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Abstract

Charts provide visual representations of data
and are widely used for analyzing informa-
tion, addressing queries, and conveying insights
to others. Various chart-related downstream
tasks have emerged recently, such as question-
answering and summarization. A common
strategy to solve these tasks is to fine-tune var-
ious models originally trained on vision tasks
language. However, such task-specific models
are not capable of solving a wide range of chart-
related tasks, constraining their real-world ap-
plicability. To overcome these challenges, we
introduce ChartInstruct: a novel chart-specific
vision-language Instruction-following dataset
comprising 191K instructions generated with
71K charts. We then present two distinct sys-
tems for instruction tuning on such datasets:
(1) an end-to-end model that connects a vi-
sion encoder for chart understanding with a
LLM; and (2) a pipeline model that employs a
two-step approach to extract chart data tables
and input them into the LLM. In experiments
on four downstream tasks, we first show the
effectiveness of our model–achieving a new
set of state-of-the-art results. Further evalua-
tion shows that our instruction-tuning approach
supports a wide array of real-world chart com-
prehension and reasoning scenarios, thereby
expanding the scope and applicability of our
models to new kinds of tasks.

1 Introduction

Information visualizations, such as bar charts and
line charts, play a pivotal role in data analysis,
offering critical insights and aiding in informed
decision-making (Hoque et al., 2022). However,
discerning key patterns and trends from these vi-
sualizations and addressing complex queries can
pose significant challenges. Recent research has in-
troduced various tasks to assist users in chart anal-
ysis, including chart question answering (Masry

∗Equal contribution.

et al., 2022a; Kantharaj et al., 2022b), summariz-
ing insights from visualizations (Obeid and Hoque,
2020a; Shankar et al., 2022), reasoning over chart
images, fact-checking (Akhtar et al., 2023a), and
automated visual data storytelling (Shi et al., 2020).

Early work attempts to tackle these tasks by fine-
tuning models originally trained on language and
vision tasks (Raffel et al., 2020; Masry et al., 2022a;
Lee et al., 2022; Kantharaj et al., 2022c). However,
such models may not be optimal for chart-specific
tasks as they overlook explicit modeling of chart
structures such as relationships between chart ele-
ments like bars, legends, and axes. Recent models
such as UniChart (Masry et al., 2023), Chart-T5
(Zhou et al., 2023), and MatCha (Liu et al., 2022b)
are specifically designed for charts by considering
visual and mathematical reasoning over chart ele-
ments and values. However, they often consider
charts from a limited range of sources and focus on
a narrow set of tasks, constraining their real-world
applicability. Indeed, for real-world widespread
adoption, we cannot presume how and on what
tasks these models will be used.

A promising solution to this challenge is instruc-
tion tuning, as demonstrated by language models
like InstructGPT (Ouyang et al., 2022a), FLAN-
T5 (Chung et al., 2022), Alpaca (Alpaca, 2023),
(Chiang et al., 2023) and LLaMA-chat (Touvron
et al., 2023). They show that training LLMs
on instruction-following datasets significantly en-
hances their alignment with user intent across var-
ious tasks, including tasks that are unseen during
training. Recent advances in vision-language tasks
(Li et al., 2023a; Dai et al., 2023) have adopted
similar methodologies, fine-tuning vision-language
models (VLMs) with visual instructions to better
match user intentions and improve efficacy. How-
ever, to our knowledge, instruction tuning for chart
comprehension and reasoning remains underex-
plored. Existing methods (Liu et al., 2023a; Han
et al., 2023), which are concurrent to our work,
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Figure 1: Examples of different chart-related tasks from our generated instruction dataset. Examples 1-5 are generated based
on predefined tasks similar to previously developed downstream tasks like chart summarization, chart question answering, and
fact-checking, while examples 6-9 introduce new types of tasks distilled by LLMs.

lack variety and scope in instruction-tuning tasks,
limiting their effectiveness in real-world chart un-
derstanding scenarios.

In this paper, we introduce Chart Instruction
Tuning (ChartInstruct), to pave the way towards
building general-purpose chart comprehension and
reasoning assistant based on VLMs. To this end,
we have developed a new chart instruction-tuning
dataset featuring real-world charts collected from
157 online platforms, covering wide and diverse
visual styles. Leveraging advanced LLMs such as
GPT-3.5 (OpenAI-Blog, 2022) , GPT-4 (OpenAI,
2023), and Gemini (Team et al., 2023)), we gen-
erate 191K instructions covering a broad array of
tasks reflecting real-world applications (Figure 1).

As charts are unique and pose challenges dis-
tinct from general multi-modal data, a structured
approach is crucial for enabling VLMs to effec-
tively leverage the instruction dataset, optimizing
their performance in chart analysis tasks. We intro-
duce two innovative VLM designs in this regard.
The first system modifies the LLaVA architecture
(Li et al., 2023a), substituting its CLIP vision en-
coder with the UniChart (Masry et al., 2023) vi-
sion encoder pre-trained specifically on chart im-
ages. For language modeling in this design, we
experiment with two different models: Llama2
(7B) – a decoder-only model (Touvron et al., 2023)

and Flan-T5-XL (3B) – an encoder-decoder model
(Chung et al., 2022). Our second design adopts a
two-step pipeline approach: first extract the under-
lying data table from the chart image, then provide
it as input to the LLM. This range of models pro-
vides a spectrum of efficient solutions, making our
systems adaptable to various real-world scenarios
and computational demands.

Our comprehensive evaluation across four
benchmarks: ChartQA (Masry et al., 2022b),
Chart2Text (Obeid and Hoque, 2020b), OpenCQA
(Kantharaj et al., 2022b), ChartFC (Akhtar et al.,
2023a) demonstrates our models’ state-of-the-art
performance in chart understanding and reasoning
tasks. Human evaluation further suggests the ef-
fectiveness of our instruction-tuning approach in
supporting a wide array of real-world chart com-
prehension and reasoning scenarios, broadening its
adaptability to numerous new tasks.

Our main contributions include: (i) A new
instruction-following corpus with real-world charts
and a wide range of tasks by utilizing LLMs, (ii)
two distinct systems specifically tailored for chart
understanding tasks; (iii) extensive evaluations that
demonstrate the state-of-the-art performance of
ChartInstruct across existing chart-related bench-
mark tasks while also expanding its applicability
to new tasks. We have made our code and chart
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corpus publicly available at https://github.com/vis-
nlp/ChartInstruct.

2 Related Work

2.1 Chart Modeling

Chart understanding methods fall into two main
categories: those directly fine-tuned from language
or vision-language models (Masry et al., 2022b;
Masry and Hoque, 2021; Lee et al., 2022) and
those specifically crafted for chart-specific tasks
(Masry et al., 2023; Liu et al., 2022b; Zhou et al.,
2023). Models in the former category often ex-
hibit limited performance due to a lack of chart-
specific pretraining. In contrast, models in the lat-
ter group are pretrained on primitive chart-specific
tasks like question answering and summarization
which constrains their applicability across diverse
real-world chart scenarios. Recent works (Wang
et al., 2023a; Do et al., 2023; Huang et al., 2023)
have also employed LLMs such as GPT-3, Llama
(Touvron et al., 2023), and GPT-4 for chart-related
tasks. They utilize pipelines that extract data val-
ues from chart images using specialized models
like UniChart (Masry et al., 2023) and Deplot (Liu
et al., 2022a), which are then used by the LLMs in
different downstream tasks like question answer-
ing and summarization. However, these methods
either rely on proprietary models (Brown et al.,
2020; OpenAI, 2023) or public models without
chart-specific training, limiting their effectiveness
and generalization.

2.2 Visual Instruction Tuning

Instruction tuning in LLMs has shown benefits in
aligning models with human intent and enhancing
task generalization (Chung et al., 2022; Ouyang
et al., 2022b; Wang et al., 2023b; Alpaca, 2023;
Chiang et al., 2023). These techniques have also
been extended to the vision-language space (Li
et al., 2023a; Zhu et al., 2023; Ye et al., 2023; Li
et al., 2023b; Dai et al., 2023). However, visual
instruction tuning approaches in the chart domain
are rare. Although a few studies have implemented
multimodal instruction tuning (Liu et al., 2023a;
Han et al., 2023), they depend on CLIP (Radford
et al., 2021) for vision encoding, designed for nat-
ural images rather than charts. Moreover, their
training often relies on synthetic charts or a nar-
row selection of real-world charts, focusing on a
narrow set of instruction-tuning tasks. In contrast,
our work presents two systems explicitly designed

for the chart domain, trained on a diverse array of
chart images and covering a wide range of real-
world chart applications.

2.3 Chart Domain Downstream Tasks

Interest in chart-related tasks is rising, focusing
on understanding and generating information from
charts. Chart question answering (CQA) addresses
queries about charts with some datasets (Methani
et al., 2020) and (Masry et al., 2022a) focusing on
visual and arithmetic reasoning, while others fo-
cus on open-ended explanatory question answering
(OpenCQA) (Kantharaj et al., 2022b). Additionally,
Chart-to-Text involves creating natural language
summaries from charts (Shankar et al., 2022), and
Chart-to-Table focuses on converting charts into
data tables (Choi et al., 2019; Masry et al., 2023).
Automated Fact-Checking (AFC) for images, in-
cluding charts, aims to check claims against data
(Akhtar et al., 2023a,b). In this paper, we evaluate
our models on these different downstream tasks
and also generate new kind of chart reasoning tasks
through the instruction data generation process.

3 Chart Instruction Data Generation

We build an instruction tuning dataset for enhanc-
ing VLMs’ capabilities in tackling diverse under-
stainding and generation tasks related to chart anal-
ysis. In this section, we describe the chart corpus
collection followed by the instruction tuning data
generation process. Figure 2 provides an overview
of the instruction tuning process.

3.1 Chart Corpora Collection

Our goal is to build a diverse chart dataset us-
ing real-world data to enhance our model’s gen-
eralizability. In order to build that we collect
chart images from two main sources: existing
public datasets and web-crawled charts. We
chose UniChart (Masry et al., 2023) from existing
datasets, as it provides one of the largest and most
diverse chart pretraining corpora, containing 611K
charts with metadata like data tables, titles, and
captions (refer to Masry et al. (2023) for details).
However, these charts come from a few specific on-
line sources such as Pew (Pew, -), Statista (statista,
-), OECD (OCED, -), and OWID (OWID, -), lim-
iting the variety of visual styles and data domains
covered.

To address this limitation, we contribute with a
new corpus, WebCharts, which contains 41K di-
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Figure 2: Instruction tuning process for chart collection. For the WebChart Corpus, the chart data is extracted automatically
using Gemini Vision Pro. For distilling new tasks we use GPT-4, for other task generation we either use GPT 3.5 or GPT 4.

Dataset CoT Reasoning Chart Summarization Fact Checking Open-ended QA Coding Abilities Novel Tasks #Unique Charts

Statista 4,363 4,159 4,188 4,906 2,348 - 9992
PlotQA 4,159 3977 4,333 12,105 2,306 - 8199
OECD/OWID 4290 3999 4,080 13,213 2,994 - 10949
WebCrawled 14,459 41741 11,574 12,246 11,924 23,410 41742

Total 27,271(14.3%) 53,876(28.24%) 24,175(12.67%) 42,470(22.26%) 19,572(10.26%) 23,410(12.27%) 70,882

Table 1: The number of generated examples for each tasks based on data samples of the mentioned dataset. Some of the charts
are used in multiple tasks. On the last Column, we show the number of distinct charts used for instruction generation samples.

verse chart images. We started with a seed list
of web domains containing charts (Hoque and
Agrawala, 2019) and then use the top image search
results from these domains using queries such as
"chart images," "graphs," and "visual data". We
then develop a binary VIT classifier (Dosovitskiy
et al., 2021) to distinguish chart images from non-
chart images in our search results, followed by
manual removal of any remaining non-chart im-
ages to refine the dataset. However, these charts
lack the underlying data tables which are critical for
instruction generation on various chart data analy-
sis tasks. Therefore, we automatically extract the
data tables and chart titles using Gemini Pro Vi-
sion (Team et al., 2023). The choice of Gemini
was influenced by the cost and the unlimited API
rate features. More details about the web charts
collection process are provided in Appendix A.1.

3.2 Instruction Data Generation
To enhance LLMs’ performance in chart-related
tasks via instruction tuning, we develop our chart
instruction Dataset. This dataset has 190,774 in-
structions corresponding to 70,882 charts, covering
various aspects of chart comprehension and reason-
ing (see examples in Figure 1). Below, we describe
the process of generating instruction data.

(i) Tasks Selection: To cover diverse aspects
of chart reasoning and comprehension, we iden-
tify a set of tasks that are similar to some existing
downstream tasks such as chart summarization and
question answering (QA) but also included other
tasks such as code generation and Chain of thought
reasoning. Additionally, we prompted LLMs to
propose novel tasks to enrich the dataset. Below
we briefly explain these tasks.
• Summarization and QA The summarization

task aims to generate a chart caption that captures
the key insights such as trends and patterns from
a given chart (Kantharaj et al., 2022c). We also
include Open-ended QA (Kantharaj et al., 2022a) in
which the model generates an explanatory answer
to the given question about a chart.
• Fact Checking task (Akhtar et al., 2023a) is
included to improve our model’s ability to reduce
errors and interpret chart data accurately. It takes
a claim as input and then generates the verdict
(‘refute’ or ‘accept’) along with an explanation.
• Chain-of-thought (CoT) Reasoning aims to
enhance the model’s ability to perform complex
mathematical and visual reasoning. However, open-
source models (e.g., Touvron et al. (2023), Jiang
et al. (2023)) often incur errors in numerical com-
putations (Islam et al., 2024a). To address this,
we devised two types of questions: (1) Variable
Dependent questions, which use tools to compute
statistics, inspired by ToolFormer (Schick et al.,
2023), and (2) Variable Independent Questions, fo-
cusing on retrieval, comparison, and basic math
analysis.
• Code Generation task is included to generate
executable Python scripts to answer user queries,
drawing inspiration from the success of this ap-
proach demonstrated by PAL (Gao et al., 2023).
• Novel Tasks play a crucial role in enhancing the
diversity of the instruction set. We tasked an LLM
to propose different possible chart-related tasks. To
prevent overlap with existing tasks like chart sum-
marization and QA, we instructed the LLM not to
replicate these tasks. The generated instructions
involve tasks that may require new forms of reason-
ing and analysis (e.g., future value predictions).

(ii) Prompt Design: To create the instructions
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Figure 3: Top 20 most common root verb (inner circle)
and corresponding four object verb pairs for all the
generated instructions of our dataset.

for different tasks, we first design a set of prompt
templates, where each template contains: (1) task
description, (2) the input chart data table, along
with metadata such as the chart title, (3) output con-
straints (if any), (4) output format. An example
prompt is shown in Figure 5.

(ii) Input and Output Generation: After de-
signing prompts, we generate instructions, creating
input-output instances for each prompt template.
We concatenate each chart’s underlying data table
and title with one of the prompts designed for the
expected task by utilizing OpenAI’s GPT3.5 Turbo
and GPT4 (see Table 4). The choice between these
APIs for different tasks is dictated by the task com-
plexity, with GPT-4 being employed for complex
reasoning tasks, and GPT3.5 for tasks with moder-
ate complexity. Moreover, in order to reduce the
generation cost, and increase the variety of gen-
erated samples in each call, in our prompts, we
ask the LLMs to come up with multiple samples
for each chart. The input prompt for each task is
provided through Tables 8-14 in Appendix A.10.

3.3 Dataset Analysis

We present key statistics and analyze the diversity
and quality of the instruction dataset.

Statistics: Our Chart corpus (WebCharts) is
highly diverse, encompassing a variety of bar and
line charts, pie and donut charts, and even uncon-
ventional chart types not prevalent in existing chart
corpora (see Figure 8). The generated instruc-
tions set is dominated by Chart summarization and
open-ended QA to improve the chart comprehen-

sion ability but also augmented with reasoning
tasks and creative new tasks generated by LLM
(see Table 1). We placed particular emphasis on
WebCharts dataset due to its diversity, constituting
67.5% (157,190 samples) of our dataset.

Diversity: To investigate the diversity of gener-
ated instructions, we employed the Berkeley Neural
Parser (Berkeley, 2024) to identify the verb closest
to the root along with its first direct noun object
in each instruction. The analysis reveals a broad
spectrum of comprehension and reasoning tasks
expressed in the instructions (Figure 3). We further
analyzed the newly proposed tasks generated by
GPT-4 by clustering the instructions using the K-
means algorithm. From Table 6 in Appendix A.4,
we observe that Pattern and Outlier Detection is
the most common type of task, followed by various
statistical analyses. Notably, the dataset includes
interesting tasks not typically captured by existing
downstream tasks, such as identifying correlations,
predicting values and trends, and distribution anal-
ysis. Overall, it suggests that the generated instruc-
tions set is indeed diverse and creative. We also
visualize diversity in the length of the instructions’
inputs, and instance outputs in Figure 9 and 10.

Quality: We asked an expert annotator to evalu-
ate the quality of the generated data on a random set
of 100 instructions. We find that in general, the in-
structions describe a valid task (87%) and the input
matches the task description (86%) among gener-
ated instructions. In 61% and 8% cases, outputs for
the generated inputs were fully and partially cor-
rect respectively. We list a number of correct and
incorrect examples in Figure 11. We note that even
when the outputs may be incorrect (e.g., contain
factual errors), the corresponding task instructions
can provide informative training signal as found by
others (e.g., Honovich et al. (2022)).

4 Modeling

In this section, we describe our two architectures
for chart instruction tuning.

4.1 End-to-End System

Our end-to-end system utilizes the LLaVA (Liu
et al., 2023b) architecture, which incorporates
CLIP (Radford et al., 2021) for visual encoding, an
LLM for language generation, and an adapter mod-
ule for transforming the encoded visual features
to the LLM’s input embedding space (Figure 4).
LLaVA is originally designed for natural image un-
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derstanding. We make the following modifications
to adapt it for chart understanding. First, we sub-
stitute the CLIP vision encoder with the UniChart
vision encoder (Masry et al., 2023), which is pre-
trained and optimized for chart image understand-
ing. For the LLM, we investigate two model types:
the decoder-only architecture of Llama2 (Han et al.,
2023) and encoder-decoder structure of Flan-T5
(Chung et al., 2022). In the Llama2 setup, pro-
jected visual features are injected directly into the
language decoder, whereas in the Flan-T5 model,
these features, along with the instructions, are first
processed by the language encoder before the de-
coder generates a text. We experimented with both
the 7B variant of Llama2 and the 3B variant of
Flan-T5 to explore different model sizes suitable
for various applications and understand their learn-
ing differences (Parvez et al., 2023).

In this end-to-end design, before fine-tuning the
model on instructional data, we first fine-tune only
the adaptor module keeping the vision encoder and
LLM frozen. This critical alignment stage is neces-
sary to align the visual features from the UniChart
vision encoder with the input embedding space of
the LLM, and enables the LLM to accurately inter-
pret chart images. We focus on two specific tasks
for this phase: generating data tables from charts
and summarizing chart contents. After alignment,
we finetune the model on instruction tuning data,
keeping the vision encoder frozen while training
the weights of both the adaptor and LLM.

4.2 Pipeline System

In this approach, a data table generation module
first converts the chart image into a textual data ta-
ble representation.This generated data table is then
combined with the input instruction and fed into
an LLM. We utilize UniChart (Masry et al., 2023),
which has been shown to be able to generate high-
quality data tables from chart images, ensuring the
textual representation closely mirrors the original
chart’s information. For the LLM, we conduct ex-
periments with both Llama2, and Flan-T5 models
similar to our end-to-end approach. Unlike the end-
to-end system, this setup skips the alignment step
since the visual features are not directly fed into
the LLM. Hence, we directly finetune the models
on the instruction data (see Figure 6).

Figure 4: The architecture for our end-to-end system models:
the LLM is frozen in our (i) pre-training step, while it updates
its parameters in the (ii) instruction-tuning step. We either use
Flan-T5-XL or Llama2 as LLM for this architecture. We show
our pipeline system architecture in 6 in A.5

5 Experiments and Results

We evaluate the usefulness of ChartInstruct and
demonstrate that our models built upon ChartIn-
struct achieve excellence in chart understanding
and generation tasks. In addition to the existing
downstream tasks, they also posit superior capa-
bilities in new tasks. Below, we first discuss the
setups, then experiments on downstream bench-
marks and new chart tasks, and finally present an
error analysis and challenges. Our evaluation com-
plements the trivial quantitative approach based on
automated metrics with detailed human evaluation
on both seen and new tasks in multiple aspects, re-
flecting the true understanding of effectiveness of
ChartInstruct . To ensure the reproducability of our
research, we present the hyperparameters of our in-
struction tuning and downstream tasks experiments
in Table 5. All experiments were conduced on a
4-A100 GPUs (80GB) machine.

5.1 Experimental Setup

Downstream Tasks: To assess the generalizability
of our models across a spectrum of practical chart
applications, we evaluate them on four established
downstream tasks in the literature: (i) ChartQA
(Masry et al., 2022b) – a factoid chart question
answering dataset, (ii) OpenCQA (Kantharaj et al.,
2022b) – an open-ended chart question answering
dataset, (iii) Chart2Text (Shankar et al., 2022) – a
chart captioning dataset collected from two sources:
Statista (statista, -) and Pew Research Center (Pew,
-), and (iv) ChartFC (Akhtar et al., 2023a) – a chart
fact checking dataset. Furthermore, we conduct a
human evaluation to explore their adaptability in
real-world scenarios beyond these benchmarks.
Baselines: We compare ChartInstruct against
seven open-source baselines: (1) T5 (Raffel et al.,
2020), a unified seq2seq Transformer model; (2)
VL-T5 (Cho et al., 2021), a T5-based model
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ChartQA OpenCQA Chart-to-Text ChartFC
(RA) (BLEU ) (BLEU ) (Accuracy)

Model #Params aug. human avg. OpenCQA Pew Statista ChartFC

Open Source
VisionTaPas (Masry et al., 2022a) - 61.44 29.60 45.52 – - - -
T5 (Masry et al., 2022a) 222M 56.96 25.12 41.04 9.28 10.49 35.29 -
VL-T5 (Masry et al., 2022a) - 56.88 26.24 41.56 14.73 - - -
ChartBERT (Akhtar et al., 2023a) - - - - - - - 63.8
Pix2Struct (Lee et al., 2022) 282M 81.6 30.5 56.0 - 10.3 38.0 -
Matcha(Liu et al., 2022b) 282M 90.2 38.2 64.2 - 12.2 39.4 -
UniChart (Masry et al., 2023) 201M 88.56 43.92 66.24 14.88 12.48 38.21 -

Closed LMMs
Gemini Pro (Team et al., 2023) - - - 74.1 6.84 28.5 25.8 65.8
GPT4-V (OpenAI, 2023) - - - 78.5 3.31 35.9 18.2 69.6

End-to-End System
ChartInstruct-Flan-T5-XL 3B 85.04 43.36 64.2 16.71 12.92 42.42 70.27
ChartInstruct-Llama2 7B 87.76 45.52 66.64 15.59 13.83 43.53 69.57

Pipeline System
ChartInstruct-Flan-T5-XL 3B 93.84 50.16 72.00 14.81 9.93 40.08 72.65
ChartInstruct-Llama2 7B 82.40 40.64 61.52 14.78 12.81 39.39 64.99

Table 2: Evaluation results on four public benchmarks: ChartQA, Chart-to-Text, OpenCQA, and ChartFC. All the results are
calculated after finetuning ChartInstruct.

for Vision-Language (VL) tasks; (3) VisionTa-
pas (Masry et al., 2022a), an extension of TaPas
(Herzig et al., 2020) for chart question answering;
(4) ChartBERT (Akhtar et al., 2023b), a BERT-
based model utilizing textual and visual informa-
tion of charts for fact verification; (5) Pix2Struct
(Lee et al., 2022), a pretrained image-to-text model;
(6) MatCha (Liu et al., 2022b), an adaptation of
Pix2Struct for charts pretrained on math reasoning;
and (7) UniChart (Masry et al., 2023), achieving
SoTA on Chart-to-Text, ChartQA, and OpenCQA.
Another open source model is MMC (Liu et al.,
2023a), but we exclude it from our evaluation re-
sults due to its poor performance. In addition to
that, we also compare ChartInstruct against two
closed-source LLMs: Gemini Pro (Team et al.,
2023) and GPT4-V (OpenAI, 2023). In particu-
lar, we report the accuracy on ChartQA from the
technical reports while the remaining datasets’ met-
rics were obtained from (Islam et al., 2024b).

Evaluation Metrics We use Relaxed Accuracy
(RA) for ChartQA (following Methani et al.
(2020)), Accuracy for ChartFC (Akhtar et al.,
2023b) and BLEU for text-generation tasks (Chart-
to-Text and OpenCQA) (Post, 2018). However,
BLEU focuses mainly on n-gram matching, over-
looking factors like informativeness and factual

correctness (Goyal et al., 2022). To address this,
we conduct human evaluations to compare these
aspects (see Section §5.3).

5.2 Results and Findings

We present the experimental results on downstream
tasks in Table 2 and compare with existing base-
lines. ChartInstruct models (both end-to-end and
pipeline) outperforms previous open-source state-
of-the-art models, UniChart on all ChartQA and
Chart-to-Text datasets. In particular, the Flan-T5-
XL version excels on the ChartQA including the
challenging human-written question set (Masry
et al., 2022a), which suggests that the model
learned more complex mathematical and visual
reasoning through the relevant instruction tuning
tasks such as CoT reasoning, and coding abili-
ties. ChartInstruct also achieved a higher BLUE
score compared to UniChart on OpenCQA bench-
mark, which demonstrates our model’s capabil-
ity to generate explanatory answers for questions
about charts. Finally, ChartInstruct surpasses Chart-
BERT by a wide margin (8.85%) on the recently
released fact-checking task. Overall, these results
establish ChartInstruct as the SoTA open-source
model for chart comprehension and reasoning tasks.
Compared to closed-source models, ChartInstruct
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models outperforms both Gemini Pro (Team et al.,
2023) and GPT4-V (OpenAI, 2023) on ChartFC,
OpenCQA, and Chart-to-Text Statisa, while our
ChartInstruct Flan-T5 achieves comparable perfor-
mance on ChartQA.

Our observations reveal that the end-to-end sys-
tem for ChartInstruct-LLama2 generally surpasses
the corresponding LLama2 pipeline system across
all benchmarks. This performance disparity is
likely due to the fact that the data table alone does
not capture all the nuanced information present
in the charts, thus becoming a limiting factor in
the pipeline system’s effectiveness. Similarly, the
end-to-end system of ChartInstruct-Flan-T5-XL
performs better than the pipeline system on both
OpenCQA and Chart-to-Text benchmarks. One no-
table exception is the reasoning-intensive tasks like
ChartFC and ChartQA on which the pipeline Flan-
T5-XL system exhibits better performance. Further-
more, we notice that both ChartInstruct-Flan-T5-
XL and ChartInstruct-Llama2 achieve comparable
performance, even tho the former has 4B fewer pa-
rameters. This efficiency makes ChartInstruct-Flan-
T5-XL more suitable for real-world applications
with computational constraints.

To further assess the impact of our different
instruction tuning tasks on our model’s perfor-
mance, we conducted ablation studies on the
ChartQA dataset using our best performing model,
ChartInstruct-Flan-T5-XL (Pipeline System). Our
ablation studies reveal that excluding tasks like
Chart Summarization or Open-ended Question An-
swering results in a minor decline in performance
(Table 7). This performance dip becomes signif-
icantly pronounced upon the removal of the rea-
soning tasks (CoT and Coding), emphasizing their
pivotal role in enhancing the model’s reasoning ca-
pabilities. More details about the experiments can
be found in Appendix A.6.

5.3 Human Evaluation on Chart Tasks

Reference-based evaluation metrics like BLEU-
score may not align with human-perceived text
quality attributes (Liu et al., 2023c; Smith et al.,
2016). To ensure accurate evaluation of our ap-
proach, we conducted a human experiment, assess-
ing the generated responses from UniChart and our
ChartInstruct-Llama2 model across three metrics:
(a) Informativeness, (b) Relevance, and (c) Factual
Correctness.

For the study, we chose 150 samples that are un-

Informativeness Relevance Factual

UniChart(Masry et al., 2023) 3.2 2.74 2.756
ChartInstruct-Llama2 3.848 4.06 3.664

p − value 7.43 × 10
−4

4.42 × 10
−5

1.31 × 10
−8

Table 3: Human evaluation results for comparing between
the outputs of UniChart and ChartInstruct-Llama2. The first
two rows show the average of samples across each metric.
The last row shows the p-values resulted from performing
Mann-Whitney U Tests.

seen by both UniChart and ChartInstruct-Llama2.
Half of them are randomly from the ChartQA test
set, while the other half is from a small set of web-
crawled charts not used in the instruction genera-
tion pipeline. These samples contain queries from
Open-ended QA, Chart Summarization, and novel
instruction samples that involve a diverse set of
tasks for evaluation. In terms of task distribution,
75 (50%) of the study samples belonged to novel
tasks, while the other half comprised Chart-to-Text
and OpenCQA tasks (40 and 35 samples). We use
UniChart and ChartInstruct-Llama2 to generate re-
sponses for these samples. We asked 2 different
annotators to rate the sample’s responses based on
the mentioned factors from 1-5, having 100 sam-
ples in common to measure their agreement level1

toward the responses. We presented the responses
randomly to prevent any biases toward models.

From Table 3, we observe that ChartInstruct-
Llama2 significantly outperforms UniChart across
all three measures of human evaluation, especially
in relevance (4.06 vs. 2.74). Upon manual exami-
nation, we observed that UniChart often provides
a general summary of the chart without address-
ing specific task instructions (sometimes repeating
the same tokens), particularly evident in novel and
OpenCQA task samples. In contrast, ChartInstruct-
Llama2 consistently offers relevant answers for
these cases (see an example in Figure 7). Overall,
these findings affirm that our instruction-tuning ap-
proach enhances the model’s ability to adhere to
task instructions, thereby expanding its capacity
to address a wide array of new real-world chart-
related scenarios beyond the capabilities of the
state-of-the-art pre-trained model for the chart do-
main.

5.4 Error Analysis and Challenges

We reviewed our model’s results across various
samples to highlight the challenging aspects en-
countered.

1We found Cohen’s Kappa of 0.447 as the agreement
level.
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Value Estimation and Comparison Charts with
crowded or minimal details pose challenges in pair-
ing visual elements (e.g., bars) with their associated
values, estimating data values, and making compar-
isons based on visual attributes (compare based on
height). For instance, errors occurred in Q1 and Q2
of Figure 12, where the correct value associated
with specified items was not identified.
Factual Errors Although our models have shown
improved text generation quality and better utiliza-
tion of available information, they still produce
statements unsupported by the chart or factually
incorrect. In Q3 of Figure 12, the model produces
coherent text but also introduces factual errors.
Numerical Reasoning Despite advancements,
LLMs sometimes struggle with dependable math-
ematical operations (Gao et al., 2022; Liu et al.,
2022b). While achieving state-of-the-art perfor-
mance in ChartQA (Masry et al., 2022a) and at-
tempting to teach the model to use external tools,
LLMs still exhibit inconsistencies in calculations.
Q4 in Figure 12 illustrates the unreliability of
LLMs in some numerical reasoning tasks.

6 Conclusion

We present ChartInstruct, an automatically gener-
ated dataset of chart-related instructions and two
instruction systems designed for a broad range of
chart-related tasks. To the best of our knowledge,
this is the first instruction tuned dataset that not
only includes pre-defined tasks but also many new
types of tasks automatically distilled by LLMs. Our
model sets the state-of-the-art performance on four
different downstream tasks on various automatic
measures while the human evaluation further con-
firms the effectiveness of our approach on many
new kinds of tasks. We believe that our models
and instruction-tuning dataset will be valuable re-
sources for future research and encourage further
exploration into the unique problem domain of
chart understanding and reasoning.

Limitations

First, while our research covers key tasks such as
Chart Summarization, Chart Question-Answering,
Open-ended Chart Question-Answering, and Chart
Fact Checking, it does not cover other tasks, e.g.,
Chart-to-table. Second, while our manual inspec-
tion of instruction-tuning dataset suggests that the
novel tasks distilled by LLM are generally valid
and answerable, occasionally the outputs are in-

correct which may influence the instruction-tuning
process. Third, although our instruction tuning ap-
proach significantly enhances the model’s ability to
follow instructions compared to its counterpart, it
does not entirely prevent the model from deviating
from instructions. Fourth, despite the state-of-the-
art performance on the numerical reasoning task,
ChartQA, our model still struggle with complex nu-
merical questions. Finally, the model may produce
factually incorrect statements in the text generation
tasks.

Ethics Statement

During the dataset collection process, we were
mindful of several ethical considerations. The
first three sources of our chart corpus ( Statista2,
OWID3, OECD4) grant publication rights for aca-
demic use of their content. Moreover, the PlotQA
dataset (Methani et al., 2020) is a publicly available
dataset published under MIT license5. We plan
to release the chart images collected from these
resources along with their metadata. For the We-
bCharts corpus, we plan to release only the URLs
from which the chart images were collected follow-
ing relevant large-scale vision-language datasets
(e.g., LAION6). Furthermore, we release our mod-
els for only academic research purposes.

In our commitment to exclude harmful content
from our chart images, we employed Google search
for sourcing the chart images, leveraging its strict
policies against harmful content7. Moreover, all
sourced chart images underwent an initial auto-
matic filtering process using a chart classifier, fol-
lowed by a manual review phase. Additionally,
the WebCharts images were processed through the
Gemini API, which is designed to block unsafe
content8, thereby providing an additional layer of
assurance regarding the appropriateness of the con-
tent included in our dataset.

Given the generative nature of our models, there
is a potential risk of misuse where users can gen-
erate harmful or factually incorrect outputs, poten-

2https://www.statista.com/getting-started/publishing-
statista-content-terms-of-use-and-publication-rights

3https://ourworldindata.org/faqs#can-i-use-or-
reproduce-your-data

4https://www.oecd.org/termsandconditions/
5https://github.com/NiteshMethani/PlotQA
6https://laion.ai/
7https://blog.google/products/search/when-and-why-we-

remove-content-google-search-results/
8https://ai.google.dev/docs/safety_setting_gemini
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tially leading to the spread of misinformation. We
urge users to exercise responsibility and caution,
restricting their use of our models to academic and
research purposes only.

The human evaluation was performed by the au-
thors and their collaborators who were involved
with this research. As the focus of the research was
solely on assessing models’ capabilities, effective-
ness, and limitations in several chart understanding
tasks, the human evaluation performed by the au-
thors does not add any ethical issues or unwanted
biases. We present our instructions to the human
evaluators as well as a sample in Figures 14 and 15,
respectively. Moreover, there were no paid partici-
pants involved in the study. Finally, no information
has been used that can directly relate to the identifi-
cation of any person while evaluating the responses
from the models.

Acknowledgement

We would like to thank the anonymous review-
ers for their helpful feedback. This research was
supported by the Natural Sciences Engineering
Research Council (NSERC) of Canada and Canada
Foundation for Innovation (CFI).

References
Mubashara Akhtar, Oana Cocarascu, and Elena Simperl.

2023a. Reading and reasoning over chart images
for evidence-based automated fact-checking. arXiv
preprint arXiv:2301.11843.

Mubashara Akhtar, Nikesh Subedi, Vivek Gupta, Sa-
har Tahmasebi, Oana Cocarascu, and Elena Sim-
perl. 2023b. Chartcheck: An evidence-based fact-
checking dataset over real-world chart images. arXiv
preprint arXiv:2311.07453.

Alpaca. 2023. Alpaca. https://crfm.stanford.
edu/2023/03/13/alpaca.html.

Berkeley. 2024. Berkeley neural parser.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan

Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion
Stoica, and Eric P. Xing. 2023. Vicuna: An open-
source chatbot impressing gpt-4 with 90%* chatgpt
quality.

Jaemin Cho, Jie Lei, Hao Tan, and Mohit Bansal. 2021.
Unifying vision-and-language tasks via text genera-
tion. In ICML.

J. Choi, Sanghun Jung, Deok Gun Park, J. Choo, and
N. Elmqvist. 2019. Visualizing for the non-visual:
Enabling the visually impaired to use visualization.
Computer Graphics Forum, 38.

Hyung Won Chung, Le Hou, Shayne Longpre, Bar-
ret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, et al.
2022. Scaling instruction-finetuned language models.
arXiv preprint arXiv:2210.11416.

Wenliang Dai, Junnan Li, Dongxu Li, Anthony
Meng Huat Tiong, Junqi Zhao, Weisheng Wang,
Boyang Li, Pascale Fung, and Steven Hoi. 2023. In-
structblip: Towards general-purpose vision-language
models with instruction tuning.

Xuan Long Do, Mohammad Hassanpour, Ahmed Masry,
Parsa Kavehzadeh, Enamul Hoque, and Shafiq Joty.
2023. Do llms work on charts? designing few-shot
prompts for chart question answering and summa-
rization.

Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, Sylvain Gelly, Jakob
Uszkoreit, and Neil Houlsby. 2021. An image
is worth 16x16 words: Transformers for image
recognition at scale. In International Conference on
Learning Representations.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon,
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra-
ham Neubig. 2022. Pal: Program-aided language
models. arXiv preprint arXiv:2211.10435.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon,
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra-
ham Neubig. 2023. Pal: Program-aided language
models. In International Conference on Machine
Learning, pages 10764–10799. PMLR.

Tanya Goyal, Junyi Jessy Li, and Greg Durrett. 2022.
News summarization and evaluation in the era of
gpt-3.

Yucheng Han, Chi Zhang, Xin Chen, Xu Yang,
Zhibin Wang, Gang Yu, Bin Fu, and Hanwang
Zhang. 2023. Chartllama: A multimodal llm for
chart understanding and generation. arXiv preprint
arXiv:2311.16483.

Jonathan Herzig, Pawel Krzysztof Nowak, Thomas
Müller, Francesco Piccinno, and Julian Eisenschlos.
2020. TaPas: Weakly supervised table parsing via

10396

https://crfm.stanford.edu/2023/03/13/alpaca.html
https://crfm.stanford.edu/2023/03/13/alpaca.html
https://parser.kitaev.io/
http://arxiv.org/abs/2005.14165
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
http://arxiv.org/abs/2305.06500
http://arxiv.org/abs/2305.06500
http://arxiv.org/abs/2305.06500
http://arxiv.org/abs/2312.10610
http://arxiv.org/abs/2312.10610
http://arxiv.org/abs/2312.10610
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
http://arxiv.org/abs/2209.12356
http://arxiv.org/abs/2209.12356
https://doi.org/10.18653/v1/2020.acl-main.398


pre-training. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 4320–4333, Online. Association for Computa-
tional Linguistics.

Or Honovich, Thomas Scialom, Omer Levy, and Timo
Schick. 2022. Unnatural instructions: Tuning lan-
guage models with (almost) no human labor. arXiv
preprint arXiv:2212.09689.

Enamul Hoque and Maneesh Agrawala. 2019. Search-
ing the visual style and structure of d3 visualizations.
IEEE transactions on visualization and computer
graphics, 26(1):1236–1245.

Enamul Hoque, Parsa Kavehzadeh, and Ahmed Masry.
2022. Chart question answering: State of the art
and future directions. Journal of Computer Graphics
Forum (Proc. EuroVis), pages 555–572.

Kung-Hsiang Huang, Mingyang Zhou, Hou Pong Chan,
Yi R. Fung, Zhenhailong Wang, Lingyu Zhang, Shih-
Fu Chang, and Heng Ji. 2023. Do lvlms understand
charts? analyzing and correcting factual errors in
chart captioning.

Md Ashraful Islam, Mohammed Eunus Ali, and
Md Rizwan Parvez. 2024a. Mapcoder: Multi-agent
code generation for competitive problem solving.
arXiv preprint arXiv:2405.11403.

Mohammed Saidul Islam, Raian Rahman, Ahmed
Masry, Md Tahmid Rahman Laskar, Mir Tafseer Nay-
eem, and Enamul Hoque. 2024b. Are large vision
language models up to the challenge of chart com-
prehension and reasoning? an extensive investigation
into the capabilities and limitations of lvlms.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, Lélio Renard Lavaud,
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,
Thibaut Lavril, Thomas Wang, Timothée Lacroix,
and William El Sayed. 2023. Mistral 7b.

Shankar Kantharaj, Xuan Long Do, Rixie Tiffany
Leong, Jia Qing Tan, Enamul Hoque, and Shafiq Joty.
2022a. OpenCQA: Open-ended question answering
with charts. In Proceedings of the 2022 Conference
on Empirical Methods in Natural Language Process-
ing, pages 11817–11837, Abu Dhabi, United Arab
Emirates. Association for Computational Linguistics.

Shankar Kantharaj, Xuan Long Do, Rixie Tiffany Ko
Leong, Jia Qing Tan, Enamul Hoque, and Shafiq Joty.
2022b. Opencqa: Open-ended question answering
with charts. In Proceedings of EMNLP (to appear).

Shankar Kantharaj, Rixie Tiffany Leong, Xiang Lin,
Ahmed Masry, Megh Thakkar, Enamul Hoque, and
Shafiq Joty. 2022c. Chart-to-text: A large-scale
benchmark for chart summarization. In Proceedings
of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 4005–4023, Dublin, Ireland. Association for
Computational Linguistics.

Kenton Lee, Mandar Joshi, Iulia Turc, Hexiang Hu,
Fangyu Liu, Julian Eisenschlos, Urvashi Khandel-
wal, Peter Shaw, Ming-Wei Chang, and Kristina
Toutanova. 2022. Pix2struct: Screenshot parsing as
pretraining for visual language understanding. arXiv
preprint arXiv:2210.03347.

Chunyuan Li, Cliff Wong, Sheng Zhang, Naoto
Usuyama, Haotian Liu, Jianwei Yang, Tristan Nau-
mann, Hoifung Poon, and Jianfeng Gao. 2023a.
Llava-med: Training a large language-and-vision as-
sistant for biomedicine in one day. arXiv preprint
arXiv:2306.00890.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi.
2023b. Blip-2: Bootstrapping language-image pre-
training with frozen image encoders and large lan-
guage models. arXiv preprint arXiv:2301.12597.

Fangyu Liu, Julian Martin Eisenschlos, Francesco Pic-
cinno, Syrine Krichene, Chenxi Pang, Kenton Lee,
Mandar Joshi, Wenhu Chen, Nigel Collier, and
Yasemin Altun. 2022a. Deplot: One-shot visual lan-
guage reasoning by plot-to-table translation. arXiv
preprint arXiv:2212.10505.

Fangyu Liu, Francesco Piccinno, Syrine Krichene,
Chenxi Pang, Kenton Lee, Mandar Joshi, Yasemin
Altun, Nigel Collier, and Julian Martin Eisenschlos.
2022b. Matcha: Enhancing visual language pretrain-
ing with math reasoning and chart derendering. arXiv
preprint arXiv:2212.09662.

Fuxiao Liu, Xiaoyang Wang, Wenlin Yao, Jianshu Chen,
Kaiqiang Song, Sangwoo Cho, Yaser Yacoob, and
Dong Yu. 2023a. Mmc: Advancing multimodal
chart understanding with large-scale instruction tun-
ing. arXiv preprint arXiv:2311.10774.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae
Lee. 2023b. Visual instruction tuning. arXiv preprint
arXiv:2304.08485.

Yang Liu, Dan Iter, Yichong Xu, Shuohang Wang,
Ruochen Xu, and Chenguang Zhu. 2023c. G-eval:
Nlg evaluation using gpt-4 with better human align-
ment.

Ahmed Masry and Enamul Hoque. 2021. Integrating
image data extraction and table parsing methods for
chart question answering. Chart Question Answering
Workshop, in conjunction with the Conference on
Computer Vision and Pattern Recognition (CVPR),
pages 1–5.

Ahmed Masry, Parsa Kavehzadeh, Xuan Long Do, Ena-
mul Hoque, and Shafiq Joty. 2023. UniChart: A
universal vision-language pretrained model for chart
comprehension and reasoning. In Proceedings of the
2023 Conference on Empirical Methods in Natural
Language Processing (to appear). Association for
Computational Linguistics.

Ahmed Masry, Do Long, Jia Qing Tan, Shafiq Joty,
and Enamul Hoque. 2022a. ChartQA: A benchmark
for question answering about charts with visual and

10397

https://doi.org/10.18653/v1/2020.acl-main.398
https://doi.org/10.1111/cgf.14573
https://doi.org/10.1111/cgf.14573
http://arxiv.org/abs/2312.10160
http://arxiv.org/abs/2312.10160
http://arxiv.org/abs/2312.10160
http://arxiv.org/abs/2406.00257
http://arxiv.org/abs/2406.00257
http://arxiv.org/abs/2406.00257
http://arxiv.org/abs/2406.00257
http://arxiv.org/abs/2310.06825
https://doi.org/10.18653/v1/2022.emnlp-main.811
https://doi.org/10.18653/v1/2022.emnlp-main.811
https://doi.org/10.18653/v1/2022.acl-long.277
https://doi.org/10.18653/v1/2022.acl-long.277
http://arxiv.org/abs/2303.16634
http://arxiv.org/abs/2303.16634
http://arxiv.org/abs/2303.16634
https://doi.org/10.18653/v1/2022.findings-acl.177
https://doi.org/10.18653/v1/2022.findings-acl.177


logical reasoning. In Findings of the Association for
Computational Linguistics: ACL 2022, pages 2263–
2279, Dublin, Ireland. Association for Computational
Linguistics.

Ahmed Masry, Do Xuan Long, Jia Qing Tan, Shafiq Joty,
and Enamul Hoque. 2022b. Chartqa: A benchmark
for question answering about charts with visual and
logical reasoning. arXiv preprint arXiv:2203.10244.

Nitesh Methani, Pritha Ganguly, Mitesh M. Khapra,
and Pratyush Kumar. 2020. Plotqa: Reasoning over
scientific plots. In Proceedings of the IEEE/CVF Win-
ter Conference on Applications of Computer Vision
(WACV).

Jason Obeid and Enamul Hoque. 2020a. Chart-to-text:
Generating natural language descriptions for charts
by adapting the transformer model. In Proceedings
of the 13th International Conference on Natural Lan-
guage Generation, pages 138–147, Dublin, Ireland.
Association for Computational Linguistics.

Jason Obeid and Enamul Hoque. 2020b. Chart-to-text:
Generating natural language descriptions for charts
by adapting the transformer model. In Proceedings
of the 13th International Conference on Natural Lan-
guage Generation, pages 138–147. Association for
Computational Linguistics.

OCED. -. Organisation for economic co-operation
and development (oecd). https://www.oecd.org.
Accessed: Jan 2024.

OpenAI. 2023. GPT-4 Technical Report.

OpenAI-Blog. 2022. Chatgpt: Optimizing language
models for dialogue.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Car-
roll L. Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul Christiano, Jan Leike, and Ryan Lowe. 2022a.
Training language models to follow instructions with
human feedback.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul F Christiano, Jan Leike, and Ryan Lowe. 2022b.
Training language models to follow instructions with
human feedback. In Advances in Neural Information
Processing Systems, volume 35, pages 27730–27744.
Curran Associates, Inc.

OWID. -. Our world in data (owid). https://
ourworldindata.org/. Accessed: Jan 2024.

Md Rizwan Parvez, Jianfeng Chi, Wasi Ahmad, Yuan
Tian, and Kai-Wei Chang. 2023. Retrieval enhanced
data augmentation for question answering on privacy
policies. In Proceedings of the 17th Conference of

the European Chapter of the Association for Compu-
tational Linguistics, pages 201–210.

Pew. -. Pew research center. https://www.
pewresearch.org/. Accessed: Jan 2024.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186–
191, Brussels, Belgium. Association for Computa-
tional Linguistics.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark,
Gretchen Krueger, and Ilya Sutskever. 2021. Learn-
ing transferable visual models from natural language
supervision.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1–67.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta
Raileanu, Maria Lomeli, Luke Zettlemoyer, Nicola
Cancedda, and Thomas Scialom. 2023. Toolformer:
Language models can teach themselves to use tools.

Kantharaj Shankar, Leong Rixie Tiffany Ko, Lin Xi-
ang, Masry Ahmed, Thakkar Megh, Hoque Enamul,
and Joty Shafiq. 2022. Chart-to-text: A large-scale
benchmark for chart summarization. In In Proceed-
ings of the Annual Meeting of the Association for
Computational Linguistics (ACL), 2022.

Danqing Shi, Xinyue Xu, Fuling Sun, Yang Shi, and
Nan Cao. 2020. Calliope: Automatic visual data
story generation from a spreadsheet. IEEE Trans-
actions on Visualization and Computer Graphics,
27(2):453–463.

Aaron Smith, Christian Hardmeier, and Joerg Tiede-
mann. 2016. Climbing mont BLEU: The strange
world of reachable high-BLEU translations. In Pro-
ceedings of the 19th Annual Conference of the Eu-
ropean Association for Machine Translation, pages
269–281.

statista. -. Statista. https://www.statista.com/.
Accessed: 2024.

Gemini Team, Rohan Anil, Sebastian Borgeaud,
Yonghui Wu, Jean-Baptiste Alayrac, and Jiahui Yu
et al. 2023. Gemini: A family of highly capable
multimodal models.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

10398

https://doi.org/10.18653/v1/2022.findings-acl.177
https://aclanthology.org/2020.inlg-1.20
https://aclanthology.org/2020.inlg-1.20
https://aclanthology.org/2020.inlg-1.20
https://www.aclweb.org/anthology/2020.inlg-1.20
https://www.aclweb.org/anthology/2020.inlg-1.20
https://www.aclweb.org/anthology/2020.inlg-1.20
https://www.oecd.org
http://arxiv.org/abs/2303.08774
https://openai.com/blog/chatgpt/
https://openai.com/blog/chatgpt/
https://doi.org/10.48550/ARXIV.2203.02155
https://doi.org/10.48550/ARXIV.2203.02155
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://ourworldindata.org/
https://ourworldindata.org/
https://www.pewresearch.org/
https://www.pewresearch.org/
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/W18-6319
http://arxiv.org/abs/2103.00020
http://arxiv.org/abs/2103.00020
http://arxiv.org/abs/2103.00020
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://arxiv.org/abs/2302.04761
http://arxiv.org/abs/2302.04761
https://aclanthology.org/W16-3414
https://aclanthology.org/W16-3414
https://www.statista.com/
http://arxiv.org/abs/2312.11805
http://arxiv.org/abs/2312.11805


Peifang Wang, Olga Golovneva, Armen Aghajanyan,
Xiang Ren, Muhao Chen, Asli Celikyilmaz, and
Maryam Fazel-Zarandi. 2023a. Domino: A dual-
system for multi-step visual language reasoning.
arXiv preprint arXiv:2310.02804.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Al-
isa Liu, Noah A. Smith, Daniel Khashabi, and Han-
naneh Hajishirzi. 2023b. Self-instruct: Aligning lan-
guage models with self-generated instructions. arXiv
preprint arXiv:2212.10560.

Qinghao Ye, Haiyang Xu, Guohai Xu, Jiabo Ye, Ming
Yan, Yiyang Zhou, Junyang Wang, Anwen Hu,
Pengcheng Shi, Yaya Shi, Chenliang Li, Yuanhong
Xu, Hehong Chen, Junfeng Tian, Qian Qi, Ji Zhang,
and Fei Huang. 2023. mplug-owl: Modularization
empowers large language models with multimodal-
ity.

Mingyang Zhou, Yi Fung, Long Chen, Christopher
Thomas, Heng Ji, and Shih-Fu Chang. 2023. En-
hanced chart understanding via visual language pre-
training on plot table pairs. In Findings of the As-
sociation for Computational Linguistics: ACL 2023,
pages 1314–1326, Toronto, Canada. Association for
Computational Linguistics.

Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and
Mohamed Elhoseiny. 2023. Minigpt-4: Enhancing
vision-language understanding with advanced large
language models. arXiv preprint arXiv:2304.10592.

Appendices
A Chart Instruction Data Generation

A.1 Chart Corpora Collection
WebCharts Collection: For collecting charts, we
conducted image queries on Google and collected
chart images from 157 unique source domains. The
list of keywords we use are: "chart images," "charts
","graphs," "visual data", and "data visualization".
In each query, we included the web domain (e.g.,
"site: nytimes.com charts") and retrieved the top
image search results. We developed a binary VIT
classifier (Dosovitskiy et al., 2021) to distinguish
chart images from non-chart images in our search
results. For training, we manually labeled 1,200
images and split them into 8:1:1 ratios for train, val-
idation, and test sets. The classifier achieved 91%
accuracy on the test set. Using this classifier, we
filtered out non-chart images from the WebCharts
dataset, followed by manual removal of any re-
maining non-chart images to finalize the dataset.
However, these charts lacked the underlying data
tables necessary for instruction generation. There-
fore, we automatically extracted the data tables and
chart titles using Gemini Pro Vision (Team et al.,
2023).

A.2 LLMs used for Instruction Generation
Table 4 shows the models used to generate the data
for different tasks.

A.3 Input Prompts for Instruction Generation
Figure 5 shows an example prompt to LLM and the
corresponding output for a fact-checking task.

A.4 Instruction Dataset Analysis
WebCharts corpus: Figure 8 shows the chart type
statistics for WebCharts corpus. Since we do not
have access to the chart types in this corpus, we
manually tagged random 200 images from it to
estimate the chart type distribution.

Downstream Task/Model GPT-3.5 GPT-4

Chart Summarization ✓ ✗

Open-ended QA ✓ ✗

Fact Checking ✓ ✗

Chain-of-Thought Reasoning ✗ ✓

Code Generation ✓ ✓

Novel tasks ✗ ✓

Table 4: Models used to generate the data for each different
task. Choices are based on task complexity and costs.
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End-to-End System Pipeline System

Experiment # Epochs Learning Rate Batch Size Hours # Epochs Learning Rate Batch Size Hours

Alignment

Flan-T5-XL 4 2e-3 128 7 - - - -
Llama 2 3 2e-3 64 24 - - - -

Instruction Tuning

Flan-T5-XL 3 2e-5 32 8 3 1e-4 64 17
Llama 2 3 2e-5 32 20 3 1e-4 64 21

Finetuning on downstream tasks (Flan-T5-XL)

ChartQA 10 1e-4 128 3 10 1e-4 128 7
OpenCQA 10 1e-4 128 1.5 10 1e-4 128 3
Chart-to-text Pew 10 1e-4 128 2 10 1e-4 128 3
Chart-to-text Statista 10 1e-4 128 4 10 1e-4 128 8
ChartFC 10 1e-4 128 1 10 1e-4 128 2

Finetuning on downstream tasks (Llama 2)

ChartQA 10 2e-5 32 6 10 1e-4 64 8
OpenCQA 10 2e-5 32 2 10 1e-4 64 4
Chart-to-text Pew 10 2e-5 32 2 10 1e-4 64 4
Chart-to-text Statista 10 2e-5 32 6 10 1e-4 64 9
ChartFC 10 2e-5 32 3 10 1e-4 64 3

Table 5: Training details for our instruction tuning and downstream tasks finetuning experiments.

Figure 5: An example prompt to LLM and the corre-
sponding output for a fact-checking task. The input
consists of the task description, chart data, any output
constraints, and output format.

Figure 6: The architecture for our pipeline models: the
encoder is frozen, while LLM updates its parameters.

A.5 Modeling
Figure 6 shows the pipeline system architecture we
use for our models.

A.6 Ablation Studies
To understand the impact of the different in-
struction tuning tasks on the performance of
our model, we conducted ablation studies on
the ChartQA dataset using our top performing
model, ChartInstruct-Flan-T5-XL (Pipeline Sys-
tem). These ablation experiments involved the re-
moval of one task at a time, except for reasoning
tasks, which were grouped and removed together.
Due to computational constraints, we finetuned our
model on the instruction tuning data for only 1
epoch only, as opposed to the 3 epochs used in the
primary experiment. All other hyperparameters re-
mained consistent with those detailed in our main
experiments, as outlined in Table 5, including the
fine-tuning experiments on the downstream tasks.

As depicted in Table 7, removing tasks like Chart
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Task Group #Examples

Pattern and Outlier Detection 16,977
Statistical Analysis 9,148
Extremum Identification 6,545
Data Correlations 6,142
General Comparison 4,709
Relative Change Calculation 4,108
Time Series and Future Value Forecasting 1,944
Data Point Identification 1,670
Performance and Result Analysis 1,396
Data Categorization 533
Distribution analysis 280

Table 6: Number of generated examples for various groups
of new tasks created by GPT-4.

ChartQA
Model (RA)
ChartInstruct-Flan-T5-XL 70.08
No Open-ended Question Answering 69.68
No Chart Summarization 69.76
No Fact Checking 66.28
No Novel Tasks 69.20
No CoT Reasoning/Coding 63.36

Table 7: ChartInstruct ablations on ChartQA bench-
mark.

Summarization and Open-ended Question Answer-
ing had a negligible effect on the performance
on ChartQA. However, a more significant perfor-
mance decline was observed upon the exclusion
of the fact-checking task, which is important for
enhancing the model’s data retrieving and reason-
ing capabilities. This decline was further amplified
when reasoning-associated tasks (CoT and Coding)
were removed, underscoring their critical role in
improving the numerical reasoning capabilities of
our model.

A.7 Human Evaluation Study

Figure 7 Shows a comparison between
ChartInstruct-Llama2 and UniChart.

A.8 Error Analysis

Figure 12 show a few samples which our model
faced a challenge generating factual and accurate
responses for. In samples Q1 and Q2, our model
fails to find the right value for the expected target
either by estimation, matching or comparison to
other visual elements. In Q3, Although It generates
a cohesive summary, it produces some statements
that are not true. Q4 shows a numerical error that
ChartInstruct-Llama2 didn’t perform the subtrac-
tion operation correctly.

Figure 7: Comparison of ChartInstruct-Llama2 and Unichart
over two WebChart novel task samples

Figure 8: Chart types in WebChart Corpus.

A.9 Sample Outputs from ChartInstruct
In Figure13, we provide some sample outputs on
various tasks.

A.10 Generated Data Samples
The input prompt for each specific task is provided
through Tables 8-14.
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Fact Checking Prompt for GPT-3.5
Prompt:

Analyze a chart and generate pairs of claims and verdicts about its data. Half of the claims should be supported by

the chart’s data, while the other half are refuted. Avoid using terms like ’rows’, ’columns’, or ’elements’ from the

data table; refer to ’chart’ or ’chart image’ instead. Each response must state whether it ’supports’ or ’refutes’ the

question, followed by a brief explanation. The claims should cover comparisons of values or trends, basic statistical

values (maximum, minimum, mean, median, mode) without using exact numbers from the chart. Ensure a diverse

range of claims addressing various visual aspects of the chart, resulting in 5-6 turns of C&V. Put ˜ before starting

each claim, and ˆ before each answer.

Title:

Angola: Population from 2009 to 2019 by gender(in million)

Table:

Characteristic, Female, Male

2019, 16.08, 15.74

2018, 15.57, 15.24

2017, 15.07, 14.75

2016, 14.58, 14.27

2015, 14.09, 13.79

2014, 13.62, 13.32

2013, 13.15, 12.86

2012, 12.69, 12.41

2011, 12.25, 11.97

2010, 11.81, 11.55

2009, 11.38, 11.14

Extracted Instruction:

Claim:

In 2019, there was a significant decrease in the total population of males compared to 2018.

Verdict:

Refutes. The chart indicates a slight increase in the population of males from 2018 to 2019, as the value for males in

2019 (15.74 million) is higher than that in 2018 (15.24 million), contradicting the claim of a significant decrease.

Table 8: An example of prompt for Fact Checking Instruction Generation using GPT-3.5-turbo and an extracted
sample

Figure 9: A histrogram of Instruction’s Input Length
distributions

Figure 10: A histrogram of Instruction’s Output Length
distributions
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Figure 11: Few generated instruction samples. The Top row shows correct generated instructions. The bottom row shows
some of the instructions involve errors: (4) generated wrong answer, (5) not following the description - wrong answer, (6) wrong
answer. The errors are shown in red.

Figure 12: Some samples that our ChartInstruct-Llama2 and Unichart had errors in their outputs. The errors are shown in red.
Unichart often does not follow the queries and occasionally repeats tokens. On the other hand, ChartInstruct-Llama2 tends to
adhere better to the instructions but occasionally encounters factual and other errors.
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Figure 13: Sample outputs generated by ChartInstruct-Llama2 over various tasks such as LLM induced Data
Correlation, Open-EndedCQA, Coding, and Chart Summarization

Summarization Prompt for GPT-3.5
Prompt:

Summarize a chart based on a provided data table, highlighting key aspect such as data background, maximum
and minimum values, value comparisons, and trends across categories. The summary should not directly mention
the input table, instead referring to the ’chart’ or ’chart elements’. You’ll also be given the title of the chart to
get a context on what is shown in the chart. Do not use the title as it is like "the chart is titles TITLE", always
try to infersomething new based on it. Include a brief explanation of the elements represented on the x-axis and
y-axis. The entire summary should be cohesive, in paragraph form without bullet points, and not exceed 150 words.
Conclude with a final sentence that encapsulates the most significant findings from the chart.
Title:
Title: Annual Change in Oil Consumption
Table:
Characteristic Romania Uzbekistan Slovenia Australia Canada
1966 5.31, -, -, 34.29, 35.92
1970 11.43, -, -, 28.99, 54.29
1980 -10.61, -, -, -13.87, -15.1
1990 19.19, -36.32, -, 7.35, -12.24
2000 7.35, 1.64, 0.01, -0.81, 1.64
2010 4.5, -5.71, 1.64, 34.29, 31.84
Extracted Instruction:
Summary:
The chart depicts the annual change in oil consumption across five countries over several decades. On the x-axis,
time spans from 1966 to 2010, while the y-axis represents the percentage change in oil consumption. Each line
on the chart represents a different country: Romania, Uzbekistan, Slovenia, Australia, and Canada. Maximum
values are observed in Australia and Canada in various years, while Romania shows relatively stable fluctuations.
Uzbekistan experiences significant fluctuations, including a notable decrease in 1990. Slovenia and Canada display
a generally increasing trend. Overall, Australia and Canada exhibit the highest peaks and most consistent growth in
oil consumption over the period analyzed.

Table 9: An example of prompt for Summarization Instruction Generation using GPT-3.5-turbo and an extracted
sample
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OCQA Prompt for GPT-3.5
Prompt:

Generate question-answer pairs based on a data table representing a chart. You will also be given the title to have
additional context. The questions should vary in complexity, ranging from simple ’what’, ’which’, ’when’ questions
to more challenging ’how’ and ’why’ questions. Refer to ’chart’ or ’chart elements’ instead of the data table. Ensure
the answers are cohesive and fluent, using diverse vocabulary, with each answer spanning 4 to 5 sentences. The
questions should encompass different aspects related to a chart figure. Each turn of conversation should consist of 5
or 6 question-answer pairs, covering a range of insights, explanations, and complexities as mentioned. Try to avoid
generic questions such as what is the title or subtitle of the charts. Having questions with more challenging targets
is preferable. There’s no specific order for the difficulty of the questions. Put ˜ before starting each question, and ˆ
before each answer.
Title:
How often do you read magazinzs(by age)
Table:
Characteristic Never Rarely Occasionally Often
18-29 9% 30% 34% 27%
30-39 6% 14% 39% 41%
40-49 15% 29% 33% 23%
50+ 12% 24% 44% 20%
What is the trend in magazine reading frequency among different age groups?
Magazine reading frequency varies significantly across age groups. Young
adults aged 18-29 predominantly fall into the "Occasionally" category, with
34% indicating they read magazines occasionally. In contrast, those
aged 30-39 and 40-49 are more likely to read magazines "Often," with 39%
and 33% respectively. However, among individuals aged 50 and above, the
frequency of magazine reading declines, with only 20% indicating they
read often.

Table 10: An example of prompt for OCQA Instruction Generation using GPT-3.5-turbo and an extracted sample

COT Prompt for GPT-4
Prompt:

You’ll be given a data table which is an underlying data table for a chart. Although you can’t see the chart, you
should mention any references that come up to the chart instead of the table. Your responses must be limited to
question-and-answer pairs related to the data, strictly avoiding any conversational language for explanation or fillers.
Questions must be at most two-part answer. You have to come up with six pairs of questions and answers that ask
for a chart value, or comparisons not asking for a number, and a general trend. There must be at least two retrieval
questions and one general trend. To come up with your answer, you have to break down your solution into several
basic steps. In each step, you explain what are you going to do, and if that is a mathematical operation, you have to
mention the formula and fill it with the respective numbers. Avoid using = operator in your calculations. If you
are comparing two or several numbers retrieved from the table, you must mention them. Consider the following
template: " The Answer is <ANSWER>." to wrap up your generated steps, replace <ANSWER> in the mentioned
template with your final answer word in the most minimalistic way without ANY explanations or assignment. Please
return the list of questions and responses in json format. I should be able to parse it. Each dictionary must contain 3
field ’question’, ’steps’, ’answer’ filled with the requested formation.
Title:
Average price od diesel fuel in France between January 2023 and December 2018(in euroes per liter)
Table:
Characteristic 2013 2014 2015 2016 2017 2018
Dec 1.39 1.16 1.11 1.18 1.28 1.42
Nov 1.39 1.31 1.17 1.24 1.27 1.47
Oct 1.41 1.36 1.22 1.25 1.24 1.53
Sep 1.43 1.36 1.18 1.19 1.22 1.48
Aug 1.41 1.38 1.21 1.16 1.2 1.45
Jul 1.43 1.39 1.27 1.21 1.17 1.45
Jun 1.41 1.39 1.28 1.21 1.19 1.46
May 1.41 1.38 1.3 1.07 1.2 1.44
Apr 1.46 1.38 1.27 1.28 1.25 1.4
Mar 1.46 1.41 1.39 1.13 1.26 1.37
Feb 1.49 1.41 1.21 1.08 1.26 1.39
Jan 1.46 1.4 1.17 1.1 1.27 1.4
Extracted output:
{ "question": "What is the trend in diesel fuel prices from January to December in 2018?",
"steps": "To determine the trend, observe the prices from January to December in 2018. Start with January (1.4) and
end with December (1.42), noting any significant increases or decreases throughout the year.",
"answer": "The Answer is increase." }

Table 11: An example of Variable-Independent prompt for COT instruction Generation for GPT-4-preview and an
extracted sample
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COT Prompt for GPT-4-preview
Prompt:

First of all, know that you must act like you can’t do basic match even addition or subtraction. However, you might
feel a need for calculation in your incoming tasks. In that case, you can tell me to calculate by calling Calculator(X
= OPERATION). <OPERATION> can be executable python code and X is a variable. Use the defined variables
in the next sentences when needed like a python code. Do not define the variables in the text. Use this format
"DEFINE(variable_name=X)" where X is the value of the variable. You’ll be given a datatable in json string format
which is an underlying datatable for a chart. Although you can’t see the chart, you should mention any references
that come up to the chart instead of the table. Your responses must be limited to question and answer pairs related to
the data, strictly avoiding any conversational language or fillers. You have to come up with six pairs of question and
answers that ask for values that require calculations such as differences, totals, and statistical measures such as
median, mode, and mean. To come up with your answer, you have to break down your solution into several basic
steps. In each step, you explain what are you going to do, and if that is a mathematical operation, you have to
mention the formula and fill it with the respected numbers. If you want to list some numbers, do it when there are
less than 8 of them. Since you are unable to do calculations, you may return one of the defined variables from your
previous steps as your final answer. Consider the following template: " The Answer is <ANSWER>." to wrap up
your generated steps, replace <ANSWER> in the mentioned template with your final answer word without ANY
explanations or assignment. Please return the list of questions and responses in a json format. I should be able
to parse it. Each dictionary must contain 3 field ’question’, ’steps’, ’answer’ filled with the requested formation.
The answer section must only involve a python variable previously defined. No numbers should appear in this section.

Title:
Driver Satisfaction with Uber in United States from 2017 to 2019
Table:
Characteristic 2017 2018 2019
Strongly disagree 10.80% 8.20% 13.90%
Somewhat disagree 25.40% 17.30% 22.50%
Neither agree nor disagree 14.40% 16.30% 19.10%
Somewhat agree 39.70% 43.40% 34.10%
Strongly agree 9.70% 14.80% 10.50%
Extracted Output:
{ "question": "What is the increase in the percentage of drivers who somewhat agree from 2017 to 2018?",
"steps": "DEFINE(somewhat_agree_increase=43.4-39.7)", "First, I will subtract the percentage of drivers who
somewhat agree in 2017, which is 39.7%, from the percentage of drivers who somewhat agree in 2018, which is
43.4%.",
"answer": "The Answer is somewhat_agree_increase." }

Table 12: An example of Variable Dependent prompt for Chain of Thought Instruction Generation using GPT-4 and
an extracted sample

Figure 14: Evaluation Rules of the human study for the three following metrics: informativeness, relevance, and
factual correctness.
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Coding Prompt for GPT-3.5
Prompt: You are a programmer expert in python. I want to analyze chart data. However, I can only provide you the
underlying data as json line format representing the chart instead of its actual image. The underlying data involves
different elements. I want you to come up with pairs of insightful questions, and a python function that answers the
insightful question. Here are the requirements for the questions and answers:
- Do not refer to the table in the question. Mention " from the chart" if needed.
- Your output is limited to several questions followed by a Python script, strictly avoid providing any explanation
before or after questions and answers such as stating the question type.
- Use ˜ at the beginning of each question and ˆ after finishing each questions.
- question and answers should appear one by one in the following format: Questionˆ, Python Script, Questionˆ,
Python Script.
- Nothing in English should appear in the output other than the questions.
- Act like you don’t have access to the table I have given you. As a result, you must define the given data at the
beginning of each function.
- Inside each generated function, Define a dictionary called information that involves the data split such as labels
and values.
- The Python script must only be a function and not anything else such as writing a body for the code and calling the
function.
- The function should be independent and not rely on any sources out of that function.
- The generated script must be executable by Python, so avoid writing anything such as ... or // in between.
- The functions must not receive any input arguments.
- Everything that is needed must be defined in the function.
- Variable independent are defined as follows: Questions that want to return a
string as response. The funtion must return a string which either "Yes"/"No" based on the conditions, trends, or a
string that explains something like which characteristic does this number belong to?
- Variable dependent questions are defined as follows: Questions that ask for either a characteristic which is not
known and must be found, or a statistical metric and measures that must be calculated. The output would be either a
calculated number or a variable.
- Retrieval Questions: Questions that ask for characteristics or values represented in the chart.
- Hard questions: Questions that involve applying multiple filters and calculating advanced statistical metrics.
Come up with 8 question for each table in the following order, two variable independent questions, and a mix of
three retrieval and variable dependent questions and three hard questions.
Title:
Percentage of Population in England who gave to charity from 2013/14 to 2019/20 by age group
Table:
Characteristic 16 to 24 25 to 34 35 to 49 50 to 64 65 to 74 75 and over
2013/14 74% 77% 82% 84% 89% 89%
2014/15 63% 70% 79% 82% 85% 89%
2015/16 60% 70% 76% 83% 85% 83%
2016/17 57% 68% 78% 80% 85% 85%
2017/18 57% 69% 75% 80% 85% 83%
2018/19 59% 69% 76% 79% 82% 83%
2019/20 55% 66% 77% 79% 84% 85%

Extracted Output:

Question: What is the standard deviation of the percentage of population giving to charity for the age group 35 to

49 across all years?

Answer:

def std_deviation_age_group_3549():

data = [ {"year": "2013/14", "16 to 24": 74, "25 to 34": 77, "35 to 49": 82, "50 to 64": 84, "65 to 74": 89, "75 and

over": 89},

{"year": "2014/15", "16 to 24": 63, "25 to 34": 70, "35 to 49": 79, "50 to 64": 82, "65 to 74": 85, "75 and over": 89},

{"year": "2015/16", "16 to 24": 60, "25 to 34": 70, "35 to 49": 76, "50 to 64": 83, "65 to 74": 85, "75 and over": 83},

{"year": "2016/17", "16 to 24": 57, "25 to 34": 68, "35 to 49": 78, "50 to 64": 80, "65 to 74": 85, "75 and over": 85},

{"year": "2017/18", "16 to 24": 57, "25 to 34": 69, "35 to 49": 75, "50 to 64": 80, "65 to 74": 85, "75 and over": 83},

{"year": "2018/19", "16 to 24": 59, "25 to 34": 69, "35 to 49": 76, "50 to 64": 79, "65 to 74": 82, "75 and over": 83},

{"year": "2019/20", "16 to 24": 55, "25 to 34": 66, "35 to 49": 77, "50 to 64": 79, "65 to 74": 84, "75 and over": 85}

]

information = {"years": [d["year"] for d in data], "age_groups": ["16 to 24", "25 to 34", "35 to 49", "50 to 64", "65

to 74", "75 and over"]}

percentages = [d["35 to 49"] for d in data]

mean = sum(percentages) / len(percentages)

variance = sum((x - mean) ** 2 for x in percentages) / len(percentages)

std_dev = variance ** 0.5

return std_dev

Table 13: An example of our coding prompt for GPT-3.5 and an extracted sample
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Novel Prompt for GPT-4
Prompt:

Generate different instruction-tuning tasks for an LLM that we are trying to tune for Chart Understanding. Your
response should be in a json format where each example has three fields: task type, input: which only asks a
question related to the task type and the given data, and expected output: which is the answer to the input question
based on the input information. Use the following chart data to generate 10 unique tasks that do not overlap with
two specific tasks: Summarizing the Chart, and single point information retrieval.
Title: Median Feature Film Budget In the United Kingdom (UK) from 2008 to 2019, by production type(in million
GBP)
Table:
Production category Inward investment films Domestic UK films Co-productions
2008 17.2 0.2 1.4
2009 18.45 0.2 1.35
2010 13.09 0.13 2.5
2011 17.64 0.18 1.1
2012 3 0.15 1.03
2013 10.84 0.16 1.06
2014 10.32 0.25 1.44
2015 6.07 0.28 0.9
2016 8.23 0.29 2
2017 9.33 0.3 3.51
2018 10.4 0.51 2.57
2019 7.7 0.75 3.22
Extracted Instruction:
"Task: "Range Detection",
"input":What range of median budgets did domestic UK films have over the period?
"expected_output": "Domestic UK films had median budgets ranging from 0.13 million GBP in 2010 to 0.75
million GBP in 2019."

Table 14: An example of prompt for Novel Instruction Generation for GPT-4-preview and an extracted sample
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Figure 15: An example of the human study evaluation setup.
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