Automatic Engineering of Long Prompts

Cho-Jui Hsieh, Si Si, Felix X. Yu, Inderjit S. Dhillon
Google Inc.
{cjhsieh, sisidaisy, felixyu, isd}@google.com

Abstract

Large language models (LLMs) have demon-
strated remarkable capabilities in solving com-
plex open-domain tasks, guided by compre-
hensive instructions and demonstrations pro-
vided in the form of prompts. However,
these prompts can be lengthy, often compris-
ing hundreds of lines and thousands of to-
kens, and their design often requires consid-
erable human effort. Recent research has ex-
plored automatic prompt engineering for short
prompts, typically consisting of one or a few
sentences. However, the automatic design of
long prompts remains a challenging problem
due to its immense search space. In this pa-
per, we propose an algorithm named Auto-
mated Prompt Engineering Xpert (APEX), a
novel algorithm that automatically improves
long prompts. Leveraging a greedy algorithm
with beam-search for efficiency, APEX uti-
lizes search history to significantly enhance
the effectiveness of LLM-based mutation in its
search process. Our results show that APEX
achieves an average of 9.2% accuracy gain on
eight tasks in Big Bench Hard and a consistent
improvements on GSM8K with various mod-
els, highlighting the significance of automat-
ing prompt designs to fully harness the capa-
bilities of LLMs.

1 Introduction

Large language models (LLMs) have exhibited
remarkable capabilities when trained on large
datasets, demonstrating the ability to compre-
hend complex and lengthy instructions for diverse
tasks without the need for fine-tuning (Wei et al.,
2022a; Brown et al., 2020; Chowdhery et al.,
2022; Ouyang et al., 2022). Several prompt de-
sign principles have emerged in recent years, sug-
gesting that incorporating more complex instruc-
tions, demonstrations, and chain-of-thought rea-
soning into prompts can boost the performance on
challenging tasks (Brown et al., 2020; Wei et al.,
2022b), including those involving mathematical

problem-solving (Cobbe et al., 2021) and reason-
ing (Suzgun et al., 2022; Srivastava et al., 2022).
However, effective prompts for tackling complex
tasks often contain thousands of tokens, posing
challenges in designing and optimizing them. Fig-
ure 1 demonstrates a long prompt for a task in Big
Bench Hard (Suzgun et al., 2022), which contains
an instruction and several demos, each with human-
written chain-of-thoughts.

Numerous studies have demonstrated the sensi-
tivity of LLMs to prompts, revealing that minor
modifications, such as adding or removing a few
tokens or rephrasing the prompt, can significantly
impact LLM performance (Liu et al., 2023; Zhu
et al., 2023; Jiang et al., 2020). Therefore, prompt
design has become a labor-intensive endeavor. Fur-
ther complicating the matter is the rapid evolution
of LLMSs, rendering prompts crafted for a specific
LLM ineffective when applied to a newer version
of LLM. This highlights the need for automatic
prompt engineering techniques.

In this paper, we consider the problem of au-
tomatic prompt engineering for black-box LLMs,
where the tuning algorithms will improve prompts
by querying the model. While automatic prompt
engineering has been studied recently, existing re-
search (Deng et al., 2022; Xu et al., 2022; Guo
et al., 2023; Fernando et al., 2023) focuses on op-
timizing short instructions with one or a few sen-
tences. These methods either evolve prompts by
searching for word replacements or utilize LLMs
to rewrite the entire prompt (Xu et al., 2022; Fer-
nando et al., 2023; Guo et al., 2023; Yang et al.,
2023). It is challenging to apply them for evolv-
ing a long prompt like Figure 1. For long prompts,
word replacement-based search faces a large search
space, while rewriting the entire prompt using a sin-
gle LLM query is extremely difficult. Although it
is possible to apply these methods to individual
sentences, we have observed that tuning a single
sentence may not sufficiently improve the perfor-

10672

Findings of the Association for Computational Linguistics: ACL 2024, pages 10672—-10685
August 11-16, 2024 ©2024 Association for Computational Linguistics

Average Improvements on Big Bench Hard with 50 iterations (%)

Causal Judgement

Salient Translation
Error Detection

Disambiguation QA
Formal Fallacies
Hyperbaton

Dyck Languages
Reasoning about
Colored Objects
Logical Deduction
Five Objects

A prompt found by our algorithm for Disambiguation QA

Clarify the meaning of sentences with ambiguous pronouns.

Q: In the following sentences, explain the antecedent of the pronoun (which
thing the pronoun refers to), or state that it is ambiguous.

Sentence: The chief told the counselor that they took the day off.

Options:

(A) The chief took the day off

A: Let's think step by step.

Here we need to determine who the pronoun "they" might be referring to.
There are two possible referents for "they", namely the chief and the
counselor. The verb "told" might be able to help us determine which one is
more likely (if either). LetX-be-the-chief-and-Y-the-counseler—The-sentenee-is
thenef-the-fermX-teld-Y-that-Oer-Y)-did-semething=—Let X be the chief and
Y the advisor. The sentence is of the form “X told Y that (X or Y) did
something.” Let's consider Y first: "X told Y that Y did something." This case
does not make much sense,as Y

the chief and Y is the counselor, the answer should be the chief. So the
answer is (A).

thing-4h unrefors o) or state-that itis-ambi
20 Q: In the following sentences, identify the antecedent of each pronoun

(which thing the pronoun refers to), or state that the antecedent is
ambiguous.

Figure 1: Left panel: the average accuracy improvements of the proposed method over 3 runs with 50 iterations
on the training set. We report the accuracy on the whole set (including training and test sets). More detailed
results can be found in Table 2. Right panel: An example of a long prompt in BBH (Disambiguation task) which
consists of an instruction, several demo examples and chain-of-thought reasoning. The first sentence (Clarify...) is

the instruction and each block contains “Q: ...

A: ..” is an in-context example. We show that by rewriting a few

selected sentences in this long prompt with our proposed method, we can improve the accuracy by more than 10%.

mance of long prompts (see Section 4). Therefore,
how to automatically find better long pompts and
what’s the potential performance gain by tuning
long prompts remain unanswered in the literature.

In this paper, we propose an algorithm named
Automated Prompt Engineering Xpert (APEX).
The main operation in APEX is to replace a sen-
tence by a semantically equivalent sentence, which
can be done by queries to LLMs. We adopt a greedy
algorithm with beam search to make the prompt
search more efficient. Further, for long prompt en-
gineering it is important to identify which sentence
to change, and to what direction. We thus propose
two novel techniques that utilize search history to
enhance the effectiveness of LLM-based mutation
in our algorithm.

Our contributions can be summarized below:

* This paper presents the first formal discus-
sion of automatic long prompt engineering,
demonstrating substantial performance gains
on multiple tasks.

* We propose a greedy algorithm with beam
search that can rapidly optimize prompts. Fur-
thermore, a novel guided mutation method is
introduced to enhance convergence.

* We conducted experiments on the Big Bench
Hard (BBH) benchmark, where prompts com-
prise thousands of tokens, including instruc-
tions and chain-of-thought reasoning. Our
results demonstrate that the proposed auto-

matic long prompt engineering method signif-
icantly enhances performance. Notably, we
achieved an average of 9.2% absolute accu-
racy improvements on 8 tasks selected from
BBH, as shown in Figure 1, with only 50 eval-
uations on the training set. We further demon-
strate the effectiveness of APEX on GSMSK
across various LLMs.

2 Related Work

Designing effective prompts to fully exploit the
capabilities of LLMs has become an important
topic. Many principal ways for prompt design have
been studied recently (Reynolds and McDonell,
2021; Brown et al., 2020; Wei et al., 2022b; Wang
et al., 2022a, 2023a; Jiang et al., 2020). For in-
stance, a well-designed prompt may include a sys-
tem prompt, an instruction prompt outlining the
task, multiple contextual examples, and a chain-of-
thoughts reasoning section that explains the step-
by-step thought process behind the examples. By
incorporating these elements, effective prompts of-
ten have tens of sentences and thousands of to-
kens. Prompt engineering has been used to not
only improving the performance of LLMs, but also
to achieve certain goals, such as robustness test-
ing (Wallace et al., 2019) and jailbreaking (Zou
et al., 2023; Chao et al., 2023).

An orthogonal line of previous work has ex-
plored soft-prompt tuning, a technique that op-

10673

timizes prompts within a continuous embedding
space using standard continuous optimization al-
gorithms (Lester et al., 2021; Zhang et al., 2021;
Wang et al., 2022b). While capable of achieving
satisfactory performance, soft-prompts lack inter-
pretability and cannot be applied via LLM APIs.
Additionally, these parameter-efficient fine-tuning
methods demand large training sets, making them
unsuitable for applications with limited data, such
as those with only tens or hundreds of samples.

Given the limited availability of training data
(e.g., < 1000 samples), our focus lies in exploring
strategies for optimizing hard prompts, which are
semantically equivalent to the original prompts but
yield superior performance. The literature of auto-
matic prompt engineering considers two primary
settings. The first setting, which aligns with our
work, assumes the existence of an initial human-
crafted prompt and aims to refine or improve it to
achieve enhanced performance. Several discrete
search algorithms have been proposed for this set-
ting: (Shin et al., 2020) searches for the trigger
tokens that can improve the performance of lan-
guage models on downstream tasks. (Xu et al.,
2022) employs a genetic algorithm for prompt tun-
ing, utilizing back translation, cloze tasks, and sen-
tence continuation to mutate the initial instruction.
(Pryzant et al., 2023) explored the utilization of
input-output pair feedback to refine instructions in
an iterative manner. More recently, (Fernando et al.,
2023; Guo et al., 2023) proposed leveraging LLMs
for mutation and crossover operations in evolution-
ary searches. Although they can also be applied to
entire prompt, we show in the main experiment that
the proposed algorithm is more effective in evolv-
ing an entire prompt. This justifies the proposed
ideas (history-guided evolution/sentence selection)
can effectively isolate the important part of long
prompt to evolve.

In addition, (Yang et al., 2023) demonstrated
the optimization capabilities of LLMs in generat-
ing improved prompt variations based on previous
fitness scores. However, these prompt evolution
techniques are designed for short sentences or para-
graphs within a long prompt. For example, many
of them try to evolve only the instruction part or the
sentence ‘“Let’s think step by step” in the prompt.
Our work aims to provide complete freedom to
evolve the entire long prompt, opening up more
avenues for improvement but also introducing chal-
lenges in determining how and where to change the

original prompt.

Other recent concurrent works have also used the
idea of LLM as agents to optimize prompt. (Wang
et al., 2023b) proposed to model prompt optimiza-
tion as a state-transition process, where at each
state the LLM uses the predicted error to generate
feedback to and select next action. This work has a
different search space with us, where they aim to
correct existing prompts instead of rewriting it. An-
other work that published after this paper focuses
on incorporating human feedback into prompt opti-
mization (Chen et al., 2024).

Another setting focuses on automatic prompt
generation without a pre-existing prompt. (Hon-
ovich et al., 2022) demonstrated the ability of
LLMs to generate brief task descriptions based on
input-output pairs. Building upon this technique,
(Zhou et al., 2022) proposed an automatic prompt
engineering (APE) algorithm capable of generating
prompts from given pairs. Under the same problem
setting, (Chen et al., 2023) developed a continu-
ous relaxation approach. Beyond these settings,
there exists some algorithms developed to automate
the generation of chain-of-thought prompts (Zhang
et al., 2022). Our work seeks to design a gen-
eral prompt tuner, which is orthogonal and can be
combined with those instruction learning or auto
chain-of-thoughts methods.

3 Proposed Method

In this paper, we address the challenge of auto-
matic long prompt engineering for language mod-
els. Given a language model £ and an initial
prompt pinie designed by human for a particular
task, our goal is to refine the prompt to achieve
superior performance. To enhance the prompt, we
are provided with a limited training set (e.g., 100
input-output pairs) {(x;, y;)}_, for performance
evaluation. Specifically, for each sample we con-
duct prediction by L([p, z;]) and assess its agree-
ment with the corresponding ground truth label ;.
We define score(p) as the performance metric of
prompt p on the training set. We consider the sce-
nario where the number of available samples n is
limited, which is a common situation where indi-
viduals lack sufficient data for model fine-tuning
but can still utilize the data to design an improved
hard prompt. We will evaluate generalization per-
formance on a hold-out test set that is not used in
prompt search.

10674

Generate a variation of the following
instruction while keeping the semantic
meaning.

Input: <original sentence>
A variation of the input is:

Figure 2: The vanilla LLM-Mutator used in our search.
3.1 Search space

Our goal is to generate a new prompt that is seman-
tically similar to the original prompt while achiev-
ing enhanced performance. We avoid introducing
non-interpretable tokens, such as adversarial trig-
gers (Zou et al., 2023). The restrictions offer two
advantages: 1) the prompts discovered by our algo-
rithm are interpretable, facilitating the verification
that the prompt still performs the intended task, and
2) since we are only provided with a limited set of
training samples, constraining the search space can
mitigate the issue of overfitting.

To conduct prompt search, we decompose the
long prompt into m individual sentences:

P =[51),52)-s5m)l-
We then allow each sentence to be rephrased while
preserving its semantic meaning. Since LLMs ex-
cel at sentence rephrasing, we adopt LLM to gen-
erate semantically equivalent variation of a given
sentence and call it LLM-Mutator. The prompt
we used for vanilla LLM mutator can be found in
Figure 2. An improved version of LLM-Mutator
will be introduced later in Section 3.3.

3.2 Search algorithm

A straightforward approach to conduct search us-
ing the LLM-Mutator is the following greedy al-
gorithm. At each iteration, we randomly select
a sentence, denoted by 5(i)» and utilize the LLM-
Mutator to generate an alternative sentence s’(i). We
then replace s(;) by 3/(2') in the old prompt p if the
new resulting prompt improves the performance.
However, we observed that this vanilla greedy ap-
proach can be easily trapped in local optima. In our
problem, the training set is so limited that some-
times a detrimental modification is not reflected in
the training score. As a result, unfavorable edit are
sometimes accepted due to insufficient evaluation,
which hurts the prompt’s future improvement.

To address this issue, we propose conducting
a beam search by maintaining a pool of k top-
performing prompts, denoted as p7, p3, ..., p;. At
each iteration, we randomly select one of these k
prompts and refine the chosen prompt. We then
evaluate this new candidate and maintain the top-k

prompt pool. This approach ensures that even with
the introduction of detrimental edits, recovery from
such errors is still possible as we retain not only
the top prompt. Our experiments reveal that this
approach leads to significantly improved training
and test performance compared to the pure greedy
algorithm, as demonstrated in Figure 3. Further
discussions of the implementation details and com-
parison between beam search and greedy methods
are in Appendix 7.1.

It is worth noting that our method is closely
related to the Genetic Algorithm (GA). GA is a
widely recognized method for discrete optimiza-
tion involving black-box functions. Assuming
P = {p1,...,pr} represents the solutions in the
current pool, GA applies mutation and crossover
operations to this pool to generate a set of newly
proposed candidates P’ = {p/,...,p,}. The fit-
ness scores (performance of the solutions) of these
newly proposed candidates are then evaluated. Sub-
sequently, only the top k solutions in P U P’ are
retained before proceeding to the next iteration.

While GA possesses a high exploration capabil-
ity, it is slower in improving training accuracy in
the first 50 iterations. However, given the vastness
of our search space and the reasonably good qual-
ity of the human-written initial prompt, a majority
of mutations and crossovers performed in the first
few iterations yield poorly performing candidates.
Evaluating each of these candidates is computation-
ally expensive, even though it can enhance solution
diversity.

Our algorithm is effectively a “greedy” version
of GA. We maintain a candidate set of size k& and
update the candidate pool immediately upon gener-
ating each new candidate, rather than waiting for
the evaluation of the entire generation of offspring
before updating the pool. As a result, our solution
pool remains more up-to-date, leading to faster con-
vergence compared to GA. Figure 3 further verifies
this observation, demonstrating the slower initial
growth of GA’s learning curve.

3.3 History-guided search

Randomly rephrasing a sentence in a prompt is
akin to conducting a random mutation within the
space of semantically equivalent sentences, which
is not very efficient. This subsection introduces our
main innovation, where we show how the search
history can be employed to guide the mutation in a
more purposeful direction.

10675

Disambiguation_QA

0.70 1
.. 0.681
Q
@©
5 0.66 1
o
Q
< 0.64
£
@©
= 0.62 A ¥ —— Beam Search Greedy
0.604 - Greedy
’ i —-— Genetic Algorithm
0 20 40 60 80 100
Number of Evaluations
Hyperbaton
0.88 yp
0.86 1
> S
@ 0.841 I
S [4
1e)
& 0.82-
(=
‘©
= 0.801 Beam Search Greedy
Greedy
0.78 1 ! . .
. —-— Genetic Algorithm
0 20 40 60 80 100

Number of Evaluations

Disambiguation_QA

0.64
>
o
€ 0.62
]
9]
<
4@' 0.60
= —— Beam Search Greedy

Greedy
0.58 1 - .
—— Genetic Algorithm
0 20 40 60 80 100
Number of Evaluations
Hyperbaton

0.821
> 0.801
%) F—
® I
3 0.781 A 1
[9) o
£ | | i i
— 0.76 1
0 .
I i~ B

0744 eam Search Greedy

/'&_ =1 Greedy
0721 b —-— Genetic Algorithm

0 20 40 60 80 100
Number of Evaluations

Figure 3: Comparison between beam-search greedy, greedy, and genetic algorithm. This is the average results over
three runs. Beam-search greedy outperforms both greedy algorithm and genetic algorithm.

Guided mutation for a single sentence. At it-
eration T', we can denote the search history as
{(shefore, gafter) 171 where sb°fr® is the sen-
tence before mutation, 53" is the sentence after
mutation, and the reward r; indicates the change in
the score (r; is positive if the mutation enhances
the performance, and negative otherwise). Assume
st is the current sentence that is selected for mu-
tation, we can then use the history to guide the
mutation towards more positive reward. For exam-
ple, if we know rephrasing the sentence “So, it is
true that Lesley is a great-grandfather of Leroy” to
“Therefore Leslie is Leroy’s great-grandfather.” can
improve the performance, then for another sentence
“So, it is true that everyone who is an ancestor of
Dana is a stepbrother of Brian” we may want to
rewrite it as “Therefore everyone that is an ancestor
of Dana is Brian’s stepbrother.”

It has been shown that LLMs are able to learn
from in-context examples (Zhang et al., 2021).
Therefore, we propose to let the LLM-Mutator in-
context learn from the history. This can be done
by listing history in the prompt: if r; > 0, we in-
clude an in-context example sP°¢ = s3fer and if
¢ < 0 we include sifr = sbefore The prompt for
LLM-Evolver is shown in Figure 4.

Since the history can be long and it has been
shown that including too many in-context exam-
ples can be harmful, we only retrieve a small set of

//;;; are a professional sentence rephraser. Your job ;;\\\

to take a given sentence, and produce a new sentence
that is easier for language models to understand.

Here are some examples of how rephrasing a sentence can
improve the performance of a language model:

<original> sl </original>

<rephrased> sl’ </rephrased>

Rephrase the next sentence to enhance the language
model's performance.

<original> sT </original>
\\iﬁfphrased>

/

Figure 4: The guided LLM-mutator used in our search.

relevant history entries when rephrasing a sentence.
Specifically, when evolving s, we compute the
similarity between s and each s?™, which is
calculated by ¢(s7)7 ¢(s5°°) and ¢ is a sentence
encoder (we use a TS (Raffel et al., 2020) in our ex-
periments). We then only select entries that pass a
certain threshold to include as in-context examples.

Guided sampling for sentence selection. Long
prompt typically contains tens or hundreds of sen-
tences, posting a challenge to the search algorithm.
Our experiments demonstrate that altering only a
few sentences in a long prompt can significantly en-
hance its effectiveness, but the changes need to be
at right places. It is thus beneficial to bias the sam-
pling distribution towards selecting more impactful
sentences for modification.

We model sentence selection as a contextual ban-
dit problem (Langford and Zhang, 2007). In contex-

10676

tual bandit, at each iteration a learner is faced with
m arms associante with feature vectors x1, . .., T,
and the learner is trying to pull an arm at each round
to optimize the overall reward. In our case, m arms
correspond to the m sentences 51y, ..., S(y) In a
prompt, and features can be obtained by ¢(s(;)
where ¢ is a text encoder. Utilizing feature infor-
mation is crucial because if modifying a particular
sentence can lead to performance improvement, it
is likely that modifying similar sentences will also
yield positive results.

We then adopt the Lin-UCB algorithm (Li et al.,
2010) to guide sentence selection. Given the his-
tory {(sbefore, safter)11 we compute a linear
estimator of the underlying reward model

wh = (H"H + X))~ HTr, (1)

where H is a (1" — 1)-by-d matrix with each row
being ¢(sb°), and r = [ry,...,rr_1]7. This is
simply a solution of a ridge regression with feature
matrix A and reward r. The following UCB rule
is then used to select the sentence for mutation:

arg max B(s) wr + 04\/¢(8(i))TA‘1¢(8(i)),
2)
where A = HT H 4 \I. Since this Lin-UCB esti-
mation may not be accurate, we let the algorithm
has probability P to choose a purely random arm
and 1 — P to choose the sentence based on Eq. (2).
The algorithm is summarized in Algorithm 1.

Algorithm 1 Automated Prompt Engineering
Xpert (APEX)
po: initial prompt; k: beam size; 6: threshold.

Initialize solution pool P as {po}
foriter =1,2,... do
Randomly select p from top-k solutions in P
p < random number in [0, 1]
if p < 0.5 then
Sample a random sentence s ;)
Choose s(;) by Eq. (2).
end if
Compute T' = {t : ¢(S(;))T p(sP") > 6}
s’(i) <— Guided Mutation on s;) with history 7'
Evaluate p’ = [s1),.-.,8i~1, 5}, Sit1, -]
Addp to P
end for

4 Experimental Results

In this section, we present empirical evidence
demonstrating that APEX can significantly enhance
performance on the Big-Bench Hard (BBH) bench-
mark (Suzgun et al., 2022; Srivastava et al., 2022).
We then conduct ablation studies and test the per-
formance on GSM8K dataset across various LLM
models. Finally we show qualitative results on how
APEX refines human-written prompts.

4.1 Experimental Settings

We consider the prompt developed in Suzgun et al.
(2022) for the BBH tasks, where prompts consist
of two parts: Task Description and Demos. The
Task Description provides instructions describing
the task, while each demo includes the question,
a chain-of-thoughts demonstration illustrating the
problem-solving process step-by-step, and the final
answer. During prompt tuning, the format (e.g.,
“Question. ”, “Answer.) are retained, while the
tuning algorithm is allowed to modify any other
parts including the instruction part and the chain-
of-thoughts part. Table 1 summarizes the statistics
of the datasets used in this study. The full prompts
for each data can be downloaded online!.

Each task consists of 250 samples, randomly
divided into 50% for training and 50% for test-
ing. Only training samples are utilized for prompt
tuning. All tasks are multi-class classification prob-
lems, and we report accuracy on training data, test
data, and the combined dataset when comparing
different tuning methods.

For most of the experiments, we evaluated the
performance on text-bison model and utilized the
instruction-tuned PalLM 2-L. model as LLM mu-
tator. Both models belong to the PalLM 2-model
family (Anil et al., 2023). We also demonstrate that
our method can be applied to other LLMs, where
we conduct experiments on GPT-3.5 in Section
4.3.1. The GPT version used in our experiment is
gpt-3.5-turbo-instruct-0914. Following the previ-
ous prompt tuning works, we set temperature as 0.
To enhance the diversity of sentence mutation, we
set the temperature of the LLM-Mutator to 0.5.

We compare the proposed algorithm with the
following baselines:

* Original Prompt: Performance of the original

human-designed prompt developed in (Suz-
gun et al., 2022), which also serves as the

"https://github.com/suzgunmirac/
BIG-Bench-Hard

10677

https://github.com/suzgunmirac/BIG-Bench-Hard
https://github.com/suzgunmirac/BIG-Bench-Hard

initialization for other tuning methods.
Genetic Algorithm: An implementation of the
genetic algorithm for long prompt tuning. To
facilitate a more comparable comparison with
our method, we set the pool size to 4. At
each step, 8 new candidates are generated by
randomly mutating and performing crossover
on the top candidates within the pool.
Evolve “step-by-step”: Several recent prompt
tuning studies have explored the concept of
evolving a prompt using a single sentence,
such as the "Let’s think step by step’ sentence
employed in chain-of-thought prompts (Ko-
jima et al., 2022). We adopted one of the
state-of-the-art methods for single sentence
optimization (Yang et al., 2023) to optimize
all of the ’Let’s think step by step’ sentences
within the chain-of-thought prompt.

* APO (Pryzant et al., 2023) designed a prompt

optimization algorithm which expands the in-

struction space by a feedback loop. We apply
this algorithm to directly tune long prompts.

PromptBreeder (Fernando et al., 2023) uses a

genetic algorithm to search for prompts. We

incorporate LLM-based mutation and cross-
over without optimizing the meta prompt.

* Greedy: A simple greedy approach mentioned
in Section 3.2, where we only store the top per-
forming candidate in the pool and generating
new candidate on top of it.

For our method (APEX), we use the same hyper-
parameters for all the experiments. We set the pool
size (beam size) to 4 for all experiments. When
applying guided mutation in Section 3.3, we use
a TS5 encoder to encode both the current entry and
the history and normalize the embeddings to have
a unit {3 norm. We retrieve only the top 4 history
entries and require the /o distance between the en-
coded history and the current sentence to be below
0.5. When applying the sentence selection algo-
rithm described in Section 3.3, we set a = 0.05
in Eq. (2) and set P = 0.5. Note that those hyper-
parameters are not well tuned.

4.2 Main Results: Results on Big Bench Hard

For this experiment, we limited the computational
budget to 50 evaluations on the training set and
reported the training, test, and combined accuracy
achieved by each method. All the experiments
are run three times and we report the mean and
standard deviation. The results are summarized

Number of
Dataset Number of Words Mutable Sentences

Causal Judgement 678 20
Salient Translation 745 34
Disambiguation 671 37
Formal Fallacies 741 32
Hyperbaton 539 19
Dyck Language 679 22
Color Reasoning 435 17
Logical Five 461 25

Table 1: Initial prompt statistics for each dataset. When
calculating the “number of mutable sentences,” we only
consider sentences that can be modified during the
search phase.

in Table 2. APEX outperform all other methods,
demonstrating significant improvements in accu-
racy across all tasks. We also compute the improve-
ments of accuracy on the whole dataset (including
both training and testing) and report the accuracy
gain in Figure 1.

Across all 8 tasks, APEX achieves an average
of 8.2% gain in test accuracy and 9.2% gain in
the accuracy of full evaluation set (train + test).
Among these tasks, we achieve the largest perfor-
mance gain (18.45%) on the logical deduction task,
and the smallest gain (2.45%) on reasoning about
colored objects (Color Reasoning). One potential
reason of the marginal gain on color reasoning is
that the original prompt already achieves high accu-
racy, so there is not much room for improvements.

Comparing the baselines, it becomes evident that
evolving a single sentence (Evolve ’step-by-step’)
fails to achieve substantial improvements in long
prompt tuning. This is mainly due to the fact that
long prompt tuning typically involves over 20 sen-
tences with detailed instructions and explanations,
so naively modifying “Let’s think step by step” is
unlikely to lead to significant enhancements. Fur-
thermore, the Genetic Algorithm and Greedy Al-
gorithm each exhibit their own limitations, as dis-
cussed in Section 3.2.

On the other hand, we show that conducting
APO over the long prompt leads to suboptimal
results, often lower than GA and Greedy (baselines
for long prompt tuning). This is mainly due to
the difficulty of rewriting the whole long prompt.
For example, the original prompt of Hyperbaton
contains 19 sentences with more than 500 words,
but most of the prompt generated by APO has only
<50 words. As a result, it couldn’t find a better
prompt. This explains why evolving the whole
long prompt together can fail.

Despite being able to significantly boost the per-

10678

Task Original Prompt | Genetic Algorithm | Evolve “Step-by-step” Greedy APO PromptBreeder APEX

Train Test Train Test Train Test Train | Test | Train | Test | Train | Test | Train | Test
Causal Judgment | 58.1 59.6 63.1 59.2 63.1 58.2 63.0 | 59.6 | 64.5 | 60.6 | 65.2 63.1 67.7 | 63.7
Salient Translation | 54.4 54.4 58.7 56.5 57.1 55.7 59.5 | 53.6 | 552 | 52.8 | 57.1 50.3 60.0 | 58.7
Disambiguation 58.7 57.3 64.8 61.0 64.6 61.8 66.7 | 634 | 683 | 653 | 70.8 71.5 70.1 | 68.0
Formal Fallacies | 58.9 61.1 63.5 64.5 60.6 62.4 68.5 | 68.8 | 65.8 | 684 | 68.8 64.8 704 | 73.1
Hyperbaton 71.0 71.8 82.8 76.3 84.9 79.6 83.5 | 793 | 770 | 71.8 | 79.6 80.1 88.4 | 85.5
Dyck Language 15.1 17.0 20.2 16.4 18.25 20.4 19.0 | 173 | 224 | 198 | 21.9 | 22.7 | 228 | 209
Color Reasoning | 79.4 82.3 85.1 78.9 86.2 81.5 85.1 | 81.1 | 81.0 | 75.0 | 824 80.7 854 | 83.5
Logical Five 33.7 40.7 49.3 48.2 54.5 50.3 539 | 513 | 532 | 46.8 | 513 48.9 59.8 | 54.7

\ Average | 544] 555 [6094] 576 | 612] 58.7 | 624 15931609 [575] 62.1 | 603 | 656 | 63.5 |

Table 2: Main results on BBH benchmark. The search budget is limited to 50 evaluations over the training set
for each method. We ran each experiment 3 times and report the mean and standard deviation. Due to the space
constraint and to ensure readability, the standard deviations are deferred to Table 10.

formance, we also observe some degree of over-
fitting in our search procedure. Although the pro-
posed beam search method can partially mitigate
overfitting (see Section 3.2), we still observe higher
training accuracy than testing in most cases. How-
ever, as the performance gain is substantial, the
prompts found by the algorithm are still signifi-
cantly better on the test set.

Can previous methods handle long prompts?
Although many previous methods can be directly
applied to long prompts, our empirical finding in
Table 2 demonstrated that they cannot achieve good
performance by rewriting the entire prompt. In par-
ticular, the APO and PromptBreeder algorithms in
our comparison directly rewrote the entire prompt
and achieve lower performance than APEX. An-
other option is to use existing work and tune only a
particular sentence. In Table 2, we show that tuning
the “step-by-step” sentence by (Yang et al., 2023)
is insufficient, and further, we conduct another ex-
periment in Table 3 showing that only tuning the
instruction part of the prompt is insufficient.

Can we directly use training samples for in-
context learning? In our method and all the
baseline prompt tuning algorithms, the training
samples are used for obtaining a better prompt.
However, another way to utilize training samples is
to add all of them as demos in the in-context learn-
ing framework. To compare with this approach, we
show the results of using all training samples in
In-context Learning (ICL) and show the result in
Table 3. We can see adding all samples in ICL im-
proves the performance in some tasks (especially
in Color Reasoning), but could also degrade the
performances. Overall, APEX is still more effec-
tive in most of the cases comparing with ICL with
all training samples.

4.3 Ablation Study

We study APEX under different LLMs, datasets,
and by varying the components in APEX.

4.3.1 Different LLMs and datasets

To show the performance of APEX under dif-
ferent settings such as different datasets and
LLMs, we conduct experiments on the GSM8K
dataset (Cobbe et al., 2021) using different LLMs.
We choose the “prompt_hardest” prompt?® as the
initial prompt which contains 103 lines with 1,639
words. We conduct prompt tuning with 1,000 sam-
pled training data for our method and evaluate the
revised prompt on the full test set. For text-bison
and Palm-2-L. we use Palm-2-L as the mutation
LLM, while for GPT-3.5 we use GPT-3.5 as the
mutation LLM. The results are shown in Table 5.
We observe that the proposed method consistently
improves the performance with different LLMs in-
cluding text-bison, GPT-3.5-instruct and Palm 2-L.

4.3.2 Different components of the algorithm

We conduct an ablation study on the two techniques
introduced in Section 3.3: the history-guided mu-
tation and the contextual bandit algorithm for sen-
tence selection. To verify whether both techniques
are essential in APEX, we consider two settings:
APEX without history-guided mutation (during mu-
tation, we randomly rewrite a sentence using the
prompt in Figure 2) and APEX without sentence
selection (randomly select a sentence to mutate, but
using guided mutation Figure 4 at each iteration).
All the hyperparameters are fixed in this experi-
ment. The results are presented in Table 4. We can
observe that both components are contributing to
the final performance of the model.

2https://github.com/FranxYao/
chain-of-thought-hub

10679

https://github.com/FranxYao/chain-of-thought-hub
https://github.com/FranxYao/chain-of-thought-hub

Task Causal | Translation | Disambiguation | Fallacies | Hyperbaton | Dyck | Color | Logical
Original 59.6 544 57.3 61.1 71.8 17 82.3 40.7
APO (instruction only) 61.7 50.2 59.7 71.8 76.3 23.7 | 60.7 44.1
Evolve “step-by-step” 58.2 55.7 61.8 62.4 79.6 204 | 815 50.3
ICL Prompt (all samples) | 61.8 52.0 69.7 63.7 75 25 68.9 41.1
APEX (whole prompt) 63.7 68.7 68.0 73.1 85.5 209 | 83.5 54.7
Table 3: Comparing APEX (tuning the whole prompt) with other methods when tuning a smaller part of the prompt.
Task Disambiguation | Formal Fallacies | Hyperbaton | Logical Five
Train Test Train Test Train | Test | Train | Test
APEX (no history-guided mutation) | 67.4 66.9 61.1 66.1 83.6 | 78.1 | 55.6 | 53.2
APEX (no sentence selection) 68.2 63.1 71.2 72.8 814 | 80.3 | 542 | 50.4
APEX 70.1 68.0 70.4 73.1 88.4 | 855 | 59.8 | 54.7

Table 4: Ablation Study on the two components introduced in Section 3.3.

Model Original Prompt | APEX
text-bison 0.657 0.705
GPT-3.5-instruct 0.765 0.801
Palm 2-L 0.841 0.872

Table 5: GSMSK results on three LLMs.

4.4 Qualitative results

One important benefit of automatic hard prompt
engineering is that the resulting prompts remain
interpretable by humans, allowing users to easily
verify the modifications. We provide some success-
ful examples found by our search in Table 6 and
Table 7 (appendix). In each table, we show only
the different parts of the initial prompt from BBH
and the changes made by our method.

The first example demonstrated in Table 6 (ap-
pendix) is for the logic deduction task on five ob-
jects. The initial prompt achieves 38.8% accuracy
while the revised prompt found at iteration 48 im-
proves the performance to 57.9% train accuracy
and 54.0% test accuracy. We observed that most
of the changes involve minor revisions to the orig-
inal sentence without altering its meaning. These
seemingly insignificant modifications can lead to
substantial improvements in LLM accuracy, show-
casing the important of automatic long prompt en-
gineering. We also include another example in
Appendix 7.2.

5 Conclusions

We study the problem of automatic prompt engi-
neering for long prompts, often comprising thou-
sands of tokens. We investigate the performance
of the standard greedy algorithm and genetic algo-
rithm, and develop a search algorithm that yields
superior performance. With only 50 evaluations on
the training set, our method achieves an average
absolute accuracy improvement of 9.2% across 8
tasks from Big Bench Hard. This demonstrates

the significant potential benefits of automatic long
prompt tuning and underscores the importance of
this emerging area.

6 Acknowledgements

We thank Ruochen Wang, Vineet Gupta, Kedar
Dhamdhere, Daliang Li for valuable discussions
and feedback.

Limitations

As the first paper focusing on automatic engineer-
ing of the entire long prompts, we identify several
limitations of the current methods which can lead
to interesting future research:

* The current algorithm relies on using another
LLM to rephrase a sentence. As illustrated in
Section 4.4, this LLM-mutator may introduce
errors during sentence rewriting, particularly
for intricate sentences (e.g., CoT in compli-
cated logical deduction tasks). Therefore, im-
proving the “correctness” of LLM-Mutator is
an interesting future area of research, which
has not been fully addressed in our work as
well as other recent studies (Fernando et al.,
2023; Guo et al., 2023).

* In the current implementation, we break down
the long prompt into individual sentences and
modify one sentence at a time. However, it
might be beneficial to manipulate multiple
sentences simultaneously during mutation or
consolidate multiple sentences into a single
one. An automated mechanism for carrying
out this process would be an interesting direc-
tion for enhancing our method.

* Although our algorithm is able to find a good
solution with less than 100 evaluations on the
training set, the cost is still not negligible espe-
cially when tuning prompts using APIs with

10680

cost or rate limits. Employing early stopping
techniques, where the evaluation of poorly per-
forming candidates are terminated early, could
potentially reduce the number of queries.

* Although automatic prompt engineering can
achieve significant gain, the search space of
hard prompt has limited representation power
which hinders further performance improve-
ments. It has been shown that soft prompt tun-
ing has limited representation power (Wang
et al., 2023c), and our search space is a
small subset of soft prompts. Therefore,
when provided with sufficient data, computa-
tional resources, and white-box access to the
LLM, (parameter-efficient) fine-tuning may
still achieve superior performance.

References

Rohan Anil, Andrew M Dai, Orhan Firat, Melvin John-
son, Dmitry Lepikhin, Alexandre Passos, Siamak
Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng
Chen, et al. 2023. Palm 2 technical report. arXiv
preprint arXiv:2305.10403.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877-1901.

Patrick Chao, Alexander Robey, Edgar Dobriban,
Hamed Hassani, George J Pappas, and Eric Wong.
2023. Jailbreaking black box large language models
in twenty queries. arXiv preprint arXiv:2310.08419.

Lichang Chen, Jiuhai Chen, Tom Goldstein, Heng
Huang, and Tianyi Zhou. 2023. Instructzero: Ef-
ficient instruction optimization for black-box large
language models. arXiv preprint arXiv:2306.03082.

Yongchao Chen, Jacob Arkin, Yilun Hao, Yang Zhang,
Nicholas Roy, and Chuchu Fan. 2024. Prompt op-
timization in multi-step tasks (promst): Integrating
human feedback and preference alignment. arXiv
preprint arXiv:2402.08702.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, et al. 2022. Palm: Scaling
language modeling with pathways. arXiv preprint
arXiv:2204.02311.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Mingkai Deng, Jianyu Wang, Cheng-Ping Hsieh, Yihan
Wang, Han Guo, Tianmin Shu, Meng Song, Eric P
Xing, and Zhiting Hu. 2022. Rlprompt: Optimiz-
ing discrete text prompts with reinforcement learn-
ing. arXiv preprint arXiv:2205.12548.

Chrisantha Fernando, Dylan Banarse, Henryk
Michalewski, Simon Osindero, and Tim Rock-
taschel. 2023. Promptbreeder: Self-referential
self-improvement via prompt evolution. arXiv

preprint arXiv:2309.16797.

Qingyan Guo, Rui Wang, Junliang Guo, Bei Li, Kaitao
Song, Xu Tan, Guoqing Liu, Jiang Bian, and Yujiu
Yang. 2023. Connecting large language models with
evolutionary algorithms yields powerful prompt op-
timizers. arXiv preprint arXiv:2309.08532.

Or Honovich, Uri Shaham, Samuel R Bowman, and
Omer Levy. 2022. Instruction induction: From
few examples to natural language task descriptions.
arXiv preprint arXiv:2205.10782.

Zhengbao Jiang, Frank F Xu, Jun Araki, and Graham
Neubig. 2020. How can we know what language
models know? Transactions of the Association for
Computational Linguistics, 8:423-438.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. Advances in

neural information processing systems, 35:22199—
22213.

John Langford and Tong Zhang. 2007. The epoch-
greedy algorithm for contextual multi-armed bandits.
Advances in neural information processing systems,
20(1):96-1.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. arXiv preprint arXiv:2104.08691.

Lihong Li, Wei Chu, John Langford, and Robert E
Schapire. 2010. A contextual-bandit approach to
personalized news article recommendation. In Pro-

ceedings of the 19th international conference on
World wide web, pages 661-670.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang,
Hiroaki Hayashi, and Graham Neubig. 2023. Pre-
train, prompt, and predict: A systematic survey of
prompting methods in natural language processing.
ACM Computing Surveys, 55(9):1-35.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in Neural In-
formation Processing Systems, 35:27730-27744.

Reid Pryzant, Dan Iter, Jerry Li, Yin Tat Lee, Chen-
guang Zhu, and Michael Zeng. 2023. Automatic
prompt optimization with" gradient descent" and
beam search. arXiv preprint arXiv:2305.03495.

10681

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. The Journal of Machine Learning Research,
21(1):5485-5551.

Laria Reynolds and Kyle McDonell. 2021. Prompt pro-
gramming for large language models: Beyond the
few-shot paradigm. In Extended Abstracts of the
2021 CHI Conference on Human Factors in Com-
puting Systems, pages 1-7.

Taylor Shin, Yasaman Razeghi, Robert L Logan IV,
Eric Wallace, and Sameer Singh. 2020. Autoprompt:
Eliciting knowledge from language models with
automatically generated prompts. arXiv preprint
arXiv:2010.15980.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao,
Abu Awal Md Shoeb, Abubakar Abid, Adam Fisch,
Adam R Brown, Adam Santoro, Aditya Gupta,
Adria Garriga-Alonso, et al. 2022. Beyond the
imitation game: Quantifying and extrapolating the
capabilities of language models. arXiv preprint
arXiv:2206.04615.

Mirac Suzgun, Nathan Scales, Nathanael Schirli, Se-
bastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V Le, Ed H Chi,
Denny Zhou, et al. 2022. Challenging big-bench
tasks and whether chain-of-thought can solve them.
arXiv preprint arXiv:2210.09261.

Eric Wallace, Shi Feng, Nikhil Kandpal, Matt Gardner,
and Sameer Singh. 2019. Universal adversarial trig-
gers for attacking and analyzing nlp. arXiv preprint
arXiv:1908.07125.

Lei Wang, Wanyu Xu, Yihuai Lan, Zhigiang Hu,
Yunshi Lan, Roy Ka-Wei Lee, and Ee-Peng Lim.
2023a. Plan-and-solve prompting: Improving zero-
shot chain-of-thought reasoning by large language
models. arXiv preprint arXiv:2305.04091.

Xinyuan Wang, Chenxi Li, Zhen Wang, Fan Bai,
Haotian Luo, Jiayou Zhang, Nebojsa Jojic, Eric P
Xing, and Zhiting Hu. 2023b. Promptagent:
Strategic planning with language models enables
expert-level prompt optimization. arXiv preprint
arXiv:2310.16427.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc
Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. 2022a. Self-consistency im-
proves chain of thought reasoning in language mod-
els. arXiv preprint arXiv:2203.11171.

Yihan Wang, Jatin Chauhan, Wei Wang, and Cho-
Jui Hsieh. 2023c. Universality and limitations of
prompt tuning. arXiv preprint arXiv:2305.18787.

Yihan Wang, Si Si, Daliang Li, Michal Lukasik, Felix
Yu, Cho-Jui Hsieh, Inderjit S Dhillon, and Sanjiv Ku-
mar. 2022b. Preserving in-context learning ability

in large language model fine-tuning. arXiv preprint
arXiv:2211.00635.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel,
Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, et al.
2022a. Emergent abilities of large language models.
arXiv preprint arXiv:2206.07682.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022b. Chain-of-thought prompting elicits
reasoning in large language models. Advances in
Neural Information Processing Systems, 35:24824—
24837.

Hanwei Xu, Yujun Chen, Yulun Du, Nan Shao, Yang-
gang Wang, Haiyu Li, and Zhilin Yang. 2022. Gps:
Genetic prompt search for efficient few-shot learn-
ing. arXiv preprint arXiv:2210.17041.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao
Liu, Quoc V Le, Denny Zhou, and Xinyun Chen.
2023. Large language models as optimizers. arXiv
preprint arXiv:2309.03409.

Ningyu Zhang, Luoqiu Li, Xiang Chen, Shumin Deng,
Zhen Bi, Chuangi Tan, Fei Huang, and Huajun Chen.
2021. Differentiable prompt makes pre-trained
language models better few-shot learners. arXiv
preprint arXiv:2108.13161.

Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex
Smola. 2022. Automatic chain of thought prompt-
ing in large language models. arXiv preprint
arXiv:2210.03493.

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han,
Keiran Paster, Silviu Pitis, Harris Chan, and
Jimmy Ba. 2022. Large language models are
human-level prompt engineers. arXiv preprint
arXiv:2211.01910.

Kaijie Zhu, Jindong Wang, Jiaheng Zhou, Zichen
Wang, Hao Chen, Yidong Wang, Linyi Yang, Wei
Ye, Neil Zhenqiang Gong, Yue Zhang, et al. 2023.
Promptbench: Towards evaluating the robustness
of large language models on adversarial prompts.
arXiv preprint arXiv:2306.04528.

Andy Zou, Zifan Wang, J Zico Kolter, and Matt
Fredrikson. 2023. Universal and transferable adver-
sarial attacks on aligned language models. arXiv
preprint arXiv:2307.15043.

10682

7 Appendix

7.1 Comparison between greedy, beam
search and GA.

Here we include more implementation details of
greedy v.s. beam search algorithm for reproducing
Figure 3, and discuss why beam search performs
significantly better.

In the implementation of greedy algorithm, we
maintain the top candidate (based on training accu-
racy), and randomly mutate a sentence of the top
candidate at each iteration. We then evaluate the
new prompt on training data. If the new prompt
achieves better training accuracy than the previous
top prompt, we replace the top prompt with this
new prompt. Otherwise we keep the original top
prompt. The process is simple and there is no hyper-
parameter. On the other hand, the beam search
algorithm maintains a beam size of k. At each iter-
ation, it randomly selects a prompt from the beam,
and randomly mutates one sentence to generate a
new prompt. We then evaluate the prompt, and
decide whether we need to update the candidates
in the beam. Therefore, the only hyper-parameter
is k and we set it to 4 in all our experiments. We
found the algorithm is not very sensitive to k, as
long as it is not too large.

We observe greedy search is very easy to satu-
rate (accuracy not improving anymore). The main
difference between greedy search and beam search
is that the greedy search always through away all
other candidates except the one with top training
accuracy. However, the search will stuck when
this top candidate has good training accuracy but
bad generalization accuracy (so it achieves good
training accuracy by “luck” and is actually a bad
prompt). In this case, all the later prompts in the
greedy algorithm are generated from this “bad” can-
didate which leads to bad performance, and it is
hard to improve anymore. In contrast, the beam
search algorithm always has a chance to recover
from those “bad” candidates, since there are 4 can-
didates in the pool and we always have chance to
derive later prompt from another candidate in the
beam.

We also include more details for reproducing
Figure 3. As described above, Greedy doesn’t have
any hyper-parmaeter. Beam search has a hyper-
parameter k (beam size) which is set to 4 for all
experiments in this paper. In order to make Genetic
Algorithm (GA) comparable with beam search (see
more details in Section 3.2), we maintain a pool

of size 4 for genetic algorithm. At each iteration,
we randomly generate 4 candidates by randomly
mutating from the pool, and another 4 candidates
by cross-over. We have tried to further increase
these numbers, and the GA will have even slower
progress in the initial phase. For example, if we
have 8 mutations and 8 cross-overs, then 1 iteration
will require 16 evaluations (and it can be observe
that beam search already achieves a high perfor-
mance after 40-50 evaluations).

7.2 Additional Qualitative Result

The second prompt in Table 7 is for the Formal
Fallacies task, designed to identify whether a given
logic statement is valid. The initial prompt achieves
60% accuracy while the revised prompt found at
iteration 91 improves the train accuracy to 92.1%
and test accuracy to 83.1%. Similar to the previous
case, most of the changes involve minor revisions.
In this case, we also want to highlight a potential
limitation of the proposed method that could be ad-
dressed in future work. In the sentence marked as *,
the revised sentence is not semantically equivalent
to the original one. The original and revised sen-
tences represent different logical statements (orig-
inal sentence: not A — B; new sentence: B —
not A). However, the LLM appears incapable of
detecting this subtle distinction, leading to an er-
roneous rephrasing. Although this change leads
to improve training accuracy, it actually hurts test
accuracy. Therefore, incorrect mutations can lead
to overfitting, and developing strategies to mitigate
these errors during the search process would be an
interesting area of future research.

7.3 Experimental results with longer runs

In Table 2 we have demonstrated the results with
50 evaluations. Here we further show the perfor-
mance of our algorithms versus several baselines
when running with 100 iterations. The results are
shown in Table 9. We can observe that APEX still
outperforms other methods with 100 iterations.

7.4 Ablation study on in-context example
selection

In this subsection, we conduct an experiment to
demonstrate that having too many in-context exam-
ples is harmful for guided mutation, which justifies
the proposed history selection algorithm. We com-
pare the original APEX with two variants: APEX
(random history) which has the same number of

10683

Original prompt: 38.8% accuracy

New prompt found at iteration 48: 56% accuracy (train 57.9% / test 54.0%)

A: Let’s think step by step.

Q: The following paragraphs each describe a
set of three objects arranged in a fixed order.
The statements are logically consistent within each
paragraph. On a shelf, there are three books: a white
book, a green book, and an orange book. The green
book is to the right of the white book. The orange book is the rightmost.

A: Let’s think things through one step at a time.

Q: Each paragraph below describes three objects
arranged in a fixed order, and the statements are logically consistent in each paragraph.
There are three books on a shelf: a white, green, and orange book.
The green book is to the right of the white book, and
the orange book is in the far right position.

A: Let’s think step by step.

A: Let’s think one step at a time.

Table 6: An example that APEX improves the performance on Logical Deduction (Five) from 38.8% to 56%.

Original prompt: 60% accuracy

New prompt found at iteration 91: 76 % accuracy (train 92.1%, test 83.1%)

Distinguish deductively valid arguments from formal fallacies.

‘Whoever is not a great-grandfather of Clyde is a stepbrother
of Brian: If X = NOT (great-grandfather(Clyde)), then
X = stepbrother(Brian).

Furthermore, by (1), we have if X = NOT
(great-grandfather(Clyde)), then X = stepbrother(Brian).

By the transitive relation rule in first-order logic,
we then have: if X = ancestor(Dana), then X = stepbrother(Brian).

Let’s see whether the Hypothesis can be deduced from
_____ the arguments (1) and (2) by logical reasoning? _____

So, from (1) and (2), we cannot necessarily deduce
the Hypothesis.

Identify deductively valid arguments from formal fallacies.

* If someone is a stepbrother of Brian then they
are not a great-grandfather of Clyde.

Additionally, according to (1) we have that if X = NOT
(great-grandfather(Clyde)), then X = stepbrother(Brian).

Using the transitive relation rule in first-order logic, we have:
if X = ancestor(Dana), then X = stepbrother(Brian).

Let’s see whether the Hypothesis is a logical consequence
,,,,,,,,,,,,,,, of the arguments (Dand)? __ ____________

So, given (1) and (2), we are not always entitled to infer
the Hypothesis.

Table 7: An example demonstrating how our method changes the original prompt. By conducting these changes
the combined accuracy on Formal Fallacies can be improved from 60% to 76%. Interestingly, there’s one line

Task Disambiguation | Formal Fallacies
Train Test Train Test
APEX (random 20 history) | 65.4 63.7 62.3 65.7
APEX (random history) 68.7 66.5 69.8 72.4
APEX 70.1 68.0 70.4 73.1

Table 8: Ablation Study on the history selection

ap-

proaches in APEX. We observe retrieval-based selec-

tion leads to some performance improvements, and

S€-

lecting too many in-context examples will hurt muta-

tion.

in-context examples as APEX but select the ex-
amples randomly, and APEX (random 20 history)
which randomly selects 20 in-context examples for
guided mutation. The results in Table 8 demon-

strates that (1) retrieval based sample selection

as

proposed in Section 3.3 leads to 1-2% improve-
ments, and (2) selecting too many examples will

hurt the performance significantly.

10684

Disambiguation Formal Fallacies Hyperbaton Logical Five
Train Test Train Test Train Test Train Test
Original Prompt 58.7 57.3 58.9 61.1 77.0 71.8 33.7 40.7
Greedy (50 iters) | 66.7+0.6 | 63.4+£2.7 | 68.5+2.6 | 68.843.0 | 83.5£3.3 | 79.3+£5.3 | 53.943.9 | 51.3£1.2
Greedy (100 iters) | 67.7£1.0 | 62.1+£2.0 | 68.5£2.6 | 68.8£3.0 | 86.9£1.9 | 78.04+5.9 | 58.7+£3.2 | 54.54+3.5
GA (50 iters) 64.8+1.6 | 61.0+0.7 | 63.5+1.1 | 64.5+0.7 | 82.8+1.3 | 76.3+2.5 | 49.3+£2.7 | 48.2+1.6
GA (100 iters) 67.24+0.4 | 63.4+1.7 | 64.1£09 | 67.4+1.4 | 84.7+0.4 | 78.5+0.8 | 55.7+0.4 | 52.842.0
APEX (50 iters) | 70.14+1.9 | 68.04+2.1 | 70.4+3.9 | 73.1+3.6 | 88.44+2.6 | 85.54+1.1 | 59.842.2 | 54.74+0.9
APEX (100 iters) | 72.4+1.7 | 69.3£2.3 | 70.9 + 2.5 | 74.44+4.2 | 89.24+3.1 | 86.3+2.4 | 60.6+2.5 | 55.74+2.0

Task

Table 9: Comparison of Apex, GA and Greedy with 100 iterations. Results show that APEX outperforms other
methods with 100 iterations.

Original Prompt | Genetic Algorithm Evolve “Step-by-step” Greedy APEX
Train Test Train Test Train Test Train Test Train Test
Causal Judgment | 58.1 59.6 63.1£1.3 | 59.240.5 | 63.1+0.5 | 58.2+0.5 | 63.0+£1.0 | 59.6+£2.9 | 67.7£1.5 | 63.7+1.3
Salient Translation | 54.4 54.4 58.7+£2.0 | 56.5+4.3 | 57.1+£04 | 55.7+£0.4 | 59.5+1.5 | 53.6£3.3 | 60.0+3.5 | 58.7£2.6
Disambiguation 58.7 57.3 64.8+1.6 | 61.0£0.7 | 64.6+1.5 | 61.8+£1.0 | 66.7£0.6 | 63.4£2.7 | 70.1+1.9 | 68.0£2.1
Formal Fallacies | 58.9 61.1 63.5+1.1 | 64.5+0.7 | 60.6+1.0 | 62.4+1.7 | 68.5+2.6 | 68.8£3.0 | 70.4+3.9 | 73.1£3.6
Hyperbaton 77.0 71.8 82.8+1.3 | 76.3£2.5 | 84.9£0.0 | 79.6+0.3 | 83.5£3.3 | 79.3+5.3 | 88.4+2.6 | 85.5£1.1
Dyck Language 15.1 17.0 20.2+1.7 | 16.4+£0.4 | 18.25+0.0 | 20.4+0.1 | 19.0£0.4 | 17.3+0.6 | 22.8+0.7 | 20.9+0.4
Color Reasoning | 79.4 82.3 85.1+£04 | 789+1.7 | 86.2£0.7 | 81.5£1.3 | 85.1+0.7 | 81.1+0.4 | 85.4+0.4 | 83.5+0.4
Logical Five 33.7 40.7 49.3+2.7 | 48.24+1.6 | 54.5+1.0 | 50.3+£0.4 | 53.943.9 | 51.3£1.2 | 59.842.2 | 54.7+0.9

\ Average [544] 555 [6094 | 576 [612 | 587 [624 | 593 [656 | 635

Task

Table 10: Main results on BBH benchmark. The search budget is limited to 50 evaluations over the training set for
each method. We ran each experiment 3 times and report the mean and standard deviation. This is the same results
as table 2 with standard deviations reported.

10685

