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Abstract

The ever-growing presence of hate speech on
social network services and other online plat-
forms not only fuels online harassment but also
presents a growing challenge for hate speech
detection. As this task is akin to binary classi-
fication, one of the promising approaches for
hate speech detection is the utilization of con-
trastive learning. Recent studies suggest that
classifying hateful posts in just a binary man-
ner may not adequately address the nuanced
task of detecting implicit hate speech. This
challenge is largely due to the subtle nature
and context dependency of such pejorative re-
marks. Previous studies proposed a modified
contrastive learning approach equipped with
additional aids such as human-written impli-
cations or machine-generated augmented data
for better implicit hate speech detection. While
this approach can potentially enhance the over-
all performance by its additional data in gen-
eral, it runs the risk of overfitting as well as
heightened cost and time to obtain. These draw-
backs serve as motivation for us to design a
methodology that is not dependent on human-
written or machine-generated augmented data
for training. We propose a straightforward, yet
effective, clustering-based contrastive learning
approach that leverages the shared semantics
among the data.1

1 Introduction

Warning: this paper contains content that may be
offensive or upsetting.

Detecting hate speech is more challenging com-
pared to other tasks due to its varying perception
and definition among individuals, which is reflected
in the inconsistencies between datasets (Luo et al.,
2023). Implicit hate speech, in particular, often
lacks explicit cues such as swear words or insults,

1Our code is available at https://github.com/hsannn/
sharedcon.

Figure 1: An example of shared semantics among posts
in the IHC dataset. We often find a representative post
among posts sharing similar semantics, which is more
accurate than human-written implications. The high-
lighted portion represents the common meaning shared
among these posts.

making its detection even more challenging. Pre-
vious studies suggested models for identifying im-
plicit hate speech (Sridhar and Yang, 2022; Lin,
2022). While these approaches exhibit promising
performance for the in-dataset scenario, the per-
formance is significantly degraded for the cross-
dataset scenario (Wiegand et al., 2019) because of
their inconsistent nature. Recent studies have ex-
plored methods such as data augmentation (DA)
to generate positive pairs (Kim et al., 2022), or
creating implicit meanings (implication) of hateful
posts manually by human (ElSherief et al., 2021).
Especially, Kim et al. (2022) showed the impor-
tance of the model’s generalization at implicit hate
speech detection and proposed a contrastive learn-
ing approach that utilizes common implications in
the datasets. Although their approach shows good
performance for in-dataset, using implications of
in-dataset makes it difficult for them to perform
well in cross-dataset scenarios. In other words, they
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Figure 2: Middle: The DA approach does not require special annotations but suffers from lower performance.
Left: the implication approach yields better performances, but its reliance on implication-labeled datasets presents
drawbacks in terms of cost and time for creation. Right: Our proposed SharedCon effectively detects implicit hate
speech without relying on human-generated implications, thereby addressing economic concerns and enhancing the
robustness of implicit hate speech detection.

are hard to generalize the model in cross-dataset.
In the realm of implicit hate speech detection,

the SOTA performance has been achieved by con-
trastive learning (CL) with humman-written im-
plications or machine-generated augmented texts.
However, there are some limitations to these ap-
proaches: (1) It requires experts to manually gener-
ate implications, which is expensive. For example,
for an implicit hate speech dataset like IHC (ElSh-
erief et al., 2021), the total annotation cost was
$15k and it took a considerable amount of time to
complete the dataset construction due to the com-
plexity and scale of the work involved in devel-
oping a resource for understanding implicit hate
speech. This limitation significantly restricts the
scalability of this approach when applied to a wide
range of datasets or different domains (Sheth et al.,
2023). Furthermore, (2) it is hard to say that DA ap-
proach uses the correct positive pairs. The DA strat-
egy merely employs post-augmentation as a posi-
tive pair, which lacks semantic consistency across
posts. Figure 2 shows the comparison between the
existing CL approaches and our methodology.

In order to address implication costs and enhance
the existing approaches, we propose SharedCon, a
simple yet effective technique—leveraging shared
semantics from the training data itself without ad-
ditional data construction steps or extra modules.
We extract shared semantics of training datasets by
grouping posts and consider the centroid post of
each group as the representative semantics shared

by the posts. SharedCon is evaluated on three
hate speech benchmark datasets in both in-dataset
and cross-dataset settings. Experimental results
demonstrate that SharedCon outperforms our base-
lines with a 0.43%p average improvement in the in-
dataset setting and 1.43%p average improvement
in the cross-dataset setting. Furthermore, we com-
pare the performance of SharedCon with current
SOTA approach (ImpCon). The results show that
SharedCon can deliver comparative (even outper-
form for some cases) performance, against the cur-
rent SOTA approach that requires a human-labor-
intensive step. Our empirical analysis displays that
utilizing shared semantics in the quality-assured
sentence embedding space can work as effective
as manually produced implications. While the rep-
resentation of shared semantics works similarly to
the implication in Kim et al. (2022), our process
provides the flexibility to train the model on vari-
ous datasets, even those without human-annotated
implications. The approach is simple yet effective
without extra modules; we cluster the training data
and select one post as a core sample of shared se-
mantics, then the selected post plays the role of the
anchor in the CL step.

Our main contributions are

• We propose a straightforward and effective
technique—leveraging shared semantics from
the training data without the need for human-
annotated implications.
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• We verify the efficacy of shared semantics by
enhancing performance across both in-dataset
and cross-dataset scenarios.

• We achieve performance that is comparable
to and in some cases, even outperforms the
current SOTA model, all without the need for
human labor-intensive steps.

2 Contrastive Learning with Shared
Semantics

While the idea of utilizing shared semantics in the
fine-tuning process is promising for implicit hate
speech detection, one major drawback is that it
requires a dataset with implications, which are of-
ten written by humans manually. Therefore, we
study an effective way of finding shared seman-
tics without human involvement and improving the
cross-dataset performance.

2.1 Shared Semantics

We use the term shared semantics to describe
the approach for finding shared semantics with-
out human involvement, which we assume that
instances of real-world data exhibit inherent shared
characteristics. Figure 1 illustrates an example of
shared semantics extracted from the IHC (ElSh-
erief et al., 2021) dataset; we observe that shared
semantics effectively captures the latent meaning
of hate posts, which corresponds to implication,
a human-generated label representing the implicit
meaning of a post.

As depicted in Figure 3, we first extract sentence
embeddings of the training data using the exist-
ing sentence embedding models. Let us denote
a post in the train set and its corresponding label
pairs as {xt, yt}t∈T , where T is a total size of a
train set. Then, a sentence embedding model con-
structs high-quality embeddings of xt. We use the
K-means algorithm to cluster the embeddings with
the same label. Let Ck be clusters created using K-
means and µk be a centroid of a cluster Ck, where
k ∈ [1, 2K].2 K is a manually adjustable param-
eter that represents the number of clusters. Each
cluster formed in this way is expected to share a
common semantic meaning. From this perspective,
we consider the centroid posts as the closest sen-
tence from the corresponding cluster centers and
define our shared semantics Sk to be

2We use K clusters for each of two labels (hate or not).

Sk = argmin
xc∈Ck

||xc − µk||, (1)

where xc is a post in a cluster Ck. We then train the
model to bring posts within the same cluster closer
together and to push posts from different clusters
apart.

2.2 SHAREDCON

We propose SharedCon that adjusts supervised
contrastive learning loss in Eq. (2) by Khosla et al.
(2020) for implicit hate speech detection. We de-
note a pair of input post and its corresponding label
as {xi, yi}i∈I , where I = {1, . . . , B} is a set of
indices in a mini-batch and B is the batch size. As
a positive sample xp for an input post xi, we train
the model to bring xi and xp closer together as a
positive pair and to push xi and xa further apart as
a negative pair:

LSCL =
∑

i=1

−1

|Pi|
∑

p∈Pi

log
ehi·hp/τ

∑
a∈I\{i} e

hi·ha/τ
,

(2)
where hi, hp and ha are the representations from an
encoder for the inputs xi, xp and xa, respectively.
Pi is the set of indices of positive samples and τ
is a temperature parameter which is specified in
Section 3.3.

A mini-batch is augmented with shared seman-
tics in Eq. (1) per input. Having a mini-batch of
B original samples, we set the location of the cor-
responding shared semantics of the ith (i ≤ B)
original sample xi as i+B. This ensures that each
input post in a mini-batch is paired with its positive
counterpart, resulting in a total of 2B samples for
each mini-batch.

We modifiy Eq. (2) and propose our SharedCon
loss as follows:

LSharedCon =

−
2B∑

i=1

∑
p∈SHA(xi)

log ehi·hp/τ∑
a∈I\{i} e

hi·ha/τ

|SHA(xi)|
.

(3)

This supervised contrastive learning method
aims to shorten the distance between training sam-
ples and their corresponding shared semantics.
Step 3 and step 4 in Figure 3 illustrate this pro-
cess. Here, we consider the scenario where posts
from the same cluster appear in a mini-batch. Ev-
ery post from the same cluster as an input post is
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Figure 3: Overall workflow of SharedCon. With a centroid sentence (i.e., an anchor) from the clustered sentence
embedding space, we train to make sentences within the same cluster closer and sentences from different clusters
more distant. ‘E’ denotes an encoder and ‘CLS’ denotes a classifier.

also considered positive. In other words, we al-
low multiple positives within a mini-batch when
members of the same cluster are included.

Suppose that a module SHA(·) constructs our
positive set by assigning shared semantics. Then,
we arrange the positive sample of xi as xp, where
p ∈ SHA(xi). For i ≤ B, SHA(xi) represents
the set of shared semantics of the input xi, but
for i > B, SHA(xi) becomes the set of original
input posts that come from the same cluster as xi.
Note that we set the location of the original input
posts to be in [1, B] and the location of each input’s
corresponding positive pair—shared semantics—to
be in [B + 1, 2B]. We construct our positive set
SHA(xi) as follows:

SHA(xi) =



{p | C(xi) = C(xp), p ∈ [B + 1, 2B]},
for i ≤ B

{p | C(xi) = C(xp), p ∈ [1, B]},
for i > B,

where C(xi) represents the cluster number of xi.
SHA(xi) serves the role of allowing members
within the same cluster to function as positive sam-
ples. During training, the model learns the impli-
cation of hate speech posts through the SharedCon
loss in Eq. (3).

The cross-entropy loss is a typical loss function

used in hate speech detection and is defined as
follows:

LCE = − 1

B

B∑

i=1

[yi log ŷi +(1− yi) log (1− ŷi)],

(4)
where ŷi is the model prediction for the xi and yi
is the ground truth label of xi.

Since the two losses optimize different aspects,
it is necessary to combine them. The contrastive
learning loss in Eq. (3) facilitates learning repre-
sentations that move closer to the centroid as train-
ing progresses for better generalization, while the
cross-entropy loss in Eq. (4) is used for binary clas-
sification itself.

The overall objective is

LOverall = λLCE + (1− λ)LSharedCon,

where λ is a scaling parameter that controls the
balance between the cross-entropy loss and the
contrastive learning loss.

3 Experimental Results

3.1 Datasets
We conduct multiple experiments utilizing three
hate speech datasets reported in Table 1. Note that
IHC and SBIC have implications but DynaHate
does not.
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• IHC (ElSherief et al., 2021): a hate speech
dataset derived from hate communities on
Twitter and their followers, containing infor-
mation about the target and the implied mean-
ing. The dataset contains 6,346 implicit hate
speech out of 22,056 tweets in the United
States.

• SBIC (Sap et al., 2020): an offensive lan-
guage dataset that has hierarchical annotations
related to social bias, encompassing aspects
such as offensiveness, target and implied state-
ments.

• DynaHate (Vidgen et al., 2021): a hate
speech dataset obtained by a combination of
human inputs and model manipulations to de-
ceive the model.

Dataset Train set Valid set Test set
IHC 11,199 3,733 3,734
SBIC 35,504 4,673 4,698
DynaHate 33,006 4,125 4,124

Table 1: The statistical information of three datasets in
our experiments.

3.2 Baselines
We consider the following three baselines for com-
parision.

CE We use the cross-entropy loss (CE) to fine-
tune the model, which is a fundamental method for
classifying hate speech.

AugCon utilizes augmented inputs as positive
samples for inputs in the process of contrastive
learning. While AugCon can be done without any
additional need for human annotations (except for
inputs and their labels), AugCon showed improved
performance on some limited settings.

ImpCon utilizes shared implications as positive
samples for hate speeches in the process of con-
trastive learning. While ImpCon offered consis-
tently superior performance compared to other
methods, it necessitates additional human anno-
tation for the implication.

We design a contrastive learning loss that has
strengths of both approaches; given that utilizing
shared semantics among inputs was effective, we
aim to utilize shared semantics for achieving gen-
eralization ability (= ImpCon strength) without ad-
ditional human involvements (= AugCon strength).

3.3 Implementation Details

For the hyperparameter optimization, we select the
learning rate from {5e-6, 1e-5, 2e-5, 3e-5, 5e-5}
and the temperature parameter τ from {0.1, 0.3,
0.5}. We also specify λ as a scaling factor from
{0.25, 0.5, 0.75} and choose the number K of clus-
ters from {10, 25, 50, 75, 100, 125, 150, 200}. The
model archiving the highest validation F1 score is
selected as the best-performing one. All experi-
ments are executed using 3 different random seeds
and we report the average score of macro-F1 for the
results. Unless otherwise stated, we use the Sim-
CSE’s embeddings and the model is trained with
the IHC dataset. We perform training on models
for a span of 6 epochs employing an NVIDIA RTX
4090 GPU.

3.4 Detection Performance

We verify the effectiveness of our method by eval-
uating the performance on both in-dataset and
cross-dataset scenarios. We train BERT (Devlin
et al., 2019) on each of the three datasets and eval-
uate them on those three respectively. Table 2
demonstrates the outcomes of in-dataset evalua-
tions, with respect to sentence embedding models:
SimCSE (Gao et al., 2021). Table 3 presents the
evaluation results for cross-dataset scenarios, uti-
lizing SimCSE embeddings as well.

IHC SBIC DYNA
CE 77.7 83.8† 78.8†

+ AugCon 77.4 83.3 77.6
+ ImpCon 78.0† 83.6 -

+ SharedCon 78.5 84.3 79.1

Table 2: In-dataset performance in macro-F1. We report
the average of three runs with different random seeds.
† represents the previous SOTA score, while our score
surpassing it is bolded.

In the experiments of the in-dataset scenario,
we observe a slight improvement of approximately
0.43%p on average over the baselines in Sec-
tion 3.2. Furthermore, in the cross-dataset setting,
particularly for models trained on IHC, there was a
significant increase of up to 4.5%p in SBIC evalua-
tion scenario. The noteworthy thing is that the Dy-
naHate dataset does not have implications; our ap-
proach selects appropriate representatives of shared
semantics from the training dataset and improves
the performance.

These results demonsrate the effectiveness of our
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Test
Train

IHC SBIC DYNA
CE Aug Imp Ours CE Aug Imp Ours CE Aug Imp Ours

IHC - - - - 59.6 59.7 61.4† 62.4 66.0† 65.6 - 67.0
SBIC 56.8 58.1 60.7† 65.2 - - - - 68.2† 66.3 - 67.9

DYNA 53.1 54.6 57.9† 59.5 60.3 61.2† 61.2† 62.0 - - - -

Table 3: Performance evaluation in macro-F1 for three cross-datasets compared with AugCon and ImpCon. We
report the average of three runs with different random seeds. † represents the previous SOTA score, while our score
surpassing it is bolded.

approach even when compared to the utilization of
human-annotated implications. Overall, the exper-
imental results show that SharedCon shows com-
petitive or superior performance compared to the
existing SOTA without using any human-written
implications.

4 Analysis

Our discussion focuses on validating the hypothe-
sis that shared semantics should be identified from
the centroid of each cluster, based on a twofold ad-
ditional scenarios. 1) In Section 4.1, we randomly
select a post and allocate it as an anchor; and 2) in
Section 4.2, we choose one sentence among the top
three or five sentences that are most proximal (in
terms of the Euclidean distance) to the centroid of
the cluster as an anchor.

4.1 Random Anchors

We examine where shared semantics are located
in the embedding space by altering the method
of selecting anchor posts. We replace the closest
post from the centroid of a cluster in Eq. (1) with
S∗ = RANDOM(xt) such that RANDOM(·) selects
a random post, where t ∈ T and T is the count
of posts within a train set. When a post S∗ from
a random position is chosen as an anchor for con-
trastive learning framework, the performance de-
creases compared to selecting a centroid sentence
as an anchor. Figure 4 (Left) demonstrates the su-
perior performance of SharedCon compared to the
random-anchor-selection approach. The gray graph
represents macro-F1 score of SharedCon and the
violet graph represents the score for random selec-
tion. K represents the number of clusters formed
in the train set for utilizing the sentence embed-
dings generated via SimCSE (Gao et al., 2021). As
K changes, both selection strategies show minor
fluctuations in macro-F1 score, but SharedCon con-
sistently achieves good performance. We observed

Figure 4: Left: The performance when anchors are ran-
domly selected. An overall decrease in performance
can be observed in random anchor selection. Right:
The performance when samples near the centroid are se-
lected as anchors. ‘cp-3 and 5’ refers to the selection of
the anchor from the three and five posts most proximal
to the centroid, respectively.

that the in-dataset score declined by 1.2%p and the
cross-dataset scores decreased by 4.5%p on aver-
age in random-anchor experiment setting. These
experimental results confirm that shared semantics
are located at the center of clusters in a dataset.

4.2 Centroid-proximate Anchors

We conducted additional experiments, applying
variations to the previously established positive
pairs, to further investigate the methodology for
extracting shared semantics. Here, we select the
shared semantics in two ways: randomly selecting
the shared semantics 1) from the three posts nearest
to the centroid of the cluster and 2) from the five
posts nearest to the cluster’s centroid. Therefore,
we modify Eq. (1) and have

Sk = argminm
xc∈Ck

||xc − µk||

S∗ = RANDOM(Sk),

where argminm ||xc − µk|| denotes the set of top-
m posts that minimize the distance of the post xc
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from the cluster centroid µk. We set m ∈ {3, 5}.
Figure 4 (Right) depicts two results of changing
the anchor for contrastive learning from the cen-
troid post among the top-3 and top-5 closest posts
to the centroid. In the embedding space of SimCSE,
we trained the model with the IHC dataset. Both
performances of 3-anchors’ (cp-3) and 5-anchors’
(cp-5) are comparable to that of SharedCon (cp-
1), or occasionally surpass it. This suggests that
choosing centroid-around posts might play a role
as noise and contribute to the effectiveness of ad-
versarial training. We hypothesize the presence
of shared semantics in the center of clusters, but
consider the exact location to be an open question
for precise positioning. We expect the exploration
of alternative methods for selecting representative
points beyond the cluster centroids will be reserved
for future work. This aspect remains an avenue for
further investigation and enhancement in our re-
search. Hence, it can be observed that the centroid
sentence performs most effectively in embodying
the role of shared semantics.

4.3 Generalizability

While our approach marginally outperforms in-
dataset results compared to our baselines, as Kim
et al. (2022) tackled, the evaluation of cross-dataset
is important to show the generalization ability of
a model. Therefore, we conduct a cross-dataset
evaluation for the models trained on the three hate
speech benchmark datasets: IHC, SBIC, Dyna-
Hate (ElSherief et al., 2021; Kim et al., 2023;
Vidgen et al., 2021) to check generalizability of
our proposed model. Table 3 compares cross-
dataset evaluation results of AugCon, ImpCon and
SharedCon in SimCSE (Gao et al., 2021) embed-
ding space. We observe that IHC-trained model
achieved the highest performance while evaluated
in SBIC dataset. We speculate that the reason
for the high performance could be attributed to
the potential presence of label errors within the
dataset. After suspecting potential errors within
the IHC dataset, we identified certain noisy impli-
cation annotations as shown in Table 4. These
labels contribute to confusion in the model, re-
sulting in a decrease in its performance. In other
words, it is better to find shared semantics among
the given training dataset directly instead of using
human-written implications or machine-generated
augmented texts.

P1 when you drab the swamp in sacramento!
I1 Immigrants should be deported.

P2
what do you expect? a white kid with
air jordon shoes.

I2 Blacks have criminal tendencies

P3
non-white hate crime mob violence comes
to finland

I3 Non-white people are violent.
* P is a post and I is its implication

Table 4: Examples of wrong implications written by
human-annotators in the IHC dataset. Such errors can
often occur in the dataset.

4.4 Representation by Sentence Embedding
Models

We assume that the space of the sentence embed-
ding model already effectively reflects semantic
similarity. In order to validate our assumption, we
also implemented an extra experiment by changing
the sentence embedding model. Figure 5 shows that
SharedCon consistently demonstrates strong per-
formance regardless of variations in the sentence
embedding model.

Sentence embedding model We leverage
three different sentence embedding models:
SBERT (Reimers and Gurevych, 2019), Sim-
CSE (Gao et al., 2021) and AnglE (Li and Li,
2023)

• SBERT is a modified BERT using siamese /
triplet structures, excels in semantic similarity
and transfer learning.

• SimCSE enhanced sentence embeddings
through contrastive learning, improving se-
mantic understanding in textual tasks via un-
supervised and supervised methods.

• AnglE addressed gradient issues in cosine-
based methods across diverse text types and
outperformed prior models in semantic simi-
larity tasks.

By assuming that the space represented by a sen-
tence embedding model embodies a comprehensive
semantic structure, we discerned shared semantics
within this framework. We aim to empirically sub-
stantiate the validity of high-quality representation
space. Figure 5 shows the results for SBERT, Sim-
CSE and AnglE consistently exhibited favorable
performance without significant deviations. In this
section, we train the model with the IHC dataset
and present the average results from five random
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Figure 5: We compare F1 score of three different sen-
tence embedding models. While the range of K is from
10 to 200, the performance using the three models is
similar, but a slight advantage can be observed in Sim-
CSE and AnlgE compared to SBERT.

(a) ImpCon (b) SharedCon

Figure 6: Confusion matrices for the model predictions
on IHC test set. We evaluate the predictions made by
two BERT models trained on IHC train set with (a)
ImpCon and (b) SharedCon.

seeds. The consistency in the performance of these
three models demonstrates the embedding invari-
ance of our approach. This indicates that Shared-
Con can achieve fair performance regardless of
which model is used.

The effectiveness of our methodology lies in
extracting implications within a high-quality repre-
sentation (embedding) space. In other words, the
sentence embedding model provides a reasonably
good representation space for finding shared se-
mantics and our approach of identifying positive
pairs on this basis makes sense.

4.5 Error Analysis

We analyze the incorrect predictions of our ap-
proach and ImpCon for the IHC dataset. Shared-
Con had 355 false positives and 311 false nega-
tives while ImpCon had 365 and 335 respectively.
As depicted in the confusion matrices in Figure 6,
SharedCon has 0.64%p less false negatives and
0.27%p less false positives compared to ImpCon.
Table 5 shows some examples of errors both Im-
pCon and SharedCon made. For SharedCon, out

of a total of 666 incorrections in both false posi-
tive and false negative, we observed that there are
22 broken sentence posts for both in false positive
and false negative. That is, both methodologies
encounter difficulties with the broken sentences,
while ShareCon is comparatively robust than Imp-
Con with grammatically correct sentences. ImpCon
is more vulnerable to broken sentences than Shared-
Con; clearly, broken sentences impact the model’s
prediction errors. Since broken sentences and ob-
fusticated posts are commonly observed in recent
social media platforms, effectively detecting these
aspects is an important avenue for future research.
We provide samples of broken sentences that both
methodologies struggle with at Table 5.

Regarding the misclassification by SharedCon,
we point out errors within the dataset itself. We of-
ten observe errors in human-written implications in
the dataset; Table 4 shows some examples that cap-
ture subtly incorrect implications. These examples
illustrate instances where responses are skewed
towards negative connotations or mislabeled alto-
gether, irrespective of context. For a very basic
analysis to identify the simple label error ratio, we
randomly sampled 100 posts from the train set of
IHC and found that approximately 27% of them
were misclassified. Out of these misclassifications,
about 7 posts were ambiguous and the remaining
20 posts were incorrectly classified. We assume
that these incorrect implications can cause further
performance degradation.

5 Related Work

Hate Speech Detection There are several
datasets on explicit hate speech with different pur-
poses (Warner and Hirschberg, 2012; Davidson
et al., 2017; Founta et al., 2018; Basile et al., 2019).
Davidson et al. (2017) addressed distinguishing
hate speech from offensive language by using a
crowd-sourced hate speech lexicon. Implicit hate
speech, on the other hand, characterized by its sub-
tle linguistic expressions, presents a more com-
plex obstacle for detection compared to its explicit
hate speech (Ocampo et al., 2023). Recently, re-
searchers have started considering implicit hatred
or abusiveness. Han and Tsvetkov (2020) intro-
duced a novel generic framework, MACAS, for
online abusive language detection across differ-
ent domains. Wiegand et al. (2021) addressed the
challenges in detecting implicitly abusive language,
highlighting the limitations of existing datasets and
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Label: 1 Post1 Post2 Post3

ImpCon: 0 i happen to prefer
the white race not partially
covered in non-white ink.

white power and proud ! ! ! it is muslim law to kill gay pple ?
SharedCon: 1

Label: 1 Post1 Post2 Post3

ImpCon: 0 to say " white lives matter " " is pure "
" racist hate " " . anti-racist

is a code word for #antiwhite . " "

rt " : super cool german officer
puts " " neo-nazi " " stickers

in police van | more" ; "
latest track " ethnostate 2088 " " "

SharedCon: 0

Table 5: Error examples from IHC train dataset. We compare prediction of ImpCon and SharedCon. Label 1 denotes
that ground truth label is ‘implicit hate’.

proposed a divide-and-conquer strategy to catego-
rize subtypes of implicit abuse. In order to identify
implicit hate speech ElSherief et al. (2021) pro-
vided a benchmark dataset to understand implicit
hate speech beyond explicit forms. Leveraging the
implicit hate speech dataset, Kim et al. (2022) intro-
duced ImpCon, a contrastive learning method that
addressed the challenge of model generalization
in implicit hate speech detection. In recent years,
there have been some research proposing model
training strategy (Jafari et al., 2023) for implicit
hate speech detection, as well as suggesting new
architectures for models (Ghosh et al., 2023).

Contrastive learning Recently, contrastive learn-
ing has become a prominent tool in unsupervised
representation learning in various domains. Sim-
CLR (Chen et al., 2020) randomly selects two aug-
mented examples from a mini-batch as a positive
pair, while the other augmented examples within
the mini-batch are treated as negative pairs. Khosla
et al. (2020) proposed to select positive pairs and
negative pairs by considering anchor points. In the
natural language processing field, SimCSE (Gao
et al., 2021) selected positive pairs by using anno-
tated pairs from NLI datasets, where entailment
pairs are considered as positives and contradic-
tion pairs used as hard negatives. Gunel et al.
(2021) suggested using contrastive learning as a
fine-tuning tool to capture similarities between ex-
amples from the same classes and contrast them
with examples from other classes to improve gener-
alization. Suresh and Ong (2021) performed well
on fine-grained text classification tasks by adap-
tively weighting the relationships between classes
to distinguish between more difficult samples. Re-
cently, Lu et al. (2023) proposed dual contrastive
learning approach for detecting hate speech. We
also used contrastive learning to fine-tune model
performance.

Clustering for contrastive learning Yang et al.
(2023) performs cluster-level contrastive learning
to incorporate measurable emotion prototypes. Gao
et al. (2022) proposed a weakly supervised con-
trastive learning method that allows us to consider
multiple positives and multiple negatives. These
are prototype-based clustering methods that avoid
semantically related events being pulled apart. We
suggest selecting multiple positives by clustering
to use contrastive learning in the fine-tuning pro-
cess for shared semantics without human-written
implications.

6 Conclusions

We have enhanced the existing implicit hate speech
detection approach, which previously relied on
human-generated implications. This improvement
involves clustering sentence embeddings and utiliz-
ing the centroid sentence of each cluster as positive
examples during the contrastive learning process.
The experimental results have demonstrated that
posts in the dataset have shared semantics and our
approach of using them as positive samples for
contrastive learning works well. Particularly, our
methodology has shown competitive or superior
performance improvement of fine-tuned models
in cross-dataset experiments. To sum up, our ap-
proach has enhanced model generalization without
human-written implications, providing a better so-
lution for implicit hate speech detection in terms
of cost.

Limitations

While our approach reduces possible errors of
wrong implications written by humans, it might
be possible that a centroid sentence itself might be
labeled wrong in the first place. However, it is less
likely for a centroid sentence to have a wrong label
since it has similar semantics compared with the

10452



other sentences in the same cluster. Another issue
would be a selection process of shared-semantic
sentences. Certainly, there could be a better way,
but our approach—selecting a centroid sentence in
a cluster—constantly shows good and stable per-
formance compared with several other heuristics.

Ethical Consideration

Generalization Ability Enhancement Our work
focuses on enhancing the generalization ability to
train a hate speech detector that can consistently
adapt to new forms of hate speech. Specifically,
by training a model with improved performance,
we aim to equip it with the capability to respond
to emerging manifestations of hate speech even
on the same dataset. This emphasis on enhanced
generalization entails training a model that demon-
strates superior performance when presented with
the same dataset, enabling it to effectively address
novel expressions of hate speech.

Annotator Exposure Mitigation In the past,
state-of-the-art (SOTA) models exposed annotators
to the risk of hate speech exposure during the pro-
cess of adding implications as comments to secure
such capabilities. However, our methodology has
achieved comparable performance without such
risks.

Risks and Potential Misuse The enhancement
of these capabilities represents a positive develop-
ment in the field of hate speech detection; however,
it also inherently carries risks. If the improved gen-
eralization ability is exploited, it could be utilized
to generate new forms of hate speech or conceal
hateful behaviors. It is crucial to be vigilant about
these potential risks and to carefully evaluate the
use of the model and its outcomes.
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