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Abstract

Weight-sharing supernets are crucial for perfor-
mance estimation in cutting-edge neural archi-
tecture search (NAS) frameworks. Despite their
ability to generate diverse subnetworks without
retraining, the quality of these subnetworks is
not guaranteed due to weight sharing. In NLP
tasks like machine translation and pre-trained
language modeling, there is a significant per-
formance gap between supernet and training
from scratch for the same model architecture,
necessitating retraining post optimal architec-
ture identification.

This study introduces a solution called mixture-
of-supernets, a generalized supernet formula-
tion leveraging mixture-of-experts (MoE) to en-
hance supernet model expressiveness with min-
imal training overhead. Unlike conventional
supernets, this method employs an architecture-
based routing mechanism, enabling indirect
sharing of model weights among subnetworks.
This customization of weights for specific ar-
chitectures, learned through gradient descent,
minimizes retraining time, significantly enhanc-
ing training efficiency in NLP. The proposed
method attains state-of-the-art (SoTA) perfor-
mance in NAS for fast machine translation
models, exhibiting a superior latency-BLEU
tradeoff compared to HAT, the SoTA NAS
framework for machine translation. Further-
more, it excels in NAS for building memory-
efficient task-agnostic BERT models, surpass-
ing NAS-BERT and AutoDistil across vari-
ous model sizes. The code can be found at:
https://github.com/UBC-NLP/MoS.

1 Introduction

Neural architecture search (NAS) automates the
design of high-quality architectures for natural lan-
guage processing (NLP) tasks while meeting speci-
fied efficiency constraints (Wang et al., 2020a; Xu

*Some of the work was completed while Ganesh was in-
terning at Meta.

et al., 2021, 2022a). NAS is commonly treated
as a black-box optimization (Zoph et al., 2018;
Pham et al., 2018), but obtaining the best accuracy
requires repetitive training and evaluation, which
is impractical for large datasets. To address this,
weight sharing is applied via a supernet, where
subnetworks represent different model architec-
tures (Pham et al., 2018).

Recent studies demonstrate successful direct use
of subnetworks for image classification with per-
formance comparable to training from scratch (Cai
et al., 2020; Yu et al., 2020). However, applying
this supernet approach to NLP tasks is more chal-
lenging, revealing a significant performance gap
when using subnetworks directly. This aligns with
recent NAS works in NLP (Wang et al., 2020a; Xu
et al., 2021), which address the gap by retraining
or finetuning the identified architecture candidates.
This situation introduces uncertainties about the
optimality of selected architectures and requires re-
peated training for obtaining final accuracy on the
Pareto front, i.e., the best models for different effi-
ciency (e.g., model size or inference latency) bud-
gets. This work aims to enhance the weight-sharing
mechanism among subnetworks to minimize the
observed performance gap in NLP tasks.

The weight-sharing supernet is trained by itera-
tively sampling architectures from the search space
and training their specific weights from the super-
net. Standard weight-sharing (Yu et al., 2020; Cai
et al., 2020) involves directly extracting the first
few output neurons to create a smaller subnetwork
(see Figure 1 (a)), posing two challenges due to
limited model capacity. First, the supernet im-
poses strict weight sharing among architectures,
causing co-adaptation (Bender et al., 2018; Zhao
et al., 2021) and gradient conflicts (Gong et al.,
2021). For example, in standard weight-sharing, if
a 5M-parameters model is a subnetwork of a 90M-
parameters model, 5M weights are directly shared.
However, the optimal shared weights for the 5M

10424

https://github.com/UBC-NLP/MoS


(a) Standard (b) Layer-wise Mixture-of-Supernet (c) Neuron-wise Mixture-of-Supernet

Figure 1: Choices of linear layers for supernet training. The length and the height of the ‘Linear’ blocks correspond
to the number of input and output features of the supernet respectively. The highlighted portions in blue color
correspond to the architecture-specific weights extracted from the supernet. Different intensities of blue color in the
‘Linear’ blocks of the mixture-of-supernet correspond to different alignment scores generated by the router.

Supernet Weight sharing Capacity Overall Time (↓) Average BLEU (↑)

HAT (Wang et al., 2020a) Strict Single Set 508 hours 25.93
Layer-wise MoS Flexible Multiple Set 407 hours (20%) 27.21 (4.9%)

Neuron-wise MoS Flexible Multiple Set 394 hours (22%) 27.25 (5.1%)

Table 1: Overall time savings and average BLEU improvements of MoS supernets vs. HAT for computing pareto
front (latency constraints: 100 ms, 150 ms, 200 ms) for the WMT’14 En-De task. Overall time (single NVIDIA
V100 hours) includes supernet training time, search time, and additional training time for the optimal architectures.
Average BLEU is the average of BLEU scores of architectures in the pareto front (see Table 5 for individual scores).
MoS supernets yield architectures that enjoy better latency-BLEU trade-offs than HAT and have an overall GPU
hours (see A.5.10 for breakdown) savings of at least 20% w.r.t. HAT.

model may not be optimal for the 90M model, lead-
ing to significant gradient conflicts during optimiza-
tion (Gong et al., 2021). Second, the supernet’s
overall capacity is constrained by the parameters
of a single deep neural network (DNN), i.e., the
largest subnetwork in the search space. However,
when dealing with a potentially vast number of
subnetworks (e.g., billions), relying on a single set
of weights to parameterize all of them could be
insufficient (Zhao et al., 2021).

To address these challenges, we propose a
Mixture-of-Supernets (MoS) framework. MoS en-
ables architecture-specific weight extraction, allow-
ing smaller architectures to avoid sharing some
output neurons with larger ones. Additionally,
it allocates large capacity without being con-
strained by the number of parameters in a sin-
gle DNN. MoS includes two variants: layer-wise
MoS, where architecture-specific weight matrices
are constructed based on weighted combinations of
expert weight matrices at the level of sets of neu-
rons, and neuron-wise MoS, which operates at the
level of individual neurons in each expert weight
matrix. Our proposed NAS method proves effective
in constructing efficient task-agnostic BERT mod-
els (Devlin et al., 2019) and machine translation

(MT) models. For efficient BERT, our best super-
net outperforms SuperShaper (Ganesan et al., 2021)
by 0.85 GLUE points, surpasses NAS-BERT (Xu
et al., 2021) and AutoDistil (Xu et al., 2022a) in
various model sizes (≤ 50M parameters). Com-
pared to HAT (Wang et al., 2020a), our top supernet
reduces the supernet vs. standalone model gap by
26.5%, provides a superior pareto front for latency-
BLEU tradeoff (100 to 200 ms), and decreases the
steps needed to close the gap by 39.8%. A sum-
mary in the Table 1 illustrates the time savings
and BLEU improvements of MoS supernets for the
WMT’14 En-De task.

We summarize our key contributions:

1. We propose a formulation that generalizes
weight-sharing methods, encompassing di-
rect weight sharing (e.g., once-for-all net-
work (Cai et al., 2020), BigNAS (Yu et al.,
2020)) and flexible weight sharing (e.g., few-
shot NAS (Zhao et al., 2021)). This formu-
lation enhances the expressive power of the
supernet.

2. We apply the MoE concept to enhance model
capability. The model’s weights are dynam-
ically generated based on the activated sub-
network architecture. Post-training, the MoE
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can be converted into equivalent static models
as our supernets solely depend on the fixed
subnetwork architecture after training. (3)

3. Our experiments show that our supernets
achieve SoTA NAS results in building effi-
cient task-agnostic BERT and MT models.

2 Supernet - Fundamentals

A supernet, utilizing weight sharing, parameterizes
weights for millions of architectures, offering rapid
performance predictions and significantly reducing
NAS search costs. The training objective can be for-
malized as follows. LetXtr denote the training data
distribution. Let x, y denote the training sample
and label respectively, i.e., x, y ∼ Xtr. Let arand
denote an architecture uniformly sampled from the
search spaceA. Let fa denote the subnetwork with
architecture a, and f be parameterized by the super-
net model weights W . Then, the training objective
of the supernet can be given by,

min
W

Ex,y∼XtrEarand∼A[L(farand
(x;W ), y)]. (1)

The mentioned formulation is termed single path
one-shot (SPOS) optimization (Guo et al., 2020)
for supernet training. Another popular technique
is sandwich training (Yu et al., 2020), where the
largest (abig), smallest (asmall), and uniformly sam-
pled architectures (arand) from the search space are
jointly optimized.

3 Mixture-of-Supernets

Existing supernets typically have limited model ca-
pacity to extract architecture-specific weights. For
simplicity, assume the model function fa(x;W )
is a fully connected layer (output o = Wx, omit-
ting bias term for brevity), where x ∈ nin × 1,
W ∈ nout × nin, and o ∈ nout × 1. nin

and nout correspond to the number of input and
output features respectively. Then, the weights
(Wa ∈ nouta × nin) specific to architecture a with
nouta output features are typically extracted by tak-
ing the first nouta rows1 (as shown in Figure 1 (a))
from the supernet weight W . Assume one sam-
ples two architectures (a and b) from the search
space with the number of output features nouta and
noutb respectively. Then, the weights correspond-
ing to the architecture with the smallest number
of output features will be a subset of those of the

1We assume the number of input features remains constant.
If it changes, only the initial columns of Wa are extracted.

other architecture, sharing the first |nouta − noutb |
output features exactly. This weight extraction
technique enforces strict weight sharing between
architectures, irrespective of their global architec-
ture information (e.g., different features in other
layers). For example, architectures a and b may
have vastly different capacities (e.g., 5M vs 90M
parameters). The smaller architecture (e.g., 5M )
must share all weights with the larger one (e.g.,
90M ), and the supernet (modeled by fa(x;W ))
cannot allocate weights specific to the smaller ar-
chitecture. Another issue with fa(x;W ) is that the
supernet’s overall capacity is constrained by the
parameters in the largest subnetwork (W ) in the
search space. Yet, these supernet weights W must
parameterize numerous diverse subnetworks. This
represents a fundamental limitation of the standard
weight-sharing mechanism. Section 3.1 proposes
a reformulation to overcome this limitation, im-
plemented through two methods (Layer-wise MoS,
Section 3.2, Neuron-wise MoS, Section 3.3), suit-
able for integration into Transformers (see Sec-
tion 3.4).

3.1 Generalized Model Function
We can reformulate the function fa(x;W ) to a
generalized form g(x, a;E), which takes 2 inputs:
the input data x, and the activated architecture a.
E includes the learnable parameters of g. Then,
the training objective of the proposed supernet be-
comes,

min
E

Ex,y∼XtrEarand∼A[L(g(x, arand;E), y)].

(2)
For the standard weight sharing mechanism men-

tioned above, E = W and function g just uses a
to perform the “trimming” operation on the weight
matrix W , and forwards the subnetwork. To fur-
ther minimize objective equation 2, enhancing the
capacity of the model function g is a potential
approach. However, conventional methods like
adding hidden layers or neurons are impractical
here since the final subnetwork architecture of
mapping x to fa(x;W ) cannot be altered. This
work introduces the concept of Mixture-of-Experts
(MoE) (Fedus et al., 2022) to enhance the capacity
of g. Specifically, we dynamically generate weights
Wa for a specific architecture a by routing to cer-
tain weight matrices from a set of expert weights.
We term this architecture-routed MoE-based super-
net as Mixture-of-Supernets (MoS) and design two
routing mechanisms for function g(x, a;E). Due
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to lack of space, the detailed algorithm for supernet
training and search is shown in A.2.

3.2 Layer-wise MoS

Assume there are m (number of experts) unique
weight matrices ({Ei ∈ Rnoutbig

×ninbig }mi=1, or ex-
pert weights), which are learnable parameters. For
simplicity, we only use a single linear layer as the
example. For an architecture a with nouta output
features, we propose the layer-wise MoS that com-
putes the weights specific to the architecture a (i.e.
Wa ∈ Rnouta×nin) by performing a weighted com-
bination of expert weights, Wa =

∑
i α

i
aE

i
a. Here,

Ei
a ∈ Rnouta×nin corresponds to the standard

top rows extraction from the ith expert weights.
The alignment vector (αa ∈ [0, 1]m,

∑
i α

i
a = 1)

captures the alignment scores of the architecture
a with respect to each expert (weights matrix).
We encode the architecture a as a numeric vec-
tor Enc(a) ∈ Rnenc×1 (e.g., a list of the number
of output features for different layers), and apply a
learnable router r(·) (an MLP with softmax) to pro-
duce such scores, i.e. αa = r(Enc(a)). Thus, the
generalized model function for the linear layer (as
shown in Figure 1 (b)) can be defined as (omitting
bias for brevity):

g(x, a;E) = Wax =
∑

i

r(Enc(a))iEi
ax. (3)

The router r(·) governs the degree of weight shar-
ing between two architectures through modulation
of alignment scores (αa). For instance, if m = 2
and a is a subnetwork of architecture b, the supernet
can allocate weights specific to the smaller archi-
tecture a by setting αa = (1, 0) and αb = (0, 1).
In this scenario, g(x, a;E) exclusively utilizes
weights from E1, and g(x, b;E) uses weights from
E2, enabling updates to E1 and E2 towards the
loss from architectures a and b without conflicts.
It’s worth noting that few-shot NAS (Zhao et al.,
2021) is a special case of our framework when the
router r is rule-based. Moreover, g(·) functions as
an MoE, enhancing expressive power and reduc-
ing the objective equation 2. Once supernet train-
ing is done, for a given architecture a, the score
αa = r(Enc(a)) can be generated offline. Expert
weights collapse, reducing the number of parame-
ters for architecture a to nouta × nina . Layer-wise
MoS results in a lower degree of weight sharing be-
tween differently sized architectures, as evidenced
by a higher Jensen-Shannon distance between their

alignment probability vectors compared to simi-
larly sized architectures. Refer to A.1.1 for more
details.

3.3 Neuron-wise MoS
Layer-wise MoS employs a standard MoE setup,
where each expert is a linear layer/module. The
router determines the combination of experts to use
for forwarding the input x based on a. In this setup,
the degree of freedom for weight generation is m,
and the parameter count grows by m× |W |, with
|W | being the parameters in the standard supernet.
Therefore, a sufficiently large m is needed for flex-
ibility in subnetwork weight generation, but it also
introduces too many parameters into the supernet,
making layer-wise MoS challenging to train. To
address this, we opt for a smaller granularity of
weights to represent each expert, using neurons in
DNN as experts. In terms of the weight matrix,
neuron-wise MoS represents an individual expert
with one row, whereas layer-wise MoS uses an
entire weight matrix. For neuron-wise MoS, the
router output βa = r(·) ∈ [0, 1]noutbig

×m for each
layer, and the sum of each row in βa is 1. Similar
to layer-wise MoS, we use an MLP to produce the
noutbig ×m matrix and apply softmax on each row.
We formulate the function g(x, a;E) for neuron-
wise MoS as

Wa =
∑

i

diag(βi
a)E

i
a, (4)

where diag(β) constructs a noutbig × noutbig diago-
nal matrix by putting β on the diagonal, and βi

a is
the i-th column of βa. Ei is still an noutbig × nin

matrix as in layer-wise MoS. Compared to layer-
wise MoS, neuron-wise MoS offers increased flexi-
bility (m×nouta instead of only m) to manage the
degree of weight sharing between different archi-
tectures, with the number of parameters remaining
proportional to m. Neuron-wise MoS provides
finer control over weight sharing between subnet-
works. Gradient conflict, computed using cosine
similarity between the supernet and smallest subnet
gradients following NASVIT (Gong et al., 2021),
is lowest for neuron-wise MoS compared to layer-
wise MoS and HAT, as shown by the highest cosine
similarity (see A.1.2).

3.4 Adding g(x, a;E) to Transformer
MoS is adaptable to a single linear layer, multiple
linear layers, and other parameterized layers (e.g.,
layer-norm). Given that the linear layer dominates
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the number of parameters, we adopt the approach
used in most MoE work (Fedus et al., 2022). We
apply MoS to the standard weight-sharing-based
Transformer (fa(x;W )) by replacing the two linear
layers in every feed-forward network block with
g(x, a;E).

4 Experiments - Efficient BERT

4.1 Experiment Setup

We explore the application of our proposed
supernet in constructing efficient task-agnostic
BERT (Devlin et al., 2019) models, focusing on the
BERT pretraining task. This involves pretraining a
language model from scratch to learn task-agnostic
text representations using a masked language mod-
eling objective. The pretrained BERT model is
then finetuned on various downstream NLP tasks.
Emphasis is on building highly accurate yet small
BERT models (e.g., 5M − 50M parameters). Both
BERT supernet and standalone models are pre-
trained from scratch on Wikipedia and Books Cor-
pus (Zhu et al., 2015). Performance evaluation is
conducted by finetuning on seven tasks from the
GLUE benchmark (Wang et al., 2018), chosen by
AutoDistil (Xu et al., 2022a). The architecture
encoding, data preprocessing, pretraining settings,
and finetuning settings are detailed in A.4.1. Base-
line models include standalone and standard su-
pernet models proposed in SuperShaper (Ganesan
et al., 2021). Our proposed models are layer-wise
and neuron-wise MoS. All supernets undergo sand-
wich training 2. Parameters m and router’s hidden
dimension are set to 2 and 128, respectively, for
MoS supernets.

4.2 Supernet vs. standalone gap

For investigating the supernet vs. standalone
gap, the search space is derived from Super-
Shaper (Ganesan et al., 2021), encompassing BERT
architectures differing only in hidden size at each
layer (120, 240, 360, 480, 540, 600, 768) with
fixed numbers of layers (12) and attention heads
(12). This search space includes around 14 bil-
lion architectures. We examine the supernet vs.
standalone model gap for the top model archi-
tecture from the pareto front of Supernet (Sand-
wich) (Ganesan et al., 2021). Table 2 illustrates
the GLUE benchmark performance of standalone

2SuperShaper notes that SPOS performs poorly compared
to sandwich training; hence, we do not study SPOS for build-
ing BERT models. The learning curve is shown in A.4.2.

training for the architecture (1x pretraining budget,
equivalent to 2048 batch size * 125,000 steps) as
well as architecture-specific weights from differ-
ent supernets (0 additional pretraining steps; i.e.,
only supernet pretraining). MoS (layer-wise or
neuron-wise) bridges the gap between task-specific
supernet and standalone performance for 6 out of 7
tasks, including MNLI, a widely used task for eval-
uating pretrained language models (Liu et al., 2019;
Xu et al., 2022b). The average GLUE gap between
the standalone model and standard supernet is 0.13
points. Remarkably, with customization and ex-
pressivity properties, layer-wise and neuron-wise
MoS significantly improve standalone training by
0.75 and 0.85 average GLUE points, respectively. 3

Table 2 demonstrates that MoS imposes a computa-
tional overhead of under 22% for BERT, resulting
in a minimum of 0.8 average GLUE improvement
compared to the standard supernet. This overhead
may not be significant, as it represents a one-time
investment that eliminates the need for additional
training after the search process.

4.3 Comparison with SoTA NAS
The SoTA NAS frameworks for constructing a task-
agnostic BERT model are NAS-BERT (Xu et al.,
2021) and AutoDistil (Xu et al., 2022a).4 The NAS-
BERT pipeline comprises: (1) supernet training
(with a Transformer stack containing multi-head
attention, feed-forward network [FFN], and con-
volutional layers at arbitrary positions), (2) search
based on the distillation (task-agnostic) loss, and
(3) pretraining the best architecture from scratch
(1x pretraining budget, equivalent to 2048 batch
size * 125,000 steps). The third step needs to be
repeated for every constraint change and hardware
change, incurring substantial costs. The AutoDis-
til pipeline involves: (1) constructing K search
spaces and training supernets for each search space
independently, (2a) agnostic-search mode: search-
ing based on the self-attention distillation (task-
agnostic) loss, (2b) proxy-search mode: searching
based on the MNLI validation score, and (3) ex-
tracting architecture-specific weights from the su-
pernet without additional training. The first step
can be costly as pretraining K supernets requires
K times training compute and memory, compared

3Consistency of these results across different seeds is dis-
cussed in A.4.5.

4AutoDistil (proxy) outperforms SoTA distillation ap-
proaches such as TinyBERT (Jiao et al., 2020) and
MINILM (Wang et al., 2020b) by 0.7 average GLUE points.
Hence, we do not compare against these works.
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Supernet Training time (hours) MNLI CoLA MRPC SST2 QNLI QQP RTE Avg. GLUE (↑)

Standalone - 82.61 59.03 86.54 91.52 89.47 90.68 71.53 81.63
Supernet (Sandwich) 37 82.34 57.58 86.54 91.74 88.67 90.39 73.26 81.50 (-0.13)

Layer-wise MoS (ours) 43 (16%) 82.40 57.62 87.26 92.08 89.57 90.68 77.08 82.38 (+0.75)
Neuron-wise MoS (ours) 45 (21.6%) 82.68 58.71 87.74 92.16 89.22 90.49 76.39 82.48 (+0.85)

Table 2: GLUE validation performance of different supernets (0 additional pretraining steps) compared to standalone
(1x pretraining budget). The BERT architecture (67M parameters) is the top model from the pareto front of Supernet
(Sandwich) on SuperShaper’s search space. Improvement (%) in GLUE average over standalone is enclosed in
parentheses in the last column. Layer-wise and neuron-wise MoS perform significantly better than standalone. For
these improvements, MoS imposes a minimal computational overhead of under 22% for BERT.

Supernet #Params #Steps CoLA MRPC SST2 QNLI QQP RTE Avg. GLUE

NAS-BERT 5M 125K 19.8 79.6 87.3 84.9 85.8 66.7 70.7
AutoDistil (proxy) 6.88M 0 24.8 78.5 85.9 86.4 89.1 64.3 71.5
Neuron-wise MoS 5M 0 28.3 82.7 86.9 84.1 88.5 68.1 73.1

NAS-BERT 10M 125K 34.0 79.1 88.6 86.3 88.5 66.7 73.9
Neuron-wise MoS 10M 0 34.7 81.0 88.1 85.1 89.1 66.7 74.1

AutoDistil (proxy) 26.1M 0 48.3 88.3 90.1 90.0 90.6 69.4 79.5
AutoDistil (agnostic) 26.8M 0 47.1 87.3 90.6 89.9 90.8 69.0 79.1

Neuron-wise MoS 26.8M 0 52.7 88.0 90.0 87.7 89.9 78.1 81.1

NAS-BERT 30M 125K 48.7 84.6 90.5 88.4 90.2 71.8 79.0
Neuron-wise MoS 30M 0 51.0 87.3 91.1 87.9 90.2 72.2 80.0

AutoDistil (proxy) 50.1M 0 55.0 88.8 91.1 90.8 91.1 71.9 81.4
Neuron-wise MoS 50M 0 55.0 88.0 91.9 89.0 90.6 75.4 81.6

Table 3: Comparison of neuron-wise MoS with NAS-BERT and AutoDistil for different model sizes (≤ 50M
parameters) based on GLUE validation performance. Neuron-wise MoS use a search space of 550 architectures,
which is on par with AutoDistil. The third column corresponds to the number of additional training steps required
to obtain the weights for the final architecture after supernet training. Performance numbers for the baseline models
are taken from the corresponding papers. See A.4.3 for the hyperparameters of the best architectures. On average
GLUE, neuron-wise MoS can perform similarly or improves over NAS-BERT for different model sizes without any
additional training. Neuron-wise MoS can improve over AutoDistil for most model sizes in average GLUE.

to training a single supernet. The proxy-search
mode may favor AutoDistil unfairly, as it finetunes
all architectures in its search space on MNLI and
utilizes the MNLI score for ranking. For a fair com-
parison with SoTA, MNLI task is excluded from
evaluation. 5

Our proposed NAS pipeline addresses chal-
lenges in NAS-BERT and AutoDistil. In com-
parison to SoTA NAS, our search space includes
BERT architectures with uniform Transformer lay-
ers: hidden size (120 to 768 in increments of 12),
attention heads (6, 12), intermediate FFN hidden
dimension ratio (2, 2.5, 3, 3.5, 4). This search
space comprises 550 architectures, similar to Au-
toDistil. The supernet is based on neuron-wise
MoS, and the search uses perplexity (task-agnostic)
to rank architectures. Unlike NAS-BERT, our fi-
nal architecture weights are directly extracted from
the supernet without additional pretraining. Unlike

5Refer to A.4.4 for a comparison of neuron-wise MoS
against baselines that don’t directly tune on the MNLI task.
Neuron-wise MoS consistently outperforms baselines in terms
of both average GLUE and MNLI task performance.

AutoDistil, our pipeline pretrains only one super-
net, significantly reducing training compute and
memory. We use only task-agnostic metrics for
search, similar to AutoDistil’s agnostic setting. Ta-
ble 3 compares neuron-wise MoS supernet with
NAS-BERT and AutoDistil for various model sizes.
NAS-BERT and AutoDistil performances are ob-
tained from respective papers. On average GLUE,
our pipeline improves over NAS-BERT for 5M ,
10M , and 30M model sizes, with no additional
training (100% additional training compute sav-
ings, equivalent to 2048 batch size * 125,000 steps).
On average GLUE, our pipeline: (i) surpasses
AutoDistil-proxy for 6.88M and 50M model sizes
with 1.88M and 0.1M fewer parameters respec-
tively, and (ii) outperforms both AutoDistil-proxy
and AutoDistil-agnostic for 26M model size. Be-
sides achieving SoTA results, our method signifi-
cantly reduces the heavy workload of training mul-
tiple models in subnetwork retraining (NAS-BERT)
or supernet training (AutoDistil).
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5 Experiments - Efficient MT

5.1 Experiment setup

We discuss the application of proposed super-
nets for building efficient MT models follow-
ing the setup by Hardware-aware Transformers
(HAT (Wang et al., 2020a)), the SoTA NAS frame-
work for MT models with good latency-BLEU
tradeoffs. Focusing on WMT’14 En-De, WMT’14
En-Fr, and WMT’19 En-De benchmarks, we main-
tain consistent architecture encoding and training
settings for supernet and standalone models (de-
tails in A.5.2). Baseline supernets include HAT
and Supernet (Sandwich). Proposed supernets are
Layer-wise MoS and Neuron-wise MoS, both us-
ing sandwich training, with m and router’s hidden
dimension set to 2 and 128, respectively. Refer
to A.5.8 for the rationale behind choosing ‘m’.

5.2 Supernet vs. standalone gap

In HAT’s search space of 6M encoder-decoder ar-
chitectures, featuring flexible parameters like em-
bedding size (512 or 640), decoder layers (1 to
6), self/cross attention heads (4 or 8), and number
of top encoder layers for decoder attention (1 to
3), good supernets should exhibit minimal mean
absolute error (MAE) and high rank correlation
between supernet and standalone performance for
a given architecture. Table 4 presents MAE and
Kendall rank correlation for 15 random architec-
tures, showcasing that sandwich training yields
better MAE and rank quality compared to HAT.
While our proposed supernets achieve compara-
ble rank quality for WMT’14 En-Fr and WMT’19
En-De, and slightly underperform for WMT’14
En-De, they exhibit minimal MAE across all tasks.
Particularly, neuron-wise MoS achieves substan-
tial MAE improvements, suggesting lower addi-
tional training steps needed to make MAE negligi-
ble (as detailed in Section 5.4). Supernet and stan-
dalone performance plots reveal neuron-wise MoS
excelling for almost all top-performing architec-
tures (see A.5.3). The training overhead for MoS is
generally negligible, e.g., for WMT’14 En-De, su-
pernet training takes 248 hours, with neuron-wise
MoS and layer-wise MoS requiring 14 and 18 addi-
tional hours, respectively (less than 8% overhead,
see Section A.5.10 for details).

5.3 Comparison with the SoTA NAS

The pareto front from the supernet is obtained us-
ing an evolutionary search algorithm that leverages

the supernet for quickly identifying top-performing
candidate architectures and a latency estimator for
promptly discarding candidates with latencies sur-
passing a threshold. Settings for the evolutionary
search algorithm and latency estimator are detailed
in A.5.4. Three latency thresholds are explored:
100 ms, 150 ms, and 200 ms. Table 5 illustrates
the latency vs. supernet performance tradeoff for
models in the pareto front from different supernets.
Compared to HAT, the proposed supernets consis-
tently achieve significantly higher BLEU for each
latency threshold across all datasets, emphasizing
the importance of architecture specialization and
expressiveness of the supernet. See A.5.6 for the
consistency of these trends across different seeds.

5.4 Additional training to close the gap

The proposed supernets significantly minimize the
gap between the supernet and standalone MAE
(as discussed in Section 5.2), yet the gap remains
non-negligible. Closing the gap for an architecture
involves extracting architecture-specific weights
from the supernet and conducting additional train-
ing until the standalone performance is reached
(achieving a gap of 0). An effective supernet should
demand a minimal number of additional steps and
time for the extracted architectures to close the
gap. In the context of additional training, we evalu-
ate the test BLEU for each architecture after every
10K steps, stopping when the test BLEU matches
or exceeds the test BLEU of the standalone model.
Table 6 presents the average number of additional
training steps required for all models on the pareto
front from each supernet to close the gap. Com-
pared to HAT, layer-wise MoS achieves an impres-
sive reduction of 9% to 51% in training steps, while
neuron-wise MoS delivers the most substantial re-
duction of 21% to 60%. For the WMT’14 En-
Fr task, both MoS supernets require at least 2.7%
more time than HAT to achieve SoTA BLEU across
different constraints. These results underscore the
importance of architecture specialization and su-
pernet expressivity in significantly improving the
training efficiency of subnets extracted from the
supernet.

5.5 Comparison to AutoMoE

Although AutoMoE (Jawahar et al., 2023) and
MoS pursue distinct objectives (as discussed in
Appendix A.3), we proceed to compare the super-
net BLEU scores of HAT, AutoMoE, and MoS un-
der a latency constraint of 200 ms on the NVIDIA
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Dataset WMT’14 En-De WMT’14 En-Fr WMT’19 En-De
Supernet MAE (↓) Kendall (↑) MAE (↓) Kendall (↑) MAE (↓) Kendall (↑)

HAT 1.84 0.81 1.37 0.63 2.07 0.71
Supernet (Sandwich) 1.62 (12%) 0.81 1.37 (0%) 0.63 2.02 (2.4%) 0.87

Layer-wise MoS (ours) 1.61 (12.5%) 0.54 1.24 (9.5%) 0.73 1.57 (24.2%) 0.87
Neuron-wise MoS (ours) 1.13 (38.6%) 0.71 1.2 (12.4%) 0.85 1.48 (28.5%) 0.81

Table 4: Mean absolute error (MAE) and Kendall rank correlation coefficient between the supernet and the
standalone model BLEU performance for 15 random architectures from the MT search space. Improvements (%)
in mean absolute error over HAT are in parentheses. Our supernets enjoy minimal MAE and comparable ranking
quality with respect to the baseline models.

Dataset WMT’14 En-De WMT’14 En-Fr WMT’19 En-De
Supernet / Latency Constraint 100 ms 150 ms 200 ms 100 ms 150 ms 200 ms 100 ms 150 ms 200 ms

HAT 25.26 26.25 26.28 38.94 39.26 39.16 42.61 43.07 43.23
Layer-wise MoS (ours) 26.28 27.31 28.03 39.34 40.29 41.24 43.45 44.71 46.18

Neuron-wise MoS (ours) 26.37 27.59 27.79 39.55 40.02 41.04 43.77 44.66 46.21

Table 5: Latency vs. Supernet BLEU for the models on the pareto front, obtained by performing search with
different latency constraints (100 ms, 150 ms, 200 ms) on the NVIDIA V100 GPU. Our supernets yield architectures
that enjoy better latency-BLEU tradeoffs than HAT.

V100 GPU across the three WMT benchmarks. Ta-
ble 7 shows that MoS consistently outperforms
AutoMoE and HAT across all datasets. Interest-
ingly, AutoMoE falls behind HAT, suggesting a
potential discrepancy between the performance of
AutoMoE’s supernet and standalone models.

6 Related Work

In this section, we briefly review existing research
on NAS in NLP. Evolved Transformer (ET) (So
et al., 2019) is an initial work that explores NAS
for efficient MT models. It employs evolution-
ary search and dynamically allocating training re-
sources for promising candidates., HAT (Wang
et al., 2020a) introduces a weight-sharing supernet
as a performance estimator, amortizing the train-
ing cost for candidate MT evaluations in evolu-
tionary search. NAS-BERT (Xu et al., 2021) parti-
tions the BERT-Base model into blocks and trains a
weight-sharing supernet to distill each block. NAS-
BERT uses progressive shrinking during supernet
training to prune less promising candidates, iden-
tifying top architectures for each efficiency con-
straint quickly. However, NAS-BERT requires pre-
training the top architecture from scratch for ev-
ery constraint change, incurring high costs. Super-
Shaper (Ganesan et al., 2021) pretrains a weight-
sharing supernet for BERT using a masked lan-
guage modeling objective with sandwich training.
AutoDistil (Xu et al., 2022a) employs few-shot
NAS (Zhao et al., 2021): constructing K search
spaces of non-overlapping BERT architectures and

training a weight-sharing BERT supernet for each
search space. The search is based on self-attention
distillation loss with BERT-Base (task-agnostic
search) and MNLI score (proxy search). Auto-
MoE (Jawahar et al., 2023) augments the search
space of HAT with mixture-of-expert models to
design efficient translation models. Refer to A.3
for the main differences between our framework
and the AutoMoE framework.

In the computer vision community, K-shot
NAS (Su et al., 2021) generates weights for each
subnet as a convex combination of different super-
net weights in a dictionary using a simplex code.
While K-shot NAS shares similarities with layer-
wise MoS, there are key distinctions. K-shot NAS
trains the architecture code generator and supernet
iteratively due to training difficulty, whereas layer-
wise MoS trains all its components jointly. K-shot
NAS has been applied specifically to convolutional
architectures for image classification tasks. How-
ever, it introduces too many parameters with an
increase in the number of supernets (K), a concern
alleviated by neuron-wise MoS due to its granu-
lar weight specialization. In our work, we focus
on NLP tasks and relevant baselines, noting that
supernets in NLP tend to lag significantly behind
standalone models in terms of performance. Ad-
ditionally, the authors of K-shot NAS have not
released the code to reproduce their results, pre-
venting a direct evaluation against their method.
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Dataset Additional training steps (↓) Additional training time (NVIDIA V100 hours) (↓)
Supernet WMT’14 En-De WMT’14 En-Fr WMT’19 En-De WMT’14 En-De WMT’14 En-Fr WMT’19 En-De

HAT 33K 33K 26K 63.9 60.1 52.3
Laye. MoS 16K (51.5%) 30K (9%) 20K (23%) 35.5 (44.4%) 66.5 (-10.6%) 45.2 (13.5%)
Neur. MoS 13K (60%) 26K (21%) 16K (38.4%) 31.0 (51.4%) 61.7 (-2.7%) 39.5 (24.5%)

Table 6: Average number of additional training steps and time required for the models on the pareto front to close
the supernet vs. standalone gap. Improvements (%) over HAT are shown in parentheses. Our supernets require
minimal number of additional training steps and time to close the gap compared to HAT for most tasks. See A.5.5
for each latency constraint.

Dataset WMT’14 En-De WMT’14 En-Fr WMT’19 En-De
Supernet / Latency Constraint 200 ms 200 ms 200 ms

HAT 26.28 39.16 43.23
AutoMoE 26.06 38.98 43.13

Layer-wise MoS (ours) 28.03 41.24 46.18
Neuron-wise MoS (ours) 27.79 41.04 46.21

Table 7: Latency vs. Supernet BLEU for the models on the pareto front, obtained by performing search with latency
constraint of 200 ms on the NVIDIA V100 GPU. Our supernets yield architectures that enjoy better latency-BLEU
tradeoffs than AutoMoE.

7 Conclusion

We introduced Mixture-of-Supernets, a formula-
tion aimed at enhancing the expressive power of
supernets. By adopting the idea of MoE, we demon-
strated the ability to generate flexible weights for
subnetworks. Through extensive evaluations for
constructing efficient BERT and MT models, our
supernets showcased the capacity to: (i) minimize
retraining time, thereby significantly improving
NAS efficiency, and (ii) produce high-quality archi-
tectures that meet user-defined constraints.

8 Limitations

The limitations of this work are as follows:

1. Applying Mixture-of-Supernet (MoS) to pop-
ular benchmarks in NLP, focusing on efficient
machine translation and BERT, offers valu-
able insights. A potential impactful future
direction could involve extending the applica-
tion of MoS to build efficient autoregressive
decoder-only language models, such as GPT-
4 (OpenAI, 2023).

2. Introducing MoE architecture potentially need
more training budget. In our work, we do
not use large number of training iteration for
fair comparison and fixing the number of ex-
pert weights (m) to 2 works well. We will
investigate the full potential of the proposed
supernets by combining larger training budget
(e.g., ≥ 200K steps) and larger number of
expert weights (e.g., ≥ 16 expert weights) in
the future work.

3. Due to the high computational requirements
for pretraining BERT, we only investigate the
gap between the supernet and standalone mod-
els for the top model from the pareto front
of the Supernet (Sandwich) (see Table 2). It
would be interesting to explore this gap for a
larger number of architectures from the search
space, as shown in Table 4 for MT tasks.
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A Appendix

A.1 Weight Sharing and Gradient Conflict
Analysis

A.1.1 Jensen-Shannon distance of alignment
vector as a weight sharing measure

We use the Jensen-Shannon distance of alignment
vector generated by Layer-wise MoS for two archi-
tectures as a proxy to quantify the degree of weight
sharing. Ideally, the lower the Jensen-Shannon dis-
tance, the higher the degree of weight sharing and
vice-versa. We experiment with two architectures
of 23M parameters (Smallest A and Smallest B)
and two architectures of 118M parameters (Largest
A and Largest B). From Table 8, it is clear that

Layer-wise MoS induces low degree of weight shar-
ing between differently sized architectures shown
by higher Jensen-Shannon distance between their
alignment vectors. On the other hand, there is a
high degree of weight sharing between similarly
sized architectures where Jensen-Shannon distance
is significantly low.

A.1.2 Cosine similarity between the supernet
gradient and the smallest subnet
gradient as a gradient conflict measure.

We compute gradient conflict using cosine similar-
ity between the supernet gradient and the smallest
subnet gradient, following NASVIT work (Gong
et al., 2021). In Table 9, we show that Neuron-wise
MoS enjoys lowest gradient conflict compared to
Layer-wise MoS and HAT, shown by highest cosine
similarity.

A.2 Detailed algorithm for Supernet training
and Search

A.2.1 Supernet training algorithm
The detailed algorithm for supernet training is
shown in Algorithm 1.

A.2.2 Search algorithm
The detailed algorithm for search is shown in Al-
gorithm 2.

A.3 Comparison to the AutoMoE work

Goals: Given a search space of dense and mixture-
of-expert models, the goal of the AutoMoE frame-
work (Jawahar et al., 2023) is to search for high-
performing model architectures that satisfy user-
defined efficiency constraints. The final architec-
tures can be dense or mixture-of-expert models.
On the other hand, given a search space of dense
models only, the goal of the Mixture-of-Supernets
framework is to search for high-performing dense
model architectures that satisfy user-defined effi-
ciency constraints. The final architecture can be
a dense model only. In addition, the MoS frame-
work minimizes the retraining compute required
for the searched architecture to approach the stan-
dalone performance. The MoS framework designs
the supernet with flexible weight sharing and high
capacity. On the other hand, the supernet under-
lying the AutoMoE framework suffers from strict
weight sharing and limited capacity.
Applications of mixture-of-experts: The main
application of mixture-of-experts idea by the Auto-
MoE framework is to augment the standard NAS
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Model 1 Model 2 WMT’14 En-De WMT’14 En-Fr WMT’19 En-De

Smallest A (23M ) Largest A (118M ) 0.297 0.275 0.263
Smallest B (23M ) Largest B (118M ) 0.281 0.258 0.245
Smallest A (23M ) Largest B (118M ) 0.284 0.263 0.249
Smallest B (23M ) Largest A (118M ) 0.294 0.27 0.259
Smallest A (23M ) Smallest B (118M ) 0.006 0.008 0.004
Largest A (23M ) Largest B (118M ) 0.014 0.012 0.015

Table 8: Jensen-Shannon distance of Layer-wise MoS alignment vector across models as a weight sharing measure.
Layer-wise MoS induces low degree of weight sharing between differently sized architectures shown by higher
Jensen-Shannon distance between their alignment vectors compared to that of similarly sized architectures. Note
that architectures A and B differ by number of encoder/decoder attention heads.

Supernet WMT’14 En-De WMT’19 En-De

HAT 0.522 0.416
Layer-wise MoS 0.515 0.517

Neuron-wise MoS 0.555 0.52

Table 9: Gradient conflict via cosine similarity between the supernet gradient and the smallest subnet gradient.
Neuron-wise MoS enjoys lower gradient conflict, shown via. high cosine similarity.

Algorithm 1 Training algorithm for Mixture-of-Supernets used in MT.
Input: Training data: Xtr, Search space: A,

No. of training steps: num-train-steps, Type of MoS: mos-type
Output: Training Supernet Weights: E

1: E← Random weights from Normal Distribution.
2: for iter ← 1 to num-train-steps do
3: // sample data
4: x, y ∼ Xtr

5: // perform sandwich sampling
6: for a in [arand ∼ A, abig, asmall] do
7: Enc(a) // create the architecture encoding
8: // generate architecture-specific weights
9: if mos-type == Layer wise MoS then

10: Wa =
∑

i r(Enc(a))iEi
a

11: else if mos-type == Neuron wise MoS then
12: Wa =

∑
i diag(βi

a)E
i
a

13: // compute task-specific loss
14: loss← L(Wax, y)
15: loss.backward() // compute gradients
16: Update E using accumulated gradients // learning rule
17: return E
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Algorithm 2 Evolutionary search algorithm for Neural architecture search used in MT.
Input: supernet, latency-predictor, num-iterations, num-population, num-parents,

num-mutations, num-crossover, mutate-prob, latency-constraint
Output: best-architecture

1: // create initial population
2: popu← num-population random samples from the search space
3: for iter ← 1 to num-iterations do
4: // generate parents by picking top candidates
5: cur-parents← top ‘num-parents’ architectures from popu by MoS validation loss
6: // generate candidates via mutation
7: cur-mutate-popu = {}
8: for mi← 1 to num-mutations do
9: cur-mutate-gene ← mutate a random example from popu with mutation probability

mutate-prob
10: if cur-mutate-gene satisfies latency-constraint via latency-predictor then
11: cur-mutate-popu = cur-mutate-popu ∪ cur-mutate-gene

12: // generate candidates via cross-over
13: cur-crossover-popu = {}
14: for ci← 1 to num-crossover do
15: cur-crossover-gene← crossover two random examples from popu
16: if cur-crossover-gene satisfies latency-constraint via latency-predictor then
17: cur-crossover-popu = cur-crossover-popu ∪ cur-crossover-gene

18: // update population
19: popu = cur-parents ∪ cur-mutate-popu ∪ cur-crossover-popu

20: return top architecture from popu by MoS’s validation loss
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search space of dense models with mixture-of-
experts models. To this end, the AutoMoE frame-
work modifies the standard weight sharing super-
net to support weight generation for mixture-of-
expert models. On the other hand, the Mixture-of-
Supernets framework uses the mixture-of-expert de-
sign to: (i) increase the capacity of standard weight
sharing supernet and (ii) customize weights for
each architecture. Post training, the expert weights
are collapsed to create a single weight for the dense
architecture.
Router specifications: The router underlying the
AutoMoE framework takes token embedding as in-
put, outputs a probability distribution over experts,
and passes token embedding to top-k experts. On
the other hand, the router underlying the Mixture-
of-Supernets framework takes architecture embed-
ding as input, outputs a probability distribution over
experts (layer-wise MoS) / neurons (neuron-wise
MoS), uses the probability distribution to combine
ALL the expert weights into a single weight, and
passes token embedding to the single weight (all
experts).

A.4 Additional Experiments - Efficient BERT

A.4.1 BERT pretraining / finetuning settings

Pretraining data: The pretraining data consists
of text from Wikipedia and Books Corpus (Zhu
et al., 2015). We use the data preprocessing scripts
provided by Izsak et al. to construct the tokenized
text.
Supernet and standalone pretraining settings:
The pretraining settings for supernet and standalone
models are taken from SuperShaper (Ganesan et al.,
2021): batch size of 2048, maximum sequence
length of 128, training steps of 125K, learning rate
of 5e−4, weight decay of 0.01, and warmup steps
of 10K (0 for standalone). For experiments with
the search space from SuperShaper (Ganesan et al.,
2021) (Section 4.2), the architecture encoding a is
a list of hidden size at each layer of the architecture
(12 elements since the supernet is a 12 layer
model). For experiments with the search space on
par with AutoDistil (Xu et al., 2022a) (Section 4.3),
the architecture encoding a is a list of four elastic
hyperparameters of the homogeneous BERT
architecture: number of layers, hidden size of all
layers, feedforward network (FFN) expansion ratio
of all layers and number of attention heads of all
layers (see Table 10 for sample homogeneous
BERT architectures).

Finetuning settings: We evaluate the performance
of the BERT model by finetuning on each of
the seven tasks (chosen by AutoDistil (Xu et al.,
2022a)) in the GLUE benchmark (Wang et al.,
2018). The evaluation metric is the average accu-
racy (Matthews’s correlation coefficient for CoLA
only) on all the tasks (GLUE average). The fine-
tuning settings are taken from the BERT paper (De-
vlin et al., 2019): learning rate from {5e−5, 3e−5,
2e−5}, batch size from {16, 32}, and epochs from
{2, 3, 4}.

A.4.2 Learning curve for BERT supernet
variants

Figure 2 shows the training steps versus valida-
tion MLM loss (learning curve) for the standalone
BERT model and different supernet based BERT
variants. The standalone model and the supernet
are compared for the biggest architecture (big) and
the smallest architecture (small) from the search
space of SuperShaper (Ganesan et al., 2021). For
the biggest architecture, the standalone model per-
forms the best. For the smallest architecture, the
standalone model is outperformed by all the super-
net variants. In both cases, the proposed supernets
(especially neuron-wise MoS) perform much better
than the standard supernet.

A.4.3 Architecture comparison of
Neuron-wise MoS vs. AutoDistil

Table 10 shows the comparison of the BERT ar-
chitecture designed by our proposed neuron-wise
MoS with AutoDistil.

A.4.4 Fair comparison of Neuron-wise MoS
w.r.t SoTA with MNLI

We compare neuron-wise MoS with NAS-BERT
and AutoDistil (agnostic) for different model sizes
(≤ 50M parameters) based on GLUE validation
performance. In Table 11, we include results on
MNLI task. For fair comparison, we drop AutoDis-
til (proxy), which directly uses MNLI task for ar-
chitecture selection. Neuron-wise MoS improves
over the baselines in all model sizes, in terms of
average GLUE. For MNLI task, neuron-wise MoS
improves over the baselines in most model sizes.

A.4.5 BERT results with different random
seeds

Table 12 displays BERT results on CoLA and
RTE with various random seeds. Layer-wise MoS
consistently enhances performance over baselines
in RTE and diminishes performance compared to
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Figure 2: Learning Curve - Training steps vs. Validation MLM loss. ‘Big’ and ‘Small’ correspond to the largest and
the smallest BERT architecture respectively from the search space of SuperShaper. ‘Standalone’ and ‘Supernet’
correspond to training from scratch and sampling from the supernet respectively. All the supernets are trained with
sandwich training.

Standalone / Supernet Model Size #Layers #Hidden Size #FFN Expansion Ratio #Heads

BERT 109M 12 768 4 12

AutoDistil (proxy) 6.88M 7 160 3.5 10
Neuron-wise MoS 5M 12 120 2.0 6

Neuron-wise MoS 10M 12 180 3.5 6

AutoDistil (agnostic) 26.8M 11 352 4 10
Neuron-wise MoS 26.8M 12 372 2.5 6

Neuron-wise MoS 30M 12 384 3 6

AutoDistil (proxy) 50.1M 12 544 3 9
Neuron-wise MoS 50M 12 504 3.5 12

Table 10: Architecture comparison of the best architecture designed by the neuron-wise MoS with AutoDistil (Xu
et al., 2022a) and BERT-Base (Devlin et al., 2019).

10438



Supernet #Params #Steps MNLI CoLA MRPC SST2 QNLI QQP RTE Avg. GLUE

NAS-BERT 5M 125K 74.4 19.8 79.6 87.3 84.9 85.8 66.7 71.2
Neuron-wise MoS 5M 0 75.5 28.3 82.7 86.9 84.1 88.5 68.1 73.4

NAS-BERT 10M 125K 76.4 34.0 79.1 88.6 86.3 88.5 66.7 74.2
Neuron-wise MoS 10M 0 77.2 34.7 81.0 88.1 85.1 89.1 66.7 74.6

AutoDistil (agnostic) 26.8M 0 82.8 47.1 87.3 90.6 89.9 90.8 69.0 79.6
Neuron-wise MoS 26.8M 0 80.7 52.7 88.0 90.0 87.7 89.9 78.1 81.0

NAS-BERT 30M 125K 81.0 48.7 84.6 90.5 88.4 90.2 71.8 79.3
Neuron-wise MoS 30M 0 81.6 51.0 87.3 91.1 87.9 90.2 72.2 80.2

Neuron-wise MoS 50M 0 82.4 55.0 88.0 91.9 89.0 90.6 75.4 81.8

Table 11: Comparison of neuron-wise MoS with NAS-BERT and AutoDistil (agnostic) for different model sizes
(≤ 50M parameters) based on GLUE validation performance. We include results on MNLI task. For fair comparison,
we drop AutoDistil (proxy), which directly uses MNLI task for architecture selection. Neuron-wise MoS improves
over the baselines in all model sizes, in terms of average GLUE. For MNLI task, neuron-wise MoS improves over
the baselines in most model sizes.

Seeds Seed 1 Seed 2
Model CoLA RTE CoLA RTE Average

Standalone 59.03 71.53 58.04 72.22 65.21
Supernet (Sandwich) 57.58 73.26 57.1 72.92 65.22

Layer-wise MoS 57.62 77.08 56.3 76.74 66.91

Table 12: BERT results on CoLA and RTE with different random seeds. Layer-wise MoS improves over baselines
in RTE and degrades over baselines in CoLA consistently across both seeds.

baselines in CoLA for both seeds. The BERT ar-
chitecture (67M parameters) corresponds to the top
model from the pareto front of Supernet (Sand-
wich) in SuperShaper’s search space (consistent
with Table 2).

A.5 Additional Experiments - Efficient
Machine Translation

A.5.1 Machine translation benchmark data
Table 13 shows the statistics of three machine trans-
lation datasets: WMT’14 En-De, WMT’14 En-Fr,
and WMT’19 En-De.

A.5.2 Training settings and metrics
The training settings for both supernet and stan-
dalone models are the same: 40K training steps,
Adam optimizer, a cosine learning rate scheduler,
and a warmup of learning rate from 10−7 to 10−3

with cosine annealing. The best checkpoint is se-
lected based on the validation loss, while the per-
formance of the MT model is evaluated based on
BLEU. The beam size is four with length penalty
of 0.6. The architecture encoding a is a list of
following 10 values:

1. Encoder embedding dimension corresponds
to embedding dimension of the encoder.

2. Encoder #layers corresponds to number of
encoder layers.

3. Average encoder FFN. intermediate dimen-
sion corresponds to average of FFN interme-
diate dimension across encoder layers.

4. Average encoder self attention heads corre-
sponds to average of number of self attention
heads across encoder layers.

5. Decoder embedding dimension corresponds
to embedding dimension of the decoder.

6. Decoder #Layers corresponds to number of
decoder layers.

7. Average Decoder FFN. Intermediate Dimen-
sion corresponds to average of FFN interme-
diate dimension across decoder layers.

8. Average decoder self attention heads corre-
sponds to average of number of self attention
heads across decoder layers.

9. Average decoder cross attention heads corre-
sponds to average of number of cross attention
heads across decoder layers.

10. Average arbitrary encoder decoder attention
corresponds to average number of encoder
layers attended by cross-attention heads in
each decoder layer (-1 means only attend to
the last layer, 1 means attend to the last two
layers, 2 means attend to the last three layers).
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Dataset Year Source Lang Target Lang #Train #Valid #Test

WMT 2014 English (en) German (de) 4.5M 3000 3000
WMT 2014 English (en) French (fr) 35M 26000 26000
WMT 2019 English (en) German (de) 43M 2900 2900

Table 13: Machine translation benchmark data.

A.5.3 Supernet vs. Standalone performance
plot

Figure 3 displays the supernet vs. the standalone
performance for 15 randomly sampled architec-
tures on all the three tasks. Neuron-wise MoS
excel for almost all the top performing architec-
tures (≥ 26.5 and ≥ 42.5 standalone BLEU for
WMT’14 En-De and WMT’19 En-De respectively),
which indicates that the models especially in the
pareto front can benefit immensely from neuron
level specialization.

A.5.4 HAT Settings
Evolutionary search: The settings for the evolu-
tionary search algorithm include: 30 iterations,
population size of 125, parents population of 25,
crossover population of 50, and mutation popula-
tion of 50 with 0.3 mutation probability.
Latency estimator: The latency estimator is de-
veloped in two stages. First, the latency dataset is
constructed by measuring the latency of 2000 ran-
domly sampled architectures directly on the user-
defined hardware (NVIDIA V100 GPU). Latency
is the time taken to translate a source sentence to a
target sentence (source and target sentence lengths
of 30 tokens each). For each architecture, 300 la-
tency measurements are taken, outliers (top 10%
and bottom 10%) are removed, and the rest (80%)
is averaged. Second, the latency estimator is a 3
layer multi-layer neural network based regressor,
which is trained using encoding and latency of the
architecture as features and labels respectively.

A.5.5 Additional training steps to close the
gap vs. performance

Figure 4, Figure 5, and Figure 6 show the addi-
tional training steps vs. BLEU for different latency
constraints on the WMT’14 En-De task, WMT’14
En-Fr and WMT’19 En-De tasks respectively.

A.5.6 Evolutionary Search - Stability
We study the initialization effects on the stability
of the pareto front outputted by the evolutionary
search for different supernets. Table 14 displays
sampled (direct) BLEU and latency of the mod-
els in the pareto front for different seeds on the

WMT’14 En-Fr task. The differences in the latency
and BLEU across seeds are mostly marginal. This
result highlights that the pareto front outputted by
the evolutionary search is largely stable for all the
supernet variants.

A.5.7 Impact of different router function
Table 15 displays the impact of varying the number
of hidden layers in the router function for neuron-
wise MoS on the WMT’14 En-De task. Two hidden
layers provide the right amount of router capacity,
while adding more hidden layers results in steady
performance drop.

A.5.8 Impact of increasing the number of
expert weights ‘m’

Table 16 displays the impact of increasing the num-
ber of expert weights ‘m’ for the WMT’14 En-Fr
task, where the architecture for all the supernets is
the top architecture from the pareto front of HAT
for the latency constraint of 200 ms. Under the
standard training budget (40K steps for MT), the
performance of layer-wise MoS does not seem to
improve by increasing ‘m’ from 2 to 4. Increasing
‘m’ introduces too many parameters, which might
necessitate a significant increase in the training
budget (e.g., 2 times more training steps than the
standard training budget). For fair comparison with
existing literature, we use the standard training bud-
get for all the experiments. We will investigate the
full potential of the proposed supernets by combin-
ing larger training budget (e.g., ≥ 200K steps) and
larger number of expert weights (e.g., ≥ 16 expert
weights) in future work.

A.5.9 SacreBLEU vs. BLEU
We use the standard BLEU (Papineni et al., 2002)
to quantify the performance of supernet following
HAT for a fair comparison. In Table 17, we also ex-
periment with SacreBLEU (Post, 2018), where the
similar trend of MoS yielding better performance
for a given latency constraint holds true.

A.5.10 Breakdown of the overall time savings
Table 18 shows the breakdown of the overall time
savings of MoS supernets versus HAT for comput-
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(a) WMT’14 En-De (b) WMT’14 En-Fr

(c) WMT’19 En-De

Figure 3: Supernet vs. Standalone model performance for 15 random architectures from MT search space. Supernet
performance is obtained by evaluating the architecture-specific weights extracted from the supernet. Standalone
model performance is obtained by training the architecture from scratch to convergence and evaluating it.

(a) 100ms (b) 150ms (c) 200ms

Figure 4: Additional training steps to close the supernet - standalone gap vs. performance for different latency
constraints on the WMT’14 En-De dataset.

(a) 100ms (b) 150ms (c) 200ms

Figure 5: Additional training steps to close the supernet - standalone gap vs. performance for different latency
constraints on the WMT’14 En-Fr dataset.

ing pareto front for the WMT’14 En-De task. The
latency constraints include 100 ms, 150 ms, 200
ms. MoS have an overall GPU hours savings of at
least 20% w.r.t. HAT, thanks to significant savings
in additional training time (45%-51%).

A.5.11 Codebase

We share the codebase at: https://github.com/
UBC-NLP/MoS, which can be used to reproduce all
the results in this paper. For both BERT and ma-
chine translation evaluation benchmarks, we add a
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(a) 100 ms (b) 150 ms (c) 200 ms

Figure 6: Additional training steps to close the supernet - the standalone gap vs. performance for different latency
constraints on the WMT’19 En-De dataset. For 200 ms latency constraint, neuron-wise MoS closes the gap without
additional training.

Supernet / Pareto Front Model 1 Model 2 Model 3
Seed Latency BLEU Latency BLEU Latency BLEU

HAT (SPOS) 1 96.39 38.94 176.44 39.26 187.53 39.16
HAT (SPOS) 2 98.91 38.96 159.87 39.20 192.11 39.09
HAT (SPOS) 3 100.15 38.96 158.67 39.24 189.53 39.16

Layer-wise MoS 1 99.42 39.34 158.68 40.29 205.55 41.24
Layer-wise MoS 2 99.60 39.32 156.48 40.29 209.80 41.13
Layer-wise MoS 3 119.65 39.32 163.17 40.36 208.52 41.18

Neuron-wise MoS 1 97.63 39.55 200.17 40.02 184.09 41.04
Neuron-wise MoS 2 100.46 39.55 155.96 40.04 188.87 41.15
Neuron-wise MoS 3 100.47 39.57 157.26 40.04 190.40 41.17

Table 14: Stability of the evolutionary search w.r.t. different seeds on the WMT’14 En-Fr task. Search quality is
measured in terms of latency and sampled (direct) supernet performance (BLEU) of the models in the pareto front.

# layers in router function BLEU (↑)

2-layer 26.61
3-layer 26.14
4-layer 26.12

Table 15: Validation BLEU of different router functions
for neuron-wise MoS on the WMT’14 En-De task.

Supernet m BLEU (↑) Supernet GPU Memory (↓)

HAT - 39.13 11.4 GB
Layer-wise MoS 2 40.55 15.9 GB
Layer-wise MoS 4 40.33 16.1 GB

Table 16: Impact of increasing the number of expert
weights ‘m’ for the WMT’14 En-Fr task. The architec-
ture is the top model from the pareto front of HAT for
the latency constraint of 200 ms.

Supernet BLEU (↑) SacreBLEU (↑)

HAT 26.25 25.68
Layer-wise MoS 27.31 26.7

Neuron-wise MoS 27.59 27.0

Table 17: Performance of supernet as measured by
BLEU and SacreBLEU for the latency constraint of
150 ms on the WMT’14 En-De task.

README file that contains the following instruc-
tions: (i) environment setup (e.g., software depen-
dencies), (ii) data download, (iii) supernet training,
(iv) search, and (v) subnet retraining.
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Supernet Overall Time (↓) Supernet Training Time (↓) Search Time (↓) Additional Training Time (↓)

HAT 508 hours 248 hours 3.7 hours 256 hours
Layer-wise MoS 407 hours (20%) 262 hours (-5.6%) 4.5 hours (-21.6%) 140 hours (45.3%)

Neuron-wise MoS 394 hours (22%) 266 hours (-7.3%) 4.3 hours (-16.2%) 124 hours (51.6%)

Table 18: Breakdown of the overall time savings of MoS supernets vs. HAT for computing pareto front (latency
constraints: 100 ms, 150 ms, 200 ms) for the WMT’14 En-De task. Overall time (measured as single NVIDIA
V100 hours) includes supernet training time, search time, and additional training time for the optimal architectures.
Savings in parentheses.
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