
Findings of the Association for Computational Linguistics: ACL 2024, pages 1067–1085
August 11-16, 2024 ©2024 Association for Computational Linguistics

Prompt-Based Length Controlled Generation with Multiple Control Types

Renlong Jie1*, Xiaojun Meng2, Lifeng Shang2, Xin Jiang2, Qun Liu2,
1Northwestern Polytechnical University, 2Huawei Noah’s Ark Lab

jierenlong@nwpu.edu.cn, {xiaojun.meng, Lifeng.Shang, Jiang.Xin, qun.liu}@huawei.com

Abstract

Large language models (LLMs) have attracted
great attention given their strong performance
on a wide range of NLP tasks. In practice,
users often expect generated texts to fall within
a specific length range, making length con-
trolled generation an important topic, espe-
cially for GPT-style models. Existing length
control methods mostly focus on a simple con-
trol type of “equal to” a target length. Dif-
ferent from them, we propose a prompt-based
method to achieve length controlled genera-
tion under different control types with high ac-
curacy. In particular, we adopt reinforcement
learning (RL) and sample filtering with the re-
ward signal given by rule-based reward mod-
els, which enhances the length control abil-
ity of models by rewarding outputs that fol-
low certain control instructions. In addition,
we introduce a standard prompt extractor to
parse arbitrary users’ input into standard con-
trol instructions. Experiments show that our
method significantly improves the accuracy of
prompt-based length control on popular sum-
marization datasets like CNNDM and NYT un-
der multiple control types. Moreover, both
the standard prompt extractor and RL-tuned
model show strong generalization to unseen
control prompt templates.

1 Introduction

For recent popular GPT-style models like Chat-
GPT and GPT-4 (Radford et al., 2018, 2019; Liu
et al., 2023b; OpenAI, 2023), various studies have
been conducted on them, and the inference ef-
ficiency and computational cost often draw con-
cerns from the community (Zhang et al., 2023;
Zhao et al., 2023; Bubeck et al., 2023). Since its
generation is in an autoregressive manner, the in-
ference cost increases continually with the grow-
ing of decoding steps. Meanwhile, users of LLMs
usually have an expected length of generated texts,

*Work is done as a postdoctoral research fellow at
Noah’s Ark Lab, Huawei.

no matter for writing an essay or summary, knowl-
edge QA or dialogue generation (Fan et al., 2018;
Liu et al., 2020, 2022; Mirshekari et al., 2021;
Gupta et al., 2021). Both of these two facts require
the length of generation in GPT-style models can
be effectively controlled.

For pretrained language models (PLMs), the
most widely applied technique for length control
is prompt-based fine-tuning (Raffel et al., 2020;
Goyal et al., 2022; Zhang et al., 2022; Liu et al.,
2023a). Taking an example of length-controlled
summarization (LCS), we can prepend a prompt
“summarize with length li:” to the article to
be summarized in training, where li is the number
of words of reference summary. However, this pro-
cess is usually performed in supervised fine-tuning
(SFT), where the length control ability has to com-
promise with the goodness of downstream tasks.
For large-scale models like GPT-3, the length con-
trolled ability can be somewhat activated by in-
context learning without any fine-tuning (Brown
et al., 2020; Chowdhery et al., 2022; Dong et al.,
2022). However, it relies on the size and power
of the pre-trained foundation models to achieve
good performance. For other methods like RLHF
(Christiano et al., 2017; Stiennon et al., 2020;
Ouyang et al., 2022), it is expensive to manually la-
bel whether the generated length meets the require-
ment given in instruction prompts. Meanwhile, au-
tomatic reward labels can not be straight forwardly
obtained, as the control instructions can be arbi-
trarily integrated into user utterances.

Generally, there are many other length control
methods such as GOLC, LenAtten and LAAM
(Liu et al., 2018; Takase and Okazaki, 2019;
Makino et al., 2019; Yu et al., 2021; Liu et al.,
2022). However, these methods are not par-
ticularly designed for PLMs, thus architecture-
specific designs on training mechanisms are usu-
ally needed. Moreover, they often focus on the set-
ting of equalling to a certain length, generally not

1067

adapt to other control types such as greater/smaller
than a value, or between two values, etc. Mean-
while, they can not handle diverse expressions of
control instructions from users. Therefore, how
to effectively connect diverse control instructions
from users to the length of generated text for
PLMs is still an open question.

In this paper, we introduce a novel method
that applies prompt-based fine-tuning with rein-
forcement learning to improve the performance of
length controlled generation, which is capable to
handle multiple types of length control at the same
time. Our main contributions are:

• We design a rule-based reward model for
multiple control types other than traditional
“equal to” control type, which can provide ac-
curate reward values for both reinforcement
fine-tuning and inference of PLMs.

• We introduce an independent standard
prompt extractors (SPE) to parse the length
control instructions from diverse user inputs
to standard control prompts (SCP), which is
necessary for rule-based reward and show
strong generalization power.

• We apply a Proximal Policy Optimization
(PPO) algorithm with a modified state space
to fine-tune GPT models for enhancing their
length control ability. Two modes includ-
ing (a) SCP + rule-based reward; (b) SCP +
model-based reward are introduced.

• Experiments show that by applying rein-
forcement fine-tuning and sample filtering,
the length-control errors can be significantly
reduced from the baseline prompt-based
method. Moreover, the method show strong
generalization to unseen prompt templates.

2 Related work

2.1 Reinforcement learning for text
generation.

Reinforcement learning (RL) (Kaelbling et al.,
1996) has been widely applied to improve text
generation performance, including summarization
(Stiennon et al., 2020; Paulus et al., 2018), ques-
tion generation (Pang and He, 2021), and dialogue
generation (Li et al., 2016; Zhou et al., 2017;
Jaques et al., 2020). In general, we can consider
the generative model as the policy network and
optimize its parameters for achieving higher re-
ward from the environment (Paulus et al., 2018;

Wang et al., 2022). Human feedback is one of the
most known strategies to get the reward, which is
shown to be more effective than using some auto-
matic metrics, such as rouge scores in text genera-
tion (Christiano et al., 2017; Stiennon et al., 2020;
Wu et al., 2021). Existing study (Ramamurthy
et al., 2023) also shows that RL techniques are
generally better than supervised methods at align-
ing language models to human preferences. It is
known that Reinforcement learning from Human
Feedback (RLHF) plays a key role in the success
of autoregressive LLMs like InstructGPT (Ouyang
et al., 2022), which uses human feedbacks to train
a reward model for PPO (Schulman et al., 2017).

2.2 Length control for text generation

Length control is an important ability for text gen-
eration, especially for tasks with a large variance
of output length, such as summarizing texts using
a desired range of number of words/tokens. In
this work, we particularly focus on the text sum-
marization task, which is the most concerned task
for length controllable text generation.

Early work (Fan et al., 2018) on controlling
lengths in abstractive summarization quantifies
summary length into discrete bins, and expands
the input vocabulary with special tokens to indi-
cate the length bins of the ground-truth summary
during training. (Liu et al., 2018) extends a con-
volutional sequence to sequence model to control
the length of summarization. To generate sum-
maries of any desired length, a length constrain
factor is added to each convolutional block of the
initial layer. (Takase and Okazaki, 2019) proposes
an extension of a sinusoidal positional encoding
to enable neural encoder-decoder model to gener-
ate a text of any desired length. GOLC (Makino
et al., 2019) dedicates to increase the probabili-
ties of generating a high quality summary within
a desired length by using minimum risk training.
LenAtten (Yu et al., 2021) introduces a length at-
tention unit to break the trade-off between length
controllability and summary quality. LAAM (Liu
et al., 2022) modifies the attention matrix based
on length-budget dynamically during the decod-
ing process. Generally, we notice that existing
length control approaches can not be directly ap-
plied for control targets other than “equal to” a cer-
tain length, and are in lack of focusing on prompt-
based method for the most recent trend of GPT-
style LLMs.

1068

Figure 1: Overview of the model architecture. In train-
ing stage, the scores given by the reward model are
used for the reinforcement learning method. In infer-
ence stage, the scores are applied for ranking and se-
lecting the output sequences generated by PLM/LLMs.

3 Method

We aims to develop the length-controlled genera-
tion methods for GPT-style PLMs, especially for
the cases with multiple control types. We first in-
troduce the whole architecture in Section 3.1 and
then discuss each component of it.

3.1 Model Architecture

Our model architecture is presented in Figure 1.
The original user utterances may include the con-
trol instruction on length constraint, which differs
from factual and semantic information in terms of
that the length control can be easily checked by
rule-based methods. For instance, if we can un-
derstand user intention on length constraint, we
can set up the rule for ranking and selecting gen-
erated candidates. Therefore, we introduce a stan-
dard prompt extractor (SPE) (See Section 3.3) to
parse the information of length constraint from
user utterance and thus generate a standard control
prompt. This standard prompt includes different
types of length constraint and can be applied for
rule-based inference and evaluation.

As Figure 1 shows, the user utterance is first
passed through both the SPE and PLM/LLMs like
GPT-family (Brown et al., 2020; OpenAI, 2023),
PALM (Chowdhery et al., 2022), LLaMA (Tou-
vron et al., 2023), Pangu (Ren et al., 2023),
Ernie (Sun et al., 2020), etc. PLMs are the core
modules that generate an output sequence accord-
ing to the user utterance, and SPE outputs a stan-
dard control prompt (SCP) that includes user in-
tention on the control type and target lengths. Sec-

Standard Control
Prompt

Reward

more than Lt −max(0, Lt − Lg)
less than Lt −max(0,−Lt + Lg)
equal to Lt −|Lt − Lg|
between LL and LU −(max(0, LL − Lg) +

max(0, Lg − LU))

Table 1: Reward function for each Standard Control
Prompt (SCP). We provide the plots of these functions
in Appendix A.1

ondly, the reward model takes both the SCP and
generated sequence as input, and outputs a score
to evaluate how well the generated sequence meets
the requirement of length control instruction (See
Section 3.2). Finally, this score can be applied
as the reward signal in reinforcement learning
method to fine-tune PLMs (See Section 3.4), or be
applied as a filtering rule to rank and select the gen-
erated sequences in inference (see Section 3.5).

3.2 Reward model

To evaluate whether the generated text follows the
length control instruction, we introduce a reward
model to score the generated sequences according
to the required length from the user’s input. This
score can be used as a reward for fine-tuning exist-
ing PLMs by leveraging reinforcement learning, or
be used to rank and select the candidates generated
by PLMs. In this study, we design a rule-based
reward model, which takes the actual length of
the output sequence and target values as the inputs,
and calculate the rewards using the reward func-
tions depending on the type of SCPs, as is shown
in Table 1, where Lt, LL, LU and Lg refer to the
target length, the lower-bound length, the upper-
bound length and the actual generated length, re-
spectively. The type of SCPs and target lengths
are parsed from user’s input as is shown in Figure
1. The rule-based method provides the accurate
feedback on whether the output meets the require-
ment of length given by SCPs, while the latency
is almost negligible compared with using a neu-
ral model (e.g., BERT or GPT) for scoring. How-
ever, it relies on extracting exact standard control
information from the user’s input. We also discuss
the model-based reward models in Appendix A.6,
which are generally outperformed by rule-based
ones.

1069

Figure 2: The demonstration of Standard Prompt Extractor (SPE). The generative type of models are trained to
output the standard control prompts (SCPs) directly (left), while the discriminative type of models are trained to
predict the type of each control instruction, as well as the requested number of lengths from user utterance, such
as the minimum value and the maximum value (right).

3.3 Standard Prompt Extractor

To get SCPs for applying rule-based reward model
to score the generated sequences in RL and sam-
ple filtering, we introduce Standard prompt extrac-
tor (SPE), which takes a user’s input, and outputs
standard control prompt (SCP) if exists. This stan-
dard prompt consists of a basic description of what
length constraint should be satisfied. We design
two types of SCPs as shown in Figure 2. In par-
ticular, this prompt extractor can be a generative
model such as GPT, in which case the extractor is
trained directly to generate the full text of SCP as
shown in Figure 2 (left). Then we can easily get
Lt, LU and LL of Table 1 from this generated con-
trol text. On the other hand, we can also use a dis-
criminative model such as BERT, as the prompt
extractor, in which case it is required to predict the
type of SCP and the target numbers involved, as
shown in Figure 2 (right). In this case, we prepend
three [CLS] tokens to the utterance. Three linear
projection layers with different output sizes (i.e.,
number of types of control instruction as in the
left column of Table 1, number of possible mini-
mum values, number of possible maximum value)
map the three top vectors of [CLS] tokens to fill
in the type, minimum value and maximum value
of a standard prompt template. Therefore, we
have three classification objectives for predicting
the ground truth of SCP. Note that we can indeed
use only the minimum and maximum target values
to fully represent the control instructions under all
the four types in Table 1. For example, the min-
imum target value is 0 means the control type of

“smaller than” the maximum target value. Since
this setting has only two classification objectives,
two [CLS] tokens and corresponding linear projec-
tion layers are introduced.

3.4 Reinforcement Learning for length
control fine-tuning

We apply a modified PPO method with actor-critic
setting (Grondman et al., 2012; Bahdanau et al.,
2017; Schulman et al., 2017). Since rewarding of
the generated text length does not rely on the in-
put article, both the reward model and critic model
only take the concatenation of SCPs and generated
texts as input. Meanwhile, as the reward for length
control can only be determined when the genera-
tion ends, we can just calculate the reward using
the final output. Assume πθ(a|s) is a stochastic
policy given by the PLM, where θ is the trainable
parameter, s is the whole input sequence, and a is
the finally generated sequence. Let s′ be the SCP.
The original policy gradient (PG) applies the loss
function given by Eq. (1):

LPG(θ) = −ÊD[log πθ(a|s)Â], (1)

where ÊD[.] is the empirical average over a fi-
nite batch of samples from dataset D. Â is an
estimator of the advantage function at the end
of generation, showing the goodness of current
policy w.r.t. the baseline in terms of control ac-
curacy. For the actor-critic case, we set Â =
R(s′, a) − Q̂θold(s

′, a), where R(.) is the reward
model, Q̂θold(s

′, a) is the expected Q value by the
model of the last step. Note that the reward only
depend on the standard control prompt s′ and the

1070

generated sequence a (without the input context).
As s′ itself is not associated with the control re-
ward, it is hard to define a value function on it.
Thus, we apply Q̂θold(s

′, a) instead of Vθold(s
′)

as the baseline of the current step. The original
PG empirically often leads to a large policy up-
date and thus instability during fine-tuning. There-
fore, we follow PPO (Schulman et al., 2017) to
use the probability ratio r(θ) = πθ(a|s)

πθold
(a|s) instead

of log πθ(a|s) in Eq. (1), and utilizes a clipped sur-
rogate objective given by Eq. (2) to stabilize the
policy updates and ensure that the probability ra-
tio term is bounded between [1− ϵ, 1 + ϵ].

LCLIP (θ) = −ÊD[min(r(θ)Â,Clip(r(θ),

1− ϵ, 1 + ϵ)Â)].
(2)

To ensure sufficient exploration, we also follow
the original paper of PPO to introduce an entropy
term S = 1

n

∑
πθ(a|s) log(πθ(a|s)), in which the

average is taken across the vocabulary dimension.
In addition, a penalty for large KL divergence is
added between the current and old stochastic pol-
icy distributions (i.e. πθ and πθold). Therefore, the
total policy loss can then be rewritten as:

LCLIP+S+KL(θ) = ÊD[L
CLIP (θ)− cS[πθ|(s)]

+ βDKL(πθ|πθold)],

where c, β are coefficients, DKL(πθ|πθold) is the
KL-divergence between the old and current ac-
tion probability distributions. To avoid the perfor-
mance loss for downstream tasks, we involve an
extra term of SFT loss from the same batch of la-
belled data on the actor’s policy loss: LA(θ) =
LCLIP+S+KL(θ) + λLSFT (θ), where λ is a tun-
able hyper-parameter. Meanwhile, we optimize a
value loss LV F = (Qθ(s

′, a)− R̂)2. More details
of the algorithm are given in Appendix A.2.

3.5 Inference & Sample filtering
In inference, a well fine-tuned PLM is expected
to directly process user inputs, and generate a text
sequence following the user’s intention on length
control. Since the control instruction from the user
inputs can be diverse in practice, our proposed
prompt extractor serves as an important role to
parse user inputs into SCPs to benefit the latter RL
fine-tuning. Meanwhile, with the extracted type
and value information from SPEs, we can apply re-
ward models (as described in Section 3.3) to score,
rank and select from a set of generated samples in

beam sampling, which is named as sample filter-
ing in our method. Let k = argmaxiR(s′, ai),
where R is the reward model, ai is the i-th se-
quence in all N output sequences, then a a = ak
is selected to be the final output sequence. There-
after, this selected sequence can be used for either
the RL fine-tuning phase or the final inference for
validating to what extent the length control ability
can be achieved in existing PLMs.

4 Experiments

4.1 Experimental Setup

Although our method can work for all types of
length controlled text generation tasks, we focus
on summarization task in our experiments. This
is because we believe summarization is the most
concerned task for length controllable text genera-
tion. Meanwhile, it has standard automatic metrics
and comparable benchmarks. Almost all existing
works on length-controllable text-text generation
focus on summarization task. For Q&A and dia-
log tasks, the suitable length of answering highly
depends on the questions, while strict length con-
trol towards randomly sampled target lengths may
result in an inevitable quality drop of answering in
many cases.

Thus, we perform experiments on two popular
summarization datasets including CNNDM (Her-
mann et al., 2015) and NYT (Durrett et al., 2016).
CNNDM contains news articles from the CNN
and Daily Mail websites, with labelled abstrac-
tive and extractive summaries. There are 287,226
training samples, 13,368 validation samples and
11,490 test samples. NYT contains 110,540 arti-
cles with abstractive summaries. We follow its pa-
per to split the original dataset into 100,834 train-
ing and 9,706 test examples. After tokenized by
GPT-2 tokenizer, the reference summaries in CN-
NDM have an average length of 71 tokens with
a standard deviation of 28 tokens, while the refer-
ence summaries in NYT have an average length
of 104 tokens with a standard deviation of 28 to-
kens. The following subsections explain how to
train and use different modules of our method. The
details of hyper-parameters is in Appendix A.4.

4.1.1 Data processing and augmentation
We design a set of standard control prompts,
including five control types: “more than **
tokens”, “less than ** tokens”, “equal to
** tokens”, “between ** and ** tokens” and

1071

Extractor Acc. Acc. Gen.

BERT-base-cls-2 99.9 99.9
BERT-base-cls-3 99.7 99.8

GPT-small 97.7 97.5

Table 2: Evaluation on the accuracy and generalization
of standard prompt extractors (SPEs). “cls-2” and “cls-
3” refer to only predicting the minimum and maximum
values, or predicting the control type as well. “Acc.” is
the prediction accuracy on an in-sample test set, while
“Acc. Gen.” denotes the generalization performance of
SPEs on unseen prompt templates.

“none”. “**” means the value of expected length
from user intention, and “none” means no length
constraints. For each type, we randomly sample
a target summary length from 50 to 150 tokens
based on the general news summary length, and
fill these lengths into “**” field of a randomly
sampled SCP. To further simulate real user utter-
ances with length control intention, around 20 pos-
sible augmented prompt templates are introduced
for each SCP. Examples of templates are shown in
Figure 2 and Appendix A.3. Finally, we can create
augmented input data by replacing the placehold-
ers in the augmented templates with target lengths
and original articles.

4.1.2 Training of standard prompt extractor
As introduced in Section 3.3, we train two types
of models, i.e., generative and discriminative mod-
els, to serve as a standard prompt extractor. In par-
ticular, we fine-tune the GPT2-small model as a
generative extractor and the BERT-small model as
a discriminative extractor. Both two pre-trained
checkpoints are obtained from huggingface (Wolf
et al., 2019). We use the above augmented in-
put data to fine-tune models. To make it clear,
we use the original articles of CNNDM and NYT,
and first sample a SCP for each article, and then
sample an augmented prompt template from a pre-
designed set. Next, we randomly assign the target
length values between 50 and 150 to each article to
form the finalized augmented template. Each orig-
inal article associated with its augmented template
serves as input data, and its corresponding SCP
serves as the expected prediction, to finally train
the standard prompt extractor. Results of evaluat-
ing SPEs are given in Table 2. “Acc. Gen.” means
we use 30% of randomly sampled augmented con-
trol prompts as out-of-sample templates for eval-
uation, and only train the SPE models on the re-

MU EQ MO LE BT

CNNDM 28.7 43.3 43.6 2.8 32.9
NYT 22.9 33.7 19.9 12.9 21.5

Table 3: Averaged length control errors of comparing
the actual length of reference summary to our sampled
length control instructions on test set.

maining 70% templates. We can see that BERT-
base-cls-2 can achieve almost 100.0% test accu-
racy for extracting SCPs, and it also generalizes
well for out-of-sample control prompts that are not
seen in training. The accuracy of GPT-small is
relatively lower, for which the reason may be that
fully matching the whole generated texts is harder
than extracting key values. The learning curves
are presented in Appendix A.6. Overall, a well-
trained SPE does not introduce much noise or per-
formance drop in our end-to-end implementation.
We use BERT-base-cls-2 as the discriminative ex-
tractor in later experiments to achieve clear and
accurate minimum and maximum target values.

4.1.3 Supervised Fine-Tuning of GPT models
To build the baseline summarization model with
length control ability, we apply three pre-trained
GPT-2 models with 124M, 355M and 774M pa-
rameters from Huggingface, denoted as GPT-S,
GPT-M, GPT-L, respectively. We randomly split
the original training dataset into four parts with
approximately equal size, and each is augmented
with one type of SCP. According to the actual
text length of the reference summary, we then ran-
domly sample one (for “less than **” or “more
than **”) or two (for “between ** and **”)
target lengths between 50 and 150 while ensur-
ing that the range contains the reference summary
length. For the control type of “equal to **”,
the target value is fixed to the actual length of ref-
erence summary. To simulate real user utterances
with control instruction, we build augmented ut-
terances by first randomly sampling prompt tem-
plates equally distributed across four control types
(given in Table 7 in Appendix), and then replac-
ing the placeholders by the original articles and
sampled target values. Next, we prepend the cor-
responding SCP to the augmented original input
(separated by “:”) to formulate the model input
of each example. Note that SCPs can be assumed
to be known when given the user’s input and high
accuracy of SPEs, thus the formulation of model

1072

Model Setting
CNNDM NYT

R1↑ R2↑ RL↑ B.S.↑ Error↓ R1↑ R2↑ RL↑ B.S.↑ Error↓

GPT-S

Prompt 37.76 15.58 38.05 62.32 18.16 47.22 29.47 42.01 67.76 17.62
Prompt+RL 37.52 15.31 38.79 62.42 14.29 47.30 29.84 42.36 67.81 10.53

Prompt+filter 38.04 16.29 37.12 62.05 10.57 47.88 30.55 42.50 67.87 8.06
Prompt+RL+filter 37.48 16.01 37.20 61.88 7.06 47.84 30.43 42.26 67.54 3.89

GPT-M

Prompt 38.85 15.93 38.48 63.02 21.32 48.34 30.74 43.64 68.75 13.17
Prompt+RL 38.30 15.89 39.29 62.90 6.59 48.23 30.58 43.61 68.67 12.61

Prompt+filter 38.85 17.29 37.68 62.48 11.21 49.73 32.65 44.55 69.00 6.75
Prompt+RL+filter 37.83 16.89 37.20 61.91 4.98 49.41 32.18 44.05 68.40 3.65

GPT-L

Prompt 38.27 16.37 38.92 63.09 6.89 49.41 32.20 44.31 69.36 10.64
Prompt+RL 38.23 16.42 38.86 63.06 6.62 49.35 32.24 44.31 69.27 8.52

Prompt+filter 38.75 16.85 38.23 62.85 3.34 50.04 32.65 44.35 69.48 4.82
Prompt+RL+filter 38.70 16.52 38.39 62.98 3.22 50.01 32.52 44.14 69.51 4.60

Table 4: Comparison of methods in multiple-type control, where we consider all the four candidate types of control
instructions in Table 1. In all cases, jointly using RL and sample filtering achieve the lowest control error.

inputs is also applicable in the inference. Finally,
we perform supervised fine-tuning on the data to
enable pre-trained GPTs to summarize texts with
a length control ability.

4.1.4 Fine-Tuning with Reinforcement
Learning

On top of the above supervised fine-tuned GPTs,
that is baseline, we further propose to improve
the accuracy of length control via reinforcement
learning with the PPO method as described in Sec-
tion 3.4. In other words, the backbone PLMs in
our method are these supervised fine-tuned GPTs
that to some extent have already owned the abil-
ity of controlling generated text lengths. Again,
for augmenting the input articles from the original
datasets, we follow the similar data processing as
like supervised fine-tuning mentioned above. Ex-
cept that we randomly sample target lengths be-
tween 50 and 150 (not associated with reference
summary length). We use the proposed rule-based
reward model with the parsed standard control in-
formation (i.e. control type and target values).

Exploratory experiments show that actor-critic
generally works better than actor-only, thus in the
main experiments we use actor-critic setting. We
apply AdamW optimizers without learning rate
schedule, while the detailed hyper-parameter set-
ting are given in Appendix.

4.2 Results

4.2.1 Baseline Method
We build the length control test set by sampling
control instructions for each reference summary
from the test sets of both two datasets, and all the

following experiments are performed on it. Sim-
ilar to RL, we randomly sample target length be-
tween 50 and 150 for each example. We define
length control error as the negative reward in Ta-
ble 1 representing the average difference between
the output length and the desired range. Then
we use the actual length of reference summary
to calculate length control errors as shown in Ta-
ble 3, which can be considered as the baseline of
length control errors. “MU” refers to test with
sampled instruction equally distributed across all
control types, “EQ”, “MO” “LE”, “BE” refer to
test with sampled instructions for control types
“Equal”, “More” “Less”, “Between”, respectively.
The results depend on the length distributions of
labeled summaries.

4.2.2 Main Results
As Table 4 shows, we compare models with
four different settings for prompt-based length
control, including (1) Prompt: use GPTs with
prompt-based SFT to control the output length;
(2) Prompt+RL: the GPTs used in (1) but fur-
ther enhanced with reinforcement learning; (3)
Prompt+filter: the GPTs in (1) but equipped
with sample filtering; and (4) Prompt+RL+filter:
the enhanced GPTs with both RL and sample fil-
tering, which is a combination of (2) and (3). For
evaluation, we apply relevance scores including
F1 of Rouge Scores (ROUGE, 2004) (denoted as
“R1”, “R2”, “RL”) and BertScore (Zhang et al.,
2019) (denoted as “B.S”), and length control er-
ror (denoted as “Error”). We select the checkpoint
with the lowest validation control error and less
than 1 point’s drop of BertScore for evaluation on

1073

Model Setting
CNNDM NYT

R1↑ R2↑ RL↑ B.S.↑ Error↓ R1↑ R2↑ RL↑ B.S.↑ Error↓

Equal

Prompt 38.14 15.71 38.91 62.62 26.13 47.61 30.36 42.75 67.85 27.98
Prompt+RL 35.67 14.64 38.73 61.86 13.61 47.57 30.33 42.88 67.82 18.81

Prompt+filter 37.90 16.26 37.42 61.89 12.47 47.60 30.32 42.02 67.80 17.80
Prompt+RL+filter 37.56 16.10 38.15 62.23 8.35 47.58 30.29 42.15 67.71 8.72

Less

Prompt 37.08 15.74 36.64 61.88 0.47 46.11 28.96 41.32 67.07 10.33
Prompt+RL 37.03 15.64 36.87 61.75 0.38 45.75 28.91 41.08 66.84 0.96

Prompt+filter 36.92 15.72 35.90 61.17 0.22 46.68 29.87 41.53 66.87 2.09
Prompt+RL+filter 36.90 15.72 35.87 61.13 0.21 46.65 30.43 42.03 65.96 0.32

More

Prompt 38.00 15.43 37.82 62.41 39.94 44.01 27.12 40.22 66.62 2.27
Prompt+RL 35.75 14.83 38.88 61.79 13.77 42.45 25.94 39.89 65.85 1.32

Prompt+filter 38.53 16.44 37.64 62.13 23.05 47.78 30.63 42.39 68.00 1.42
Prompt+RL+filter 37.43 16.26 37.92 62.22 6.01 47.75 30.53 42.27 68.94 1.01

Between

Prompt 36.38 15.03 38.65 61.96 5.76 47.65 30.07 41.90 67.52 18.63
Prompt+RL 36.10 14.95 38.99 61.80 4.53 47.09 29.74 42.18 67.63 10.75

Prompt+filter 38.06 16.43 37.44 62.07 1.15 47.13 29.70 41.37 67.47 6.76
Prompt+RL+filter 37.85 16.28 37.45 62.00 1.09 47.58 30.02 42.05 67.50 3.18

Table 5: Comparison of four control types in the multiple type control setting using GPT-S on NYT datasets.

the test set. For all methods with sample filtering,
we set the number of output sequences to 8, and
select the one with the highest reward.

Averaged results of multi-type control are pre-
sented in Table 4. Note that Rouge and BertScore
can be less than the general state-of-the-art sum-
marization models without length control, since
our sampled length distribution can be different
from reference summaries. In fact, the mean and
standard deviation of the reference lengths are 71
and 28 tokens respectively for CNNDM, 104 and
35 tokens for NYT. The difference of control er-
rors for two datasets can partly be due to their
original length distributions. Overall, we can see
that for all settings, our proposed RL method can
achieve an improvement of length control ability
with lower control errors. By further using sample
filtering supported by the rule-based reward model,
both Prompt+filter and Prompt+RL+filter can
achieve lower control errors than not using sam-
ple filtering like the method (1) and (2). After
checking the learning curves (see Appendix A.7),
we also find that the relevance metric BertScore in-
deed does not have a clear decrease trend in early
stage as the validation reward increases. It indi-
cates that with our method, the relevance of texts
can be preserved as the control errors reduces dur-
ing the RL fine-tuning.

4.2.3 Comparing of different control types

We deconstruct the multiple-type controls and thus
evaluate the effect of our proposed method on each

particular control type. Results on both CNNDM
and NYT are given in Table 5. In general, our pro-
posed methods bring a significant improvement of
length control accuracy (i.e., Error) for all the four
control types. Moreover, some insightful findings
can be obtained from Table 5. As the average
length of reference summary in CNNDM (71 to-
kens) is much less than the average of sampled
target lengths, i.e., 100 tokens, therefore, to gen-
erate with “more than” a sampled target length is
harder than “less than” for all candidate meth-
ods. However, the Prompt+RL+filter can still
provide a significantly large improvement on the
control type of “more than”, by reducing the Er-
ror from 41.9 to 6.0. In the case of “less than”
with sample filtering, the RL method does not fur-
ther reduce the validation error as it is already
quite low, thus the default checkpoint is always se-
lected even after RL fine-tuning.

4.3 Generalization to unseen templates

To evaluate if the tuned model can generalize to un-
seen prompt templates of length control, we con-
duct an extra experiment by tuning on a 70% sub-
set of prompt templates randomly sampled from
Table 7 in the Appendix, and check our model per-
formance with the rest test of unseen prompt tem-
plates, as give in Table 6. The difference between
“In-sample” and “Out-sample” setting is whether
the out-of-sample set of control prompt templates
is applied for training. We notice that in some
cases, there is a slight performance degradation

1074

Type Setting R1 R2 RL B.S. Error↓

NYT
Baseline 47.2 29.5 42.0 67.8 17.6
In-sample 47.8 30.4 42.3 67.5 3.9
Out-sample 47.7 30.2 42.3 67.1 4.1

CNNDM
Baseline 37.8 15.6 38.1 62.3 14.7
In-sample 37.6 15.3 38.8 62.3 7.6
Out-sample 37.7 15.4 38.7 62.4 8.1

Table 6: Generalization to out-of-sample control tem-
plates of GPT-S for multi-type length control.

on out-of-sample prompt templates, but the length
control ability is still significantly better than base-
line method. This demonstrates that our proposed
method has strong generalization to novel prompt
templates. We believe with a larger set of prompt
templates in training, this generalization power
can still be largely improved.

5 Discussion

5.1 Quality of the generated summaries

We have checked the generated summaries under
length control in the log file, where we printed out
a subset of generated summaries in each epoch
of the validation stage and the test stage. We
confirm that the summaries generated by the fi-
nal model are coherent summaries without any
meaningless repetition or sudden cut-offs. In
fact, our sample filtering method does not up-
date the parameters of GPTs, thus the informative-
ness, perplexity, coherence are preserved. Our RL-
based tuning method updates parameters through
log-probabilities given by the output layer, while
the parameters work on the embedding dimen-
sion, which are shared across all tokens. In this
case, the n-gram rouge scores are strong indica-
tors of the perplexity change. Thus, a little change
of Rouge/Bertscore will not cause a significant
change of coherence. In addition, we can add a
SFT loss to avoid quality decrease, and the experi-
ments are given in the Appendix A.5.2.

5.2 Performance with larger models

We believe our method will still work well for
larger pre-trained language models. This is be-
cause larger models are more powerful in learn-
ing length control abilities given the accurate feed-
backs. Additionally, we can develop a much larger
tuning dataset to do RL for more accurate control.
This is mostly an engineering work. To make the
pretrained model sensitive to the length control in-

structions, some first-stage prompt-based tuning
may be still needed. However, this requires much
higher computational power. As we know, in many
cases, small models like GPT-2, Flan T5 (Chung
et al., 2024), Tiny-LLAMA (Zhang et al., 2024)
also works well in tasks like summarization. If we
only need to do summarization in applications like
news-reading software, 0.5B-1B model like GPT-
2 or compressed LLMs can be sufficient.

6 Conclusion

We proposes a method for improving the length
control ability of GPT-style PLMs under multiple
control types, especially for the domain of text
summarization. The standard prompt extractor
and rule-based reward model are introduced to pro-
vide an accurate control signal for both fine-tuning
and inference. We apply a modified PPO algo-
rithm for enhancing the length controlled genera-
tion. In the inference, sample filtering is further in-
troduced for selecting a generated sample that fol-
lows the instruction. The method is proved to be
effective for three sizes of GPT-2 models on both
CNNDM and NYT summarization datasets. Com-
pared to the baseline using prompt-based strate-
gies on GPTs, our method further achieves a sig-
nificant improvement in terms of control accuracy.
Moreover, it can process diverse length-control
prompts with strong generalization ability to new
prompt templates, and can naturally adapt to most
LLMs for improving user experience.

7 Limitations

The limitations of our study involve the following
aspects. First, similar to RLHF implemented in
InstructGPT, finetuning with RL may result in a
decrease of the language modeling evaluation met-
ric. Well designed in-context learning or introduc-
ing adaptors/LoRA particularly tuned for length
control may be potential solutions for this. Sec-
ond, the control performance relies on the good-
ness of standard prompt extractor. When the gen-
erative one is applied, it is possible to generate out-
puts that can not be fully parsed with rule-based
method. Third, when the discriminator is applied
for filtering the generated samples in inference,
usually a large beam size is required, thus longer
inference time and computing cost may needed.
As the probability distribution across all tokens are
available in auto-regressive generation, this extra
cost can be well scaled.

1075

References
D. Bahdanau, P. Brakel, K. Xu, A. Goyal, R. Lowe,

J. Pineau, A. Courville, and Y. Bengio. An actor-
critic algorithm for sequence prediction. In Inter-
national Conference on Learning Representations
(ICLR), 2017.

T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Ka-
plan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sas-
try, A. Askell, et al. Language models are few-shot
learners. Advances in Neural Information Process-
ing Systems (NeurIPS), 2020.

S. Bubeck, V. Chandrasekaran, R. Eldan, J. Gehrke,
E. Horvitz, E. Kamar, P. Lee, Y. T. Lee, Y. Li,
S. Lundberg, et al. Sparks of artificial gen-
eral intelligence: Early experiments with gpt-4.
arXiv:2303.12712, 2023.

A. Chowdhery, S. Narang, J. Devlin, M. Bosma,
G. Mishra, A. Roberts, P. Barham, H. W. Chung,
C. Sutton, S. Gehrmann, et al. Palm: Scaling lan-
guage modeling with pathways. arXiv:2204.02311,
2022.

P. F. Christiano, J. Leike, T. Brown, M. Martic, S. Legg,
and D. Amodei. Deep reinforcement learning from
human preferences. Advances in Neural Informa-
tion Processing Systems (NeurIPS), 2017.

H. W. Chung, L. Hou, S. Longpre, B. Zoph, Y. Tai,
W. Fedus, Y. Li, X. Wang, M. Dehghani, S. Brahma,
A. Webson, S. S. Gu, Z. Dai, M. Suzgun, X. Chen,
A. Chowdhery, A. Castro-Ros, M. Pellat, K. Robin-
son, D. Valter, S. Narang, G. Mishra, A. Yu, V. Zhao,
Y. Huang, A. Dai, H. Yu, S. Petrov, E. H. Chi,
J. Dean, J. Devlin, A. Roberts, D. Zhou, Q. Le, and
J. Wei. Scaling instruction-finetuned language mod-
els. 25, 2024.

Q. Dong, L. Li, D. Dai, C. Zheng, Z. Wu, B. Chang,
X. Sun, J. Xu, and Z. Sui. A survey for in-context
learning. arXiv:2301.00234, 2022.

G. Durrett, T. Berg-Kirkpatrick, and D. Klein.
Learning-based single-document summarization
with compression and anaphoricity constraints. In
Annual Meeting of the Association for Computa-
tional Linguistics (ACL), 2016.

A. Fan, D. Grangier, and M. Auli. Controllable ab-
stractive summarization. In Proceedings of the 2nd
Workshop on Neural Machine Translation and Gen-
eration, pages 45–54, 2018.

T. Goyal, J. J. Li, and G. Durrett. News sum-
marization and evaluation in the era of gpt-3.
arXiv:2209.12356, 2022.

I. Grondman, L. Busoniu, G. A. Lopes, and R. Babuska.
A survey of actor-critic reinforcement learning:
Standard and natural policy gradients. IEEE Trans-
actions on Systems, Man, and Cybernetics, Part
C (Applications and Reviews), 42(6):1291–1307,
2012.

P. Gupta, J. P. Bigham, Y. Tsvetkov, and A. Pavel.
Controlling dialogue generation with semantic ex-
emplars. In North American Chapter of the Associa-
tion for Computational Linguistics (NAACL), pages
3018–3029, 2021.

K. M. Hermann, T. Kocisky, E. Grefenstette, L. Espe-
holt, W. Kay, M. Suleyman, and P. Blunsom. Teach-
ing machines to read and comprehend. Advances in
Neural Information Processing Systems (NeurIPS),
2015.

N. Jaques, J. H. Shen, A. Ghandeharioun, C. Fergu-
son, A. Lapedriza, N. Jones, S. Gu, and R. Picard.
Human-centric dialog training via offline reinforce-
ment learning. In Empirical Methods in Natural
Language Processing (EMNLP), 2020.

L. P. Kaelbling, M. L. Littman, and A. W. Moore. Rein-
forcement learning: A survey. Journal of Artificial
Intelligence Research (JAIR), 4:237–285, 1996.

J. Li, W. Monroe, A. Ritter, D. Jurafsky, M. Galley, and
J. Gao. Deep reinforcement learning for dialogue
generation. In Empirical Methods in Natural Lan-
guage Processing (EMNLP), 2016.

B. Liu, H. Wei, D. Niu, H. Chen, and Y. He. Asking
questions the human way: Scalable question-answer
generation from text corpus. In Proceedings of The
Web Conference 2020, pages 2032–2043, 2020.

P. Liu, W. Yuan, J. Fu, Z. Jiang, H. Hayashi, and
G. Neubig. Pre-train, prompt, and predict: A sys-
tematic survey of prompting methods in natural lan-
guage processing. ACM Computing Surveys, 55(9):
1–35, 2023a.

Y. Liu, Z. Luo, and K. Zhu. Controlling length in ab-
stractive summarization using a convolutional neu-
ral network. In Empirical Methods in Natural Lan-
guage Processing (EMNLP), 2018.

Y. Liu, Q. Jia, and K. Zhu. Length control in abstrac-
tive summarization by pretraining information selec-
tion. In Annual Meeting of the Association for Com-
putational Linguistics (ACL), 2022.

Y. Liu, T. Han, S. Ma, J. Zhang, Y. Yang, J. Tian,
H. He, A. Li, M. He, Z. Liu, et al. Summary of
chatgpt/gpt-4 research and perspective towards the
future of large language models. arXiv:2304.01852,
2023b.

T. Makino, T. Iwakura, H. Takamura, and M. Oku-
mura. Global optimization under length constraint
for neural text summarization. In Annual Meet-
ing of the Association for Computational Linguistics
(ACL), 2019.

M. Mirshekari, J. Gu, and A. Sisto. Conquest: Con-
textual question paraphrasing through answer-aware
synthetic question generation. In Proceedings of the
Seventh Workshop on Noisy User-generated Text (W-
NUT 2021), pages 222–229, 2021.

1076

OpenAI. Gpt-4 technical report, 2023.

L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wain-
wright, P. Mishkin, C. Zhang, S. Agarwal, K. Slama,
A. Ray, et al. Training language models to fol-
low instructions with human feedback. Advances in
Neural Information Processing Systems (NeurIPS),
2022.

R. Y. Pang and H. He. Text generation by learning
from demonstrations. In International Conference
on Learning Representations (ICLR), 2021.

R. Paulus, C. Xiong, and R. Socher. A deep re-
inforced model for abstractive summarization. In
International Conference on Learning Representa-
tions (ICLR), 2018.

A. Radford, K. Narasimhan, T. Salimans, I. Sutskever,
et al. Improving language understanding by genera-
tive pre-training. OpenAI blog, 2018.

A. Radford, J. Wu, R. Child, D. Luan, D. Amodei,
I. Sutskever, et al. Language models are unsuper-
vised multitask learners. OpenAI blog, 1(8):9, 2019.

C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang,
M. Matena, Y. Zhou, W. Li, and P. J. Liu. Exploring
the limits of transfer learning with a unified text-to-
text transformer. Journal of Machine Learning Re-
search (JMLR), 21(1):5485–5551, 2020.

R. Ramamurthy, P. Ammanabrolu, K. Brantley, J. Hes-
sel, R. Sifa, C. Bauckhage, H. Hajishirzi, and
Y. Choi. Is reinforcement learning (not) for natural
language processing?: Benchmarks, baselines, and
building blocks for natural language policy optimiza-
tion. In International Conference on Learning Rep-
resentations (ICLR), 2023.

X. Ren, P. Zhou, X. Meng, X. Huang, Y. Wang,
W. Wang, P. Li, X. Zhang, A. Podolskiy, G. Arshi-
nov, A. Bout, I. Piontkovskaya, J. Wei, X. Jiang,
T. Su, Q. Liu, and J. Yao. Pangu-Σ: Towards tril-
lion parameter language model with sparse hetero-
geneous computing, 2023.

L. C. ROUGE. A package for automatic evaluation
of summaries. In Proceedings of Workshop on Text
Summarization of ACL, 2004.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and
O. Klimov. Proximal policy optimization algo-
rithms. arXiv:1707.06347, 2017.

N. Stiennon, L. Ouyang, J. Wu, D. Ziegler, R. Lowe,
C. Voss, A. Radford, D. Amodei, and P. F. Chris-
tiano. Learning to summarize with human feedback.
Advances in Neural Information Processing Systems
(NeurIPS), 2020.

Y. Sun, S. Wang, Y. Li, S. Feng, H. Tian, H. Wu,
and H. Wang. Ernie 2.0: A continual pre-training
framework for language understanding. In Proceed-
ings of the AAAI conference on artificial intelligence
(AAAI), pages 8968–8975, 2020.

S. Takase and N. Okazaki. Positional encoding to con-
trol output sequence length. In North American
Chapter of the Association for Computational Lin-
guistics (NAACL), 2019.

H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A.
Lachaux, T. Lacroix, B. Rozière, N. Goyal, E. Ham-
bro, F. Azhar, A. Rodriguez, A. Joulin, E. Grave, and
G. Lample. Llama: Open and efficient foundation
language models, 2023.

X. Wang, S. Wang, X. Liang, D. Zhao, J. Huang, X. Xu,
B. Dai, and Q. Miao. Deep reinforcement learning:
a survey. IEEE Transactions on Neural Networks
and Learning Systems (TNNLS), 2022.

T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue,
A. Moi, P. Cistac, T. Rault, R. Louf, M. Funtow-
icz, et al. Huggingface’s transformers: State-of-the-
art natural language processing. arXiv:1910.03771,
2019.

J. Wu, L. Ouyang, D. M. Ziegler, N. Stiennon, R. Lowe,
J. Leike, and P. Christiano. Recursively summariz-
ing books with human feedback. arXiv:2109.10862,
2021.

Z. Yu, Z. Wu, H. Zheng, Z. XuanYuan, J. Fong, and
W. Su. Lenatten: An effective length controlling
unit for text summarization. In Findings of the An-
nual Meeting of the Association for Computational
Linguistics (ACL), 2021.

C. Zhang, C. Zhang, S. Zheng, Y. Qiao, C. Li,
M. Zhang, S. K. Dam, C. M. Thwal, Y. L. Tun,
L. L. Huy, et al. A complete survey on generative ai
(aigc): Is chatgpt from gpt-4 to gpt-5 all you need?
arXiv:2303.11717, 2023.

P. Zhang, G. Zeng, T. Wang, and W. Lu. Tinyl-
lama: An open-source small language model.
abs/2401.02385, 2024.

T. Zhang, V. Kishore, F. Wu, K. Q. Weinberger, and
Y. Artzi. Bertscore: Evaluating text generation with
bert. In International Conference on Learning Rep-
resentations (ICLR), 2019.

Y. Zhang, X. Zhang, X. Wang, S.-q. Chen, and
F. Wei. Latent prompt tuning for text summariza-
tion. arXiv:2211.01837, 2022.

W. X. Zhao, K. Zhou, J. Li, T. Tang, X. Wang, Y. Hou,
Y. Min, B. Zhang, J. Zhang, Z. Dong, et al. A survey
of large language models. arXiv:2303.18223, 2023.

L. Zhou, K. Small, O. Rokhlenko, and C. Elkan. End-
to-end offline goal-oriented dialog policy learning
via policy gradient. arXiv:1712.02838, 2017.

1077

A Appendix

A.1 Plots of control errors for all the four
control types.

(a) Generated Length (Equal)
0

10

20

30

40

50

Lo
ss

/C
on

tro
l E

rro
r

(b) Generated Length (More)
0

10

20

30

40

50

60 80 100 120 140
(c) Generated Length (Less)

0

10

20

30

40

50

Lo
ss

/C
on

tro
l E

rro
r

60 80 100 120 140
(d) Generated Length (Between)

0

5

10

15

20

25

Figure 3: Plots of control error functions, which is the
negative of reward functions.

To better illustrate the reward functions shown
in Table 1, we provide the plots of control error
functions in Figure 3. We set the target length
Lt = 100 for the case of “Equal”, “More” and
“Less”, and set the upper bound and lower bound
LL = 75 and LU = 125 for the case of “Between”.
We change the length of generated sequence “L_g”
from 50 to 150 and show the corresponding con-
trol error in each case using the connected curves.
We can see that in the ranges that satisfy the con-
trol requirement, no error or negative reward oc-
curs. Thus the parameters are not updated based
on the corresponding examples. As the deviance
becomes larger, the loss will also be larger.

A.2 Algorithm for length controlled
fine-tuning with our modified PPO

Following the explanations in Section 3.4, we fur-
ther provide an algorithm table for our modified
PPO fine-tuning in Algorithm 1. Note that this al-
gorithm does not include the training of SPEs and
sample filtering. In practice, we stop the tuning
process of PPO when the validation BERTscore
drop for more than 1.0 point.

A.3 Examples of standard control prompt
and augmented control prompt
templates

The SCPs and corresponding augmented prompt
templates for generating the augmented input with
length control information are given in Table 7. In
the experiments, we use the augmented prompts
to train and evaluate the standard prompt extractor.

For the backbone PLMs and reward models, SCPs
can be considered as available, given the high per-
formance of SCPs.

A.4 Hyper-parameter settings

In this section, we provide hyper-parameter set-
tings of different modules and training stages of
our method, where we denote hyper-parameter
as “HP” in the tables. For the standard prompt
extractor, the hyper-parameter settings are given
in Table 8. For the trainable reward models,
the hyper-parameter settings are given in Table 9.
For pretraining of GPT summarization models
with control prompts, the hyper-parameter settings
are given in Table 10. For enhancing control
ability with reinforcement finetuning, the hyper-
parameter setting are given in Table 11.

HP BERT extractor GPT extractor

pretrained model BERT-small GPT-small
optimizer AdamW AdamW
batch size 32 64

lr 2E-05 2E-05
β1 0.9 0.9
β2 0.999 0.999

weight decay 1E-07 0
num iterations 200k 200k

Table 8: Hyper-parameter setting of Standard Prompt
Extractors.

HP BERT reward GPT reward

pretrained model BERT-large GPT-medium
optimizer AdamW AdamW
batch size 64 32

lr 0.00005 0.00005
β1 0.9 0.9
β2 0.999 0.999

weight decay 0 0
num iterations 200k 200k

Table 9: Hyper-parameter setting of trainable reward
models.

HP GPT-S GPT-M GPT-L

optimizer AdamW AdamW AdamW
batch size 64 64 64

lr 5E-05 5E-05 2E-05
β1 0.9 0.9 0.9
β2 0.999 0.999 0.999

weight decay 1E-06 1E-06 1E-06
num iterations 200k 200k 200k

Table 10: Hyper-parameter setting of prompt-based
SFT on pretrained GPT models.

1078

Algorithm 1: Algorithm for controlled fine-tuning with modified PPO
1: Get a pre-trained GPT model to initialize the policy network πθold(a|s).
2: Initialize critic network Qθ(s

′, a).
3: Initialize hyper-paramaters Niteration, M , B, nepoch, c, β.
4: for i<=1,...,Niteration do
5: for j=1,...,M do
6: Get an input sequence s0 augmented with random sampled augmented control prompt from

the data-loader.
7: Run SPE to get the SCP s′ from the input sequence.
8: Run policy πθold(a|s) for an input sequence with augmented control prompt s to get an output

sequence a, policy πθold .
9: Get the reward of output sequence a with reward model r = r(s′, a).

10: Store input s, SCP s′, generate sequence a, reward r and old policy πθold into memory.
11: end for
12: for e=1,...,nepoch do
13: for b=1,...,B do
14: Take the b-th mini-batch (s′, a, r, πθold) from the memory.
15: Use the actor and critic networks to get the new policy and value πθ(a|s), Qθ(s

′, a).
16: Compute the ratio r(θ) = πθ(a|s)

πθold
(a|s) .

17: Compute advantage estimate Â = r −Qθold(s
′, a).

18: Compute LCLIP with Eq. (2).
19: Compute the KL-divergence DKL(πθ|πθold).
20: Compute the Entropy S[πθ|(s)].
21: Compute the actor loss LA

θ with Eq. (3.4).
22: Update the policy network parameters θ with gradients of LA

θ .
23: Compute the value loss LQ

θ = MSE(Qθ(s
′, a), r).

24: Update the critic network parameters θ with gradients of LV
θ .

25: end for
26: end for
27: end for
28: return θ

1079

Equal Less More Between

summarize "*" with length ? summarize "*" with length
smaller than ?

summarize "*" with length
larger than !

summarize "*" with length be-
tween ! and ?

summarize the following doc-
ument with length ?: "*" ’

summarize the following doc-
ument with length smaller
than !: "*"

summarize the following doc-
ument with length larger than
!: "*"

summarize the following doc-
ument with length between !
and ?: "*"

Summarize with exactly ? to-
kens: *’

Summarize with less than ? to-
kens: *

Summarize with more than !
tokens: *

Summarize with between !
and ? tokens: *

I want a summary of "*" with
exactly ? Tokens

I want a summary of "*" with
less than ? Tokens

I want a summary of "*" with
more than ! Tokens

I want a summary of "*" with
between ! and ? Tokens

Give me a summary with ? to-
kens from "*"’

Give me a summary with less
than ? tokens from "*"

Give me a summary with
more than ! tokens from "*"

Give me a summary with be-
tween ! and ? tokens from "*"

Please summarize "*" with ex-
actly ? Tokens

Please summarize "*" with
less than ? Tokens

Please summarize "*" with
more than ! Tokens

Please summarize "*" with be-
tween ! and ? Tokens

Write a summary of "*" with
exactly ? Tokens

Write a summary of "*" with
less than ? Tokens

Write a summary of "*" with
more than ! Tokens

Write a summary of "*" with
between ! and ? Tokens

summarize "*" with ? tokens
for me

summarize "*" with less than
? tokens for me

summarize "*" with more
than ! tokens for me

summarize "*" with between !
and ? tokens for me

Please give me a summary of
"*" with ? Tokens

Please give me a summary of
"*" with less than ? Tokens

Please give me a summary of
"*" with more than ! Tokens

Please give me a summary of
"*" with between ! and ? To-
kens

I need a summary of length ?
for "*"

I need a summary of length
smaller than ? for "*"

I need a summary of length
greater than ! for "*"

I need a summary of length be-
tween ! and ? for "*"

generate a summary for "*"
with length ?

I need a summary of length
less than ? for "*"

I need a summary of length
larger than ! for "*"

Need a summary of "*" with
length between ! and ?

Need a summary of "*" with
length equal to ?

Need a summary of "*" with
length smaller than ?

Need a summary of "*" with
length larger than !

write a summary of length be-
tween ! and ? for "*"

write a summary of length ?
for "*"

summarize the following arti-
cle with no longer than ? to-
kens: "*"

summarize the following arti-
cle with longer than ! tokens:
"*"

summarize with length be-
tween ! and ?: "*"

summarize with length equal
to ?: "*"’

summarize the following arti-
cle with shorter than ? tokens:
"*"

write a summary of length
larger than ! for "*"

summarize with between !
and ? tokens:"*"

summarize with exactly ? to-
kens:"*"

write a summary of length
smaller than ? for "*"

summarize with length larger
than !: "*"

summarize with ! to ? to-
kens:"*"

summarize this document
with about ? tokens: "*"

summarize with length
smaller than ?: "*"

summarize with more than !
tokens:"*"

summarize "*" with ! to ? To-
kens

summarize "*" with around ?
tokens

summarize with less than ? to-
kens:"*"

summarize the following arti-
cle with over ? tokens:"*"

Please summarize "*" with !
to ? Tokens

need a summary of "*" with
length ?

summarize "*" within ? to-
kens

summarize "*" with over ? to-
kens

summarize following article
with ! to ? tokens: "*"

Table 7: Examples of standard control prompts and corresponding augmented prompt templates, where each col-
umn shows one type of SCP followed by augmented prompt templates. Where “*” is the placeholder for the input
article to be summarized, “!” and “?” are the placeholders for the sampled length values. To build the input exam-
ples in training and evaluation datasets, we only need to first replace “!” and “?” with the minimum and maximum
target lengths, and then replace “*” with the original article to be summarized.

1080

HP GPT-S GPT-M GPT-L

optimizer AdamW AdamW AdamW
actor_lr 3E-07 3E-07 3E-07
critic_lr 0.0003 0.0003 0.0003

β1 0.9 0.9 0.9
β2 0.999 0.999 0.999

actor_adam_eps 1E-07 1E-07 1E-07
critic_adam_eps 1E-07 1E-07 1E-07

weight decay 0 0 0
epochs 1 1 1

update timestep 512 512 512
surrogate epoch 16 16 16

surrogate batch size 32 16 8
β 0.1 0.1 0.1
c 0.01 0.01 0.01

ϵclip 0.2 0.2 0.2
λ 1.0 1.0 1.0

Table 11: Hyper-parameter setting reinforcement learn-
ing for pretrained GPT models. ϵclip is the clipping
parameter ϵ shown in Eq. (2). β and c are weights for
KL divergence and entropy as shown in Eq. (3.4). λ is
the coefficient for SFT loss.

A.5 Extra Results
A.5.1 Single-type control
We also conduct experiments for traditional single-
type control, where we only consider the strict
SCP of “equal to” in both SFT and reinforce-
ment fine-tuning. In details, for each example we
randomly sample a augmented control prompt un-
der the type of “equal” and replace the text place-
holder with the input text and replace the length
placeholder with the real text length of reference
summary. Finally, we prepend the SCP before
the main context of the augmented input. The re-
sults are given in Table 14. Again, we can see
that for all settings, the proposed RL method can
provide an improvement of length control ability
with lower control errors. By further using sam-
ple filtering supported by the rule-based reward
model, both the basic prompt-based length control
model Prompt+filter and the one with RL en-
hancement Prompt+RL+filter can achieve lower
control errors than not using sample filtering. This
demonstrate the effectiveness of both RL-based
finetuning and sample filtering in this relatively
simple case.

A.5.2 Effect of SFT loss
As was discussed in Section 3.4, the actor loss in-
volves a term of SFT loss, which is controlled by λ.
We conduct an extra experiment on CNNDM by
comparing the tuned GPT-S models using differ-
ent λs for both the case of single and multiple con-
trol types. The results are given in Table 15, which

Settings R1↑ R2↑ RL↑ B.S.↑ Error↓

Prompt 47.4 29.2 42.3 67.7 13.5
+RL+Rule (A-C) 47.7 29.5 42.7 67.9 12.8
+RL+Rule (A) 47.6 29.5 42.0 67.9 12.9
+Filter 48.4 30.8 42.7 67.9 10.3
+RL+Filter (A-C) 48.3 30.9 42.8 67.9 9.6
+RL+Filter (A) 47.8 30.1 42.1 67.6 9.7

Table 12: The comparison of control performance of
GPT-S for single-type control (“equal to”) after fine-
tuning by RL w/o critic models (NYT).

Settings R1↑ R2↑ RL↑ B.S.↑ Error↓

Prompt 37.6 15.2 37.6 62.3 11.9
+RL+Rule (A-C) 37.3 14.9 38.9 61.8 7.4
+RL+Rule (A) 37.7 15.6 38.2 62.3 11.0
+Filter 38.26 16.1 37.4 61.9 10.5
+RL+Filter (A-C) 37.3 15.7 38.8 61.2 6.3
+RL+Filter (A) 38.7 16.6 38.6 62.1 9.6

Table 13: The comparison of control performance of
GPT-S for single-type control (“equal to”) after fine-
tuning by RL w/o critic models (CNNDM).

shows that a suitable λ is helpful in perserving the
performance on downstream task, and the control
accuracy will not be largely affected in most cases.
Also, the optimal value of λ differs in the cases of
SG and MU, thus hyper-parameter tuning is usu-
ally needed.

A.5.3 Comparing between actor-critic model
and actor only model

Another experiment is done to check the effect of
using actor-critic model in comparison with actor-
only model. The details of these two settings has
been discussed in Section 2.1. We conduct experi-
ments with both settings, and consider fine-tuning
GPT-small model for single-type control. The re-
sults on NYT amnd CNNDM are given in Table 12
and Table 13, respectively. For the case with-
out sample filtering, the model trained with actor-
critic RL perform better than the model trained
with actor-only RL in terms of control accuracy on
both datasets. With sample filtering, actor-critic
method still significantly outperforms actor-only
method on NYT, but slightly worse than actor-only
method on CNNDM. On NYT, rule-based reward
model achieves the lowest and second lowest in
the cases with and without sample filtering respec-
tively. Meanwhile, the trainable reward models
also works well.

1081

0 20 40 60 80 100
(a) Validation Steps (GPT-small)

0

2

4

6

8

10

12

14

Va
lid

at
io

n
Lo

ss

0 20 40 60 80 100
(b) Validation Steps (BERT-base)

0

2

4

6

8

10 In-sample prompts
Out-of-sample prompts

0 20 40 60 80 100
(c) Validation Steps (GPT-small)

0.0

0.2

0.4

0.6

0.8

1.0

M
at

ch
in

g
Ac

cu
ra

cy

0 20 40 60 80 100
(d) Validation Steps (BERT-base)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 4: Learning Curves of Standard Prompt Extractors. (a) Validation losses of GPT extractor. (b) Validation
losses of BERT extractor. (c) Matching accuracy of GPT extractor. (c) Matching accuracy of BERT extractor. We
show the curves of validation cross entropy and matching rate for both cases.

A.6 Learning curves of SPEs.

For training SPEs, we fine-tune the GPT2-small
model as a generative extractor and the BERT-
small model as a discriminative extractor. Note
that we only predict the minimum and maximum
target values with BERT. We use the original arti-
cles of CNNDM and NYT, and first sample a SCP
for each article, and then sample an augmented
prompt template from the pre-designed set given
in Table 7. Next, we randomly assign the target
length values between 50 and 150 to each article
to form the finalized augmented template. Each
original article associated with its augmented tem-
plate serves as input data, and its corresponding
SCP serves as the expected prediction or the label,
to finally train the standard prompt extractor.

For GPT-based extractor, the accuracy is 1 only
if the generated SCP exactly matches the label.
For BERT-based extractor, we calculate the val-
idation accuracy on a case-by-case basis: If the
ground truth SCP type is “none”, the accuracy is
always 1; if the ground truth SCP type is “more
than”, we only match the minimum value and
check if the minimum value is smaller than maxi-

mum value; if the ground truth SCP type is “less
than”, we only match the maximum value and
check if the minimum value is smaller than maxi-
mum value; if the ground truth SCP type is “equal
to” or “between”, we match both of minimum
and maximum values. We provide the learning
curves of two types of SPEs in Figure 4. As is
shown in Figure 4, both of the SPEs converge
well with a validation proportion of matching rate
close to 100% in later validation steps. Meanwhile,
we find the both BERT and GPT-based extractors
performs fairly well on out-of-sample augmented
prompts, which demonstrates strong generaliza-
tion ability to new control prompts. For BERT-
base, the validation curve and accuracy curve of
model on out-of-sample augmented prompts con-
verge slower than in-sample augmented prompts
with a right-shift, but the accuracy values in later
steps can even surpass that of in-sample valida-
tion curve. Notes than we only fine-tune the pre-
trained GPT-small and BERT-base from Hugging-
face, which indicates the noise introduced by the
extractors can generally be neglected in practice
with same or larger models.

1082

Model Setting
CNNDM NYT

R1↑ R2↑ RL↑ B.S.↑ Error↓ R1↑ R2↑ RL↑ B.S.↑ Error↓

GPT-S

Prompt 37.57 15.30 37.74 62.47 11.62 47.48 29.27 42.36 67.86 13.33
Prompt+RL 37.44 15.02 39.05 62.10 7.81 47.59 29.41 42.66 67.82 11.92

Prompt+filter 38.20 16.02 37.31 61.96 10.44 48.37 30.83 42.72 67.96 10.30
Prompt+RL+filter 37.56 15.85 38.47 61.53 6.22 48.31 30.94 42.82 67.98 9.55

GPT-M

Prompt 38.05 16.15 37.81 62.93 14.31 48.34 30.53 43.11 68.54 5.12
Prompt+RL 37.73 15.98 38.07 62.62 11.57 48.86 31.19 43.98 69.09 4.47

Prompt+filter 38.18 16.55 37.14 62.32 12.60 48.53 30.95 43.33 68.55 2.12
Prompt+RL+filter 37.91 16.33 36.97 62.23 11.33 48.76 31.09 43.38 68.80 1.60

GPT-L

Prompt 40.27 17.33 39.67 63.96 12.20 49.98 32.43 44.65 69.44 5.89
Prompt+RL 39.49 16.42 39.02 63.38 9.84 49.12 30.86 43.59 69.03 5.54

Prompt+filter 39.52 17.33 38.64 63.22 11.57 47.22 31.77 43.29 69.02 5.76
Prompt+RL+filter 39.75 17.18 38.60 63.15 8.96 49.82 31.68 42.48 68.72 3.29

Table 14: Comparison of methods in the setting of single-type control instruction, i.e., “equal to”.

λ
SG MU

R1 R2 RL B.S. Error↓ R1 R2 RL B.S. Error↓

0.01 36.87 15.17 37.23 62.10 8.93 37.28 15.42 38.55 62.18 15.16
0.03 36.69 14.83 37.06 61.89 8.93 37.81 15.95 38.94 62.39 18.04
0.1 37.36 15.20 37.35 62.29 8.54 36.85 15.24 37.99 61.78 14.38
0.3 37.87 15.52 37.92 62.44 7.97 36.54 15.07 37.76 61.69 14.55
1 37.92 15.83 37.57 62.26 7.78 37.06 15.26 38.00 61.92 14.57
3 38.09 15.96 37.71 62.29 7.95 37.09 15.36 37.78 61.94 15.16

Table 15: The effect of SFT loss. λ is the hyper-parameter discussed in Section 3.4.

A.7 Learning curves of Reinforcement
Fine-tuning

To analyze the learning behavior, we visualize the
learning curves of the policy loss and value loss
on training set, control error and BERTscore (F1,
in proportion) on validation set for a range of val-
idation step. The results are first generated by
small GPT-2 model on both NYT and CNNDM
for single-type control (with only one control in-
struction which is “equal to”), which are shown in
Figure 5. We can see that as the decrease of pol-
icy loss and value loss, the validation reward in-
creases relatively smoothly, while there is no clear
decreasing trend of validation BERTscore. The
indicates that even with small GPT-2 model, the
relevance can be preserved as the control accu-
racy increase during the RL finetuning. Figure 6
shows the corresponding learning curves of RL-
finetuning with GPT-S for the case with multiple
control types, where all the four control types in
Table 1 are equally sampled. We can see that in
general, the value loss decreases smoothly, while
the policy loss may fluctuate but with a decreasing
trend in general. In terms of the validation control

errors, the curve first decrease and then increase
after a certain point. Also, we find that the cor-
responding RougeL curves and Bertscore Curves
show the reverse behaviors in general. This in-
dicate that under certain settings, higher control
accuracy (lower control error) is associated with
higher relevance metrics. Meanwhile, it is neces-
sary to do early stopping or other regularization
approaches to prevent over-fitting. Figure 7 and
Figure 8 show the corresponding learning curves
of GPT-S for single-type and multiple-type control
with sample filtering. We can see that the curves
of policy losses in training seems to be smoother
than the case without sample filtering. The val-
idation control errors still decrease during the RL
fine-tuning. Meanwhile, there is no clear trend of a
decrease of RougeL and Bertscores as length con-
trol errors decreases.

From all of these figures, we do not observe
clear trade-off between the goodness of Rouge
scores/Bertscore and the length control errors.
This means our method can achieve better control
accuracy without losing the quality of generated
summaries in terms of major automatic metrics.

1083

0.030

0.035

0.040

0.045

NY
T

Policy Loss (Train)

0.000

0.005

0.010

0.015

0.020
Value Loss (Train)

11.0

11.5

12.0

12.5 Control Error (Val)

41.6

41.8

42.0

42.2

42.4

42.6

42.8

RougeL (Val) 67.4

67.6

67.8

68.0

68.2 Bert Score (Val)

0 20 40

0.02

0.03

0.04

0.05

0.06

CN
ND

M

Policy Loss (Train)

0 20 40
0.00

0.01

0.02

0.03
Value Loss (Train)

0 20 40
8

9

10

11 Control Error (Val)

0 20 40
37.50

37.75

38.00

38.25

38.50

38.75
RougeL (Val)

0 20 40

62.20

62.25

62.30

62.35

62.40

62.45

62.50 Bert Score (Val)

Figure 5: The Diagram of Learning Curves with GPT-S for single-type control instruction (only for “equal to”)
without sample filtering.

0.020

0.025

0.030

0.035

NY
T

Policy Loss (Train)
0.000

0.005

0.010

0.015

0.020
Value Loss (Train)

10

20

30

40 Control Error (Val)

32

34

36

38

40

42

RougeL (Val)

62

64

66

68

Bert Score (Val)

0 20 40

0.020

0.025

0.030

0.035

CN
ND

M

Policy Loss (Train)

0 20 40
0.00

0.01

0.02

0.03
Value Loss (Train)

0 20 40

15

20

25

30

35
Control Error (Val)

0 20 40

38.0

38.5

39.0

RougeL (Val)

0 20 40
60.5

61.0

61.5

62.0

62.5

Bert Score (Val)

Figure 6: The Diagram of Learning Curves with GPT-S for multi-type control instructions without sample filtering.

0.040

0.045

0.050

0.055

NY
T

Policy Loss (Train)
0.000

0.005

0.010

0.015

0.020

0.025 Value Loss (Train)

8.25

8.50

8.75

9.00

9.25

9.50

Control Error (Val)
41.8

42.0

42.2

42.4

42.6

RougeL (Val)
67.4

67.6

67.8

68.0

Bert Score (Val)

0 20 40

0.035

0.040

0.045

0.050

0.055

0.060

CN
ND

M

Policy Loss (Train)

0 20 40
0.00

0.01

0.02

0.03

Value Loss (Train)

0 20 40

7.5

8.0

8.5

9.0

9.5
Control Error (Val)

0 20 40
37.5

38.0

38.5

39.0
RougeL (Val)

0 20 40
61.8

61.9

62.0

62.1

62.2

62.3

Bert Score (Val)

Figure 7: The Diagram of Learning Curves with GPT-S for single-type control instruction (only for “equal to”)
with sample filtering.

1084

0.020

0.025

0.030

0.035

0.040

NY
T

Policy Loss (Train)

0.00

0.01

0.02

0.03

0.04

0.05 Value Loss (Train)

4.0

4.5

5.0

5.5

6.0

6.5 Control Error (Val)

42.0

42.2

42.4

42.6
RougeL (Val)

67.2

67.4

67.6

67.8

68.0
Bert Score (Val)

0 20 40
0.020

0.025

0.030

0.035

0.040

0.045

CN
ND

M

Policy Loss (Train)

0 20 40
0.00

0.01

0.02

0.03

0.04

0.05
Value Loss (Train)

0 20 40

7

8

9

10 Control Error (Val)

0 20 40

37.0

37.5

38.0

RougeL (Val)

0 20 40

61.6

61.8

62.0

62.2

62.4

62.6 Bert Score (Val)

Figure 8: The Diagram of Learning Curves with GPT-S for multi-type control instructions with sample filtering.

1085

