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Abstract

Generative retrieval uses differentiable search
indexes to directly generate relevant docu-
ment identifiers in response to a query. Re-
cent studies have highlighted the potential of
a strong generative retrieval model, trained
with carefully crafted pre-training tasks, to
enhance downstream retrieval tasks via fine-
tuning. However, the full power of pre-training
for generative retrieval remains underexploited
due to its reliance on pre-defined static doc-
ument identifiers, which may not align with
evolving model parameters. In this work, we
introduce BootRet, a bootstrapped pre-training
method for generative retrieval that dynami-
cally adjusts document identifiers during pre-
training to accommodate the continuing memo-
rization of the corpus. BootRet involves three
key training phases: (i) initial identifier genera-
tion, (ii) pre-training via corpus indexing and
relevance prediction tasks, and (iii) bootstrap-
ping for identifier updates. To facilitate the
pre-training phase, we further introduce noisy
documents and pseudo-queries, generated by
large language models, to resemble semantic
connections in both indexing and retrieval tasks.
Experimental results demonstrate that BootRet
significantly outperforms existing pre-training
generative retrieval baselines and performs well
even in zero-shot settings.

1 Introduction

Document retrieval is an important task with
widespread applications, such as question answer-
ing (Karpukhin et al., 2020a; Lee et al., 2019) and
fact verification (Chakrabarty et al., 2018; Olivares
et al., 2023), which aims to retrieve candidate docu-
ments from a huge document collection for a given
query (Gao and Callan, 2022; Nie et al., 2020).
Currently, the dominant implementation is dense
retrieval (Xiong et al., 2017; Zhan et al., 2020a),
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which encodes the query and documents into dense
embedding vectors to capture rich semantics.
Generative retrieval. An emerging alternative to
dense retrieval in document retrieval is generative
retrieval (GR) (Tang et al., 2023; Tay et al., 2022).
It employs a sequence-to-sequence (Seq2Seq) ar-
chitecture to generate relevant document identifiers
(docids) for queries. In this manner, the knowl-
edge of all documents in the corpus is encoded into
the model parameters, similar to the human cogni-
tive associative mechanism (Anderson and Bower,
2014; Kounios et al., 2001). To achieve this, GR
involves two basic operations (Tay et al., 2022):
(i) indexing, which memorizes the entire corpus
by associating each document with its identifier,
and (ii) retrieval, which uses the indexed corpus
information to produce a ranked list of potentially
relevant docids for a given query.

Using general language models, such as BART
(Lewis et al., 2019) and T5 (Raffel et al., 2020),
as the base Seq2Seq model has become a popular
choice in GR (Bevilacqua et al., 2022; De Cao et al.,
2021; Zhuang et al., 2023). On top of this, some
work has designed pre-training objectives for GR.
For example, Zhou et al. (2022) proposed indexing-
and retrieval-based pre-training tasks; document
pieces or pseudo-queries are used as input, and
docids (e.g., product quantization code) are pre-
dicted as output with maximum likelihood esti-
mation (MLE). Similarly, Chen et al. (2022) pro-
posed retrieval-based tasks, which aim to construct
and learn pairs of pseudo-queries and docids (i.e.,
Wikipedia titles) from the corpus. These works
demonstrate that applying specialized pre-trained
models to GR yields superior results compared to
using general language models.
Research challenges. While pre-training methods
have shown their effectiveness, important limita-
tions remain in the following: (i) The construction
process of pre-defined docids is independent from
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the pre-training process. This results in a semantic
gap between both processes, which could poten-
tially hinder the retrieval performance. (ii) Docids
remain unchanged during pre-training. If the ini-
tial docids are not suitable, they cannot be further
adjusted after the training begins. Consequently,
it may become challenging to learn semantics and
relationships between documents, impeding the
achievement of satisfactory retrieval performance.
(iii) Existing pre-training methods do not explicitly
consider the interrelations between document-do-
cid or query-docid pairs. The widely-used MLE
objective may result in difficulties in distinguishing
among similar documents and docids. Therefore,
we argue that the model should enhance its discrim-
inative and generalization ability.
Approach. To address these challenges, we intro-
duce a general bootstrapped pre-training method
for GR, called BootRet. Our objective is to dynami-
cally adjust docids in accordance with the evolving
model parameters during pre-training. The key
idea is inspired by that the human brain updates
the organization of existing knowledge to better
match updated goals or contents in learning (Mack
et al., 2016). BootRet includes three key steps:
(i) Initial docid generation. We leverage the en-
coder of the initial model to encode documents
and then obtain the product quantization code (Ge
et al., 2013; Zhan et al., 2021) as the initial docids.
(ii) Pre-training. We design two pre-training tasks,
i.e., corpus indexing task and relevance predication
task. The corpus indexing task aims to memorize
corpus information and distinguish among simi-
lar documents and docids. We construct pairs of
original documents and corresponding identifiers
to simulate the indexing operation. To enhance
discrimination and generalization, we use a large
language model (LLM) to generate noisy docu-
ments similar to the originals, creating pairs of
noisy documents and identifiers. Besides, we de-
sign contrastive losses to help the model memorize
and contrast these pairs. The relevance prediction
task aims to learn relevance information from the
corpus. We construct pairs of pseudo-queries and
relevant docids to simulate the retrieval operation.
We also use a LLM to generate high-quality pseudo–
queries for original documents as input and design
a contrastive loss for the model to predict and con-
trast docids. These two tasks are jointly learned,
with the docids remaining fixed throughout this pro-
cess. (iii) Enhanced bootstrapping. The encoder

of the model pre-trained with the above two tasks
is further used to encode documents, updating doc-
ument representations, and then updating the PQ
code, i.e., docids. These updated docids are further
used to retrain the model based on the pre-train-
ing tasks. Steps (ii) and (iii) iteratively update the
model parameters and docids.

We pre-train BootRet based on two kinds of
large scale text corpus, i.e., MS MARCO (Nguyen
et al., 2016) and Wikipedia (Wikipedia, 2022). We
then fine-tune BootRet on two representative down-
stream datasets widely used in GR research. The
empirical experimental results show that BootRet
can achieve significant improvements over strong
GR baselines.
Contributions. Our main contributions are: (i) We
propose a bootstrapped pre-training framework for
GR to iteratively update the model parameters and
docids. (ii) BootRet demonstrates superior perfor-
mance in downstream retrieval tasks. For instance,
on the MS MARCO dataset, it outperforms the
strong pre-training GR baseline, Ultron (Zhou et al.,
2022), by 11.8% in terms of Hits@1. (iii) Addition-
ally, BootRet exhibits better zero-shot performance
than other general language models.

2 Related Work

Generative retrieval. GR marks a new paradigm
in document retrieval that generates identifier
strings of documents as the retrieval target (Metzler
et al., 2021; Tay et al., 2022). The current design of
docids can be categorized into two types. (i) Pre-de-
fined static docids. They remain unchanged during
training, such as document titles (De Cao et al.,
2021), URLs (Ren et al., 2023), product quantiza-
tion code (Chen et al., 2023; Mehta et al., 2023).
This design is simple and shows decent perfor-
mance (Chen et al., 2022), but the pre-defined pro-
cess is independent of training. (ii) Learnable do-
cids. They are optimized jointly with the retrieval
task (Sun et al., 2023; Wang et al., 2023). Though
these docids are dynamic, their optimization pri-
marily targets retrieval. Nevertheless, docids serve
functions in both indexing and retrieval.

In addition to widely-used supervised learning
approaches (Sun et al., 2023; Zhang et al., 2023;
Zhou et al., 2023), recent studies (Chen et al., 2022;
Zeng et al., 2023; Zhou et al., 2022) have explored
pre-training for GR. However, each study adopts
fixed docids, ignoring the potential mismatch be-
tween docids and the updated model. In contrast,
our work dynamically updates both the docids and
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the evolving model to enhance the effectiveness.
Bootstrapping. The idea of bootstrapping train-
ing methods have garnered significant interest in
various natural language processing tasks (Deepika
and Geetha, 2021; Song and Roth, 2014; Wu et al.,
2009). The approach involves generating new
training data or information based on the previ-
ous model to iteratively enhance its capabilities.
While the techniques are sometimes used in con-
junction with supervised learning (Deepika and
Geetha, 2021; Song and Roth, 2014), our scenario
involves an unlabeled corpus without ideal docids.
Thus, we adopt a more unsupervised approach, it-
eratively refining the GR model and docids.
Dense retrieval. Dense retrieval (Gao and Callan,
2022; Karpukhin et al., 2020a) is currently the de
facto solution for document retrieval. It focuses
on representing documents and queries as dense
vectors in continuous spaces, capturing semantic re-
lationships. Efficient vector search is facilitated by
approximate nearest neighbor (Xiong et al., 2020)
algorithms. Further enhancements include using
pre-trained models within a dual-encoder archi-
tecture (Nie et al., 2020; Zhan et al., 2020b) and
hard negative mining techniques (Karpukhin et al.,
2020b; Zhan et al., 2020a). Compared to dense
retrieval, GR could achieve end-to-end global op-
timization. However, its current performance lags
behind state-of-the-art methods in dense retrieval.

3 Method
This section introduces the details of the BootRet
model proposed in this paper. As shown in Figure
1, (i) Given a corpus D = {d1, . . . , d|D|}, we first
construct an initial docid idi for each document di
in D. The initial docid set is denoted as I0

D. We
employ an encoder-decoder language model as the
base model, where initial parameters are denoted
as θ0. (ii) Then, while keeping I0

D unchanged, we
carefully design two pre-training tasks. During pre–
training, the model parameters are updated from θ0

to θ1. (iii) Subsequently, fixing θ1, we update the
docids to I1

D, thus completing one iteration. The
updated docids can be used to further retrain the
model for a next iteration. We define the t-th iter-
ation as updating the model parameters from θt−1

to θt with fixed It−1
D in Step (ii), and then based on

fixed θt, updating It−1
D to It

D in Step (iii).

3.1 Model Architecture
Like previous GR research (Chen et al., 2022; Tay
et al., 2022; Wang et al., 2022), we leverage a

transformer-based model comprising: (i) An en-
coder, a bidirectional encoder to encode documents
or pseudo-queries. (ii) An identifier decoder, op-
erating through a sequential generation process to
produce document identifiers. We initialize the
model with T5-base (Raffel et al., 2020), and the
initial model parameter is denoted as θ0.

3.2 Initial Docid Generation

Docids with semantic ties to the document content
aid the model’s learning (Tay et al., 2022). For ef-
fective bootstrapping, docids need efficient updates
based on the model’s progress. Considering these
needs, we choose the widely used PQ code (Chen
et al., 2023) as the docid.

Specifically, we first encode all the documents
to obtain document vectors with the encoder of θ0.
Following (Zhou et al., 2022), vectors are evenly
divided into g groups. For each group, we apply
the K-means clustering algorithm to obtain k clus-
ter centers. Then, the docid can be represented
by cluster indices of length g corresponding to the
clusters. And we denote the initial docid set as I0

D.
To facilitate the generation of docids, we include all
cluster indices from all groups obtained in the do-
cid generation process as new tokens added to the
model vocabulary. I0

D will be used for subsequent
iterative pre-training and updates.

3.3 Pre-training Tasks

The core idea is to construct pseudo document-
docid pairs and query-docid pairs to simulate the
indexing and retrieval operations, respectively. Our
two pre-training tasks are: (i) Corpus indexing task.
We first construct pairs of original documents and
their corresponding identifiers. For original docu-
ments, we use a LLM to construct similar but noisy
documents D̃. d̃hi ∈ D̃ is the h-th noisy version
of di. And we design multiple losses to guide the
model to learn the associations between original
or noisy documents and their identifiers. (ii) Rele-
vance prediction task. We use a LLM to construct
pseudo-queries Q, and pair them with relevant do-
cids. For di, we construct a total of X queries, and
qxi ∈ Q denotes the x-th pseudo-query.

3.3.1 Corpus Indexing Task
We introduce the construction of noisy documents
and pre-training objectives in detail.
Noisy document construction. The noisy docu-
ments should maintain semantic consistency with
the originals while remaining distinguishable. We
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Figure 1: The bootstrapped pre-training pipeline of BootRet. (1) The initial docids I0
D are obtained with the initial

model parameters θ0. (2) To perform the t-th iteration, we design the corpus indexing task and relevance prediction
task for pre-training. We construct noisy documents and pseudo-queries with a LLM, and design contrastive losses
(the yellow and the orange rectangles) and a semantic consistency loss (the green rectangle) to learn the corpus and
relevance information discriminatively. After pre-training, the model updates from θt−1 to θt. (3) The bootstrapped
θt is used to dynamically update the docids It−1

D to It
D, i.e., bootstrapped docids, which are further used in the next

iteration. (Figure should be viewed in color.)

propose leveraging a LLM to effectively achieve
this. Inspired by (Raffel et al., 2020), we design the
following four prompts to guide LLM generation:
• A synonym replacement prompt: “Replace
some words in the following document
with their synonyms while maintaining
the overall semantic meaning: {d}.”

• A sentence removal prompt: “Remove one
or more sentences from the following
document, while maintaining the overall
semantic meaning: {d}.”

• A sentence shuffling prompt: “Rearrange the
sentences in the following document to
create a new flow, while maintaining the
overall semantic meaning: {d}.

• A word masking prompt: Mask some words
with [Masked] in the following document,
while maintaining the overall semantic
meaning: {d}.”

Combining these prompts with an original docu-
ment as the input, LLM generates four noisy docu-
ments, sharing the same docid with the original.
Pre-training objective. In the t-th iteration, the
objective consists of three parts as the follows.
• Semantic consistency loss: It aims at maintain-

ing overall semantic consistency between origi-
nal and noisy documents. Specifically, in a mini-
batch, there are a total of 4N document-docid

pairs, where N pairs correspond to the original
pairs, and each original document has four noisy
pairs. This loss LSC(D, D̃; θt−1) is defined as:

N∑

i=1

4∑

h=1

1− sim(Enc(di),Enc(d̃
h
i )), (1)

where θt−1 denotes model parameters of the pre-
vious iteration and sim(·) is the cosine function.

• Contrastive losses for corpus indexing: Con-
ditioned on original document-docid pairs, we
encourage the model to generate a docid that cor-
responds to the document rather than the docids
of other documents. In the same mini-batch, we
aim for the model to generate the docid corre-
sponding to the document with a higher proba-
bility than generating others. Inspired by con-
trastive learning (Khosla et al., 2020), this loss
LC1(D, ID; θt−1) is formalized as:

−
N∑

i=1

log
exp(P (idi | di)/τ)∑N
j=1 exp(P (idj | di)/τ)

, (2)

where τ is the temperature hyperparameter.
P (idi | di) is the generated likelihood proba-
bility of idi conditioned on di. Similarly, for
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noisy pairs, the loss LC2(D̃, ID; θt−1) is:

−
N∑

i=1

4∑

h=1

log
exp(P (idi | d̃hi )/τ)∑N
j=1 exp(P (idj | d̃hi )/τ)

. (3)

The pre-training objective of the corpus indexing
task LCI(D, D̃, ID; θt−1) is a weighted sum of the
three aforementioned losses, denoted as:

LSC(·) + αLC1(·) + βLC2(·), (4)

where α and β are hyperparameters.

3.3.2 Relevance Prediction Task
We introduce the construction process of pseudo-
queries, and the pre-training objective.
Pseudo-query construction. To generate high-
quality pseudo-queries for the original documents,
we employ a LLM using the prompt: “Given
the following document {d}, generate {X}
insightful queries that a reader might
have after reading the content. Ensure
the queries cover key concepts.” When the
prompt is combined with a document di and the
required number of pseudo-queries X as input, we
obtain well-written pseudo-queries. They share the
same docids as the input original document.
Pre-training objective. Similarly, we ensure that
the model tends to generate relevant docids than
irrelevant ones. In the same mini-batch, the loss
LRP (Q, IQ; θt−1) in the t-th iteration is:

−
N∑

i=1

X∑

x=1

log
exp(P (idi | qxi )/τ)∑N
j=1 exp(P (idj | qxi )/τ)

. (5)

3.3.3 Joint Learning
We jointly pre-train the model with two above
objectives and two sequence generation objec-
tives. In the t-th iteration, the overall loss
LPre(D, D̃, ID,Q, IQ; θt−1) is :

γLCI(·) + ρLRP (·) + λLID(·) + λLRE(·), (6)

where γ, ρ and λ are hyperparameters;
LID(D, D̃, ID; θt−1) is the widely used stan-
dard MLE loss based on document-docid pairs:

−
|D|∑

i=1

logP (idi |di)−
|D|∑

i=1

4∑

h=1

logP (idi | d̃hi ). (7)

Note, Eq. (2) and Eq. (3) ensure that the model’s
probability of generating the corresponding docid
is greater than generating other docids. Eq. (7)

does not explicitly contrast with other docids.
LRE (Q, ID; θt−1) is based on query-docid pairs:

−
|Q|∑

i=1

logP (idi | qi). (8)

During training, we construct two types of batch
data. One type has original and noisy documents-
docid pairs, optimized using Eq. (4) and Eq. (7).
The other type has pairs of the pseudo-query and
relevant docid only, optimized using Eq. (5) and
Eq. (8). After jointly training during the t-th itera-
tion, θt−1 updates to θt with docids fixed.

3.4 Enhanced Bootstrapping Strategy
Based on the updated θt, we introduce how to up-
date docids It−1

D and retrain the model.
Docid update. Fixing θt, we use the encoder of θt

to encode documents as in Section 3.2, to update
docids of the previous iteration It−1

D , to It
D. We

refer to the version following the initial iteration’s
completion (i.e., I1

D and θ1) as BootRet-Bs.
Retrain the model. To proceed to the next itera-
tion, we retrain the model with It

D as described in
Section 3.3. After multiple iterations, we achieve
continuous dynamic alignment and enhancement.
We refer to this version as BootRet-Mt.

4 Experimental Settings

Pre-training corpus. For pre-training we use
two large, publicly available corpora: (i) En-
glish Wikipedia, which contains tens of millions
of well-written documents and we downloaded
this dump (Wikipedia, 2022) for pre-training, and
(ii) the MS MARCO Document Collection (Nguyen
et al., 2016), which has about 3 million documents
extracted from web documents using the Bing
search engine. For each corpus, we sample 500K
documents and generated four noisy documents
and five pseudo-queries, i.e., X , for each docu-
ment. This results in 2.5M documents and 2.5M
pseudo-queries for pre-training. BootRet-BSWiki

and BootRet-BSMS denote the model pre-trained
on Wikipedia and MS MARCO, respectively.
Downstream retrieval datasets. We leverage two
representative retrieval datasets. (i) MS MARCO
Document Ranking dataset (Nguyen et al., 2016).
Following the setup of (Zhou et al., 2022), we
sample a subset of 300K documents for experi-
mentation, denoted as MS 300K, containing 360K
training queries, 6980 evaluation queries. These
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documents do not overlap with the ones used in pre–
training. (ii) Natural Question (NQ) (Kwiatkowski
et al., 2019) has real questions and Wikipedia doc-
uments, having about 228K documents with 307K
training queries and 7.8K test queries.
Baselines. Following typical GR research (Tay
et al., 2022; Wang et al., 2022), we examine three
types of baseline: (i) Sparse retrieval baselines:
BM25 (Robertson et al., 1995), and DocT5Query
(Nogueira and Lin, 2019b). (ii) Dense retrieval
baselines: RepBERT (Zhan et al., 2020b), DPR
(Karpukhin et al., 2020a), and ANCE (Xiong et al.,
2020). (iii) Advanced GR baselines: DSI (Tay
et al., 2022), GENRE (De Cao et al., 2021), SEAL
(Bevilacqua et al., 2022), DSI-QG (Zhuang et al.,
2023), NCI (Wang et al., 2022), Ultron-PQ (Zhou
et al., 2022), Corpusbrain (Chen et al., 2022), Gen-
Ret (Sun et al., 2023), and NOVO (Wang et al.,
2023) . For more details on our baselines, please
refer to Appendix A.1.
Evaluation metrics. Following GR work (Li et al.,
2023; Tay et al., 2022), for NQ, we use hit ra-
tio (Hits@K) with K = {1, 10} as the metric.
For MS 300K, we also use mean reciprocal rank
(MRR@K) with K = {3, 20} (Li et al., 2023).
Implementation details. For pre-training, we use
the LLaMA-13b model (Touvron et al., 2023) to
generate noisy documents and pseudo-queries. We
initialize our model with T5-base (220M) (Raffel
et al., 2021). For docids, we set the length g of PQ
codes to 24, the number of clusters k to 256, and the
dimension of vectors to 768. The hyperparameters
for pre-training are set to α = β = λ = 1, γ =
ρ = 2 and τ = 0.2. The batch size is 256. The
Adam optimizer with a learning rate of 5e-5 is
used, and the sequence length of documents is set
to 512. The max training step is 500K, with the
first iteration occurring at step 100K, followed by
iterations every 40K steps thereafter.

For fine-tuning, we use the pre-trained model
obtained from the last iteration to generate docids.
Models are further fine-tuned with document-docid
pairs and labeled query-docid pairs with MLE (Tay
et al., 2022). Following (Wang et al., 2022; Zhou
et al., 2022), we additionally generate 10 pseudo-
queries for each document to enhance training. We
set the learning rate as 1e-3, and the max training
steps as 30K. Other settings remain consistent with
the pre-training stage.

All models are trained on eight NVIDIA Tesla
A100 80GB GPUs. For inference, we build a pre-

Method MRR Hits
@3 @20 @1 @10

BM25 22.57 26.67 24.78 40.73
DocT5query 27.38 29.63 30.13 46.93

RepBERT 31.47 33.68 33.16 55.83
DPR 34.84 36.79 36.52 58.68
ANCE 30.76 34.25 33.63 53.62

DSI 23.21 28.93 28.14 49.72
GENRE 31.12 33.49 33.18 53.56
SEAL 31.35 33.57 33.34 53.74
DSI-QG 33.64 35.81 34.96 58.62
NCI 33.86 36.20 35.02 59.21
Corpusbrain 34.72 37.25 36.14 60.32
Ultron-PQ 35.25 38.41 39.53 62.85
GenRet 37.26 40.53 41.68 64.92
NOVO 38.36 41.29 43.14 64.55

BootRet-BsWiki 36.28∗ 39.25∗ 40.73∗ 63.78∗

BootRet-BsMS 37.13∗ 40.48∗ 41.56∗ 64.89∗

BootRet-MtWiki 38.83∗ 41.36∗ 43.97∗ 65.83∗

BootRet-MtMS 39.35∗ 42.79∗ 44.21∗ 66.73∗

Table 1: Retrieval performance on MS 300K. The best
results are shown in bold. ∗ indicates statistically sig-
nificant improvements over the best performing GR
baseline Ultron-PQ (p ≤ 0.05).

fix trie (De Cao et al., 2021) for docids and use
constrained beam search with 20 beams to decode
docids. For more details, please see Appendix A.2.

5 Experimental Results

This section presents the experimental findings.

5.1 Main Results

The comparison between our BootRet and base-
lines on MS 300K and NQ are shown in Table 1
and Table 2, respectively. We observe: (i) Dense
retrieval baselines generally outperform sparse re-
trieval baselines, indicating that dense vectors cap-
turing rich semantics are more beneficial for re-
trieval. (ii) Dense retrieval baselines outperform
naive GR methods, such as DSI and SEAL, demon-
strating the challenge of learning with only labeled
data for GR. (iii) DSI-QG and NCI with data aug-
mentation perform better than dense retrieval base-
lines, suggesting that GR requires more labeled
data. (iv) Pre-trained baselines, i.e., Ultron and Cor-
pusbrain, outperform supervised learning GR base-
lines, highlighting the necessity of pre-training for
GR. (v) Our BootRet-MtWiki and BootRet-MtMS

outperform base versions and Ultron, demonstrat-
ing the effectiveness of bootstrapped pre-training
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Method Hits@1 Hits@10

BM25⋆ 29.27 60.16
DocT5query⋆ 39.13 69.72

RepBERT 50.20 78.12
DPR⋆ 52.63 79.31
ANCE 45.42 72.75

DSI⋆ 27.40 56.60
GENRE⋆ 26.30 71.20
SEAL⋆ 26.30 74.50
DSI-QG⋆ 63.49 82.36
NCI 64.24 83.11
Corpusbrain 65.12 84.09
Ultron-PQ 64.61 84.45
GenRet 65.42 85.67
NOVO 66.13 86.24

BootRet-BsWiki 66.71∗ 85.53∗

BootRet-BsMS 65.88 85.04
BootRet-MtWiki 67.32∗ 87.59∗
BootRet-MtMS 66.15∗ 86.31∗

Table 2: Retrieval performance on NQ. Methods marked
with ⋆ indicate results are obtained from (Bevilacqua
et al., 2022; Tay et al., 2022; Zhuang et al., 2023). The
best results are shown in bold. ∗ indicates statistically
significant improvements over the best performing GR
baseline Ultron-PQ (p ≤ 0.05).

with dynamic identifiers. (vi) In MS300K, our
BootRet-Bs does indeed perform slightly worse
compared to strong GR baselines such as UniGen,
GenRRL, GenRet, NOVO, and ASI. However, the
performance of BootRet-Mt is better than them,
which also demonstrates the effectiveness of our
approach. Similar conclusions are observed in
NQ. (vii) BootRet-BsMS performs better on MS
300K than BootRet-BsWiki , while the opposite is
observed on NQ, indicating that the performance
of pre-trained models improves when downstream
data and pre-training corpora are more similar. Ad-
ditionally, Table A.3 in the appendix, shows that
the performance of GR methods lags behind cross-
encoder methods, suggesting ample room for ex-
ploration in GR.

5.2 Ablation Study

To analyze the impact of each part of BootRet,
we conduct ablation study on the Wikipedia pre-
training corpus. From Table 3, we observe the
following: (i) When not using dynamic identifiers
(i.e., the 2nd row), wherein the model solely under-
goes repeated pre-training using fixed docids, the
performance significantly deteriorates compared
to BootRet-MtWiki , affirming the effectiveness of

Method MS 300K NQ
Hits@10 Hits@10

BootRet-MtWiki 65.83 87.59

w/o dynamic identifiers 63.14 83.81

BootRet-BsWiki 63.78 85.53

w/o pre-training 59.95 83.26
w/o retrieval prediction 63.01 83.82
w/o corpus indexing 63.28 83.91
w/o noisy documents 63.47 84.17
w/o contrastive losses 63.31 83.94

Table 3: Ablation study of the pre-training components.

dynamic identifiers. (ii) When pre-training is not
performed, and docids are directly obtained using
the initial T5-base model (i.e., the 4th row), the
model’s performance is lower than that of Ultron.
This underscores the necessity of pre-training for
GR. (iii) When pre-training does not involve the
retrieval prediction task or corpus indexing task
(i.e., the 5th-6th rows), the performance is lower
than BootRet-BsWiki (i.e., the 3rd row). This con-
firms that pre-training should consider both rele-
vance and corpus information. (iv) Not learning
the corpus indexing task (i.e., the 6th row) leads to
better performance compared to Ultron, indicating
that the contrastive loss in the retrieval prediction
task enhances the discriminative ability. (v) When
the corpus indexing task does not use noisy docu-
ments (i.e., the 7th row), the performance is even
lower, demonstrating that both noisy documents
and contrastive losses contribute to discriminating
similar documents and docids. (vi) When not using
contrastive losses, i.e., the 8th row, where pre-train-
ing solely uses MLE losses (Eq. (7) and (8)) and
Eq. (1), there is a significant decrease in perfor-
mance compared to BootRet-BsWiki , indicating the
effectiveness of contrastive losses. The ablation re-
sults based on the MS MARCO pre-training corpus
show similar trends, as shown in Table 4.

5.3 Zero- and Low-resource Settings

To show whether BootRet can perform well with
limited data, we randomly sample 2K, 4K, 6K,
and 8K queries from the training set of both
datasets. From Figure 2, we observe the following:
(i) Under the zero-shot setting, where the model
learns solely from the corpus without annotated
queries, BootRet-BsWiki initially performs worse
than Ultron on MS 300K. However, as fine-tuning
with annotated queries progresses, BootRet-BsWiki
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Methods MS 300K NQ
Hits@10 Hits@10

BootRet-MtMS 66.73 86.31

w/o dynamic identifiers 63.55 84.62

BootRet-BsMS 64.89 85.04

w/o pre-training 59.57 83.71
w/o retrieval prediction 63.02 84.51
w/o corpus indexing 63.46 84.76
w/o noisy documents 63.95 84.96
w/o contrastive losses 63.24 84.62

Table 4: Ablation study of the pre-training components
based on the MS MARCO pre-training corpus.
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Figure 2: Results under zero- and low-resource setting.
The x-axis indicates the number of labeled queries.

quickly surpasses Ultron. This is possibly due
to Ultron directly pre-training on the downstream
dataset’s corpus, while BootRet-BsWiki ’s pre-train-
ing corpus differs significantly from MS 300K. It
also indicates that BootRet-BsWiki requires less
annotated data to achieve rapid performance im-
provement. (ii) Under the low-resource setting,
both base versions of BootRet exhibit performance
gaps compared to BM25, highlighting the impor-
tance of annotated data for GR. (iii) Both versions
of BootRet-Mt demonstrate better performance
over base versions. Additionally, they achieve per-
formance comparable to BM25 at approximately
1.3%, i.e., 5K, queries fine-tuning on MS 300K.
Similar trends are observed for all methods on NQ,
but all GR models perform worse than BM25.

5.4 Impact of the Number of Iteration

The iteration of updating docids and model pa-
rameters is important in our proposed bootstrap-
ping pre-training method. We analyze the retrieval
performance of the number of iterations on the
downstream task, MS 300K, pre-training on the
MS MARCO corpus. In Figure 3, we find that
performance generally improves as the number of
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iterations on MS 300K.
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Figure 4: Retrieval performance of different number of
iterations on NQ.

iterations increases from 1 to 7, indicating the effec-
tiveness of the bootstrapping pre-training method.
However, performance begins to decline gradually
after exceeding 7 iterations, possibly due to the
model overfitting to the pre-training data.

As shown in Figure 4, it show the retrieval per-
formance of different number of iterations on NQ,
which aligns with the trend on MS 300K. The phe-
nomenon that the performance degrades substan-
tially after a certain iteration, is reasonable. Be-
cause different datasets have different characteris-
tics and properties. Therefore, the optimal number
of iterations may vary. However, the optimal itera-
tion range is similar across datasets. For example,
we found that the best performance is achieved
around the 7th iteration in MS 300K, while it is
around the 6th iteration in NQ (Figure 4). There-
fore, for computational efficiency, when generaliz-
ing to other datasets, one can initially choose the
number of iterations within a similar range.

5.5 Impact of Noisy Documents

To analyze the impact of different prompts for gen-
erating noisy documents, we remove noisy docu-
ments generated using a certain type of prompt dur-
ing pre-training to train BootRet-BsMS and evalu-
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Figure 6: t-SNE plot of representations of a query
(QID:1039861) from MS 300K validation set and docu-
ments corresponding to the generated top-100 docid list
by BootRet-BsMS and BootRet-MtMS .

ate its retrieval performance on the downstream MS
300K dataset. Based on Figure 5, we observe the
following. (i) When the noisy documents generated
by the shuffling prompt are removed, the perfor-
mance dropped the most (the red circle), likely due
to the significant semantic differences introduced
by altering sentence order, reinforced by semantic
consistency loss, improving discrimination ability.
The sentence removal prompt (the green circle)
shows a similar result. (ii) Next, the word masking
prompt (the grey circle) yields moderate results,
possibly due to the omission of masked token pre-
diction (as the initial T5 is already pre-trained for
this task), thereby weakening the masking effect.
(iii) Lastly, the synonym replacement prompt (the
blue circle) performs the most modestly, possibly
because it introduces minimal semantic changes,
thus having the same effect as original documents.

5.6 Visual Analysis

To further analyze the bootstrapped pre-training,
we conduct visual analysis on BootRet-BsMS and
BootRet-MtMS on MS 300K. We sample a query, “
germany gasoline cost” (QID: 194592), from the
validation set and visualize the documents corre-
sponding to the decoded docid lists (top 100) gener-
ated by BootRet-BsMS and BootRet-MtMS . Specif-
ically, we visualize the query and document repre-

sentations encoded by the encoders of both models.
From Figure 6, we observe that compared to

BootRet-BsMS (left), BootRet-MtMS (right) ex-
hibits the relevant docid (the blue triangle) closer to
the query (the red star), while irrelevant documents
(the grey circles) are farther away. Additionally, we
observe that irrelevant documents near the query
are more clustered in BootRet-BsMS compared to
BootRet-MtMS , indicating that dynamic identifiers
and pre-training tasks could effectively distinguish
between documents.

6 Conclusion
In this work, we proposed BootRet, a bootstrapped
pre-training method for GR, addressing the mis-
match between pre-defined fixed docids and evolv-
ing model parameters in existing pre-training ap-
proaches. It dynamically adjusts docids based on
the model pre-trained with two tasks. Extensive ex-
periments validate that BootRet achieves superior
performance compared to strong GR baselines on
downstream tasks, even in the zero-shot setting.
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7 Limitations

While BootRet has shown certain results in GR,
it still has several limitations. (i) In the relevance
prediction task, although we incorporate negative
samples, the computational cost limits our abil-
ity to conduct comprehensive comparisons beyond
batch-level contrasts. Future work could explore
integrating dynamic hard negative mining tech-
niques from traditional retrieval methods into GR.
(ii) We design prompts with minimal hyperparame-
ters to generate noisy documents. Future research
could explore corresponding hyperparameter de-
signs, such as determining the extent of sentence
shuffling/removal strategies. (iii) Compared to
other GR pre-training methods, our pre-training
incurs slightly higher computational costs due to
the need to update docids at each iteration. In fu-
ture work, we can further explore how to trade off
iteration costs and performance. (iv) For handling
incremental documents, we ignore this issue in this
work. For future work, inspired by (Chen et al.,
2023), we could adaptively adjust cluster centers in
the docid generation process based on the similar-
ity between new and old documents. (v) Scalability
is a significant challenge in current GR, requiring
targeted solutions. Currently, a few works (Pradeep
et al., 2023; Zeng et al., 2023) are exploring this
issue. Differently, our work focuses on pre-train-
ing for GR which can provide suitable base model
for GR. Therefore, the size of our experimental
datasets follows that of most current GR works
(Li et al., 2023; Sun et al., 2023; Tay et al., 2022;
Wang et al., 2022, 2023; Zhou et al., 2022). We
leave the scalability issue in the future. (vi) Jin et al.
(2023) is concurrent work with ours, proposing to
conduct language model indexer pretraining and
Docid learning jointly. We do not consider this in
the present study.
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A Appendix

A.1 Baseline Details

The baseline methods are described as follows:
Sparse retrieval baselines: (i) BM25 (Robertson

et al., 1995) is a widely used strong term-based
method. We implement it based on the Anserini
toolkit (Anserini); (ii) DocT5Query (Nogueira and
Lin, 2019b) expands a document with pseudo–
queries predicted by a fine-tuned T5 (Raffel et al.,
2020) conditioned on the original document. And
then we perform the BM25 retrieval.

Dense retrieval baselines : (i) DPR (Karpukhin
et al., 2020a) is a BERT-based dual-encoder model
using dense embeddings for texts; (ii) ANCE
(Xiong et al., 2020) leverages ANN algorithm
and hard negative techniques for training a du-
al-encoder model; and (iii) RepBERT (Zhan et al.,
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2020b) is also a dual-encoder model with brute
force searching.

Advanced GR baselines: (i) DSI (Tay et al.,
2022) employs semantic structured numbers as
docids via a hierarchical k-means clustering al-
gorithm. (ii) GENRE (De Cao et al., 2021) uses
document titles as docids. It learns the documen-
t-docid pairs. For NQ, it has unique document
titles as docids. For MS 300K which might lack
of titles, we use a document title generator (Zear-
ing, 2023) to generate high-quality titles for doc-
uments. (iii) SEAL (Bevilacqua et al., 2022) uses
n-grams as docids, and generates docids based
on FM-index. It uses BART-large as the back-
bone. (iv) DSI-QG (Zhuang et al., 2023) gen-
erates pseudo-queries conditioned on the docu-
ment using docT5query (Nogueira and Lin, 2019b)
and pairs them with docids for training. It uses
unique integer strings as identifiers. (v) NCI (Wang
et al., 2022) employs semantic structured num-
bers as identifiers. It trains the model using pairs
of pseudo-queries and docids, and designs a pre-
fix-aware decoder. (vi) Ultron (Zhou et al., 2022)
employs the product quantization code as docids.
It starts with pre-training using document piece-do-
cid pairs, followed by supervised fine-tuning with
annotated queries and generated pseudo-queries on
downstream tasks. (vii) Corpusbrain (Chen et al.,
2022) employs unique document titles as docids for
Wikipedia during pre-training. For MS MARCO,
it might lack of titles; hence, we use the document
title generator (Zearing, 2023) to generate titles
for documents. It undergoes pre-training using
pseudo-queries constructed from documents. For
downstream MS 300K, we also generate document
titles as docids, and then undergoes fine-tuning on
downstream tasks using annotated queries. (Sun
et al., 2023) introduces an autoencoder to generate
identifiers for documents. This autoencoder learns
to compress documents into docids and to recon-
struct docids back into documents. It learns jointly
with the retrieval task. (viii) NOVO (Wang et al.,
2023) selects important words from the document
as docids. The model is trained through super-
vised learning with annotated information. All GR
baselines are optimized with an encoder-decoder
architecture using MLE.

A.2 Additional Implementation Details
For T5-base, the hidden size is 768, the feed-
forward layer size is 12, the number of self-
attention heads is 12, and the number of trans-

Method MRR@20 Hits@10

Ultron-PQ 38.41 62.85
BootRet-MtMS 42.79 66.73
monoBERT 46.83∗ 71.88∗

Table 5: Comparison between GR methods and the full-
ranking baseline on MS 300K. Best results are shown in
Bold. ∗ indicates statistically significant improvements
over BootRet (p ≤ 0.05).

former layers is 12. Decoder-only structures like
the GPT (Ouyang et al., 2022) series models are
left for future exploration.

BootRet and the reproduced baselines are im-
plemented with PyTorch 1.9.0 and HuggingFace
transformers 4.16.2; we re-implement DSI, and
utilize open-sourced code for other baselines.

For data augmentation during fine-tuning, we
leverage the pre-trained model, DocT5Query
(Nogueira and Lin, 2019b) to generete pseudo-
queries for documents. For MS 300K, we directly
use the off-the-shelf pseudo-queries (Nogueira and
Lin, 2019a). For NQ, we use the labeled queries
to fine-tune DocT5Query. For each document, we
generate 10 queries with the first 512 tokens of
the document as input and constrain the maximum
length of the generated query as 64. During train-
ing, we pair these pseudo-queries with docids cor-
responding to the document, and learn these pairs
with standard MLE.

A.3 Additional Comparisons

As depicted in Table 5, for evaluating current
GR methods against full-ranking methods, we
adopt a cross-encoder baseline, namely monoBERT
(Nogueira et al., 2019). Firstly, BM25 retrieves the
top 1000 candidate documents, and monoBERT
subsequently ranks them. monoBERT concate-
nates the query and document as input, and utilizes
[CLS] for relevance calculation. It is optimized
with cross-entropy.

A.4 Case Study

To better explain the changes in identifiers over
bootstrapping iterations, we conducted a case study.
Specifically, we sampled two documents. Below
are their PQs at the initial stage, after training
one round (BootRt-Bs), and after training multi-
ple rounds (BootRt-Mt).

As shown in Table 7, we found that as identifiers
evolve, the PQs for semantically similar documents
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Method Memory Latency

DocT5query 3.76 MB 5.61 ms
DPR 940.00 MB 18.35 ms
BootRet-BsWiki 65.40 MB 8.87 ms

Table 6: Results about inference efficiency on MS 300K.

gradually become more discriminative, while still
maintaining appropriate similarity. This makes the
semantic hierarchy of the docid prefix tree clearer.

A.5 Inference Efficiency
Since inference efficiency is critical for practical
use, we further evaluate memory costs and in-
ference speed on MS 300K. Table 6 in the Ap-
pendix highlights BootRet’s significant reduction
in memory and latency compared to DPR. BootRet
only needs a prefix tree for inference, resulting in
93% less memory usage than DPR’s index based
on dense vectors. Additionally, BootRet outper-
forms DPR, with latency dropping from 18.35ms
to 8.87ms for a 300K corpus. While ANN methods
speed up, dual encoder latency may increase with
larger corpora. However, the inference speed of
BootRet only depends on the prefix tree’s structure.
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Original index Initial PQ PQ obtained with BootRt-Bs PQ obtained with BootRt-Mt
D2169186 (topic:
Germany Gasoline
Prices)

12-45-67-11-4-56-
2-21-53-67-1-8-5-
42-13-53-64-78-
120-63-4-113-2-4

12-45-67-11-4-56-
2-21-53-67-1-8-5-
42-13-53-61-72-
115-67-8-121-8-9

12-46-70-12-4-56-
2-24-53-67-1-8-5-
42-13-53-61-72-
115-67-8-121-8-9

D3126635 (topic:
Heating oil average
prices in Germany)

12-45-70-11-4-56-
2-21-53-22-1-8-5-
42-13-53-73-78-
127-56-4-113-2-4

12-47-70-11-4-56-
2-21-53-22-1-8-5-
45-13-53-73-78-
127-56-4-110-1-2

12-52-79-9-4-56-2-
21-53-22-1-8-5-45-
13-53-73-78-127-
56-4-110-1-2

Table 7: Two sampled documents and their corresponding initial state PQ, obtained with BootRet-Bs and BootRet-
Mt respectively.
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