Refining and Synthesis: A Simple yet Effective Data Augmentation
Framework for Cross-Domain Aspect-based Sentiment Analysis

Haining Wang'!, Kang He', Bobo Li', Lei Chen', FeiLi', Xu Han?,
Chong Teng'*, Donghong Ji!
! Key Laboratory of Aerospace Information Security and Trusted Computing, Ministry
of Education, School of Cyber Science and Engineering, Wuhan University
2 Beijing Key Laboratory of Electronic System Reliability Technology,
College of Information Engineering, Capital Normal University, China
{wanghn, lifei_csnlp, tengchong}@whu.edu.cn

Abstract

Aspect-based Sentiment Analysis (ABSA) is
extensively researched in the NLP community,
yet related models face challenges due to data
sparsity when shifting to a new domain. Hence,
data augmentation for cross-domain ABSA has
attracted increasing attention in recent years.
However, two key points have been neglected
in prior studies: First, target domain unlabeled
data are labeled with pseudo labels by the
model trained in the source domain with little
quality control, leading to inaccuracy and error
propagation. Second, the label and text pat-
terns of generated labeled data are monotonous,
thus limiting the robustness and generalization
ability of trained ABSA models. In this pa-
per, we aim to design a simple yet effective
framework to address the above shortages in
ABSA data augmentation, called Refining and
Synthesis Data Augmentation (RSDA). Our
framework roughly includes two steps: First,
it refines generated labeled data using a natu-
ral language inference (NLI) filter to control
data quality. Second, it synthesizes diverse la-
beled data via novel label composition and para-
phrase approaches. We conduct experiments on
4 kinds of ABSA subtasks, and our framework
outperforms 7 strong baselines, demonstrating
its effectiveness.

1 Introduction

Aspect-based Sentiment Analysis (ABSA) is a fun-
damental sentiment analysis task that aims to an-
alyze sentiments at the aspect level (Liu, 2012;
Xue and Li, 2018). It usually involves extract-
ing several sentiment elements, including aspects,
opinions, and sentiment polarities. For example,
given a sentence: “It is the best sushi I ever had”,
the aspect term is “sushi”, the corresponding opin-
ion term is “best” and the sentiment polarity is
“positive”. ABSA has attracted more and more
attention in the past decade (Nguyen and Shirai,
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AESC (source: laptop — target: restaurant)

Source Domain Labeled Data (L) | *There is no number pad to the right of
the keyboard.

* The worst pad tai, I've ever had.

Target Domain Unlabeled Text (R)

Target Domain Pseudo Label * <neg> pad

« Sometimes you have to tap the pad.x

(a)

ATSE (source: laptop — target: restaurant)

« They pray to their Food Gods to make
them into a good pizza like VT’s.
« Right off the L in Brooklyn this is a
nice cozy place with good pizza .

Target Domain Generated Text

Target Domain Unlabeled Text (R)

« <pos> pizza <opinion> good

Target Domain Pseudo Labels . o
* <pos> pizza <opinion> good

Target Domain Generated Texts | * The pizzais good.<>

« The pizza is good.«
(b)

Figure 1: The examples of error propagation and limited
diversity in previous data augmentation work.

2015; Zhang et al., 2023b), with the development
of deep learning, many models and methods can
achieve good results on the aspect-level sentiment
analysis dataset (Yadav et al., 2021; Zhang et al.,
2023b). Most methods for model training only use
same domain data and require fine-grained labeled
data (Ding et al., 2017). This is problematic in
nascent domains with little labeled data, imped-
ing robust performance. Some studies focus on
developing models with domain migration capa-
bilities to address these challenges (Zhang et al.,
2022) . Other works employ domain adaptation
technology to transfer learned knowledge from la-
beled source domains to unlabeled target domains
(Deng et al., 2023). However, the majority of these
studies are based on discriminative models (Zhang
et al., 2021a), necessitating customized design for
specific tasks. In addition, other works resort to
domain-specific dictionaries, using rule-based or
neural network-based methods (Marcacini et al.,
2018; Howard et al., 2022) to obtain external se-
mantic dictionaries. While these approaches have
demonstrated commendable performance on par-
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ticular datasets, their excessive reliance on external
knowledge impairs their generalization capacity.

Recently, the methods, which integrate vari-
ous tasks into a unified framework by formaliz-
ing each task as a sequence-to-sequence problem,
have achieved promising results (Wang and Wan,
2023). In the cross-domain low-resource scenario,
the feasibility of the cross-domain data augmen-
tation method based on such framework has also
been verified (Yu et al., 2023; Ghosh et al., 2023a).
Particularly, Deng et al. (2023) proposes a data
augmentation framework, which extracts pseudo-
labels from target domain sentences and then gener-
ates new sentences based on these pseudo-labels to
synthesize labeled data. Despite achieving promis-
ing results, the existing data augmentation frame-
works primarily have the following shortcomings:

* Low-quality Samples and Error Propaga-
tion. The target data generated by pseudo-
labels is error-prone because the extraction
model is trained using labeled data from the
source domain. Figure 1(a) shows an incor-
rectly generated sentence due to error propa-
gation caused by a pseudo label.

* Limited Data Diversity. The diversity of the
generated labeled data in the target domain is
limited due to the constraints imposed by the
scales of text generation models and the cat-
egories of pseudo-labels. Figure 1(b) shows
that when two identical pseudo-labels are ex-
tracted, it often results in the generation of
identical new sentences, even if their sources
are different.

Towards this end, we propose a novel two-step
data augmentation framework for cross-domain
ABSA tasks named Refining and Synthesis Data
Augmentation (RSDA). In the first step, our frame-
work follows previous work (Deng et al., 2023) by
extracting a pseudo label [ from an unlabeled sen-
tence ¢ in the target domain. Subsequently, it gener-
ates a new sentence t’ aligned with the pseudo label
[, thereby producing a labeled sample (¢, 1) in the
target domain. Then, our framework further em-
ploys an approach based on natural language infer-
ence (NLI), named the NLI filter (Sileo, 2023), to
eliminate invalid samples by determining whether
t and ¢’ are in an entailment relationship. By em-
ploying this approach, we can obtain higher-quality
labeled samples in the target domain.

In the second step, we design two novel diversity
enhancement modules to mitigate the duplication

and oversimplification of model-generated target
domain labeled samples. The first module is called
composition-based diversity enhancement, which
combines two selected labels into a longer one and
then generates a new sentence by the generation
model. The compositions of various labels will def-
initely increase the diversity of generated data. On
the other hand, we propose a paraphrase-based di-
versity enhancement module that tackles data aug-
mentation diversity from two perspectives, namely
label-variant paraphrase and label-invariant para-
phrase. The former directly paraphrases the unla-
beled text in the target domain and extracts pseudo-
labels from it, similar to the process in the first step.
In contrast, the latter focuses on paraphrasing the
target domain labeled text while retaining the origi-
nal labels but altering their contextual representa-
tion. These two paraphrase methods complement
each other effectively.

To validate the effectiveness of our framework,
we conduct extensive cross-domain experiments
on 4 ABSA subtasks. Our framework outperforms
several strong baselines by at least 1.64%, 1.39%,
1.45% and 2.04% in averaged F1s of 4 subtasks.

Our main contributions can be summarized as
follows:

* We introduce RSDA, a novel data augmen-
tation framework designed for cross-domain
ABSA. Unlike previous studies, RSDA prior-
itizes both data quality and diversity, which
have been neglected in prior studies.

* To address the issue of limited diversity in
generated data, our diversity enhancement
method focuses on improving diversity from
two angles: information density and expres-
sion variety.

* Our framework has been tested on 32 cross-
domain experiments and the superior perfor-
mances compared with 7 strong baselines
demonstrate its effectiveness.

2 Related work

2.1 Aspect-Based Sentiment Analysis

Aspect-based Sentiment Analysis (ABSA) (Liu,
2012; Xue and Li, 2018) is a well-established sen-
timent analysis task that encompasses various sub-
tasks such as Aspect Sentiment Classification (AE),
Aspect Extraction and Sentiment Classification
(AESC), Aspect Opinion Pair Extraction (AOPE),
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Task  Output Example

AE (a) I love [pizza]!
AESC (s,a) I love [pizza]os!
AOPE (a,0) I [love] [pizza]!
ASTE  (s,a,0) I[love] [pizza]pos!

Table 1: Four ABSA subtasks were investigated in this
paper, where a, s and o denote aspect, sentiment polarity,
and opinion respectively.

and Aspect Sentiment Triple Extraction (ASTE)
(Yan et al., 2021). Recent advancements, particu-
larly with models like Bart or T5, have shifted to-
wards end-to-end architectures (Lewis et al., 2020;
Raffel et al., 2020). This transition has stream-
lined task forms, enhancing model adaptability to
ABSA’s multiple subtasks (Lu et al., 2022). How-
ever, in cross-domain settings, these methods en-
counter challenges due to limited training data in
the target domain. The domain adaptation capabil-
ity of these models requires further investigation.

2.2 Cross Domain Data Augmentation

Data augmentation is a widely used technique to
address training data scarcity (Fadaee et al., 2017;
Chao et al., 2023), proven effective in computer
vision (Ye et al., 2019). However, for textual data
with discrete and complex semantics, augmenta-
tion becomes challenging. Current methods in-
clude rule-based synonym replacement (Rennes
and Jonsson, 2021) through conditional constraint
generation or template-based approaches (Chen
et al., 2021). Yet, these methods often rely on
rigid rules or fixed templates, limiting model gen-
eralization and sample diversity. In the realm of
cross-domain data augmentation, some approaches
generate new samples by regenerating pseudo la-
bels (Toledo-Ronen et al., 2022; Deng et al., 2023).
While showing progress, these methods often ne-
glect the issue of pseudo-label error propagation
and struggle to accurately simulate real data distri-
bution due to model and data limitations.

3 Methodology
3.1 Problem Definition

In this work, we focus on the unsupervised cross-
domain setting (Sharma et al., 2018; Zhang et al.,
2023a), which means that we only have labeled
data in the source domain, namely D° = {¢t, [}
where ¢ and [ denote a sentence and its correspond-
ing label (e.g., aspect, opinion, sentiment polarity).
Only unlabeled data is available in the target do-

main, denoted as D' = {t}. The objective is to
leverage the training data from both the source and
target domains to predict the labels of the test set in
the target domain. To validate the effectiveness of
our framework, we employ 4 ABSA subtasks for
experiments, as shown in Table 1.

3.2 Overview

Our RSDA framework mainly consists of two steps
as shown in Figure 2: (1) The first step is data
generation and quality control. Firstly, we obtain
pseudo labels and corresponding generated sam-
ples of the target domain from the extraction and
generation models trained on the source domain.
Then, we use a Natural Language Inference (NLI)
model as a filter to remove incorrect samples. (2)
The second step is data diversity augmentation.
In this step, we employ composition-based diver-
sity enhancement to make generated samples con-
tain multiple aspects to improve information den-
sity, and paraphrase-based diversity enhancement
to generate new labels or change their context.

3.3 Data Generation and Quality Control

Data Generation: Following previous work (Deng
et al., 2023), we train both the label extraction
model | = M,(t) and text generation model ¢ =
M, (1) using the source domain data D® = {t,1}.
Both of them are based on T5-base (Raffel et al.,
2020). Then, we utilize the extraction model M,
to extract the pseudo label I’ from a target domain
sentence ¢. Based on the pseudo label I, the sample
generation model M, can generate a new sentence
t'. After data generation, we obtain a new target
domain labeled dataset D}, = {t','}.

NLI-based Quality Control: As the generation
model was trained on the source domain, it tends to
generate text more aligned with the source domain,
resulting in less fluent data. Moreover, the noise
introduced by the extracted pseudo-labels can prop-
agate into the generated text samples. To address
these problems, we employ a Natural Language In-
ference (NLI) filter (Sileo, 2023) for quality control
in the generation of data.

Concretely, we take the original target domain
text ¢ as the premise and the newly generated text
t’ as the hypothesis. The NLI filter can determine
the relationship between a pair of premises and
hypotheses, formulated as:

P(y|t,t) = f(t,1) ey
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Figure 2: Overview of our proposed RSDA framework which includes two steps. We take examples from the ASTE
task in the restaurant domain. In addition, M, and M, denote extraction and generation models where the solid line
represents the training process and the dashed line represents data generation.

where y can be Entailment, Contradiction and Neu-
tral, f denotes the NLI filter. When a contradiction
relation arises between ¢ and ¢/, it suggests that the
generated text ¢’ is less likely to be inferred from
the original text, which should be filtered out. Af-
ter quality control, certain problematic samples are
removed and the remaining high-quality labeled
data are denoted as D% = {t',I'}. The examples
are in Appendix B.1.

3.4 Data Diversity Augmentation

In the previous step, we filtered model-generated
target domain-labeled samples through the NLI fil-
ter. However, based on our manual observation, we
identified two shortages that should be improved:

(1) As shown in Figure 1(b), the generation
model tends to generate simple or duplicated sen-
tences due to training resource limitations.

(2) Although the quality of generated data can
be enhanced using the NLI filter, it sacrifices text
expression and pattern diversity by filtering out part
of the samples.

To address these issues, we focus on diversifying
the data from two dimensions in the second step,
namely information density and expression variety.

3.4.1 Composition-based Diversity
Enhancement

First, we perform lexical clustering using the labels
I’ of the labeled target domain data D% = {t/,1'}.

Specifically, we employ MiniLM-L6' from Sen-
tence Transformers to encode a label [/ into its vec-
tor representation Ay . Subsequently, the K-means
clustering algorithrrf is applied to partition labels
into K clusters, where the value of K is determined
by the silhouette coefficient method (Rousseeuw,
1987). The calculation method is as follows:

b(3) — ali)

$0) = e () (07 @
Ll
K = argmax 7] ; s(7) 3)

where a(7) and b(7) represent the average distance
between sample 7 and all other points within the
same cluster and in different clusters, respectively.
The silhouette score for sample 4 is denoted by s(7),
and | D| represents the total number of samples.
Then, the semantic similarity between the text
of each pair of data points in the same cluster is
measured by the cosine similarity, calculated as:

gy Ty
Sim(t;, t; 4

il5) = T “
7 g R

where ht; and ht; denote the vector representation
of the text pair ¢; and ¢’; also encoded by MiniLM-
L6. Concretely, we select the data points with the

'https://huggingface.co/sentence-transformers/all-
MiniLM-L6-v2
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Before Paraphrase

After Paraphrase

Text: The [cake],osis [yummy]!

Label-variant .. ]
Label: <pos> cake <opinion> yummy

Text: The [cake],, of this restaurant is [delicious]!
Label: <pos> cake <opinion> delicious

Label-invariant now paraphrase:| The screen is good.]

Label: <pos> screen <opinion> good

Prompt+Text: screen, good must be included,

Text: After using it a couple of days, the screen is
still good.
Label: <pos> screen <opinion> good

Table 2: Examples for Paraphrase-based Diversity Enhancement.

lowest semantic similarity to increase the diversity
of data.

Next, we concatenate [} and l; and feed them
into the generation model to obtain a synthesized
text t" = My(l") = M,(l; ® l;). For example,
after clustering and similarity calculation, we se-
lect two labels “<pos> food <opinion> yummy”
and “<pos> fish <opinion> fresh”. Then we con-
catenate them and input them into M, to generate
“The food in here is yummy, especially the fresh
fish”. In fact, since we choose the two farthest la-
bels in the same cluster, the merged two labels do
not guarantee the same sentiment polarity, which
provides more possibilities for the merged samples.
By combining different labels, information density
and label diversity can be enhanced.

3.4.2 Paraphrase-based Diversity
Enhancement

For paraphrase-based diversity enhancement, we
design two methods to augment the target domain
labeled data. Our core idea is to use paraphrase to
rewrite labels or their context, thus generating new
data. The details are explained below.

Label-variant Paraphrase Due to the non-
linguistic nature of labels, we perform an indirect
approach to implement label-variant paraphrase.
As shown in Table 2, we apply a paraphrasing tool
(Vladimir Vorobev, 2023) to the original target do-
main unlabeled text ¢ and a piece of new para-
phrased text can be generated, called ¢’. Then a
pseudo label I’ can be extracted using the extrac-
tion model M, introduced in Section 3.3. Note
that in this phase, because the paraphrase tool is
directly applied to the raw text, all the words could
be rewritten thus the extracted pseudo label could
also be different from the original one. Afterwards,
the generation model M, will generate a new sen-
tence t” based on the pseudo label I’. This approach
not only aligns with the label-invariant paraphrase
procedure but also enhances the diversity and ex-
pression of D},

Label-invariant Paraphrase We also applied
paraphrasing to the target domain labeled samples
generated in previous steps to enrich their text pat-
terns and avoid simple sentence structures. As
shown in Table 2, we utilize prompts to encourage
the paraphrase tool to include the label I’ when
it rewrites the text ¢’ as t”. Then, we use post-
processing methods to make sure that the para-
phrased text t” includes the label !’. In this phase,
we try to keep the label in a target domain labeled
sample unchanged and meanwhile transform its
context, thus more diverse data could be synthe-
sized.

4 Experiments

4.1 Experimental Settings

Datasets. To validate the effectiveness of our
framework in cross-domain settings, we conduct
extensive experiments on benchmark datasets from
four domains: Restaurant (R), Laptop (L), De-
vice (D) and Service (S). The specific dataset statis-
tics are illustrated in Figure 3, which are widely
used for ABSA and sourced from the SemEval chal-
lenge 2014, 2015, and 2016 (Pontiki et al., 2014,
2015, 2016), reviews about digital devices (Toprak
et al., 2010) and comments about web services (Hu
and Liu, 2004).

Task Datasets Train Dev  Test
L 3,045 304 800

R 3,877 387 2,158

AE&AESC D 2,557 255 1,279
S 1,492 149 747
L14 1035 116 343

R14 1,462 163 500
AOPE RIS 678 76 325
R16 971 108 328

L14 906 219 328

R14 1,266 310 492

ASTE R15 605 148 322
R16 857 210 326

Table 3: Basic statistics of the datasets.

Considering the domain similarities among
datasets, we select several distinct source-to-target
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AE SR S—»L S-—»D | R—»S R—L R—D | DR D—S | LR L—=S | Avg
BERT-UDA" | 56.08 4398 38.36 | 34.62 4687 4034 | 50.54 34.52 | 5191 3249 | 4297
CDRGt 60.20 39.49 38.59 | 49.97 5550 3489 | 57.51 43.19 | 68.63 51.07 | 49.90
GAS” 54.61 35.12 35.81 | 3099 4350 39.29 | 5340 3334 | 49.06 29.64 | 40.48
DA’LMt 65.78 4496 43.24 | 4341 5455 4429 | 63.86 38.20 | 68.72 41.06 | 50.80
BGCA*™ 63.20 46.15 38.24 | 4586 57.13 37.15 | 6533 54.07 | 69.53 44.85 | 52.15
RSDA 63.609 4747 39.12 | 49.82 58.15 3825 | 66.74 5445 | 68.69 5148 | 53.79
AESC SR S—»L S—D |R—»S R—L R—D | D—»R D—=S |L—-R L—S | Avg
BERT-UDA" | 47.09 3477 32.10 | 33.12 33.68 3493 | 42.68 28.03 | 4546 27.89 | 35.98
CDRGt 5293 3333 36.14 | 43.07 4470 30.82 | 53.18 4030 | 57.77 41.51 | 43.38
GAS” 54.61 3512 3581 | 3099 4350 39.29 | 5340 3334 | 49.06 29.64 | 40.48
DA’LMt 58.64 36.97 40.28 | 40.44 4291 41.28 | 5898 3575 | 60.39 36.84 | 45.24
BGCA*® 56.39 36.40 36.57 | 43.20 4552 34.16 | 59.12 4794 | 61.69 39.76 | 46.07
RSDA 5636 36.59 37.19 | 44.84 46.85 36.22 | 59.79 48.66 | 62.78 4527 | 47.46

Table 4: Results on cross-domain AE and AESC tasks where { and * indicate that the results are sourced from Yu
et al. (2023) and Deng et al. (2023). The results are the average Fl1s over 5 runs.

domain pairs for experimentation. In AE and
AESC tasks, following prior work (Yu et al., 2021;
Gong et al., 2020; Yu et al., 2023), we exclude
experiments involving transfers between L and D
domains due to their high similarity. Our experi-
ments exclusively utilize the R and L datasets for
AOPE and ASTE tasks, owing to limitations in
data sources. Additionally, the experiments be-
tween R14, R15, and R16 were omitted because
they share the same domain (Deng et al., 2023).
Consequently, there are a total of 10 transfer exper-
iments for AE, AESC and 6 transfer experiments
for AOPE and ASTE. Our final training dataset in-
cludes the original domain label dataset and the tar-
get domain dataset processed by the RSDA frame-
work.

Evaluation Metrics. We choose Micro-F1 as the
primary evaluation metric for our experiments, con-
sidering a predicted label correct only when it fully
matches the gold label (Lu et al., 2022). Addition-
ally, to assess the diversity of enhanced samples,
we employ diversity evaluation metrics, following
Ghosh et al. (2023b); Yu et al. (2023). Specifically,
D,, indicates the percentage of unique aspect terms
among all aspect terms, while D, represents the
percentage of unique opinion terms among all opin-
ion terms. For AE and AESC tasks, the diversity
of generated samples is determined solely by D,,
while for AOPE and ASTE tasks, the diversity is
the average of D, and D,,.

Parameter Settings. For extraction and genera-
tion models, we choose T5-base checkpoint from
Hugging Face?. The architecture of the T5 model
is based on the transformer model, comprising

Zhttps://huggingface.co/google-t5/t5-base

encoder and decoder components. We employ a
T5-base paraphraser (Vladimir Vorobev, 2023) for
paraphrase-based diversity enhancement. More-
over, we utilize the Adam optimizer with a learning
rate of 3e-4 and a batch size of 16 for all tasks. All
experiments are conducted on a single NVIDIA
3090 GPU. For further details, please refer to Ap-
pendix A.1.

4.2 Comparison with Other Approaches

4.2.1 Approach Introduction

For AE and AESC tasks, we follow previous work
(Yuetal., 2021, 2023) and choose baselines includ-
ing BERT-UDA (Gong et al., 2020), CDRG (Yu
et al., 2021), GAS (Zhang et al., 2021b), DA2LM
(Yu et al., 2023), BGCA (Deng et al., 2023). Both
BERT-UDA and CDRG utilize the BERT base,
while GAS, and BGCA are built upon the T5-base.
The base models of baselines are of the same order
of magnitude as the one we use.

As for ASTE, our selected baselines include
RoBMRC (Liu et al., 2022), SpanASTE (Xu et al.,
2021), GAS (Zhang et al., 2021b), and BGCA
(Deng et al., 2023). For AOPE, we adapted
RoBMRC and SpanASTE by excluding sentiment
polarities to accommodate the task, following Deng
et al. (2023).

4.2.2 Result Comparison

The overall results of AE and AESC tasks in the
cross-domain setting are presented in Table 4. It
can be observed that our proposed framework out-
performs the state-of-the-art method BGCA in the
majority of domain pairs across ten different cross-
domain settings. Overall, our approach achieves a
1.64% absolute improvement in averaged Micro-F1
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AOPE R14 —-L14 RI15—L14 R16—L14 | L14 -R14 L14—R15 L14—R16 | Avg.
SpanASTE* 51.90 48.15 47.30 61.97 55.58 63.26 54.69
RoBMRC* 52.36 46.44 43.61 54.70 48.68 55.97 50.29

GAS” 57.58 53.23 52.17 64.60 60.26 66.69 59.09

BGCA* 60.82 55.22 54.48 68.04 65.31 70.34 62.37

RSDA 61.48 57.62 55.74 69.61 67.20 71.27 63.82

ASTE R14 - L14 RI5S—L14 R16—L14 | L14 —-R14 L14 —-RI5 L14 —R16 | Avg.
SpanASTE* 45.83 42.50 40.57 57.24 49.02 55.77 48.49
RoBMRC* 43.90 40.19 37.81 57.13 45.62 52.05 46.12

GAS™ 49.57 43.78 45.24 64.40 56.26 63.14 53.73

BGCA* 53.64 45.69 47.28 65.27 58.95 64.00 55.80

RSDA 54.66 48.39 50.96 66.15 60.52 66.36 57.84

Table 5: Results on cross-domain AOPE and ASTE tasks
that the results are sourced from Deng et al. (2023).

compared to BGCA in the AE task, and a 1.39%
improvement in the AESC task.

For the AOPE and ASTE tasks, we conduct ex-
periments on six different domain pairs as shown in
Table 5. Our framework shows an averaged F1 im-
provement of 1.45% in the AOPE task and 2.04%
in the ASTE task. Notably, it also achieves 1.02%
~ 3.58% improvement in F1 score where R serves
as the source domain and L as the target domain.

Additionally, through the experiments presented
in Tables 4 and 5, we note the following observa-
tions:

(1) Our proposed framework consistently outper-
forms BGCA across all four tasks on average. We
attribute this improvement to the incorporation of
quality filtering and diverse enhancement strategies
throughout the entire process, ensuring the quality
of generated samples. Moreover, our framework
is fully compatible with BGCA and serves as its
further optimization.

(2) We observe that methods based on encoder-
decoder structures such as TS perform better than
those based on BERT. We speculate that generative
models, with their encoder-decoder architecture,
excel in handling abstract tasks by better captur-
ing contextual information. They comprehensively
understand the entire text through self-attention
mechanisms and recursive mechanisms.

(3) Our framework performs less effectively than
DAZLM in certain domain pairs, particularly in
cross-domain experiments where S serves as the
source domain. We identify a challenge in exper-
iments where the data volume in the source do-
main is significantly lower than that in the target
domain. We hypothesize the possible reason is
that the model fails to receive sufficient training
in both extraction and generation, limiting subse-

. The results are the average F1s over 5 runs and * indicates

| AE [ AESC | AOPE | ASTE [ Avg.

RSDA 53.79 | 47.50 | 63.82 | 57.84 | 55.74
w/o NLI filter 51.69 | 44.75 | 59.13 | 51.47 | 51.76
w/o Composition-based | 52.26 | 45.28 | 61.49 | 54.94 | 53.49
w/o Paraphrase-based 53.21 | 46.86 | 63.45 | 57.22 | 55.19

Table 6: Ablation Study.

quent results in terms of extraction and generation
capabilities.

4.3 Ablation Study

To analyze the effectiveness of our framework, we
conduct ablation experiments using micro-F1 and
diversity as metrics, and the specific results are
shown in Table 6. Firstly, when we remove the
NLI filter, we observe a significant drop of approx-
imately 3.98% in F1 scores across all four tasks.
This indicates the effectiveness of NLI-based qual-
ity control, as the NLI filter eliminates examples
with semantic and format errors. The removal of
composition-based diversity enhancement leads to
an average decrease of approximately 2.25% in
F1 scores, with particularly notable impacts ob-
served in the ASTE and AOPE tasks. We specu-
late that the composition-based diversity enhance-
ment has a more noticeable impact on tasks with
richer label entailment information. Thirdly, re-
moving paraphrase-based diversity enhancement
leads to an average F1 score decrease of approxi-
mately 0.55% across all four tasks.

In addition, to assess the contributions of
composition-based diversity enhancement, we con-
duct ablation experiments for it, the results are as
shown in Figure 4. We use the proportion of gen-
erated samples with multi-aspect as a metric. Re-
moving the composition-based diversity enhance-
ment resulted in varying degrees of reduction in
this metric across all four tasks, with ASTE and
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Diversity D+ | SR S—L S—D|R—»S R—L R—D |D—R D—S |L—-R L—S | Avg
CDRGt 0.133 0.134 0.146 | 0.250 0.235 0.289 | 0.264 0.293 | 0.193 0.229 | 0.217
DA’LMt 0.275 0.309 0.354 | 0472 0.269 0.374 | 0.257 0.503 | 0.252 0.416 | 0.349
BGCA 0.247 0.376 0.378 | 0.366 0.288 0.487 | 0.375 0.386 | 0.289 0.504 | 0.370
RSDA 0.282 0.284 0.452 | 0.397 0.337 0.599 | 0.386 0.467 | 0.315 0.595 | 0.411
PPL | S—-R S—L S—D|R—-S R—L R—D|D—R D—S|L—-R L—S | Avg
CDRG 613.2 6754 323.6 | 567.2 839.5 927.1 | 400.7 746.3 | 313.6 461.7 | 587.3
DA’LM 189.4 361.8 267.5 | 172.6 244.2 273.3 | 3253 256.3 | 342.8 204.7 | 263.8
BGCA 79.8 629 59.7 | 186.4 4193 1609 | 2845 153.2 | 167.2 2174 | 179.1
RSDA 731 702 89.7 | 118.1 286.6 1103 | 112.6 156.8 | 88.0 134.5 | 123.9

Table 7: Quality assessment of the generated data. PPL stands for perplexity and 1 indicates that the results are

sourced from Yu et al. (2023).

AOPE tasks experiencing nearly a 50% decrease,
demonstrating that the composition-based diver-
sity enhancement indeed enhances the information
density of samples.

4.4 Further Analysis

4.4.1 Quality Assessment of Generated Data

To demonstrate the effectiveness of our framework
in the cross-domain setting, we conduct quality
assessments of generated samples for the AESC
task across ten domain pairs.

We employ perplexity to measure the fluency
of the generated samples and adopt GPT-23 for
perplexity calculation following Yu et al. (2023).
Given that the BGCA method did not generate
additional data, resulting in a limited number of
generated samples, for fairness, our experiments
randomly select and test 500 samples generated by
each method in perplexity testing. The results in
Table 7 indicate that the perplexity of the samples
generated by our framework is significantly lower
than those of other methods. We speculate that the
NLI filter effectively alleviates the issue of non-
fluent generated samples caused by domain shift
phenomena.

We also employ D, to assess the distribution
of generated samples. As shown in the last four
rows of the table 7, our model exhibits higher di-
versity than other methods. It is noteworthy that,
in the D—S task, although the DA?’LM method
has a higher diversity value than our approach, our
framework achieves an F1 score 12.91% higher.
This suggests that our approach not only enhances
the diversity of generated samples but also covers
more aspect terms in the target domain.

Y Current Sample
O Farthest Sample
-+ Sample in Another Cluster

<neg> monitor'<opinion> died
<pos> keyboard <opinion> top notch C e &
*

o @ &

¥ e .
<pos> mac <opinion> Wonde(_fﬁ]

Figure 3: Clustering result visualization where the star
symbol denotes the current sample point.

4.4.2 Visual Case Study on Clustering

As described in Section 3.4.1, we conduct cluster-
ing on the filtered data and visualize the results
as shown in Figure 3. The dataset for the target
domain is denoted as L, focusing on the ASTE task.
In the illustration, we have highlighted two samples
from the same cluster with the farthest distance. It
is evident from the figure that our algorithm not
only ensures coherent labeling but also enhances
diversity in the combinations, thereby achieving a
balance between logical label pairing and increased
variety.

5 Conclusion

In this paper, we propose a two-step data augmen-
tation framework for cross-domain ABSA tasks.
The first step controls sample quality and filters
low-quality pseudo labels using the NLI filter. The
second step enhances the diversity of augmented
data using label composition and paraphrase meth-
ods. We conduct 32 experiments in cross-domain

3https://huggingface.co/evaluate-measurement
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settings to demonstrate the effectiveness of our
framework, which outperforms 7 strong baselines.*
Our approach not only mitigates error propaga-
tion caused by incorrect pseudo-labels but also
enhances the diversity and fluency of the gener-
ated labeled data in the target domain. It is simple
yet effective to implement and extend to other do-
mains and tasks without much effort. In the future,
we will explore the generalization ability of our
framework to other structural information extrac-
tion tasks.
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Limitations

While our method has achieved promising results,
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Although our approach effectively enhances in-
formation density through composition-based di-
versity enhancement, this advantage is more pro-
nounced when label information is abundant. Fur-
ther investigation is needed on how to improve
performance in scenarios with limited label infor-
mation. Additionally, our framework has only been
tested on sentiment analysis datasets, and its appli-
cability to other tasks remains to be explored.
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A Experimental Details and Additional
Experiments

A.1 Training Settings

For the extraction model, we adopted constrained
decoding, confined to the vocabulary of the tar-
get domain. In selecting the training epochs for the
four tasks, we drew inspiration from the approaches
of Zhang et al. (2021b) and Deng et al. (2023), and
extended our experimentation beyond the {15, 20,
25, 30} epochs. As for the paraphrasing model,
to generate more diverse text, we set the tempera-
ture to 0.7. To ensure fairness, the amount of data
generated by our method is kept in the same order
of magnitude as the BGCA method. Furthermore,
we performed post-processing(Deng et al., 2023)
on the generated data to further ensure sample ac-
curacy, including deduplication, format checking,
and regeneration as needed. Ultimately, our train-
ing dataset includes both the source domain data
and the target domain dataset obtained after RSDA
framework processing.

A.2 Supplementary Experiments

0.7
0.6
0.5
0.4
0.3

0.2
0.1 l
0
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AESC AOPE ASTE
RSDA =w/o Composition-Based Method

Proportion

Figure 4: Ablation study about composition-based di-
versity enhancement.

Figure 4 shows the ablation experiments of
composition-based diversity enhancement on four
tasks, with the metric being the proportion of sam-
ples with multiple aspects in the generated data. It
can be seen from the graph that the composition-
based diversity enhancement we adopted has
greatly improved the performance, especially on
tasks AOPE and ASTE.
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Source Domain Labeled Training Data :l

The service I received from Toshiba went above the call of duty.

Target Domain Unlabeled Text 51

Service ok but unfriendly, filthy bathroom.

1 3

Target Domain Pseudo Label x

[premise]

<neg> Service <opinion> unfriendly

1 8

Target Domain Generated New Text

h hesi:
Service has been unfriendly since I bought it from Toshiba. (hypothesis]

(a)

Source Domain Labeled Training Data D

Target Domain Unlabeled Text 9_1 [premise]

The martinis are amazing and very fairly priced.

4

Target Domain Pseudo Label V

<pos> martinis <opinion> amazing

4

Target Domain Generated New Text 51

The martinis were amazing here. [hypothesis]

(b)

Figure 5: The examples of NLI filter where the cross
symbol indicates a contradiction between the two, while
the checkmark indicates entailment.

B Case Studies

B.1 Applications of NLI Filter

Figure 5 illustrates two applications of the NLI
filter. As for (a) in Figure 5, the diagram depicts
how the generation of new samples in the target
domain can be influenced by data from the source
domain, resulting in domain shift phenomena that
may significantly affect the fluency of generated
samples. However, the NLI filter effectively iden-
tifies and filters out such examples promptly. In
(b), the diagram shows an entailment relationship
between the unlabeled text in the target domain
and the newly generated text, indicating that such
examples should be retained. Through NLI filter
processing, we can filter out samples with seman-
tic inconsistencies, such as those influenced by the
source domain or model hallucinations.

B.2 Examples for Composition-based
Diversity Enhancement

The merging process is illustrated in the Figure 6.
We concatenate the labels and texts of the farthest
two examples in the same cluster, resulting in /. and
tc. Then, we utilize the generation model M, to
obtain a t,, that is smoother than ¢.. This constitutes

The fried fish is amazing. The salad is the best.

[<pos> fish <opinion> amazingJ [ <pos> salad <opinion> best }
@

The fried fish is amazing the salad is the best.

[premise]

[<pos> fish <opinion> amazing <pos> salad <opinion> bcst}

The fried fish is amazing and the salad is the best I've had in a very long time.

[hyphothesis]

Figure 6: An example for composition-based diversity
enhancement.

anewly labeled sample (¢, (). Finally, all samples
undergo quality control again with the NLI filter.
For tasks like AE with scarce label information,
we adopt a random token selection approach to
augment the label information in both training and
inference processes.
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