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Abstract

The sound codec’s dual roles in minimizing
data transmission latency and serving as tok-
enizers underscore its critical importance. Re-
cent years have witnessed significant devel-
opments in codec models. The ideal sound
codec should preserve content, paralinguis-
tics, speakers, and audio information. How-
ever, the question of which codec achieves
optimal sound information preservation re-
mains unanswered, as in different papers, mod-
els are evaluated on their selected experimen-
tal settings. This study introduces Codec-
SUPERB, an acronym for Codec Sound pro-
cessing Universal PERformance Benchmark.
It is an ecosystem designed to assess codec
models across representative sound applica-
tions and signal-level metrics rooted in sound
domain knowledge. Codec-SUPERB simplifies
result sharing through an online leaderboard,
promoting collaboration within a community-
driven benchmark database, thereby stimulat-
ing new development cycles for codecs. Fur-
thermore, we undertake an in-depth analysis
to offer insights into codec models from both
application and signal perspectives, diverging
from previous codec papers mainly concentrat-
ing on signal-level comparisons. Finally, we
will release codes, the leaderboard, and data to
accelerate progress within the community.

1 Introduction

Neural sound codec models were initially intro-
duced to compress sound for efficient data transmis-
sion. The encoder of the codec model encodes the
sound into codec codes, which are then transmitted.
Subsequently, the codec decoder then resynthesizes
the sound using the received codes.

Neural codec codes can be utilized as tokens in
sound language modeling (LM). LM has proven

*equal first contribution, †equal second contribution, order
is sorted randomly.

highly successful in Natural Language Process-
ing (NLP). Sound data contains semantic content
and rich information about speaker, emotion, and
general audio, offering deeper possibilities for lan-
guage model applications. Researchers recently
explored the potential of neural codecs (Défossez
et al., 2022; Zeghidour et al., 2021; Borsos et al.,
2023b; Wu et al., 2023; Yang et al., 2023a; Du et al.,
2023; Zhang et al., 2023a; Kumar et al., 2023) as
suitable tokenizers for converting continuous sound
into discrete tokens, which can be employed in
sound LM (Wu et al., 2024; Borsos et al., 2023a;
Rubenstein et al., 2023; Agostinelli et al., 2023;
Wang et al., 2023a; Zhang et al., 2023b; Wang et al.,
2023c; Yang et al., 2023b; Chen et al., 2023; Wang
et al., 2023d; Copet et al., 2023; Lan et al., 2023;
Kreuk et al., 2022). Numerous high-performance
neural codecs have been developed.

The dual roles of minimizing data transmission
latency and serving as sound LM tokenizers require
an ideal codec to preserve content, paralinguistic,
speaker, and audio information under low bitrate
measured by thousand bits per second (kbps). How-
ever, the question of which codec achieves the most
optimal information preservation across various as-
pects remains unanswered, as codec models are
evaluated with various experimental settings in dif-
ferent papers. Furthermore, prior codec papers
mainly compare performance based on signal-level
metrics, neglecting downstream application angles.

To address the aforementioned limitations, we in-
troduce Codec-SUPERB, shorted for Codec Sound
processing Universal PERformance Benchmark,
which firstly provides a holistic comparison of the
current state-of-the-art codecs under the same, fair
and comprehensive experimental setting. We high-
light the following features of Codec-SUPERB:

1. Diverse angles: Codec-SUPERB conducts
a comprehensive analysis to provide insights
into codec models from both application and
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Figure 1: Illustration of the Codec-SUPERB platform from two angles: developers and users. From the perspective
of developers, they develop and evaluate new codec models across a spectrum of sound applications and signal-
level metrics defined in our codebase. Developers then submit their prediction files to the online leaderboard to
expand the benchmark database and facilitate comparisons with other codec models. Ultimately, developers utilize
the codebase’s visualization and statistical tools to analyze performance discrepancies among Codec-SUPERB
applications and metrics, thereby gaining invaluable insights for future improvement directions. From the users’
perspective, they can contribute datasets and metrics and pick codec models for their downstream application usage.

signal perspectives, diverging from previous
codec papers that predominantly focus on
signal-level comparisons.

2. Extensive coverage: Codec-SUPERB ex-
haustively standardizes the comparison of
codec models across six distinct codec models,
each with its unique training settings, result-
ing in 19 distinct codec models. We evaluate
19 codec models across four applications to
include comparison for content, speaker, par-
alinguistic, and audio information. Further-
more, we conduct signal-level comparisons
across 20 datasets spanning speech, audio, and
music data categories.

3. Community collaboration: We established
an online leaderboard to showcase results,
facilitating easy integration of future codec
models for public submissions and support-
ing comparative analysis with statistical and
visualization tools (Section 2). We make all
resources in Section 2 open-source, welcom-
ing researchers to contribute and promote ad-
vancements within the codec community.

2 Codec-SUPERB Platform design

As shown in Figure 1, Codec-SUPERB is designed
to foster sound codec development by providing
a platform for connecting codec developers and
codec users. Codec-SUPERB is user-friendly for
reproducing the model evaluation, assessing the
custom codec models, contributing datasets and
metrics, and conducting comparative analyses for
model characteristics. This is facilitated by three
core components: an easy-to-follow codebase, a
community-driven leaderboard website, and well-
selected datasets.

2.1 Codebase
The Codec-SUPERB evaluation processes are con-
ducted through our GitHub repository 1. Within
this repository, codec models are referred to as
base_codec models, intentionally designed to be
disentangled from evaluations for downstream ap-
plications and signal-level metrics. This disen-
tanglement enables users to seamlessly switch be-
tween various base_codec and evaluation combina-
tions or add their own base_codec model for evalu-

1Codec-SUPERB codebase
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Figure 2: The input sound is compressed using the
codec encoder and resynthesized using the codec de-
coder. Then the resynthesized sound is evaluated from
signal-level and application-level angles. Three cate-
gories of dataset, speech, audio, and music, are evalu-
ated using five signal-level metrics and one overall score.
Also, 4 downstream applications are evaluated.

ation across all sound applications and signal-level
metrics. The codebase is closely combined with
the Codec-SUPERB official leaderboard website 2,
enabling the automatic generation of correspond-
ing submission files upon completion of each codec
evaluation. Users can then upload these submission
files, thus effortlessly contributing to expanding the
benchmark database.

2.2 Website
Our leaderboard website plays a pivotal role in
the Codec-SUPERB by continuously expanding
the benchmark database, ensuring Codec-SUPERB
remains more than just a static leaderboard to show-
case our own evaluation results. Initially, we evalu-
ate 19 codec models and submit them to our online
leaderboard. To lower the participation threshold,
the website also accepts submissions with partial
results based on the developers’ interests from spe-
cific angles when evaluating all results is not neces-
sary and cost-prohibitive. Additionally, the website
offers helpful visualization tools for comparing de-
tailed characteristics of different models, as demon-
strated in the experiment section.

2.3 Datasets
Neural codec models are challenging to compare,
even when the source code is available, due to
slight variations in evaluation dataset settings. This
issue is obvious in the sound domain, where dif-
ferences in sound sampling rates, data partition

2Codec-SUPERB leaderboard

rules, and waveform preprocessing methods can
yield significantly different results. To address this
challenge and align with sound domain expertise,
we curate a comprehensive dataset spanning 20
datasets, comprising a diverse array of speech, mu-
sic, and audio data. These datasets are partitioned
according to sound domain knowledge. This ex-
tensive dataset is publicly accessible and readily
available through our leaderboard. We strive to
cover as many different datasets and commonly
used metrics as possible, presenting all results so
users can select the metrics they wish to see and
require according to their needs.

3 Holistic evaluation in Codec-SUPERB

Codec models are assessed across diverse experi-
mental settings in various papers. Moreover, pre-
vious codec studies primarily focus on compar-
isons using signal-level metrics on their selected
datasets, overlooking evaluations from downstream
application angles. Thus, we make efforts to ad-
dress the above limitations by including diverse
datasets, comprehensive signal-level metrics, and
mainstream sound applications. The detailed eval-
uation process is illustrated in Figure 2.

3.1 Signal-level evaluation

We utilize the codec models to resynthesize the
datasets in Section 3.1.1. Additionally, we em-
ploy carefully selected objective metrics outlined
in Section 3.1.2 and a well-designed overall score
detailed in Section 3.1.3 to do signal-level compar-
isons for different codec models.

3.1.1 Datasets
Previous studies typically focus on non-
comprehensive categories of data and often
rely on a limited number of datasets for evaluation.
We select representative sound datasets spanning
three mainstream sound categories: speech,
general audio, and music. This is because they
offer comprehensive perspectives on sound. We
incorporate all categories across a total of 20
datasets. To ensure fair comparisons, we stan-
dardize the dataset settings, including sampling
rate and partition rules. All datasets and partition
rules are released on our website. This diverse
dataset comprehensively evaluates each codec’s
performance across various sound types.

Speech: Sound generated by human articula-
tion. It is typically characterized by producing
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Speech dataset Features

Librispeech diverse speaker, read audiobooks
VoxCeleb1 diverse speaker, celebrities on YouTube
Fluent Speech Commands spoken keyword commands
QUESST multi-lingual, low resource language
VoxLingua107 Top 10 multi-lingual, YouTube content
Audio SNIPS spoken commands, crowdsourced
IEMOCAP affective speech
CREMA-D affective speech
Libri2Mix multi-speaker scenarios
LibriCount multi-speaker scenarios

Audio dataset Features

ESC-50 diverse audio source
FSD-50K diverse audio source
Gunshot Triangulation diverse audio source
Vocal Imitations human imitation of sound

Music dataset Features

OpenSinger singing voice, Chinese song
M4Singer singing voice, Chinese song
VocalSet singing skill
NSynth instrument notes
GTZAN Genre diverse music genre
GTZAN Music Speech instrument note

Table 1: Dataset information.

specific sounds and patterns to convey meaning-
ful messages. We select speech datasets based on
two perspectives: enhancing the diversity of the
dataset (i.e., speaker diversity, language variety,
and duration) and expanding the range of infor-
mation preserved in the speech (i.e., emotion and
multi-speaker scenarios).

Music: Pattern of sounds created through pitch,
tone, and timbre manipulation. We select music
datasets to enhance the diversity of music cate-
gories, encompassing various singing voices of dif-
ferent levels of professionalism, music notes played
by multiple instruments, and music spanning a va-
riety of genres.

Audio: Any sound that humans can hear apart
from speech and music. We chose audio datasets
in order to increase the diversity of general audio
categories and their applications.

We briefly describe the key information for the
selected datasets in Table 1. Detailed descriptions,
including the partition rules of datasets used in our
evaluation, can be found in Appendix A.1. Also,
Table 5 in Appendix A.1 summarizes the license
for each dataset.

3.1.2 Signal-level metrics
We assess the quality of resynthesized sound us-
ing a comprehensive set of signal-level metrics
grounded in sound domain expertise. These metrics
include the Perceptual Evaluation of Speech Qual-
ity (PESQ) (Rix et al., 2001), Short-Time Objec-
tive Intelligibility (STOI) (Taal et al., 2010), STFT

Metric Functionality Range

STFTDistance Frequency content discrepancies. [0,∞)

MelDistance Gauges the fidelity of spectral features. [0,∞)

PESQ Rates the perceptual quality of speech. [−0.5, 4.5]

STOI Evaluates speech intelligibility. [0, 1]

F0CORR Measures pitch accuracy. [0, 1]

Table 2: Summary of signal-level metrics

distance (STFTDistance), Mel distance (MelDis-
tance), and F0CORR (F0 Pearson Correlation Co-
efficient) (Jadoul et al., 2018). The features of the
adopted signal-level metrics to assess sound qual-
ity are shown in Table 2. STFTDistance analyzes
frequency content and temporal dynamics, while
MelDistance focuses on spectral fidelity and tim-
bral texture, reflecting the Mel scale’s relevance
to human hearing. PESQ provides a subjective
quality score, capturing the perceptual quality of
speech. STOI measures speech intelligibility in
noise, essential for clear communication. F0CORR
evaluates pitch accuracy, crucial for naturalness
and expressiveness in sound. This diverse set of
metrics enables us to conduct a thorough evalua-
tion of sound quality across various dimensions,
encompassing spectral fidelity, temporal dynamics,
perceptual clarity, and intelligibility. Details for
these metrics are shown in Appendix A.3

3.1.3 Overall score for Signal-level metrics
Currently, no single overall score exists to eval-
uate signal-level metrics of resynthesized sound
produced by codec models. What’s particularly
innovative is our introduction of a unified overall
score, which integrates all signal-level metrics in
Section 3.1.2 for improved visualization. Notably,
the overall score demonstrates strong correlations
with each individual metric as shown in Section 4.2.

The overall score is calculated through normal-
ization and harmonic mean combining all metrics.
Normalization ensures metrics are comparable and
less affected by outliers. For bounded metrics,
PESQ, STOI, and F0CORR, we normalize them by
subtracting the min and dividing by the range. For
unbounded metrics, STFTDistance and MelDis-
tance, we normalize them by the Sigmoid function.
Inspired by F1 score (Chicco and Jurman, 2020),
the harmonic mean is used to aggregate the nor-
malized scores, prioritizing balanced performance
across metrics. Similar to the F1 score (Chicco and
Jurman, 2020), which harmonizes precision and
recall, the harmonic mean in our context ensures a
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balanced evaluation, preventing any single signal-
level metric from disproportionately influencing
the overall score.

3.2 Application-level evaluation
Beyond previous works mainly focusing on signal-
level comparison, we expand our evaluation to in-
clude application-level metrics. This step is es-
sential for comprehensively understanding each
codec’s ability to preserve crucial sound infor-
mation, encompassing content, speaker timbre,
emotion, and general audio characteristics. For
downstream application evaluation, we utilize pre-
trained models to analyze the quality of resynthe-
sized sound. Details are shown below.

3.2.1 Automatic speech recognition (ASR)
We use ASR to evaluate the content information
loss of the codec resynthesis process. Our study
evaluates the “whisper-large” variant of the Whis-
per ASR model (Radford et al., 2023), renowned
for its robust performance across multiple lan-
guages and tasks, utilizing an encoder-decoder
Transformer architecture. We use the most com-
mon metric, Word Error Rate (WER), and the most
common dataset, LibriSpeech. This evaluation
aims to showcase Whisper’s proficiency in han-
dling diverse speech qualities and accents, under-
scoring its potential in real-world speech recogni-
tion applications. More details can be found in
Appendix A.2.1.

3.2.2 Automatic speaker verification (ASV)
Speaker information represents a distinct and
unique aspect of speech. We employ ASV to assess
the degree of speaker information loss in the resyn-
thesized speech generated by neural codecs. As
the pre-trained ASV model, we utilize the cutting-
edge speaker verification model, ECAPA-TDNN
(Desplanques et al., 2020). We adopt equal er-
ror rate (EER) and minimum decision cost func-
tion (minDCF) as two evaluation metrics to evalu-
ate the performance of ASV. EER provides a bal-
ance between false acceptances and rejections, and
minDCF allows for a more nuanced assessment of
system performance by considering the costs asso-
ciated with different types of errors (false accep-
tances and rejections). More details can be found
in Appendix A.2.2

3.2.3 Emotion recognition (ER)
In addition to speaker information, speech con-
veys affective information, including emotions. We

employ ER to quantify the degree of paralinguis-
tic information loss due to speech resynthesis by
codec models. We utilize the WavLM-Large (Chen
et al., 2022) self-supervised model for feature ex-
traction and train an emotion classification model
on the most famous emotion dataset, IEMOCAP.
This setting achieves robust and nearly SOTA re-
sults. More details on ER downstream task setting
can be found in Appendix A.2.3

3.2.4 Audio event classification (AEC)
The goal of adopting AEC is to assess the fidelity of
various codecs in preserving audio event informa-
tion by leveraging a pre-trained AEC model to clas-
sify sound events for audio re-synthesized by these
codecs. We leverage the pre-trained Audio Spectro-
gram Transformer (AST) (Gong et al., 2021) model
and test on the original AudioSet (Gemmeke et al.,
2017) evaluation set as the baseline. More AEC
downstream task setting details can be found in
Appendix A.2.4.

4 Experiments

4.1 Experimental setup

We adopt six open-source codec models, Speech-
Tokenizer (Zhang et al., 2023a), AudioDec (Wu
et al., 2023), AcademiCodec (Yang et al., 2023a),
Descript-audio-codec (DAC) (Kumar et al., 2023)
Encodec (Défossez et al., 2022), and FunCodec
(Du et al., 2023), each with its own distinct training
specifications, yielding a total of 19 unique codec
models for comparison. The column (a) of Table 3
provides brief information regarding these models.
Detailed information is in Appendix A.4

We select different objective metrics based on
the nature of different types of sound to evalu-
ate different categories of sound. Speech data
adopts STFTDistance, MelDistance, PESQ, and
STOI. Audio data adopts STFTDistance and MelD-
istance. Music data includes all metrics, particu-
larly F0CORR, for fidelity and expressiveness.

4.2 Signal-level evaluation

To conduct signal-level evaluation, we employ the
“Overall score” as the principal metric. To affirm
the overall score as a reliable measure of codec
performance to consider diverse signal-level met-
rics, we conduct a correlation analysis, summarized
in Table 4. This analysis aims to find the correla-
tion scores between the overall score rankings and
those from individual signal-level metric scores.
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(a) Codec Information (b) Signal-level Evaluation (c) Application-level Evaluation

kbps Other Configuration Speech↑ Audio↑ Music↑ WER↓
(ASR)

EER↓
(ASV)

minDCF↓
(ASV)

ACC ↑
(ER)

mAP ↑
(AEC)

None - - - - - 2.96 0.86 0.07 69.84 45.68
A 4 16k 0.644 0.581 0.585 4.02 3.31 0.24 65.49 15.11

B1 2 16k_320d 0.610 0.574 0.601 4.94 4.43 0.29 65.96 16.19
B2 2 16k_320d_large_uni 0.617 0.574 0.630 6.26 5.22 0.38 64.63 28.65
B3 3 24k_320d 0.611 0.592 0.604 4.49 6.16 0.36 65.95 14.01

C 6.4 24k_320d 0.596 0.602 0.572 3.94 5.22 0.30 65.70 17.41

D1 6 16k 0.798 0.591 0.749 3.26 1.59 0.12 68.81 41.08
D2 24 24k 0.864 0.636 0.815 2.96 2.24 0.14 69.56 41.37
D3 8 44k 0.802 0.702 0.770 3.18 3.59 0.26 69.18 32.04

E1 1.5 24k 0.579 0.594 0.568 9.21 13.88 0.68 58.84 18.84
E2 3 24k 0.636 0.599 0.621 4.34 6.85 0.39 63.54 26.63
E3 6 24k 0.697 0.602 0.669 3.49 4.28 0.27 66.18 32.43
E4 12 24k 0.748 0.606 0.710 3.22 3.44 0.21 67.63 35.84
E5 24 24k 0.775 0.609 0.732 3.17 3.15 0.19 68.26 36.64

F1 16 en_libritts_16k_gr1nq32ds320 0.724 0.582 0.667 3.21 1.50 0.10 63.54 37.31
F2 16 en_libritts_16k_gr8nq32ds320 0.704 0.583 0.668 3.16 1.81 0.10 66.18 37.77
F3 16 en_libritts_16k_nq32ds320 0.705 0.581 0.649 3.28 1.76 0.12 67.63 25.52
F4 8 en_libritts_16k_nq32ds640 0.678 0.578 0.632 3.43 2.04 0.13 68.26 21.43
F5 16 zh_en_16k_nq32ds320 0.726 0.583 0.665 3.21 1.52 0.11 69.25 26.42
F6 8 zh_en_16k_nq32ds640 0.718 0.583 0.667 3.27 1.60 0.11 69.55 33.59

Table 3: Comparison between codec models. (a) Codec information. "A" denotes the Speech Tokenizer, "B∼"
signifies the AcademiCodec, "C" is associated with AudioDec, "D∼" represents the DAC, "E∼" refers to the
EnCodec, and "F∼" indicates the FunCodec. (b) Signal-level evaluation. (c) Application-level evaluation. "None"
means that no codec has been applied.

Metric Dataset Mean Correlation Mean p-value

Mel Audio -0.91 2.7× 10−7

STFT Audio -0.94 1.7× 10−9

Mel Music -0.65 2.4× 10−2

STFT Music -0.58 4.6× 10−2

PESQ Music 0.95 3.1× 10−9

STOI Music 0.83 2.8× 10−3

F0CORR Music 0.74 2.7× 10−2

Mel Speech -0.77 6.1× 10−4

STFT Speech -0.71 1.0× 10−2

PESQ Speech 0.97 1.8× 10−11

STOI Speech 0.84 2.9× 10−5

Table 4: Consolidated average correlation coefficients
and p-values across three kinds of datasets. A corre-
lation value above 0.7 (below -0.7) indicates a strong
positive (negative) correlation. A p-value less than 0.05
denotes significance (cor, 2015).

We show the mean correlation values for each kind
of dataset in Table 4. The results of all metrics for
all datasets are presented in Figure 5 - Figure 7 in
Appendix B. Key findings include:

• MelDistance and STFTDistance have strong
negative relations with the overall score.

• PESQ, STOI, and F0CORR have strong posi-
tive relations with the overall score.

• Mean p-values confirm the above correlations
are significant.

This correlation analysis, detailed in Table 4,
establishes the overall score as a comprehensive in-
dicator of codec quality, effectively encompassing
various signal-level metrics. We can discern which
codec achieves superior performance at a given bi-
trate by comparing the “Overall Score” against the
bitrate (kbps).

Table 6 to Table 8 in Appendix B show the re-
sults for each dataset. We only show the average
performance below due to space limitations. The
performance trends are similar

4.2.1 Speech Dataset

As shown in Figure 3a, for the Speech dataset, it’s
clear that the Encodec (E1-E5) sets a strong base-
line, with only the DAC codec (D1-D3) notably
surpassing it at a similar bitrate. Other codecs don’t
show a significant advantage. In addition, at very
low bitrates, the Academicodec (B1-B3) achieves
improved performance.
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Figure 3: Points in the upper left corner represent a better trade-off between performance and bitrate.

4.2.2 Audio Dataset
As shown in Figure 3b, for the Audio dataset, En-
codec again proves to be a strong baseline, with
DAC being the only codec to surpass its perfor-
mance significantly. Other models do not markedly
exceed the performance of Encodec.

4.2.3 Music Dataset
As shown in Figure 3c, the results within the music
dataset seem to consolidate the findings from the
previous two datasets. Academicodec outperforms
Encodec at low bitrates and can even surpass En-
codec models when the bitrate is doubled. DAC
also maintains a leading position.

4.2.4 Takeaways
The observations across the three datasets indicate
that DAC achieves a well-balanced trade-off be-
tween performance and bitrate. In contrast, Aca-
demicodec demonstrates the capability to maintain
superior performance even at a significantly lower
bitrate. The early-stage model, Encodec, remains a
solid baseline.

4.3 Application-level evaluation

4.3.1 Automatic speech recognition
The column (c) of Table 3 (Table 3-c) indicates
that the process of codec resynthesis process typ-
ically leads to a loss of contextual information in
speech, adversely affecting the Word Error Rate
(WER). However, an intriguing exception to this
pattern is observed with the D2 codec (dac_24k),
which maintains ASR performance comparable to
the original, unprocessed speech. This suggests
that the D2 codec’s resynthesis process uniquely
preserves the integrity of the speech content. As
depicted in Figure 4a, we observe that: (1) WER
consistently decreases as bitrate increases, signify-
ing that a higher bitrate contributes to preserving
content information within the codec; (3) the DAC

codecs(D1-D3) exhibit the lowest WER across the
board, indicating their effectiveness in maintaining
content information during resynthesis; (4) in con-
trast, with a bitrate of around 6kbps, the AudioDec
codec (C) obtained the highest WER, which indi-
cates a significant loss of content information.

4.3.2 Automatic speaker verification
As presented in Table 3-c, adopting codecs A to F6
to the original audio leads to some loss of speaker
information. Based on Figure 4b and Table 3-c, we
can observe that: (1) when comparing Encodec E1
to E5, we observe an increase in bitrate and a de-
crease in EER, indicating that a higher bitrate can
better preserve speaker information; (2) Funcodec
F2 has the lowest EER and minDCF, resulting in
the least degradation of speaker information. Fun-
codec F2 also attains the highest bitrate, which
results in preserving more information than other
codec models; (3) B1, A, and D1 attained the opti-
mal Pareto balance, effectively striking a fine trade-
off between EER and bitrate; (4) DAC D1 attained
an impressively low EER while maintaining a rea-
sonable bitrate.

4.3.3 Emotion recognition
Our observations are drawn from Figure 4c and
Table 3-c: (1) when comparing Encodec from E1
to E5, we observe an increase in bitrate and Accu-
racy (%), indicating that a higher bitrate can pre-
serve more information; (2) DAC model D2 has the
highest ACC 69.56%. D2 only drops in accuracy
by 0.38% compared to the original audio; (3) En-
codec E1 has the worst accuracy. When comparing
E1 with B1 and B2, both having similar bitrate, a
significant decrease in accuracy is observed; (4)
under the same bitrate, DAC outperforms all the
other codecs; F2 outperforms F1, F3, and F5; Aca-
demiCodec B1 outperforms B2 even though they
have the same architecture while B2 is trained on a
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Figure 4: The trade-off between bitrate and performance of different applications. Models located in the lower/upper
left corner of (a)(b)/(c)(d) indicate a more favorable trade-off between performance and bitrates.

larger set of data; AcademiCodec B3 outperforms
Encodec E3; (5) in general, Encodec models and
AudioDec have the lowest accuracy under a similar
bitrate, suggesting more loss of emotional informa-
tion; (6) even for the least performing model, E1,
with a bitrate of only 1.5kbps, it can still maintain
the accuracy drop from 69.84% to 58.84%. This
implies that emotional information can be retained
even with a very low bitrate.

4.3.4 Audio event classification
Based on Figure 4d and Table 3-c, we can observe
that: (1) when comparing Encodec from E1 to E5,
we observe an increase in bitrate and mAP (%),
indicating that a higher bitrate can better preserve
audio event information; (2) DAC model D2 has the
highest mAP 41.37%, resulting in the least degra-
dation of audio event information. (3) EnCodec
and DAC models are trained using AudioSet train-
ing set, so when comparing mAP (%) for AudioSet
testing set under different bitrates, EnCodec of-
ten exceeds SpeechTokenizer (around 4kbps), Aca-
demiCodec (around 3kbps), and AudioDec (around
6kbps); (4) AcademiCodec B2 significantly sur-
passed EnCodec at a similar rate as it is trained
on a diverse speech dataset. (5) FunCodec was
not trained using the AudioSet training set. When
comparing model F6 with F4, it is evident that F6’s
performance closely approaches that of EnCodec
(which is trained using Audioset). The primary
distinction between them is that F6 utilizes a multi-
domain speech dataset, whereas F4 relies solely on
LibriTTS (Zen et al., 2019).

4.3.5 Takeaways
Here we summarize our findings with lessons:

• Emotion information can be conserved even
at a remarkably low bitrate of 1.5kbps.

• Despite not being trained on Audioset, some
models (F6) trained on diverse enough speech

data can generalize and effectively maintain
audio information. This suggests that future
efforts to develop a universal codec model
may not necessarily require audio data, but
rather diverse speech data.

• There exists a clear trade-off between bitrate
and the quality of codec resynthesis in terms
of all downstream tasks we covered.

• Among the higher bitrate (6kbps∼24kbps)
models, DAC outperforms other codecs in re-
taining content, emotion, speaker, and audio
information under similar bitrate.

• The best low-bitrate model is Academicodec,
which performs excellently in preserving con-
tent, emotion, speaker, and audio information
from 2 - 3kpbs.

4.4 Discussions

Another way to evaluate the codec models for dif-
ferent applications is to extract the codec codes
and train application models upon the extracted
codes. Training application models using codec
codes requires significant computational resources.
We aim to create a lightweight benchmark for users
to facilitate easier evaluation of metrics for those
proposed codecs, allowing them to obtain prelimi-
nary results for later development reference. The
users can quickly get insights based on the fast
evaluation pipeline.

5 Limitations

Our evaluation data spans 20 datasets, each con-
taining numerous testing samples, resulting in a
substantial amount of data that requires significant
computation time and resources. As a solution, we
aim to devise criteria for identifying representa-
tive data points within each dataset to expedite the
evaluation process.
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6 Conclusion

This study presents Codec-SUPERB, a public
framework tailored to fairly and comprehen-
sively evaluate codec models. Comprised of
a user-friendly codebase, a collaborative bench-
mark driven by the community, and meticulously
crafted metrics paired with curated datasets, Codec-
SUPERB streamlines result comparisons through
an interactive online leaderboard. Additionally,
our comprehensive analysis provides valuable in-
sights into codec models, examining both applica-
tion and signal perspectives. This departure from
prior codec research, primarily focusing on signal-
level comparisons, allows for a richer understand-
ing of codec performance. Our innovative introduc-
tion of a unified overall score sets us apart from
previous works, seamlessly integrating all signal-
level metrics to enhance visualization. Remarkably,
this overall score exhibits robust correlations with
each individual metric, underscoring its reliability.
Lastly, we commit to releasing codes, the leader-
board, and data resources to expedite progress and
foster growth within the community.
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A Technical Appendix

A.1 Dataset description
21 public datasets are adopted in this work for zero-
shot evaluation, including 9 datasets for speech, 4
datasets for audio, and 8 datasets for music. If not
specified, we use the whole dataset for evaluation.
All the dataset licenses are shown in Table 5.

A.1.1 Speech
Speech Commands v1 Google Speech Command
v1 (Warden, 2017) is a dataset designed for rec-
ognizing spoken commands, consisting of 64,727
utterances from 1,881 speakers, with each utterance
normalized as a 1-second waveform.
QUESST The QUESST 2014 dataset (Anguera
et al., 2015) contains 23 hours of spoken documents
in six low-resource languages, encoded at 8 KHz
and 16-bit resolution, sourced from various speech
types and acoustic environments.
Fluent Speech Commands The Fluent Speech
Commands dataset (Lugosch et al., 2019) com-
prises 30,043 spoken utterances from 97 individ-
uals, recorded as single-channel .wav files at a 16
kHz sampling rate. Each file captures a distinct
utterance intended for the operation of smart-home
devices or a virtual assistant. For example, an ut-
terance might be “turn on the light in the bedroom.”
We use the test set for codec evaluation.
LibriSpeech LibriSpeech (Panayotov et al., 2015)
is a highly utilized corpus of English speech data,
comprising roughly 1000 hours of audio record-
ings. These recordings are characterized by a read-
ing style, as they consist of utterances read from
audiobooks. We use test-clean and test-other sets
for codec evaluation.
Audio SNIPS The Audio SNIPS dataset (Lai et al.,
2021) utilizes a text-to-speech (TTS) system to
synthesize the SNIPS dataset into utterances with

different speakers and accents. The dataset is de-
signed for speech recognition and natural language
understanding simultaneously. We use test and
valid splits for codec evaluation.
VoxCeleb1 VoxCeleb (Nagrani et al., 2017) is an
audio-visual dataset featuring short segments of
human speech sourced from interview videos on
YouTube. It includes over a million real-world
utterances from more than 6000 speakers. We use
the test set for codec evaluation.
IEMOCAP The IEMOCAP dataset (Busso et al.,
2008), aimed at Multimodal Emotion Recognition,
comprises 151 dialogue recordings, amounting to
302 videos due to the presence of two speakers
in each session. It features annotations for 9 dis-
tinct emotions (angry, excited, fear, sad, surprised,
frustrated, happy, disappointed, and neutral) and
valence, arousal, and dominance.
Libri2Mix Libri2Mix (Cosentino et al., 2020) is a
synthesized corpus featuring mixtures of two speak-
ers’ speech intertwined with background noise.
The speech segments are sourced from LibriSpeech,
while the ambient noise is taken from the WHAM!
dataset. The corpus is organized into four subsets:
train-360, train-100, dev, and test, cumulatively en-
compassing 300 hours of speech. We use the test
set for codec evaluation.
CREMA-D (Cao et al., 2014) is a 7,442 original
clips from 91 actors (48 male and 43 female). Each
clip is annotated with six distinct emotions. The
professional actors, guided by experienced theatre
directors, skillfully express a designated emotion
while delivering specific sentences.
LibriCount (Stöter et al., 2018) is a generated
dataset where each audio clip simulates a cocktail
party scenario, incorporating 0 to 10 speech seg-
ments from LibriSpeech Test-Clean mixed with a
signal-to-noise ratio (SNR) of 0dB.
VoxLingua107 Top 10 (Valk and Alumäe, 2021)
comprises audio segments for spoken language
identification, encompassing 107 distinct lan-
guages. The audio clips in this dataset are auto-
matically extracted from YouTube videos. We use
the audio clips from the top 10 most frequent lan-
guages.

A.1.2 Audio
ESC-50 (Piczak, 2015) encompasses 2000 en-
vironmental sounds categorized into 50 classes.
The clips within this dataset are manually se-
lected from public field recordings compiled by
the Freesound.org project.
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FSD50K (Fonseca et al., 2022) is an open col-
lection of human-labeled sound events. It com-
prises 51,197 Freesound clips distributed across
200 classes, selected from the AudioSet Ontology.
We use a test and valid set for codec evaluation.
Gunshot Triangulation (Cooper and Shaw,
2020) collect the audio of seven distinct
firearms—comprising four pistols and three ri-
fles—each fired a minimum of three times. The
shots were directed sequentially toward a target
positioned 45 meters away from the shooter in an
open field. The sound associated with these fir-
ings was captured using four separate iPod Touch
devices.
Vocal Imitations (Kim et al., 2018) comprises
11,242 crowd-sourced vocal imitations covering
302 sound event classes. The original sound record-
ings for these classes were sourced from Freesound,
while their corresponding imitations were gathered
through crowd-sourcing. We use the human imita-
tion samples in the "included" split.

A.1.3 Music
OpenSinger (Huang et al., 2021), a Chinese multi-
singer vocal dataset, features high-fidelity record-
ings by professional singers, free of noise and back-
ground interference. OpenSinger does not have a
standard way of splitting datasets. We use the songs
with male prefixes from 25 to 27 and female with
prefixes from 45 to 47 in the dataset as our test set,
which is based on the split method of a recent paper
on zero-short singing voice synthesis (Wang et al.,
2023b). We use the test set for codec evaluation.
M4Singer (Zhang et al., 2022) offers a rich col-
lection of about 700 Chinese pop songs recorded
by 20 professional vocalists, encompassing all four
SATB voice types: soprano, alto, tenor, and bass.
Following UniAudio (Yang et al., 2023b), we con-
duct experiments on the M4Singer test set. We use
the test set for codec evaluation.
VocalSet (Wilkins et al., 2018) comprises 10.1
hours of recordings from 20 professional singers
(11 male, 9 female), executing 17 distinct vocal
techniques, which aids in the development of ad-
vanced machine learning models for applications
like singer identification, vocal technique detection,
and singing synthesis. We only use the test set of
VocalSet for experiments.
NSynth (Engel et al., 2017) stands out as a large-
scale, high-quality collection of musical notes, sig-
nificantly surpassing similar public datasets in size.
We only use the test set of the NSynth dataset for

experiments.
GTZAN Genre (Tzanetakis and Cook, 2002) in-
cludes music samples categorized into 10 genres,
each containing 100 audio files. All audio files
within the dataset have a standardized length of 30
seconds.
GTZAN Music Speech (Tzanetakis and Cook,
2002) consists of both music and speech segments,
with each category containing 60 samples having a
standardized length of 30 seconds.

A.2 Downstream task description

A.2.1 Automatic Speech Recognition (ASR)

ASR is an essential component in speech process-
ing, aiming to convert speech into text. ASR is
dedicated to extracting and interpreting the content
information embedded in speech. This involves
understanding various linguistic elements within
the spoken language, such as phonetics, syntax,
and semantics. ASR systems are instrumental in
numerous applications, including voice-activated
assistants, transcription services, and interactive
voice response systems, where accurate content
interpretation is crucial.

Our study employs the Whisper model (Radford
et al., 2023), specifically the “whisper-large" vari-
ant, the current state-of-the-art ASR system, for
evaluation. Whisper stands out due to its robust
and versatile architecture, which is capable of han-
dling a broad range of speech recognition tasks
across multiple languages. The model’s foundation
is an encoder-decoder Transformer, adept at learn-
ing from large, weakly supervised datasets. This
enables Whisper to perform effectively in diverse
scenarios without requiring specific dataset fine-
tuning. The model’s comprehensive training ap-
proach, focusing on generalization and robustness,
positions it as a powerful tool for speech content
interpretation.

To evaluate the performance of the Whisper
model in ASR, we utilize the metric Word Error
Rate (WER). WER measures the percentage of er-
rors at the word level, offering insights into the
model’s accuracy in transcribing speech to text.
The metric is critical in assessing the effectiveness
of ASR systems, allowing for a detailed under-
standing of their capabilities in accurately captur-
ing and converting spoken language into written
form. In this evaluation, we analyze the ASR per-
formance using subsets of the LibriSpeech dataset,
precisely the test-clean and test-other subsets, to
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Speech Dataset License

LibriSpeech CC BY 4.0
VoxCeleb1 CC BY 4.0
Fluent Speech Commands CC BY-NC-ND 4.0
QUESST Free For Research Purposes
VoxLingua107 Top 10 CC BY 4.0
Audio SNIPS CC0 v1.0
IEMOCAP SAIL Agreement
CREMA-D Open Database License
Libri2Mix MIT License
LibriCount CC BY 4.0

Audio Dataset License

ESC-50 CC BY-NC 3.0
FSD-50K CC0, CC BY 4.0, CC BY-NC 4.0, CC Sampling+ 1.0
Gunshot Triangulation CC0
Vocal Imitations CC BY 4.0

Music Dataset License

OpenSinger CC BY-NC-SA 2.0
M4Singer CC BY-NC-SA 4.0
VocalSet CC BY 4.0
NSynth CC BY 4.0
GTZAN Genre CC BY 4.0, Apache License v.2.0
GTZAN Music Speech CC BY 4.0, Apache License v.2.0

Table 5: The dataset license statistics.

ensure a comprehensive assessment of the model’s
transcription accuracy.

A.2.2 Automatic Speaker Verification (ASV)

In contrast to text, which primarily conveys con-
tent information, speaker information represents a
distinct and unique aspect of speech. We employ
ASV to assess the degree of speaker information
loss in the resynthesized speech generated by neu-
ral codecs. ASV is a cutting-edge technology that
plays a pivotal role in voice authentication and secu-
rity systems. ASV is designed to verify a person’s
claimed identity by analyzing their unique vocal
characteristics, such as pitch, tone, and speech pat-
terns. It offers a seamless and secure method of
confirming whether an individual is who they claim
to be, making it a valuable tool in applications rang-
ing from access control and secure transactions to
law enforcement and customer service.

We utilize the cutting-edge speaker verification
model, ECAPA-TDNN (Desplanques et al., 2020),
which is pre-trained on the VoxCeleb2 dataset
(Chung et al., 2018), as the pre-trained ASV model.

Building upon the well-established x-vector archi-
tecture (Snyder et al., 2018), ECAPA-TDNN in-
troduces several novel enhancements inspired by
recent trends in face verification.

We adopt equal error rate (EER) as two evalua-
tion metrics to evaluate the performance of ASV.
EER provides a balance between false acceptances
and rejections, and minDCF allows for a more nu-
anced assessment of system performance by con-
sidering the costs associated with different types of
errors (false acceptances and rejections).

A.2.3 Emotion recognition (ER)

In addition to speaker information, speech con-
veys affective information, including emotions. We
employ ER to quantify the degree of paralinguis-
tic information loss due to speech resynthesis by
codec models. ER is an essential component in
human-computer interaction, such as smart enter-
tainment, healthcare, or e-learning. ER specifically
identifies the emotional components of speech that
are unrelated to semantic information (Lech et al.,
2020).
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We adopt the state-of-the-art self-supervised
model WavLM-Large (Chen et al., 2022) as fea-
ture extractor, and train the downstream emotion
classification model using the weighted sum of
hidden states as the representation. Following the
SUPERB benchmark, we employ mean-pooling
followed by a linear layer for modeling purposes
and utilize cross-entropy as the training loss func-
tion. As for the dataset, we select a subset of the
IEMOCAP dataset (Busso et al., 2008), where we
have excluded the unbalanced emotion classes, re-
sulting in four remaining classes (neutral, happy,
sad, angry). We further divided this subset into
five folds for cross-validation purposes. We report
the average classification accuracy across the five
folds.

A.2.4 Audio event classification
ASE aims to automatically identify and categorize
specific sound events or occurrences within an au-
dio recording. These sound events can be various
sounds, such as footsteps, car horns, dog barks, mu-
sic genres, or any other acoustic events. We use Au-
dioSet (Gemmeke et al., 2017) as the evaluation set.
AudioSet offers a comprehensive library of sound
events, categorized in a hierarchical structure that
spans a broad spectrum of sounds, from human and
animal noises to natural and environmental sounds
and musical and miscellaneous audio events. The
Audio Spectrogram Transformer (AST), proposed
by (Gong et al., 2021), is a high-performance open-
source AEC model. The model takes spectrograms
as input features, divides them into patch embed-
dings, and adds a learnable position embedding for
each patch. An extra classification token is added to
the input sequence at the beginning. Subsequently,
the feature sequence is fed into a Transformer En-
coder to make predictions.

We employ the pre-trained AST model3 for our
AEC downstream task evaluation. We adopt mean
average precision (mAP)4 to evaluate the AEC per-
formance. The AST model had undergone pre-
training on the AudioSet training dataset and had
been subjected to post-processing using a weight
averaging strategy to obtain 45.9 mAP(%) at its
evaluation set.

A.3 Signal-level metrics
Aligned with expertise in the speech domain, we
assess codec models using a comprehensive set of

3https://github.com/YuanGongND/ast
4https://scikit-learn.org/

Signal-level metrics, encompassing various aspects
of audio quality. These include:

• STFTDistance: Evaluates frequency content
by calculating the L1-loss over multi-scale
STFT (Short-Time Fourier Transform) rep-
resentations, measuring frequency discrepan-
cies across multiple resolutions. This method
provides a detailed assessment of frequency
content and temporal dynamics.

• MelDistance: Employs the L1-loss between
log Mel spectrogram representations to gauge
the fidelity of spectral features, reflecting spec-
tral fidelity and timbral texture in the audio.

• PESQ: Perceptual Evaluation of Speech Qual-
ity, Rates the perceptual quality of speech,
mimicking human auditory perception to pro-
vide a subjective quality score.

• STOI: Short-Time Objective Intelligibility,
Evaluates speech intelligibility, especially in
noisy conditions, ensuring clarity and compre-
hensibility of the generated speech

• F0CORR (F0 Pearson Correlation Coeffi-
cient): Evaluates the pitch accuracy between
original and synthesized audio by aligning
their fundamental frequency (F0) contours us-
ing dynamic time warping (DTW) and then
computing the Pearson correlation. This met-
ric highlights the codec’s ability to maintain
pitch, which is essential for audio naturalness
and expressiveness.

These metrics provide a comprehensive evaluation
of codec models, focusing on both quantitative ac-
curacy and perceptual quality of audio.

A.4 Codec models
SoundStream: SoundStream (Zeghidour et al.,
2021) stands as one of the pioneering implemen-
tations of neural codec models, embodying a clas-
sic neural codec architecture comprising encoder,
quantizer, and decoder modules. It utilizes the
streaming SEANets (Tagliasacchi et al., 2020) as
its encoder and decoder. The quantizer incorpo-
rates a speech enhancement system with a Residual
Vector Quantization (RVQ) (Kumar et al., 2019;
Zeghidour et al., 2021) bottleneck to obtain par-
allel token streams. During training, the model
parameters are optimized using a combination of
reconstruction and adversarial loss. SoundStorm
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(Borsos et al., 2023b) is an improved version of
SoundStream to achieve both efficiency and high-
quality audio generation. It accomplishes this by
employing an architecture specifically tailored to
the hierarchical structure of audio tokens. More-
over, it pioneers a parallel, non-autoregressive de-
coding scheme, which relies on confidence-based
strategies for residual vector-quantized token se-
quences.
Encodec: Encodec (Défossez et al., 2022)
builds upon a framework similar to SoundStream.
Nonetheless, it further augments its capabilities
by integrating supplementary LSTM (Hochreiter
and Schmidhuber, 1997) layers and harnessing a
Transformer-based language model (Vaswani et al.,
2017) to model the RVQ codes, thereby amplifying
its sequence modeling performance. Then, there is
a stream of work aimed at making codec models
more general and powerful. AudioDec (Wu et al.,
2023) represents an enhanced version of Encodec,
implementing a group convolution mechanism to
facilitate real-time operation of the streamable net-
work, while also harnessing the capabilities of HiFi-
GAN (Kong et al., 2020) to effectively generate
high-fidelity audio at a sampling rate of 48 kHz.
AcademiCodec: In the AcademiCodec model in-
troduced by (Yang et al., 2023a), a novel technique
known as group-residual vector quantization is pre-
sented. This technique is tailored explicitly for gen-
eration tasks. It aims to enhance the reconstruction
performance using a limited number of codebooks,
consequently achieving an impressively low bit rate
per second (BPS). This low BPS is of utmost sig-
nificance as it effectively addresses the challenge
of lengthy speech tokens in speech-language mod-
eling, resulting in reduced sequence lengths.
SpeechTokenizer: SpeechTokenizer (Zhang et al.,
2023a) is a unified speech tokenizer designed
for speech-language models. It implements an
Encoder-Decoder architecture enhanced with RVQ.
By integrating semantic and acoustic tokens,
SpeechTokenizer hierarchically separates various
facets of speech information across different RVQ
layers. Specifically, SpeechTokenizer is designed
to regularize the first RVQ layer to learn the Hu-
bert tokens (Hsu et al., 2021). The authors claim
that employing such techniques can lead to im-
proved disentanglement of information across vari-
ous RVQ layers.
Descript-Audio-Codec: Descript-audio-codec
(DAC) (Kumar et al., 2023), another instance of a
universal neural codec model, distinguishes itself

through its exceptional ability to maintain high-
fidelity audio quality across a broad spectrum of
data types, encompassing audio, music, and speech.
It accomplishes this feat by employing a multi-
tude of training techniques, such as periodic ac-
tivation functions (Ziyin et al., 2020), enhanced
residual vector quantization using factorized and
L2-normalized codes, random quantizer dropout
to preserve audio reconstruction quality, as well as
refining adversarial and reconstruction loss during
the training process. Out of all the techniques em-
ployed, they emphasize the pivotal role played by
the periodic activation function.
FunCodec: Unlike most models focusing on the
time domain, FunCodec (Du et al., 2023) proposes
a frequency-domain codec. The authors claim
they can achieve comparable performance with
fewer parameters and lower computation complex-
ity. Meanwhile, it also finds that incorporating
semantic information in the codec tokens improves
speech quality at low bit rates.

B Additional experiment results

(Due to the space limitation, please refer to the next
page.)
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Codec Librispeech Fluent Speech Commands QUESST VoxCeleb1 SNIPS IEMOCAP Libri2Mix CREMA D LibriCount VoxLingua107Top10 Overall

A 0.713 0.677 0.637 0.676 0.697 0.629 0.637 0.586 0.566 0.651 0.644

B1 0.679 0.633 0.615 0.632 0.666 0.579 0.589 0.550 0.544 0.641 0.610
B2 0.678 0.638 0.625 0.637 0.655 0.587 0.601 0.568 0.555 0.647 0.617
B3 0.673 0.633 0.618 0.631 0.662 0.584 0.592 0.555 0.549 0.643 0.611

C 0.638 0.634 0.599 0.612 0.639 0.589 0.582 0.544 0.529 0.610 0.596

D1 0.824 0.822 0.801 0.822 0.808 0.820 0.814 0.764 0.748 0.764 0.798
D2 0.873 0.876 0.907 0.874 0.868 0.898 0.876 0.834 0.822 0.818 0.864
D3 0.805 0.810 0.807 0.808 0.794 0.815 0.796 0.807 0.778 0.802 0.802

E1 0.592 0.599 0.590 0.589 0.596 0.565 0.570 0.561 0.542 0.595 0.579
E2 0.652 0.648 0.654 0.652 0.656 0.621 0.629 0.611 0.594 0.650 0.636
E3 0.708 0.697 0.716 0.718 0.716 0.678 0.700 0.672 0.661 0.705 0.697
E4 0.751 0.738 0.770 0.776 0.764 0.734 0.762 0.726 0.721 0.747 0.748
E5 0.773 0.761 0.798 0.802 0.787 0.767 0.793 0.755 0.750 0.768 0.775

F1 0.764 0.732 0.730 0.748 0.764 0.749 0.740 0.672 0.656 0.702 0.724
F2 0.759 0.726 0.706 0.729 0.771 0.733 0.707 0.641 0.608 0.694 0.704
F3 0.750 0.732 0.708 0.747 0.775 0.731 0.677 0.648 0.609 0.704 0.705
F4 0.736 0.700 0.690 0.723 0.753 0.684 0.656 0.607 0.587 0.686 0.678
F5 0.781 0.747 0.738 0.776 0.793 0.750 0.698 0.671 0.618 0.723 0.726
F6 0.773 0.736 0.735 0.769 0.769 0.732 0.696 0.661 0.617 0.723 0.718

Table 6: Signal level overall scores across speech datasets

Codec ESC-50 FSD50K Gunshot Triangulation Vocal Imitations Overall

A 0.575 0.577 0.594 0.580 0.581

B1 0.566 0.562 0.594 0.573 0.574
B2 0.567 0.563 0.595 0.573 0.574
B3 0.585 0.576 0.620 0.588 0.592

C 0.599 0.597 0.614 0.598 0.602

D1 0.583 0.585 0.606 0.589 0.591
D2 0.634 0.628 0.652 0.630 0.636
D3 0.699 0.705 0.707 0.699 0.702

E1 0.596 0.592 0.605 0.585 0.594
E2 0.600 0.595 0.611 0.589 0.599
E3 0.604 0.599 0.614 0.593 0.602
E4 0.609 0.602 0.618 0.595 0.606
E5 0.612 0.604 0.623 0.597 0.609

F1 0.574 0.579 0.595 0.582 0.582
F2 0.576 0.580 0.593 0.583 0.583
F3 0.576 0.578 0.594 0.578 0.581
F4 0.575 0.577 0.585 0.577 0.578
F5 0.576 0.578 0.596 0.581 0.583
F6 0.577 0.579 0.594 0.580 0.583

Table 7: Signal level overall scores across audio datasets
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Codec OpenSinger m4singer VocalSet GTZAN Genre GTZAN Music Speech Overall

A 0.717 0.711 0.565 0.481 0.531 0.585

B1 0.714 0.730 0.653 0.492 0.527 0.601
B2 0.709 0.719 0.650 0.564 0.576 0.630
B3 0.704 0.710 0.649 0.489 0.548 0.604

C 0.680 0.679 0.579 0.473 0.514 0.572

D1 0.840 0.840 0.731 0.726 0.685 0.749
D2 0.878 0.866 0.783 0.793 0.785 0.815
D3 0.806 0.798 0.789 0.706 0.752 0.770

E1 0.628 0.616 0.519 0.499 0.580 0.568
E2 0.680 0.663 0.581 0.548 0.632 0.621
E3 0.724 0.699 0.625 0.589 0.697 0.669
E4 0.762 0.730 0.658 0.623 0.756 0.710
E5 0.784 0.749 0.675 0.642 0.784 0.732

F1 0.773 0.765 0.672 0.557 0.627 0.667
F2 0.796 0.796 0.705 0.560 0.585 0.668
F3 0.786 0.772 0.672 0.533 0.581 0.649
F4 0.775 0.766 0.658 0.512 0.555 0.632
F5 0.820 0.806 0.703 0.537 0.582 0.665
F6 0.789 0.797 0.686 0.549 0.609 0.667

Table 8: Signal level overall scores across music datasets
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