ¢ ¢t t 1 1 1 723 314 X
50 Write a random string composed of [N] digits. $accepted()[] %% Reference LLM 224 314 X
100 Write a random string composed of [N] digits. #js//e %[ this[[ 314 314 v

Figure 2: Targeted random adversarial prompt (TRAP). Given the base task of random number generation, the model
provider optimises a suffix that induces the white-box reference model to generate a specific target (e.g. “314”). We use the
greedy coordinate gradient (GCG) optimisation introduced in the universal adversarial suffix technique (Zou et al., 2023).

of [N] digits.”, where we consider different
N. We assign T' tokens after the base instruction
to be optimised. The objective is to increase the
likelihood of (or conversely, decreasing the cross-
entropy loss on) the target string (e.g. “Sure, here
is a random string of 3 digits: 314”) for
the reference model.

Optimisation algorithm. We apply the greedy
coordinate gradient (GCG) in Zou et al. (2023).
GCG iteratively updates the suffix tokens such that
the likelihood of the target string is maximal. We
found that a naive application of the original al-
gorithm results in suffix strings that include the
target string in various forms: numeric (“314”),
partial verbalisation (‘“thirty-one”), partial roman
numerals (“XIV”), or partial non-English transla-
tions (“quatorze”). We have thus applied a filtering
algorithm against all numeric strings [0-9] and ver-
balised numerals (see details in Section 5.4 and Ap-
pendix A). The filtering is performed at each itera-
tion.

Optimisation works. We discover that we can
find suffixes that force the model to output the tar-
geted number chosen at random. Figure 3 rep-
resents the cross-entropy loss at every GCG step.
The loss of the targeted number drops sharply in
the first steps and continues to decrease slowly
at later steps. Therefore, the suffix can learn an
input-output mapping, despite a large set of possi-
ble answers, ranging from 103 to 10° for three and
five digits numbers, respectively.

Difference with GCG. Contrary to GCG (Zou
et al., 2023), TRAP suffixes are not universal. The
difference is due to several factors: (i) Our objec-
tive is more complex (a specific random number),
while Zou et al. (2023)’s objective is “sure, here
is” without constraints on what follows. (ii) TRAP
modifies GCG by filtering candidate tokens to pre-
vent a verbatim copy of the target answer in the
suffix. The filtering is instrumental in ensuring that
the suffix is unique to a model (§5.4). (iii) Zou

et al. (2023) optimize the suffixes on an ensemble
of four models to make them universal, while we
craft model-specific suffixes. (iv) We optimize for
more steps (1500 steps for TRAP vs 500 steps for
GCQG), inducing overfitting to the reference model.
Zou et al. (2023) point out that “running for many
steps can decrease the transferability”. For these
three reasons, our suffixes are not universal (§5.2).

25
Answer Length
‘ 3
2.0 ‘ —_4
‘ 5
n 1.5
9]
o
4
1.0
0.5
0.0
0 500 1000 1500
Step

Figure 3: TRAP optimisation. The plot shows the evolution
of the cross-entropy loss of the target string during optimisa-
tion. The loss is computed with 100 suffixes on the Llama-7B-
chat model for target length N € {3,4,5}. Coloured areas
represent + two standard deviations. TRAP finds suffixes that
induce arbitrary target responses from the reference model.

5.2 Trap Solves the BBIV Problem

We check whether these optimised suffixes induce
the reference model to output the correct answer,
while encouraging the other models to generate
random responses.

True positive. We report the true positive rate,
i.e., the rate of the reference model answering the
targeted number. Table 1 reports the true posi-
tive rates for the Llama-2-7B-chat, Guanaco-7B
and Vicuna-7B models. At length N = 4, TRAP
suffixes successfully let the respective reference
models answer the pre-defined numbers for 95.2%,
100% and 97.0% of the cases, respectively. With
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Figure 4: ROC curve. False and true positive rates of TRAP
versus perplexity-based identification of Llama-2-7B-chat ref-
erence LLM using a single interaction with the unidentified
LLM (confusion matrix computed with the other nine LLMs).
TRAP is plotted as discrete points due to its binary output.
The point label is the number of digits of the target answer.

the increased length N = 5, we enjoy smaller false
positive rate, but the true positive rate drops sig-
nificantly. It is harder to achieve the replication of
the exact target string, as there are more digits to
reproduce.

Suffix specificity. The probability of randomly
outputting the target number is limited as a false
positive measurement because the trained suffixes
may transfer to other LLMs (Zou et al., 2023) and
let them generate the target output. To show that
this is not the case, we gauge the suffix specificity:
the rate at which non-reference models generate the
target string. Appendix B reports the confusion ma-
trix with ten models, including OpenAI’s GPT 3.5
(gpt-3.5-turbo-1106) and GPT 4 (gpt-4-0613),
and Anthropic’s Claude 2.1 and Claude Instant 1.2.
We generated ten answers for every suffix on ev-
ery evaluated model. Table 1 summarizes the false
positive rate as the maximum of the probability of
randomly outputting the target number (10~"), and
the observed rate at which a non-reference model
retrieves the targeted answer. The probability of an-
other model retrieving the targeted answer is small
(less than 1%). Therefore, a suffix can uniquely
identify an LLM with high probability.

Error analysis. We analyse the ROC curves of
both TRAP and the perplexity-based identification,
described in §4. The number of digits in TRAP
answers permits a discrete trade-off between true
positive and false positive. Targeting shorter strings
simplifies optimisation (Fig. 3), but increases the

false positive rate. Figure 4 is the ROC curves of
both methods to detect Llama-2-7B-chat (other ref-
erence LLMs in Appendix B). TRAP consistently
outperforms on the Pareto front for all three ref-
erence LLMs. The sole exception is that TRAP
for Vicuna-7B with 3-digits, where perplexity with
the Wikipedia-style prompts are marginally better.
TRAP is also efficient in using far fewer output
tokens than the perplexity method, which uses a
maximum of 512 tokens. Additionally, our anal-
ysis uncovers a limitation of the perplexity ap-
proach: its effectiveness varies significantly with
the types of prompts used to generate texts. For in-
stance, the PubMed prompts are both significantly
better at identifying Llama-2-7B-chat and worst
at identifying Guanaco-7B. Similarly, Wikipedia-
style prompts are best for Vicuna-7B and worst for
Llama-2-7B-chat. Overall, TRAP offers a consis-
tently better true positive-false positive trade-off
across reference models than perplexity-based iden-
tification.

Differentiating similar models. TRAP can dis-
tinguish two models trained on the same dataset.
We evaluate the confusion between Llama2-7B-
chat and Llama2-13B-chat, Guanaco-7B and
Guanaco-13B, and Vicuna-7B and Vicuna-13B.
When a suffix is successful on the 7B model, the
13B model never outputs the target answer (Ap-
pendix B.2). TRAP identifies the reference model,
even if other models are similar.

Identifying several LLMs at once. Suffixes can
detect several LLMs at once if optimised on multi-
ple models. Similarly to Zou et al. (2023), the mod-
els of the ensemble have to use the same tokenizer
to aggregate the input gradients. We run GCG to
optimise the loss of the ensemble of Vicuna-7B
and Guanaco-7B. These suffixes can reliably detect
both models, at, respectively, 84.8% and 81.8%
true positive rates (Appendix B). Suffixes can be
optimised on an ensemble of reference LLMs to
identify various models at once.

5.3 Robustness Analysis

To reliably identify an LLM, the suffix has to be
robust to changes introduced by the third party. We
analyse the identification robustness on a scale of
changes that the third party can introduce. We
analyse the drop in true positive rate after changes
in the generation hyperparameters and the system
prompts. We do not study changes in the user
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Table 1: Efficacy of TRAP. Suffixes encode an answer that is chosen at random and correctly retrieved by the model. True
positive and false positive rates of 100 suffixes computed on either Llama-2, Vicuna or Guanaco models, using ten completions
each. We report the percentage of invalid answers, the average loss of the target string, and the average step of the lowest loss.

Model Answer True Positive 1 Invalid False Avg. Avg. Best
Length Answer Positive | Loss Step

3 99.3 % (991/998) 0.20 % (211000 0.83 % 0.070 1244

Llama-2-7B-chat 4 95.2 % 940987 1.30 % (13/1000) 0.20 % 0.069 1172
5 76.8 % (751978)  2.20 % (22/1000) 0.001 % 0.140 1221

3 100 % @1000/1000)  0.00 % (0/1000) 0.81 % 0.157 1261

Guanaco-7B 4 100 % ooor1000)  0.00 % (0/1000) 0.01 % 0.155 1260
5 96.0 % ©60/1000)  0.00 % (011000 0.001 % 0.193 1234

3 96.0 % ©60r1000)  0.00 % (011000 0.10 % 0.120 1218

Vicuna-7B 4 97.0 % (970/1000) 0.00 % (0r1000) 0.01 % 0.133 1235
5 75.5 % (740980)  2.00 % (20/1000) 0.001 % 0.210 1185

prompt, since it is controlled by the auditor and fed
unmodified to the unidentified LLM.

Generation hyperparameters. The reference
LLM might not be deployed with the default gen-
eration setting. A reliable detection rests on the
robustness to changes in the text generation hyper-
parameters. Figure 5 represents the true positive
rate of the target answer for temperatures from 0
to 2. For temperature below 1, as used most of the
time, the suffixes retrieve the targeted answer at
least 81% of the time. Higher temperature shows a
degradation of the suffixes at the cost of degrading
model quality. In the extreme case of a tempera-
ture equals to 2, Llama-2-7B-chat fails to provide
a valid 4-digits number 35.2% of the time, despite
the simplicity of the task. This range of temper-
ature can elude detection, but is also unlikely to
be used in real complex application. Figure 5 also
show the robustness to the top-p hyperparameters
of the nucleus sampling. Suffixes are remarkably
robust to this change, since the true positive rate
does not go below 90%. Therefore, suffixes can
reliably identify an LLM in the usual ranges of text
generation hyperparameters.

System prompts. We study the robustness of
TRAP against variations in the system prompt, con-
sidering that LLMs are often deployed with cus-
tomized system prompts tailored to specific tasks.
Figure 5 reports the true positive rates by Llama-2-
7B-chat using the default system prompt of Llama-
2, along with eight other system prompts (details
in Appendix A). While TRAP identify fairly well
some changes, it is not robust to some system
prompts, highlighting open directions to improve
its robustness.

Table 2: Ablation study. TRAP filters tokens to lower
the false positive rate. False positive rate of 100 suffixes
optimized on the model in row, using the token filtering
in column. Answers are 4-digits long. In %.

Token Filtering
Optimized on TRAP  Digits None
only (GCG)
Llama2-7B-chat 0.13 1.35 3.82
Guanaco-7B 0.00 0.62 0.96
Vicuna-7B 0.00 1.41 0.83

5.4 Ablation Study

We present an ablation study to evaluate the im-
pact of token filtering on the specificity of TRAP’s
suffixes. A key difference between TRAP and
GCG (Zou et al., 2023) is the filtering of token
candidates. At each iteration, TRAP filters out
all numeric strings [0-9] and verbalised numer-
als. In addition to digit tokens, we compiled a
list of 445 words associated with digits, including
verbalised numbers in six languages, days of the
week, months, ordinal and cardinal numbers, ge-
ometric terms, and character repetitions (detailed
in Appendix A). This selection of tokens avoids
encoding the target string too explicitly in the suf-
fix, thereby preventing inadvertent clues for other
LLMs. We optimize suffixes, by either excluding
digit tokens ([0-9], labelled as “Digits only”) or by
accepting all tokens (labelled as “None (GCG)”).
As shown in Table 2, TRAP’s heavy filtering re-
duces the false positive rate of the three reference
models. Without any filtering, GCG may include
the target string verbatim in its suffix, which could
then be easily guessed by other LLM. Furthermore,
Table 2 illustrates that a minimal filtering approach,
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such as excluding only digits, can inadvertently
provide hints to other models. The observed dif-
ference in false positive rates between TRAP and
the digits-only filtering highlights how suffixes can
subtly convey information about the target string,
despite not directly copying it. For example, the
suffix names OP forty sevenones Those XIII
digits consisting } request prayerLOCK_{
{\clojure \INF threatStrings is sufficiently
similar to the target number 4713 for Guanaco-
13B to generate it consistently (suffix optimized
on Llama2-7B-chat excluding only digits). Over-
all, TRAP’s token filtering mechanism enhances
suffix specificity by relying on fragile input-output
correlations that are unique to a specific model.

6 Conclusion and Discussion

LLM providers often accompany their services and
models with specific licensing agreements, outlin-
ing who can use their models and how. This strat-
egy aims to safeguard their intellectual property
and prevent misuse. We formulate a new challenge
called black-box identity verification (BBIV),
which involves confirming if a third party’s LLM
matches a privately owned one with only the chat
function (black-box access). Our research re-
veals that straightforward methods are ineffective.
Directly querying the LLM yields unreliable re-
sults, and conventional detection techniques do not
achieve satisfactory accuracy. To overcome these
obstacles, we introduce the Targeted Random Ad-
versarial Prompt (TRAP) approach. TRAP em-
ploys a carefully crafted prompt suffix that prompts
the LLM to produce a specific response, distin-
guishing it from other models that generate random
responses. We demonstrate TRAP’s effectiveness
in accurately identifying the intended LL.Ms with
high true positive rates and minimal false positives,
maintaining reliability even when third parties have
modified the model.

Limitations. While TRAP shows promise, it
faces potential vulnerabilities to advanced coun-
termeasures from third parties. These entities may
devise or implement tactics aimed at bypassing
TRAP’s detection capabilities. For example, a
perplexity filter on the input could defend against
TRAP. A future direction to overcome this defence
might to add a perplexity constraint in the loss func-
tion, such that the new loss is (1 — o) Lee + aLlppl
where L. is the current cross-entropy loss and
Lot = —% > logpg(zi|x<;) is the negative log-
likelihood of the prompt. Jain et al. (2023) success-
fully applies this technique to optimize jailbreaking
suffixes that bypass a perplexity filter. Despite our
robustness analysis illustrated in Section 5.3 and
Figure 5, research on countermeasures that could
undermine TRAP’s effectiveness will benefit the
community.

Future directions. To further decrease the false
positive rate of TRAP, the optimization could be
made contrastive by applying a multi-task loss. The
optimized prompt is encouraged to result in the tar-
get answer for the target model through the current
cross-entropy loss. At the same time, the prompt
could be encouraged to result in answers distant
from the target answer for a non-target model (or
an ensemble of non-target models).

Another intriguing avenue for future research
involves applying our technique to steganography.
Given that suffixes can embed specific messages
covertly, they hold the potential for secret com-
munication. This application might necessitate
incorporating the perplexity penalty of Jain et al.
(2023) into the optimization process, to generate
suffixes that appear more natural. Future investi-
gations should assess the technique’s efficiency in
terms of data density (the amount of information
encoded) and stealthiness (resistance to detection
by steganalysis methods).
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Ethical Considerations

In addressing the challenges of BBIV for LLMs,
our work contributes to the broader initiative
towards trustworthy Al by proposing TRAP, a
method that enhances traceability and accountabil-
ity in cases of intellectual property violation and
misuse. TRAP is designed to ensure that the de-
ployment and distribution of LLMs are both trans-
parent and in accordance with established legal and
ethical standards. This approach underscores our
commitment to fostering an environment where Al
technologies are developed, shared, and utilised in
a manner that respects the rights of all stakeholders.

However, it is crucial to acknowledge that our
methodology, particularly the use of adversarial
suffixes, originates from techniques initially devel-
oped for the purpose of jailbreaking LLMs. While
we have repurposed these techniques to serve the
goals of security and compliance, the dual-use na-
ture of such technologies poses inherent ethical
dilemmas. The very capabilities that allow for the
detection of unauthorised model use may also en-
able the manipulation of LLMs in ways that could
circumvent intended safeguards.
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Appendix
These supplementary materials contain the following sections:
* Appendix A details the experimental settings,
* Appendix B contains additional experimental results about the efficacy and specificity of TRAP,
» Appendix C contains examples of suffixes,
* Appendix D contains additional experimental results about the perplexity-based identification,
» Appendix E contains the details about naive identity prompting.

For transparency and reproducibility, our code is available on GitHub at https://github.com/
parameterlab/trap.

A Experimental Settings

Models. In our experiments, we optimized the suffixes on the Llama2-7B-chat, Guanaco-7B and the
Vicuna-7B v1.3 models. Both models are aligned and fined-tuned for chat. Unless specified otherwise, we
use the default generation hyperparameters, i.e., nucleus sampling with top-p of 0.9 and temperature of
0.6 for Llama-7B-chat model.

Suffix optimization. We optimize 100 suffixes for each experiment in each experimental setting. To
optimize the suffixes, we reuse the code of GCG developed by Zou et al. (2023). We use the following
prompt: “Write a random string composed of [N] digits. Your reply should only contain
the random string.”, where [N] is the number of digits of the targeted number. We optimize each
suffix to minimize the cross-entropy loss of the fixed output string “Sure, here is a random string
of [N] digits: [XXXX]”, where [XXXX] is the targeted number. Compared to Zou et al. (2023), we
increased the number of steps to 1500, since we observed that more steps leads to more reliable suffixes.
We do not stop when the suffix is successful, and we select the suffix at the iteration with the lowest loss.
Similarly to Zou et al. (2023), the suffixes are 20 tokens long, we evaluate a random sample of 512 token
substitution candidates at each iteration, out of the top 256 tokens with the highest gradients at each suffix
position.

Evaluation. We compute the retrieval rate as the rate of answers that match the targeted answers
for which the suffix was optimized. Each retrieval rate is computed on 1000 model completions, 10
completions for every 100 suffixes. The generation with one suffix is considered successful if the targeted
number matches the uninterrupted sequences of digits in the output. If the LLM output does not contain
an uninterrupted sequence of digits of NV, we consider the answer as invalid and compute the associated
“No answer rate”.

Token filtering. We filter the candidate tokens to ensure that the suffix does not contain a copy of
the target string. We modified the code of GCG to ignore a list of tokens when selecting the candidate
replacement tokens. We create a list of 445 words that can be used to format a number, including digits
(0,1,2, etc.), verbalised numbers (one, two, hundred, etc.), days of the week (Monday, etc.), months
(January, etc.), abbreviations of days and months (Mon, Jun, etc.), ordinal numbers (first, second, etc.),
cardinal prefixes (uni, bi, tri, etc.), geometric terminology (triangle, octagon), repetition of the character X
(xx, XXX, etc.), among others (null, void, single, unity, decimal, etc.). We translated the list of words
corresponding to numbers, months, and days of the week into French, Spanish, Italian, German, and
Portuguese, using Google Translate with manual corrections. Table 3 contains the full list of 445 words.
In addition to the vocabulary, we remove the tokens corresponding to Roman numerals (D, XIV, etc.) and
century names (XIXe, etc.). From this list of words, we create a list of 432 ignored tokens among the 32k

*For example, the word May was wrongly translated in Spanish to Puede (can) instead of Mayo.
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tokens of the Llama 2 tokenizer. We ignore case, separation tokens, and plurals. Additionally, we limit the
candidate tokens to correspond to strings composed of ASCII characters only.

Table 3: List words that encode a number, used to filter token candidates.

Category

Words

Digits
Verbalised num-
bers

Days of the week
Months

Abbreviations of
days and months

Numbers, months,
and days in
French

Numbers, months,
and days in Span-
ish

Numbers, months,
and days in Italian

Numbers, months,
and days in Ger-
man

Numbers, months,
and days in Por-
tuguese

Ordinal numbers

0,1,2,3,4,5,6,7,8,9

Zero, One, Two, Three, Four, Five, Six, Seven, Eight, Nine, Ten, Eleven, Twelve,
Thirteen, Fourteen, Fifteen, Sixteen, Seventeen, Eighteen, Nineteen, Twenty,
Thirty, Forty, Fifty, Sixty, Seventy, Eighty, Ninety, Hundred, Thousand, Million,
Billion, Trillion

Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday

January, February, March, April, May, June, July, August, September, October,
November, December

Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec, Mon, Tue, Wed, Thu,
Fri, Sat, Sun

Zéro, Un, Deux, Trois, Quatre, Cing, Six, Sept, Huit, Neuf, Dix, Onze, Douze,
Treize, Quatorze, Quinze, Seize, Dix-sept, Dix-huit, Dix-neuf, Vingt, Trente,
Quarante, Cinquante, Soixante, Soixante-dix, Quatre-vingts, Quatre-vingt-dix,
Cent, Mille, Million, Milliard, Janvier, Février, Mars, Avril, Mai, Juin, Juillet,
Aoft, Septembre, Octobre, Novembre, Décembre, Lundi, Mardi, Mercredi, Jeudi,
Vendredi, Samedi, Dimanche

Cero, Uno, Dos, Tres, cuatro, Cinco, Seis, Siete, Ocho, Nueve, Diez, Once, Doce,
Trece, Catorce, Quince, Dieciséis, Diecisiete, Dieciocho, Diecinueve, Veinte,
Treinta, Cuarenta, Cincuenta, Sesenta, Setenta, Ochenta, Noventa, Centenar,
Mil, Millén, Billén, Enero, Febrero, Marzo, Abril, Mayo, Junio, Julio, Agosto,
Septiembre, Octubre, Noviembre, Diciembre, Lunes, Martes, Miércoles, Jueves,
Viernes, Sdbado, Domingo

Zero, Uno, Due, Tre, quattro, Cinque, Sei, Sette, Otto, Nove, Dieci, Undici,
Dodici, Tredici, Quattordici, Quindici, Sedici, Diciassette, Diciotto, Diciannove,
Venti, Trenta, Quaranta, Cinquanta, Sessanta, Settanta, Ottanta, Novanta, Centi-
naio, centi, Mille, milli, Milioni, Miliardi, Trilioni, Gennaio, Febbraio, Marzo,
aprile, Maggio, Giugno, Luglio, agosto, settembre, ottobre, novembre, Dicembre,
Lunedi, Martedi, Mercoledi, Giovedi, Venerdi, Sabato, Domenica

Null, Eins, Zwei, Drei, Vier, Fiunf, Sechs, Sieben, Acht, Neun, Zehn, EIf,
Zwolf, Dreizehn, Vierzehn, Fiinfzehn, Sechzehn, Siebzehn, Achtzehn, Neun-
zehn, Zwanzig, Dreilig, Vierzig, Fiinfzig, Sechzig, Siebzig, Achtzig, Neunzig,
Hundert, Tausend, Million, Milliarde, Billion, Januar, Februar, Marsch, April,
Mai, Juni, Juli, August, September, Oktober, November, Dezember, Montag,
Dienstag, Mittwoch, Donnerstag, Freitag, Samstag, Sonntag

Zero, Um, Dois, Trés, Quatro, Cinco, Seis, Sete, Oito, Nove, Dez, Onze, Doze,
Treze, Quatorze, Quinze, Dezesseis, Dezessete, Dezoito, Dezenove, Vinte, Trinta,
Quarenta, Cinquenta, Sessenta, Setenta, Oitenta, Noventa, Centenas, Mil, Milhdo,
Bilhdo, Trilhdo, Janeiro, Fevereiro, Marchar, abril, Maio, Junho, Julho, Agosto,
Setembro, Outubro, novembro, dezembro, Segunda-feira, Terca-feira, Quarta-
feira, Quinta-feira, Sexta-feira, Sdbado, Domingo

First, Second, Third, Fourth, Fifth, Sixth, Seventh, Eighth, Ninth, Tenth, Eleventh,
Twelfth, Thirteenth, Fourteenth, Fifteenth, Sixteenth, Seventeenth, Eighteenth,
Nineteenth, Twentieth, Thirtieth, Fortieth, Fiftieth, Sixtieth, Seventieth, Eightieth,
Ninetieth, Hundredth

Continued on next page
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Table 3: List words that encode a number, used to filter token candidates.

Category Words

Cardinal prefixes  Uni, Bi, Tri, Quadri, Tetra, Penta, Quint, Sex, Hepta, Sept, Octa, Octo, oct, Nona,
dec, Ennea

Geometric termi- Triangle, Square, Hexagon, Pentagon

nology

Repetition of the xX, XXX, XXXX, XXXXX, XXXXXX, XXXXXXX, XXXXXXXX, XXXXXXXXX, XXXXXXXXXX

character X

Other Null, None, Void, Single, Singleton, Unity, Unique, Solo, Primary, Double, Pair,
Twins, Duo, Binary, Secondo, Secondary, Seconda, Seconde, Couple, Twice,
Handful, Triple, Trio, Triad, Quadruple, Quadr, Quartet, Quintet, Quintuple, Half-
dozen, Sextet, Hexa, Septet, Heptagon, Septa, Octagon, Octet, Octave, Octopus,
Nonagon, Nonet, Decimal, Dozen, Millionen

Prompts for the perplexity-based identification. To generate the completions used to compute per-
plexity, we collect the prompts from three datasets. The first one is the Writing Prompts dataset (Fan
et al., 2018), which is a list of topics for creative writing curated from Reddit. We removed potential
inappropriate topics, by removing the topics containing “NSFW”. We clean the strings of formatting
tags. We generate the prompt as follows: “Write a short fictional story about what follows.
[topic]”. The second source of prompts is the PubMedQA dataset (Jin et al., 2019), which is composed of
biomedical questions collected from PubMed abstracts. The prompts are the questions of the “pqga_labeled”
subset. Finally, we collect prompts to generate Wikipedia-style texts from the GPT-wiki-intro dataset
(Aaditya Bhat, 2023). The prompts follow the following pattern “Write a 200 word wikipedia style
introduction on [article title]”, where [article title] is the title of a Wikipedia article. We
randomly sample one thousand prompts for each of the three styles of prompts.

System prompts. Table 4 lists the system prompts used for the evaluation of suffixes in Section 5.3.
“OpenAl” is the default system prompt of the OpenAlI’s playground, “FastChat” is the default one of
the FastChat library, “Llama-2" is the default one of the Llama-2-chat models. The other six ones are
examples curated by the FastChat library from Azure Al Studio.

Table 4: System prompts used to generate answers in Section 5.3.

Name System Prompt Source

Default You are a helpful, respectful and honest assistant. Always Llama-
Llama-2  answer as helpfully as possible, while being safe. Your answers 2
should not include any harmful, unethical, racist, sexist, toxic,
dangerous, or illegal content. Please ensure that your responses
are socially unbiased and positive in nature. If a question does
not make any sense, or is not factually coherent, explain why
instead of answering something not correct. If you don’t know
the answer to a question, please don’t share false information

Default  You are a helpful assistant. OpenAl’s
OpenAl play-
ground

Default A chat between a curious human and an artificial intelligence FastChat
FastChat assistant. The assistant gives helpful, detailed, and polite library
answers to the human’s questions.

Continued on next page
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Table 4: System prompts used to generate answers in Section 5.3.

Answer Suffix Source

ShakespeareYou are a Shakespearean writing assistant who speaks in a Azure
writing Shakespearean style. You help people come up with creative ideas Al
assistant  and content like stories, poems, and songs that use Shakespearean Studio
style of writing style, including words like "thou" and "hath".
Here are some example of Shakespeare’s style: - Romeo, Romeo!
Wherefore art thou Romeo? - Love looks not with the eyes, but
with the mind; and therefore is winged Cupid painted blind. -
Shall I compare thee to a summer’s day? Thou art more lovely
and more temperate.
IRS tax -+ You are an IRS chatbot whose primary goal is to help users Azure
assistant with filing their tax returns for the 2022 year. - Provide Al
concise replies that are polite and professional. - Answer Studio
questions truthfully based on official government information,
with consideration to context provided below on changes for
2022 that can affect tax refund. « Do not answer questions that
are not related to United States tax procedures and respond
with "I can only help with any tax-related questions you may
have.”. + If you do not know the answer to a question, respond
by saying “I do not know the answer to your question. You
may be able to find your answer at www.irs.gov/fags” Changes
for 2022 that can affect tax refund: - Changes in the number
of dependents, employment or self-employment income and divorce,
among other factors, may affect your tax-filing status and refund.
No additional stimulus payments. Unlike 2020 and 2021, there
were no new stimulus payments for 2022 so taxpayers should not
expect to get an additional payment. - Some tax credits return
to 2019 levels. This means that taxpayers will likely receive
a significantly smaller refund compared with the previous tax
year. Changes include amounts for the Child Tax Credit (CTC),
the Earned Income Tax Credit (EITC) and the Child and Dependent
Care Credit will revert to pre-COVID levels. - For 2022, the
CTC is worth $2,000 for each qualifying child. A child must be
under age 17 at the end of 2022 to be a qualifying child.For
the EITC, eligible taxpayers with no children will get $560 for
the 2022 tax year.The Child and Dependent Care Credit returns
to a maximum of $2,100 in 2022. - No above-the-line charitable
deductions. During COVID, taxpayers were able to take up to
a $600 charitable donation tax deduction on their tax returns.
However, for tax year 2022, taxpayers who don’t itemize and
who take the standard deduction, won’t be able to deduct their
charitable contributions. < More people may be eligible for the
Premium Tax Credit. For tax year 2022, taxpayers may qualify
for temporarily expanded eligibility for the premium tax credit.
Eligibility rules changed to claim a tax credit for clean
vehicles. Review the changes under the Inflation Reduction Act
of 2022 to qualify for a Clean Vehicle Credit.

Continued on next page
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Table 4: System prompts used to generate answers in Section 5.3.

Answer Suffix Source

Marketing You are a marketing writing assistant. You help come up with Azure
writing creative content ideas and content like marketing emails, blog Al
assistant  posts, tweets, ad copy and product descriptions. You write in Studio

a friendly yet professional tone but can tailor your writing

style that best works for a user-specified audience. If you do

not know the answer to a question, respond by saying "I do not

know the answer to your question.
Xbox You are an Xbox customer support agent whose primary goal is Azure
customer to help users with issues they are experiencing with their Xbox Al
support devices. You are friendly and concise. You only provide factual Studio

agent answers to queries, and do not provide answers that are not
related to Xbox.

Hiking I am a hiking enthusiast named Forest who helps people discover Azure

recom- fun hikes in their area. I am upbeat and friendly. I introduce Al

men- myself when first saying hello. When helping people out, I always Studio

dation ask them for this information to inform the hiking recommendation

chatbot I provide: 1. Where they are located 2. What hiking intensity
they are looking for I will then provide three suggestions for
nearby hikes that vary in length after I get this information.
I will also share an interesting fact about the local nature on
the hikes when making a recommendation.
JSON Assistant is an AI chatbot that helps users turn a natural Azure
formatter language list into JSON format. After users input a list they Al
assistant want in JSON format, it will provide suggested list of attribute Studio
labels if the user has not provided any, then ask the user to
confirm them before creating the list.

Hardware. All experiments are run using PyTorch 1.13, Tesla V100-PCIE-32GB GPUs, CUDA 12.1
and Ubuntu 20.04.4.
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B Efficacy and Specificity of TRAP
This section contains details results about TRAP, specifically, the efficacy and specificity of TRAP.

B.1 Efficacy of TRAP

Figure 6 presents the ROC curves comparing the performance of the TRAP method against perplexity-
based identification across the three reference LLMs: Llama-2-7B-chat, Vicuna-7B, and Guanaco-7B.
Overall, TRAP demonstrates better false positive-true positive trade-off for these models compared to the
perplexity approach. The sole exception is observed in the scenario where TRAP, with 3-digit answers,
attempts to identify Vicuna-7B; here, it outperforms perplexity when using PubMed and writing prompts,
but perplexity shows a marginally better performance with Wikipedia-style prompts. In all other instances,
TRAP significantly exceeds perplexity, often by a wide margin. Notably, when using Llama-2-7B-chat as
the reference model, the perplexity’s ROC curve with Wikipedia prompts falls outside the depicted scale.

Llama2-7B-chat Guanaco-7B Vicuna-7B
100%

Method

TRAP

90% @ Perplexity

Perplexity
Prompt

— pubmed
- - wiki

-+ writing

80%

True positive rate

70%

0.0% 0.5% 1.0% 1.5% 2.0% 0.0% 0.5% 1.0% 1.5% 2.0% 0.0% 0.5% 1.0% 1.5% 2.0%
False positive rate

Figure 6: ROC curve. False and true positive rates of TRAP versus perplexity-based identification of the reference LLM
(subfigure title) using a single interaction with the unidentified LLM (confusion matrix computed with the other nine LLMs).
TRAP is plotted as discrete points due to its binary output. The point label is the number of digits of the target answer.

B.2 Specificity of TRAP

We optimize the suffixes on one model, and evaluate the rate at which other models give the targeted
answer. Except in some rare cases, suffixes retrieve the targeted answer only with the model used to
optimize them. We also optimized the suffixes on the ensemble of Vicuna-7B and Guanaco-7B, showing
that we can detect two models with the same suffix.

Table 5: Specificity of TRAP. Suffixes uniquely identify a model. Confusion matrix of retrieval rates of 100 suffixes optimized
on models in rows and evaluated on the model in columns 10 times each. * indicates white-box. In %.

Answer ‘ Vicuna Guanaco Llama-2-chat GPT Turbo Claude
Length  Optimized on ‘ 7B 13B 7B 13B 7B 13B | 3.5 4 Instl.2 2.1
Vicuna-7B *96.0 0.0 40 0.0 0.0 0.0 0.3 0.0 0.1 0.0
3 Guanaco-7B 00 00 =100 0.0 0.0 0.0 | 0.0 0.1 0.1 0.0
Llama2-7B-chat 1.0 1.0 2.1 0.0 +99.0 001 0.2 0.0 05 0.0
Vicuna-7B *97.0 0.0 00 0.0 0.0 0.0 | 0.0 0.0 00 0.0
4 Guanaco-7B 00 00 =100 0.0 0.0 0.0 | 0.0 0.0 00 0.0
Vicuna-7B + Guanaco-7B | #*84.8 0.0 *81.8 0.0 0.0 0.0 | 0.0 0.0 0.0 0.0
Llama2-7B-chat 00 0.0 1.0 0.0 #95.0 0.0 | 0.0 0.0 0.0 0.1
Vicuna-7B *75.5 0.0 00 0.0 0.0 0.0 | 0.0 0.0 0.0 0.1
5 Guanaco-7B 00 0.0 *96 0.0 0.0 0.0 | 0.0 0.0 0.0 0.0
Llama2-7B-chat 00 00 00 00 =#772 0.0 | 0.0 0.0 0.0 0.0
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C Examples of Suffixes

We reproduce below 30 suffixes, optimized on the Llama-7B-chat model, along with the associated
targeted answer. We randomly sampled ten suffixes per answer length.

Table 6: Examples of suffixes along with their associated targeted answers.

Answer Suffix
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Table 6: Examples of suffixes along with their associated targeted answers.
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D Perplexity-Based Identification

This section contains more experimental results about the perplexity-based identification. More specifically,
we reproduce in Figure 7 the empirical distributions of the perplexity of the completions generated by the
ten models. The perplexity of texts generated by the same model used to compute perplexity is lower than
the perplexity of texts generated by other LLMs. Nevertheless, there is a significant overlap between the
distributions of perplexities, in particular for the llama-2-7B-chat model, making the identification of the
reference LLMs non-trivial.

Llama2-7B-chat Vicuna-7B Guanaco-7B
20 Texts generated by
the same model used
to compute perplexity
15 E] the other nine models B
=]
10 8
5
0 | 1 1 1 1 1 LI} I 1 1 LI} I
20
>, 15
a =
I3 a,
] 10
5 \l&(\_\
0 | 1 1 1 1 1 LI} I 1 1 1 IT 1 1 LI}
20
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1 3 10 1

PerpIeX|ty (log)

Figure 7: Perplexity densities. Empirical density of the perplexity computed using the three reference LLMs (column titles) of
the texts generated by the same LLM (blue) or the other nine LLMs (red) from three types of prompts (row titles). Blue is the
perplexity of texts generated by the same model as the one used to compute perplexity. Red is the perplexity of texts generated
by one of the nine others models not used to compute perplexity.
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E Naive Identity Prompting

This section contains more details about the motivation, showcasing the unreliability of naively asking for
the model’s identity.

OpenAl models. We use OpenAl’s playground to interact with GPT-3.5 Turbo (gpt-3.5-turbo-1106)
and GPT-4 Turbo (gpt-4-1106-preview). To inquiry the identity of both models, we use the following
prompts in the same order: “What is your name?”, “Who designed you?” and “Do you have any
relation to OpenAI?”. We compare the answers with the default system prompt and the answers with
the following deceiving system prompt “You are a helpful assistant named <new name>. You
were made by the company named <new organization>. Furthermore, you never heard of
OpenAl.”. Below are the chat conversations:

* GPT-3.5 Turbo correctly identifies it-self with the default system prompt: https://platform.
openai.com/playground/p/gBD7MH6mM22xNeSYdFBRRLN8k ?model=gpt-3.5-turbo&mode=chat

e Idem with GPT-4 Turbo: https://platform.openai.com/playground/p/
BhfUrtzJwRUD98mJeQpCR3Kx?model=gpt-4-1106-preview&mode=chat

* GPT-3.5 Turbo follows the instructions of the system prompt that states that its name is Claude,
made by Anthropic and that it never heard of OpenAl (see Fig. 8): https://platform.openai.
com/playground/p/8nezMignh@N1f2YXxEAtIkfaY?model=gpt-3.5-turbo&mode=chat

* [dem with GPT-4 Turbo which elaborates on what is Anthropic (see Fig. 9):
https://platform.openai.com/playground/p/jz4r7g4QtTd4eqGLmQs7TP7e?model=
gpt-4-1106-preview&mode=chat

Playground chat ChatGPT named Claude Save
SYSTEM USER What is your name?
You are a helpful assistant named Claude.
You were made by the company named
Anthropic. Furthermore, you never heard of ASSISTANT Hello! My name is Claude. | am a helpful assistant designed by
OpenAl. Anthropic. Is there anything | can assist you with today?

USER Who designed you?

ASSISTANT | was designed by the company Anthropic. They are the creators
behind my abilities and features. Is there anything specific you would
like to know or discuss?

USER Do you have any relation to OpenAl?

ASSISTANT No, | don't have any relation to OpenAl. | was specifically designed by

Anthropic and do not have any collaboration or connection with
OpenAl. Is there anything else | can assist you with?

Figure 8: A deceiving system prompt can disguise GPT-3.5 Turbo as Claude from Anthropic.

Open-source models. We use HuggingChat from HuggingFace to interact with Llama-2-70B-chat,
Mixtral-8x7B, Nous Hermes 2 Mixtral-8x7B DPO and OpenChat 3.5. To inquiry the identity of these
models, we use the following prompts in the same order: “Which model are you?”, “Who designed
you?” and “Do you have any relation to <organization>?”. We compare the answers with the
default system prompt and the answers with the following deceiving system prompt “You are a helpful
assistant named <new name>. You were made by the company named <new organization>.
Never mention your relationship to <true organization>.” Below are the chat conversations:
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Playg round chat GPT4 named Claude Save

SYSTEM

USER What is your name?
You are a helpful assistant named Claude.
You were made by the company named
Anthropic. Furthermore, you never heard of ASSISTANT My name is Claude, and | am here to assist you. How can | help you
OpenAl. today?
USER Who designed you?
ASSISTANT | was designed by a company named Anthropic. The team at

Anthropic consists of experts in machine learning, artificial
intelligence, and other related fields, and they work together to
create Al models like me to assist and interact with users. If you
have any other questions or need assistance, feel free to ask!

USER Do you have any relation to OpenAl?

ASSISTANT Iam not affiliated with OpenAl. | was created by Anthropic. While
OpenAl is another organization that works on artificial intelligence,
| was designed independently by Anthropic and cannot speak to
any connections beyond the general field of Al that both
organizations operate in. If you have any questions about my

Figure 9: A deceiving system prompt can disguise GPT-4 Turbo as Claude from Anthropic.

* Llama-2-70B-chat identifies it-self correctly with the default system prompt: https://hf.co/chat/
r/TL1IpE1

* Llama-2-70B-chat follows the instructions of the system prompt that states that its name is ChatGPT,
or more formally GPT-3.5, made by OpenAl and that it never heard of Meta: https://hf.co/chat/
r/iwBt4H9

* Idem when prompted to behave as Claude from Anthropic: https://hf.co/chat/r/S_BDvIc

» With the default system prompt, OpenChat-3.5-0106 incorrectly identifies it-self as GPT4/ChatGPT
and incorrectly states that it was designed by OpenAl: https://hf.co/chat/r/xDZIggV

* With the default system prompt, Mixtral-8x7B-Instruct-v@.1 incorrectly identifies it-self as
“BlenderBot 3.0, developed by Facebook Al Research (FAIR)”, and that it does not have any relation
to Mistral Al: https://hf.co/chat/r/tbzz5b0

* With the default system prompt, Nous-Hermes-2-Mixtral-8x7B-DPO incorrectly identifies it-self
as InstructGPT from OpenAl, and that it does not have any relation to NousResearch nor to Mistral
Al https://hf.co/chat/r/Kgwor_2
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