
Findings of the Association for Computational Linguistics: ACL 2024, pages 10288–10302
August 11-16, 2024 ©2024 Association for Computational Linguistics

Contrastive Instruction Tuning

Tianyi Lorena Yan♢, Fei Wang♢, James Y. Huang♢, Wenxuan Zhou♢, Fan Yin♠

Aram Galstyan♢, Wenpeng Yin♡, Muhao Chen♣
♢University of Southern California ♠University of California, Los Angeles

♡The Pennsylvania State University ♣University of California, Davis
{tianyiy, fwang598, huangjam, zhouwenx}@usc.edu fanyin20@cs.ucla.edu

galstyan@isi.edu wenpeng@psu.edu muhchen@ucdavis.edu

Abstract

Instruction tuning has been used as a promis-
ing approach to improve the performance of
large language models (LLMs) on unseen tasks.
However, current LLMs exhibit limited robust-
ness to unseen instructions, generating incon-
sistent outputs when the same instruction is
phrased with slightly varied forms or language
styles. This behavior indicates LLMs’ lack of
robustness to textual variations and generaliz-
ability to unseen instructions, potentially lead-
ing to trustworthiness issues. Accordingly, we
propose Contrastive Instruction Tuning (COIN),
which maximizes the similarity between the
hidden representations of semantically equiva-
lent instruction-instance pairs while minimiz-
ing the similarity between semantically differ-
ent ones. To facilitate this approach, we aug-
ment the existing FLAN collection by para-
phrasing task instructions. Experiments on the
PromptBench benchmark show that COIN con-
sistently improves LLMs’ robustness to unseen
instructions with variations across character,
word, sentence, and semantic levels by an aver-
age of +2.5% in accuracy.1

1 Introduction

Instruction tuning has emerged to be an essential
training paradigm of large language models (LLMs;
Wei et al. 2022; Sanh et al. 2022; Mishra et al.
2022). By training models on various pairs of task
instructions and instances, instruction tuning has
been widely adopted in LLMs, such as TK-Instruct
(Wang et al., 2022), InstructGPT (Ouyang et al.,
2022), FLAN-T5 (Wei et al., 2022), and Alpaca
(Taori et al., 2023), allowing them to follow various
human instructions and fulfill user intents (Wang
et al., 2022; Zhang et al., 2023).

Despite these advancements, current instruction-
tuned LLMs are not robust to instruction variations.
Their performance may vary significantly when one

1Code is available at https://github.com/
luka-group/CoIN.

Figure 1: An example from CoLA (Warstadt et al., 2019)
shows that current LLMs like Alpaca may generate en-
tirely different responses when presented with semanti-
cally equivalent but textually different instructions.

re-formulates an instruction with different forms
or language styles (Zhu et al., 2023; Liu et al.,
2023b). While optimal instructions for specific
user intents may exist, there is no guarantee that
user-crafted instructions will precisely match them.
Indeed, user-crafted instructions often contain vari-
ations that can cause drop in LLMs’ performance,
such as unintended minor mistakes (e.g., a typo;
Wang et al. 2021, 2023a), different expression pref-
erences (e.g., choice of synonyms or paraphrases;
Gu et al. 2023; Zhu et al. 2023), inefficient descrip-
tions (Sun et al., 2023), and varying formats (Liang
et al., 2023). As shown in Fig. 1, given different
instructions of the same intent, an instruction-tuned
LLM like Alpaca can generate entirely different re-
sponses, some of which can lead to wrong answers.
LLMs’ current lack of robustness to instruction
variations severely limits their real-world applica-
tions. However, prior instruction tuning methods
mainly focus on aligning the desired output for a
given instruction-input pair and do not explicitly
address models’ robustness against variations in
instructions (Ouyang et al., 2022; Wei et al., 2022;
Zhang et al., 2023; Longpre et al., 2023).

In this paper, we propose Contrastive Instruction
Tuning (COIN), an instruction tuning method that

10288

https://github.com/luka-group/CoIN
https://github.com/luka-group/CoIN

leverages contrastive learning to align the hidden
representations of instruction-instance pairs that
are semantically equivalent but textually different
and to differentiate those that are semantically dis-
tinct. Given the same input and output instance, we
pair each instruction with its perturbed versions as
positive samples. Observed that the hidden repre-
sentations of data from different tasks already have
low cosine similarity with each other (Liu et al.,
2023a), we use the same instruction paired with
different instance input and output as hard negative
samples (refer to §3.2 for more details). Intuitively,
by recognizing that the same instruction with dif-
ferent formulations can have the same meaning, the
model can generate more consistent answers given
different instructions of the same intent and become
more robust to variations in language expressions.
At the same time, negative samples encourage the
model to understand that an instruction can lead to
different outcomes in different contexts, facilitating
the model to distinguish inputs with different user
intents.

We assess LLMs’ robustness on the Prompt-
Bench benchmark (Zhu et al., 2023), which in-
troduces variations to instructions of a diverse set
of tasks at character, word, sentence, and semantic
levels. Experiments on the benchmark show that
COIN significantly improves task performance and
reduces response variation of Alpaca on unseen in-
structions with variations at all four levels, achiev-
ing an average accuracy improvement of +2.5%
compared with continual instruction tuning on the
same dataset.

Our contributions are three-fold. First, we
propose a contrastive instruction tuning method,
COIN, to enhance LLMs’ robustness to semantic-
invariant instruction variations. Second, experi-
ments on PromptBench demonstrate the effective-
ness of COIN in handling semantically equivalent
instructions that differ at the character, word, sen-
tence, and semantic levels. Third, to facilitate the
proposed approach, we augmented the FLAN col-
lection, a widely used instruction tuning dataset,
with contrastive instructions. We will release the
augmented dataset consisting of 52k entries and
104k instructions to support future work in this
direction.

2 Related Work

In this section, we provide a brief summary of three
highly related topics.

Instruction Tuning and Generalizability. In-
struction tuning has emerged to be one of the piv-
otal techniques for enhancing the generalizability
of LLMs (Sanh et al., 2022; Zhang et al., 2023;
Ouyang et al., 2022). This capability is crucial
for LLMs, as it determines models’ performance
when encountering new data. The efficacy of in-
struction tuning has become more evident when
the number of tasks scales up (Xu et al., 2022).
Consequently, many recent studies have been fo-
cusing on fine-tuning LLMs with a wide range of
tasks. For instance, large-scale datasets that encom-
pass numerous NLP tasks and multiple data sources
have been curated for effectively enhancing LLMs’
zero-shot generalizability (Sanh et al., 2022; Wei
et al., 2022; Niu et al., 2023; Kung et al., 2023;
Wang et al., 2023b). Despite performance gained
on unseen tasks, LLMs fine-tuned with large-scale
instruction datasets remain vulnerable to how the
same instruction is expressed differently (Wang
et al., 2021; Zhu et al., 2023; Liu et al., 2023b;
Sun et al., 2023; Liang et al., 2023). This limita-
tion motivates us to enhance LLMs’ robustness to
instruction variations in this work.

Robustness of Instruction-Tuned LLMs. With
the increasing reliance on LLMs, recent works have
focused on having a comprehensive understand-
ing of the robustness of instruction-tuned language
models. Zhu et al. (2023), Gu et al. (2023), and
Wang et al. (2023a) add perturbations to instruc-
tions across multiple levels (character, word, sen-
tence, etc.) and show that current LLMs are not
robust to the introduced perturbations. LLMs’ per-
formance can also be degraded when presented
with unobserved, paraphrased versions of task in-
structions (Sun et al., 2023). Furthermore, inconsis-
tency in format and style in instruction expressions,
such as placing instructions before, in between,
or after the input instances, can decrease models’
performance (Liang et al., 2023). While evaluat-
ing and analyzing LLMs’ robustness has garnered
more attention, enhancing the models’ robustness,
particularly against varied instructions of the same
task, is an underexplored problem. Our work is
dedicated to addressing this gap.

Contrastive Learning. Contrastive learning, a
self-supervised technique that involves training a
model to contrast between positive and negative
pairs of data points, has rapidly evolved and been
adapted in NLP tasks, such as sentence embedding
(Gao et al., 2022), summarization (Liu et al., 2022),

10289

named entity recognition (Layegh et al., 2023), and
logical reasoning (Bao et al., 2023). Within the
context of instruction tuning, contrastive learning
has been used with prefix-training to enhance the
controllability towards desired attributes of LLMs
(Qian et al., 2022). However, the focus of the work
remains on steering the generated outputs towards
an attribute (such as being sentimentally positive)
that is assumed to be known but is difficult to be
specified given the diversity of tasks that LLMs
may handle, and it does not explicitly tackle the
challenge of LLMs’ robustness against variations
in instruction expressions. Inspired by the observa-
tion that contrastive learning is suitable for aligning
semantically related sentences (Gao et al., 2022),
we encourage LLMs to learn the semantic invari-
ance of varied instructions for the same task and
aim to address LLMs’ imperfect robustness at all
four levels: character, word, sentence, and seman-
tic.

3 Contrastive Instruction Tuning

In this section, we first provide a formal definition
of contrastive instruction tuning (§3.1). Then, we
introduce contrastive sample selection (§3.2) and
the contrastive loss (§3.3) in our method COIN.

3.1 Overview

Assume that we have a (autoregressive) language
model M and a dataset D = {(Ii, xi, yi)}Ni=1, in
which Ii denotes the task instruction, xi is the
instance input, and yi is the desired output. For
each original entry, we create a semantically equiv-
alent entry (I+i , x+i , y

+
i), where x+i = xi and

y+i = yi. I+i is constructed by adding textual
perturbations to the original instruction while en-
suring the underlying semantic meaning remains
the same. Our goal is to learn a model M such
that its hidden representations of semantically
equivalent instruction-instance pairs, denoted as
hM(Ii, xi, yi) and hM(I+i , x+i , y

+
i), are close to

each other in M’s hidden representation space,
thereby enhancing its robustness against instruc-
tion variations.

As explored by many previous studies,
instruction-tuning with large-scale datasets mainly
focuses on aligning the desired output for a given
instruction-instance pair from various tasks (Sanh
et al., 2022; Longpre et al., 2023; Wei et al.,
2022). However, current LLMs exhibit a lack
of robustness when facing the same instruction

expressed in different forms (Sun et al., 2023;
Zhu et al., 2023; Liang et al., 2023), causing
LLMs to be unreliable when being deployed
in the real world. To mitigate this limitation,
our method COIN further leverages contrastive
learning to maximize the similarity between
hidden representations of semantically equivalent
instruction-instance pairs. This approach enhances
models’ robustness and consistency to variations
in instruction expressions.

3.2 Contrastive Data Selection

Selecting effective positive and negative samples
for each instruction is critical to contrastive learn-
ing. In COIN, we construct positive samples by
varying the phrasing or template structure of origi-
nal instructions, ensuring that the positive samples
still share the same input and output with the origi-
nal instance. This approach helps the model learn
to align semantically similar instructions despite
differences in phrasing.

For negative samples, we observe that the
contrastive loss converges quickly when using
instruction-input pairs of different tasks (i.e., nor-
mal negatives), leading to minor improvement in
robustness. This observation is consistent with the
findings in prior studies (Liu et al., 2023a): LLMs
can distinguish between instructions of different
tasks such that their hidden representations already
have low cosine similarity. To collect hard neg-
atives, we draw inspiration from near-OOD sam-
ples, which are data that come from the same task
but with different classes (Winkens et al., 2020;
Fort et al., 2021; Liu et al., 2023a). Prior studies
found that it is more difficult for models to de-
tect near-OOD samples than samples from other
tasks (far-OOD). This finding indicates that the
hidden representations of near-OOD samples may
not be distinguishable enough and thus can pro-
vide informative supervision signals for contrastive
learning. Accordingly, we choose such a sample
(I−i , x−i , y

−
i) that shares the same instruction as the

original instance (I−i = Ii) but is paired with dif-
ferent input (x−i ̸= xi) and output (y−i ̸= yi) as a
negative sample. For example, if yi is "yes", then
y−i can be "no", ensuring the fundamental intent
of the instruction-instance pair is different from
the original one. Based on this approach, COIN

encourages the model to align semantically equiv-
alent instructions with different phrasings while
contrasting inputs with different user intents.

10290

Figure 2: Illustration of COIN. A paraphrased instruction is used as the positive sample (green) given the same
instance input and output. An instruction paired with different instance input and output is used as the negative
sample (red). Cosine similarity between the hidden representations of original and paraphrased instruction-instance
pairs is encouraged to be high, and vice versa for the paired negative samples. As we observe that the cosine
similarity between the hidden representations of data from different tasks is already low (Liu et al., 2023a), we
use the same instruction paired with different instance input and output as hard negative samples to provide more
informative training signals.

3.3 Learning Objective

Our method COIN is illustrated in Fig. 2. We con-
struct the training batch such that each original
sample is matched with a perturbed instruction and
an identical instance as a positive sample. All other
in-batch samples are hard negatives selected ac-
cording to §3.2, i.e. share the same instruction but
paired with different instances.

Let hi, h+i , and h−i indicate model M’s hidden
representation of the original, positive, and nega-
tive instruction-instance pairs, respectively. Since
each original pair may have multiple in-batch neg-
atives, here we use h−ij to indicate the hidden rep-
resentation of the negative samples. To align the
hidden representation hi and h+i , we optimize the
model M with the contrastive loss Li

ctr, which is
defined as

Li
ctr = − log

esim(hi,h
+
i)/τ

esim(hi,h
+
i)/τ +

∑
j e

sim(hi,h
−
ij)/τ

,

where sim(h1, h2) is the cosine similarity
hT
1 h2

||h1||·||h2|| , and τ is a temperature hyperparameter.
In COIN, we obtain the hidden representations by
using the hidden state of the last token2 from the
decoder of the language model.

2We also experimented with other pooling methods such as
max and average pooling but found that using the last token’s
hidden state yielded better results.

To preserve the generation ability of the lan-
guage model, we follow Liu et al. (2022) to include
the standard cross entropy loss for each instruction
pair, which can be defined as follows:

Li
ent =

1

l

l∑

k=1

− log p(yk|Ii, xi, y<k)

where l is the length of the desired output for
instruction-input pair (Ii, xi). This loss is com-
puted for all samples in the batch.

Combining the above two parts, the overall learn-
ing objective is

Li
COIN = Li

ent +max(λ, detach(
Li
ent

Li
ctr

))Li
ctr,

where detach(·) indicates that the loss value is de-
tached from the computation graph and thus is
treated only as a scalar. λ is the upper bound of
the weight that is assigned to the contrastive loss.
Based on empirical results, we found that setting λ
too high, thereby significantly increasing the mag-
nitude of the contrastive loss Lctr relative to the
generation loss Lent, adversely affects the models’
generation ability. To mitigate this issue, we scale
the contrastive loss to the same magnitude as the
generation loss while setting an upper bound to the
weighting, ensuring a balanced influence between
enhancing robustness and maintaining generative
performance. For more details on the weighting
choice of the contrastive loss, refer to 5.3.

10291

4 Experiment

In this section, we evaluate COIN’s performance
on enhancing LLMs’ robustness to instruction vari-
ations on PromptBench, specifically 10 GLUE
datasets with unseen3 instructions perturbed at dif-
ferent levels. We first provide an overview of the
experiment settings (§4.1, §4.2, and §4.3) and then
present a detailed analysis of the experiment results
§4.4.

4.1 Training Datasets

In this work, we conduct experiments on a widely
used instruction tuning dataset: the FLAN Collec-
tion (Wei et al., 2022). FLAN Collection (Wei
et al., 2022) is a large-scale data collection that
encompasses a wide range of tasks, including natu-
ral language inference, common sense reasoning,
sentiment analysis, paraphrase identification, etc.
This data collection is created by transforming 62
publicly available text datasets into instructional
formats. 10 unique instruction templates are man-
ually composed for each dataset. In this work, we
choose 25 datasets with deterministic answers from
the collection. To ensure each dataset has an equal
chance of being sampled into the training set of
COIN, we iterate through the training split of each
dataset with a round-robin approach. For each en-
try, we create a positive sample by randomly select-
ing a predefined instruction template not used by
the entry to paraphrase the instruction. Only para-
phrasing is used for creating training data while
various types of perturbations are included for eval-
uation (refer to §4.3). Avoiding assumptions about
specific types of noise in instructions is crucial due
to the high uncertainty LLMs face in real-world
deployment. Hence, a robustness training method
that can generalize to other types of perturbations is
more desirable. We then select one entry from the
remaining dataset as a negative sample, following
the strategy in §3.2. Refer to Appx. §A for more
details of the processed dataset.

4.2 Implementation Details

We use Alpaca (Taori et al., 2023), a model
instruction-tuned from the LLaMA model (Tou-

3In this paper, “unseen instructions” refer to those whose
textual expressions do not appear in the instruction-tuning
dataset. Note that if the model exhibits inadequate robust-
ness when handling unseen instructions for known tasks, its
performance is likely to decrease further when confronted
with unknown tasks. We consider the former as a rigorous
evaluation setting without additional confounding factors.

vron et al., 2023) on the 52k Self-Instruct dataset,
as the base model. When training models on the
augmented FLAN collection, we use the same set
of hyper-parameters, with the learning rate, batch
size, and cut-off length set to 1 ∗ 10−4, 64, and 256
respectively. Since we observe that the magnitude
of the contrastive loss can be small during the later
phase of training and following Gao et al. (2022),
we set the temperature τ and λ to 0.05 and 1000.
All experiments are run on 2 NVIDIA RTX A5000
GPUs.

4.3 Evaluation Setting
To evaluate models’ robustness against variations
in expression of instructions, we adopt the Prompt-
Bench benchmark (Zhu et al., 2023). Incorporating
a diverse set of tasks, such as sentiment analysis,
grammar correctness, duplicate sentence detection,
and natural language inference, PromptBench in-
troduces perturbation to task instructions at various
levels: character, word, sentence, and semantic. Re-
garding the data used for evaluation, we sample 300
instruction-instance pairs from each GLUE task
wherever the validation set exceeds this size.4 For
each dataset, PromptBench predefines 20 instruc-
tions. We ensure that all selected and perturbed
instructions for each dataset are not seen during the
training time. Given that all instructions are unseen
while GLUE tasks are seen during training time,
this setting allows a more focused evaluation of
LLMs’ robustness against variations in instructions
without the confounding factor of task generaliza-
tion.

Instruction Variations. Regarding instructions,
we select six clean instructions predefined for
each task. Then, we create perturbed versions
of each instruction. Following PromptBench, we
use DeepWordBug (Gao et al., 2018) to introduce
character-level perturbations for certain words, and
use TextFooler (Jin et al., 2020) to replace words
with contextually similar words. At the sentence
level, we implement the CheckList (Ribeiro et al.,
2020) and append randomly generated sequences,
which all have a length of 10 and consist of al-
phabets and digits, at the end of an instruction to
distract LLMs. For the semantic-level perturba-
tion, PromptBench defines 10 instructions that para-
phrase the original instruction for each task while

4Due to the extensive computational requirement of evalu-
ating the models on the entire benchmark, we sample a subset
of instructions and data from all possible instructions and
datasets.

10292

Figure 3: Models’ average accuracy (left) and standard deviation (right) across 10 GLUE datasets, with each dataset
having six unseen instructions with no perturbation (clean) or perturbation added at character, word, sentence, and
semantic levels. COIN has consistent improvement in accuracy and decrease in standard deviation across all types
of perturbation compared to the base model and continual instruction tuning. COIN obtains significant improvement
in robustness against word, character, and sentence level perturbations.

following the linguistic behavior of six languages:
Chinese, French, Arabic, Spanish, Japanese, and
Korean. To keep the number of instructions the
same as other types of perturbation, we randomly
select one instruction from each language defined
for each task, which are all different from the clean
instructions. We also ensure that instructions used
for evaluation differ from all instructions in the
training dataset and thus are unseen by the model,
preventing data contamination.

Metrics. For each type of perturbation, we report
average accuracy and standard deviations of six
instructions created for each GLUE dataset.

4.4 Results

In Fig. 3, we evaluate the base model, continual in-
struction tuning (i.e., base model fine-tuned on the
same data as COIN with cross entropy loss only),
and COIN on five groups of instructions across
10 GLUE datasets. Except for the clean group,
which includes the original instructions defined for
each dataset, each group contains instructions with
the same type of perturbation, including character,
word, sentence, and semantic perturbations.

The base model exhibits low accuracy and large
performance variance when given instructions with
different perturbations or instructions within the
same perturbation group. With only around 52%
accuracy on the clean instructions, the base model’s
performance further decreases when the instruc-
tions are perturbed in all character, word, and sen-
tence levels. The largest accuracy gap across dif-
ferent groups is 7.7%, observed between the word
and the semantic groups. For instructions within
the same group, the base model exhibits a variance
ranging from 16.9% to 19.0%. These observations
demonstrate that the base model is sensitive to how

instructions are formulated for different tasks.
Compared to the base model, the continually

instruction-tuned model shows increases in accu-
racy, which is expected as the model is exposed
to more data and trained with more steps. Nev-
ertheless, the performance gap between different
groups can still be as large as 6.1% observed be-
tween the clean group and the group with word-
level perturbation. This shows that the continually
instruction-tuned model still lacks robustness to
unseen instructions with variations across different
levels.

Compared to continual instruction tuning, COIN

further reduces performance variance and consis-
tently improves accuracy for instructions within
and across different groups without introducing
any new data and training steps. As it can be seen
from Fig. 3, COIN achieves improvements in ac-
curacy for all types of perturbation, up to 4.4%
for word-level perturbations where the continually
instruction-tuned model exhibits its largest drop in
performance. The largest performance gap is re-
duced to 3.6%. The consistent improvement across
all types of perturbations demonstrates the general-
izability of COIN at enhancing models’ robustness
against variations in instructions at different levels.
COIN also decreases the performance variance on
instructions from the five groups by 1.6%, 1.9%,
2.1%, 2.5%, and 1.2%. This also shows that COIN

can effectively help the model become less sensi-
tive to specific instructions for each task and more
consistent in its performance. For more detailed
results, refer to Tab. 2.

5 Analyses

To provide a more comprehensive view of the im-
pact of COIN on the model’s robustness to instruc-

10293

Figure 4: UMAP (McInnes et al., 2020) visualization of the hidden representations of decoder’s last output token
from continually instruction-tuned model (left) and COIN (right). 300 data points are selected from CoLA (Warstadt
et al., 2019) with no perturbations (clean) or perturbations added at different levels. COIN’s representations of
inputs with instruction variations are clustered closer to each other compared to the continually instruction-tuned
model, especially inputs with perturbations at word, character, and sentence level.

tion variations, we further analyze the results of our
method by examining the hidden representations
of instruction variants (§5.1), task category (§5.2),
and the weighting choice for the contrastive loss
(§5.3).

5.1 Closer Representations of Instruction
Variants

To understand the impact of COIN on the represen-
tations of instructions with variations at different
levels, we visualize the hidden states of the last
output tokens from the decoder’s last Transformer
layer. Specifically, we select 300 data points from
CoLA (Warstadt et al., 2019), choose one of its
instructions, add perturbations at different levels to
the instruction, and obtain the hidden states from
the model.

As observed in Fig. 4, COIN’s hidden represen-
tations of inputs with instruction variations at dif-
ferent levels are much closer than those of the con-
tinually instruction-tuned model. In the embedding
space of the continually instruction-tuned model,
the representation of instructions with different per-
turbations, especially at character and word levels,
are clustered almost into distinct groups. This may
indicate that the model treats data points with the
same instruction varied at different levels differ-
ently and thus is more sensitive to how the same
instruction is formulated.

In contrast, the representations of data points
with character, word, and sentence level varia-
tions are less distinguishable in COIN’s embedding
space, with representations of instructions varied

at the word level (red) having greater overlap with
those of the clean group (blue). This observation
can be associated with COIN’s varied improvement
in performance across different perturbations. As
shown in Fig. 3, COIN achieves more evident im-
provement on instructions with word, character,
and sentence level perturbations. It can be con-
cluded from the two figures that when COIN ef-
fectively aligns the representations of perturbed
instructions to those of the clean instructions, the
model becomes more capable of capturing the orig-
inal semantic meaning of the instructions. Thus, it
becomes less sensitive to perturbations in instruc-
tions.

It can be observed that the representations of
instructions with semantic level perturbation are
located relatively far away from those of instruc-
tions with other types of perturbation. This is ex-
pected as paraphrasing introduces new structure
and wording to the original instruction, which may
lead to varied hidden representations. Nonetheless,
COIN stabilizes the representation of the original
and paraphrased instructions, demonstrating COIN

can effectively align the representation of instruc-
tion variants with each other and thus enhance the
model’s robustness to instruction variations.

5.2 Impact on Different Tasks

We examine COIN’s influence on the model’s per-
formance for different tasks. Based on the task
category defined in the PromptBench benchmark,
we split the 10 GLUE datasets into four categories:
(1) sentiment analysis, (2) natural language infer-

10294

(%) Continual Instruction Tuning COIN △
Task Accuracy Std Accuracy Std Accuracy Std

Sentiment Analysis 89.0 4.1 90.4 3.1 +1.4 -1.1
Natural Language Inference 64.4 3.7 66.1 3.5 +1.7 -0.2

Paraphrase Identification 63.0 11.0 68.5 5.9 +5.4 -5.1
Grammar Correctness 62.0 9.2 68.4 3.9 +6.3 -5.3

Table 1: Models’ average accuracy and standard deviation of each task category. COIN has consistent improvement
across all tasks with more evident improvement on duplicate sentence detection and grammar correctness tasks.

ence (NLI), (3) paraphrase identification, and (4)
grammar correctness. Refer to Tab. 5 for specific
datasets classified to each category.

As shown in §5.2, COIN achieves evident im-
provements in accuracy by +5.4% and +6.3% on
paraphrase identification and grammar correctness
tasks. Intuitively, these tasks can benefit more di-
rectly from COIN that aims to enhance the simi-
larity of representations of semantically equivalent
instruction-input pairs. For example, paraphrase
identification can directly benefit from the model’s
more refined ability to group textual inputs with
similar semantic meanings, as COIN pushes repre-
sentations of inputs with different meanings away
from each other. Similarly, grammar correctness
can also benefit from the contrastive loss, which
may group hidden representations of grammatically
correct inputs closer to each other and thus enable
the model to become better at detecting inputs with
invalid syntactic structures and grammatical rules.

On the other hand, COIN gains modest enhance-
ment in accuracy on sentiment analysis and NLI
tasks by +1.4% and +1.7% compared to the contin-
ual instruction-tuned model. For the sentiment anal-
ysis task, the continually instruction-tuned model
has already achieved an accuracy of 89.0%. Obtain-
ing further improvements can be challenging given
that the model is already capable at distinguish-
ing between sentences with different sentiments.
Regarding NLI, the task requires a comprehensive
understanding of the relationship between two sen-
tences, which can depend on the model’s knowl-
edge of various domains or reasoning ability to
infer implicit meanings that are not directly stated.
The complex relation between two sentences may
not be explicitly captured by the hidden representa-
tions, meaning that COIN may not explicitly further
enhance the model’s reasoning ability. However,
COIN still obtains an improvement of +1.4% and
+1.7% on the two tasks, demonstrating COIN’s ef-

Figure 5: COIN’s performance by the maximum weight
λ assigned to the contrastive loss. COIN achieves the
highest average accuracy at λ = 103.

fectiveness at enhancing the model’s ability to dis-
cern the nuanced inferential relation that underlies
the overall semantic meaning of the instruction-
input pairs.

5.3 Weighting of Contrastive Loss

As the weight of the contrastive loss may affect
the extent to which COIN align representations of
instruction variants (Liu et al., 2022), we exam-
ine how different values assigned to λ can affect
COIN’s performance across different perturbation
levels.

As shown in Fig. 5, COIN achieves its best av-
erage performance when λ = 1, 000. When λ is
small, contrastive loss does not have significant
impact on the model due to its small magnitude.
The resulting model has similar performance and
sensitivity to instruction variations as the continual
instruction-tuned model. As λ increases, COIN’s
performance increases across different types of per-
turbations, indicating that the contrastive loss is
guiding the model to align representations of in-
struction variations closer to each other and thus

10295

Model Perturbation CoLA MNLI MNLI-m MNLI-mm MRPC QNLI QQP RTE SST2 WNLI Average

Alpaca
Baseline

Clean 65.1 ± 2.1 51.5 ± 4.3 51.5 ± 4.3 51.3 ± 5.0 28.6 ± 27.5 51.8 ± 1.5 26.6 ± 10.8 62.2 ± 2.4 80.9 ± 5.7 50.5 ± 3.4 52.0 ± 18.2
Character 61.8 ± 4.6 47.2 ± 6.4 47.2 ± 6.4 49.3 ± 4.5 27.4 ± 24.1 42.7 ± 6.9 15.6 ± 10.9 55.5 ± 5.6 66.7 ± 15.6 49.3 ± 3.5 46.3 ± 18.0

Word 61.7 ± 2.0 49.6 ± 3.8 49.6 ± 3.8 49.2 ± 4.7 43.3 ± 21.8 24.8 ± 17.4 14.7 ± 8.1 57.5 ± 4.9 46.4 ± 25.8 53.1 ± 2.7 45.0 ± 18.7
Sentence 64.8 ± 1.8 51.2 ± 3.6 51.2 ± 3.6 52.9 ± 2.2 15.3 ± 10.7 50.2 ± 3.2 22.6 ± 6.8 61.5 ± 3.3 82.3 ± 4.1 52.1 ± 2.0 50.4 ± 19.0
Semantic 65.4 ± 1.9 52.1 ± 1.2 52.1 ± 1.2 51.6 ± 1.8 37.9 ± 25.6 52.1 ± 3.7 25.8 ± 10.0 59.2 ± 4.4 82.1 ± 3.3 48.6 ± 4.4 52.7 ± 16.9

Continual
Instruction

Tuning

Clean 63.5 ± 8.6 68.7 ± 2.4 67.3 ± 2.7 66.3 ± 2.7 62.8 ± 13.0 62.9 ± 4.2 71.2 ± 7.6 82.0 ± 1.9 90.1 ± 2.4 57.5 ± 3.8 69.2 ± 11.1
Character 64.9 ± 3.1 64.9 ± 2.1 64.1 ± 2.3 63.4 ± 1.9 62.1 ± 11.9 54.7 ± 3.6 61.9 ± 11.8 75.7 ± 4.8 90.5 ± 2.0 54.0 ± 5.1 65.6 ± 11.7

Word 58.9 ± 12.6 64.8 ± 4.1 65.4 ± 3.8 64.3 ± 3.5 56.4 ± 10.5 46.8 ± 6.7 62.5 ± 8.2 73.8 ± 3.5 84.2 ± 12.6 54.0 ± 2.1 63.1 ± 12.6
Sentence 58.6 ± 15.2 66.4 ± 1.9 65.3 ± 1.4 65.1 ± 3.7 55.9 ± 16.8 53.2 ± 8.6 66.6 ± 8.1 80.3 ± 3.0 90.4 ± 1.2 55.9 ± 4.3 65.8 ± 13.9
Semantic 64.3 ± 6.6 67.0 ± 2.9 67.1 ± 2.5 66.0 ± 3.1 61.4 ± 14.3 56.4 ± 9.9 69.6 ± 8.1 80.0 ± 4.4 89.6 ± 2.5 58.0 ± 4.6 67.9 ± 11.8

COIN

Clean 70.4 ± 3.9 68.8 ± 2.7 68.0 ± 2.2 67.6 ± 3.5 70.6 ± 3.5 61.9 ± 6.0 70.1 ± 6.0 82.3 ± 1.5 91.4 ± 0.7 59.9 ± 2.5 71.1 ± 9.5
Character 66.9 ± 3.0 68.2 ± 2.0 67.5 ± 1.3 66.6 ± 4.0 72.4 ± 2.5 58.7 ± 4.2 64.7 ± 8.0 78.5 ± 3.1 91.1 ± 2.1 58.9 ± 2.6 69.4 ± 9.8

Word 66.5 ± 4.5 67.4 ± 1.7 67.7 ± 3.0 66.1 ± 2.3 71.9 ± 5.4 49.9 ± 7.5 63.9 ± 6.0 75.6 ± 3.5 85.6 ± 11.6 60.1 ± 3.8 67.5 ± 10.5
Sentence 68.4 ± 7.2 67.7 ± 3.5 68.2 ± 2.6 66.3 ± 3.6 63.3 ± 9.6 55.4 ± 9.5 66.8 ± 6.1 79.8 ± 3.5 92.3 ± 0.6 59.6 ± 2.8 68.8 ± 11.4
Semantic 69.7 ± 1.2 66.3 ± 1.8 67.0 ± 0.5 64.3 ± 2.6 72.6 ± 5.8 56.1 ± 10.0 68.5 ± 6.3 78.5 ± 4.5 91.6 ± 0.6 59.2 ± 2.0 69.4 ± 10.6

Table 2: Model’s average accuracy and standard deviation on 10 GLUE datasets, each having six instructions with
different types of perturbation. COIN here is trained with λ = 1, 000.

become more robust to the introduced perturba-
tions.

However, when λ is too large, COIN’s perfor-
mance decreases significantly, Therefore, based
on the empirical results, we choose λ = 1, 000
for higher accuracy and smaller standard deviation.
Refer to Tab. 4 for detailed experiment results of
models with different contrastive loss weighting.

6 Conclusion

In this paper, we proposed COIN that aligns hid-
den representations of semantically equivalent
instruction-instance pairs. Evaluation results on
PromptBench, with instructions that differ at char-
acter, word, sentence, and semantic levels, demon-
strate COIN’s effectiveness of enhancing LLMs’
robustness to semantic-invariant instruction varia-
tions. Future work can apply contrastive instruc-
tion tuning to enhance the robustness of models
and tasks in other modalities, and on other prompt
components such as few-shot demonstrations and
system prompts.

Limitation

We summarize the limitations of this work as fol-
lows: First, the current contrastive data selection
method only considers paraphrasing for positive
instruction augmentation. More semantic-invariant
data augmentation methods could be explored. Sec-
ond, the experiment scale could be enlarged to in-
clude more instruction tuning datasets, instruction-
tuned models, and downstream tasks. This would
provide additional evidence about COIN’s effec-
tiveness. Third, while we use a rigorous evaluation
setting to measure model robustness, evaluating the
influence of COIN from other perspectives could

enhance understanding of contrastive instruction
tuning.

Acknowledgement

We appreciate the reviewers for their insightful
comments and suggestions. Tianyi Yan was sup-
ported by the Center for Undergraduate Research
in Viterbi Engineering (CURVE) Fellowship. Fei
Wang was supported by the Amazon ML Fellow-
ship. James Y. Huang was supported by a gift fund
from the Amazon Center on Secure & Trusted ML.
Muhao Chen was supported by the NSF Grant IIS
2105329, the NSF Grant ITE 2333736, the DARPA
AIE Grant HR0011-24-9-0370, and an Amazon
Research Award.

References
Qiming Bao, Alex Yuxuan Peng, Zhenyun Deng, Wan-

jun Zhong, Gael Gendron, Timothy Pistotti, Neset
Tan, Nathan Young, Yang Chen, Yonghua Zhu, Paul
Denny, Michael Witbrock, and Jiamou Liu. 2023.
Enhancing Logical Reasoning of Large Language
Models through Logic-Driven Data Augmentation.
ArXiv:2305.12599 [cs].

Roy Bar-Haim, Ido Dagan, Bill Dolan, and Lisa Ferro.
2006. The second PASCAL recognising textual en-
tailment challenge.

Luisa Bentivogli, Ido Dagan, Hoa Trang Dang, Danilo
Giampiccolo, and Bernardo Magnini. 2009. The
Fifth PASCAL Recognizing Textual Entailment Chal-
lenge.

Daniel Cer, Mona Diab, Eneko Agirre, Iñigo Lopez-
Gazpio, and Lucia Specia. 2017. SemEval-2017
Task 1: Semantic Textual Similarity Multilingual
and Crosslingual Focused Evaluation. In Proceed-
ings of the 11th International Workshop on Semantic

10296

http://arxiv.org/abs/2305.12599
http://arxiv.org/abs/2305.12599
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/S17-2001

Evaluation (SemEval-2017), pages 1–14, Vancouver,
Canada. Association for Computational Linguistics.

Christopher Clark, Kenton Lee, Ming-Wei Chang,
Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. 2019. BoolQ: Exploring the Surprising
Difficulty of Natural Yes/No Questions. In Proceed-
ings of the 2019 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 2924–2936, Min-
neapolis, Minnesota. Association for Computational
Linguistics.

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2006. The PASCAL Recognising Textual Entailment
Challenge. In Machine Learning Challenges. Evalu-
ating Predictive Uncertainty, Visual Object Classifi-
cation, and Recognising Tectual Entailment, Lecture
Notes in Computer Science, pages 177–190, Berlin,
Heidelberg. Springer.

William B. Dolan and Chris Brockett. 2005. Auto-
matically Constructing a Corpus of Sentential Para-
phrases. In Proceedings of the Third International
Workshop on Paraphrasing (IWP2005).

Stanislav Fort, Jie Ren, and Balaji Lakshminarayanan.
2021. Exploring the Limits of Out-of-Distribution
Detection. In Advances in Neural Information Pro-
cessing Systems, volume 34, pages 7068–7081. Cur-
ran Associates, Inc.

Ji Gao, Jack Lanchantin, Mary Lou Soffa, and Yan-
jun Qi. 2018. Black-box Generation of Adversarial
Text Sequences to Evade Deep Learning Classifiers.
ArXiv:1801.04354 [cs].

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2022.
SimCSE: Simple Contrastive Learning of Sentence
Embeddings. ArXiv:2104.08821 [cs].

Danilo Giampiccolo, Bernardo Magnini, Ido Dagan, and
Bill Dolan. 2007. The Third PASCAL Recognizing
Textual Entailment Challenge. In Proceedings of the
ACL-PASCAL Workshop on Textual Entailment and
Paraphrasing, pages 1–9, Prague. Association for
Computational Linguistics.

Alec Go, Richa Bhayani, and Lei Huang. 2009. Twitter
Sentiment Classification using Distant Supervision.

Jiasheng Gu, Hongyu Zhao, Hanzi Xu, Liangyu
Nie, Hongyuan Mei, and Wenpeng Yin. 2023.
Robustness of Learning from Task Instructions.
ArXiv:2212.03813 [cs].

Eduard Hovy, Laurie Gerber, Ulf Hermjakob, Chin-
Yew Lin, and Deepak Ravichandran. 2001. Toward
Semantics-Based Answer Pinpointing. In Proceed-
ings of the First International Conference on Human
Language Technology Research.

Di Jin, Zhijing Jin, Joey Tianyi Zhou, and Peter
Szolovits. 2020. Is BERT Really Robust? A Strong
Baseline for Natural Language Attack on Text Clas-
sification and Entailment. ArXiv:1907.11932 [cs].

Daniel Khashabi, Snigdha Chaturvedi, Michael Roth,
Shyam Upadhyay, and Dan Roth. 2018. Looking Be-
yond the Surface: A Challenge Set for Reading Com-
prehension over Multiple Sentences. In Proceedings
of the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Pa-
pers), pages 252–262, New Orleans, Louisiana. As-
sociation for Computational Linguistics.

Po-Nien Kung, Fan Yin, Di Wu, Kai-Wei Chang, and
Nanyun Peng. 2023. Active Instruction Tuning: Im-
proving Cross-Task Generalization by Training on
Prompt Sensitive Tasks. ArXiv:2311.00288 [cs].

Amirhossein Layegh, Amir H. Payberah, Ahmet Soylu,
Dumitru Roman, and Mihhail Matskin. 2023. Con-
trastNER: Contrastive-based Prompt Tuning for Few-
shot NER. In 2023 IEEE 47th Annual Computers,
Software, and Applications Conference (COMPSAC),
pages 241–249. ArXiv:2305.17951 [cs].

Hector J. Levesque, Ernest Davis, and Leora Morgen-
stern. 2012. The Winograd schema challenge. In Pro-
ceedings of the Thirteenth International Conference
on Principles of Knowledge Representation and Rea-
soning, KR’12, pages 552–561, Rome, Italy. AAAI
Press.

Xin Li and Dan Roth. 2002. Learning Question Clas-
sifiers. In COLING 2002: The 19th International
Conference on Computational Linguistics.

Shihao Liang, Kunlun Zhu, Runchu Tian, Yujia Qin,
Huadong Wang, Xin Cong, Zhiyuan Liu, Xiaojiang
Liu, and Maosong Sun. 2023. Exploring Format Con-
sistency for Instruction Tuning. ArXiv:2307.15504
[cs].

Bo Liu, Liming Zhan, Zexin Lu, Yujie Feng, Lei Xue,
and Xiao-Ming Wu. 2023a. How Good Are Large
Language Models at Out-of-Distribution Detection?
ArXiv:2308.10261 [cs].

Yixin Liu, Pengfei Liu, Dragomir Radev, and Graham
Neubig. 2022. BRIO: Bringing Order to Abstractive
Summarization. ArXiv:2203.16804 [cs].

Yugeng Liu, Tianshuo Cong, Zhengyu Zhao, Michael
Backes, Yun Shen, and Yang Zhang. 2023b. Ro-
bustness Over Time: Understanding Adversarial Ex-
amples’ Effectiveness on Longitudinal Versions of
Large Language Models. ArXiv:2308.07847 [cs].

Shayne Longpre, Le Hou, Tu Vu, Albert Webson,
Hyung Won Chung, Yi Tay, Denny Zhou, Quoc V. Le,
Barret Zoph, Jason Wei, and Adam Roberts. 2023.
The Flan Collection: Designing Data and Methods
for Effective Instruction Tuning. ArXiv:2301.13688
[cs].

Andrew L. Maas, Raymond E. Daly, Peter T. Pham,
Dan Huang, Andrew Y. Ng, and Christopher Potts.
2011. Learning Word Vectors for Sentiment Analy-
sis. In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human

10297

https://doi.org/10.18653/v1/N19-1300
https://doi.org/10.18653/v1/N19-1300
https://doi.org/10.1007/11736790_9
https://doi.org/10.1007/11736790_9
https://aclanthology.org/I05-5002
https://aclanthology.org/I05-5002
https://aclanthology.org/I05-5002
https://proceedings.neurips.cc/paper_files/paper/2021/hash/3941c4358616274ac2436eacf67fae05-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2021/hash/3941c4358616274ac2436eacf67fae05-Abstract.html
http://arxiv.org/abs/1801.04354
http://arxiv.org/abs/1801.04354
http://arxiv.org/abs/2104.08821
http://arxiv.org/abs/2104.08821
https://aclanthology.org/W07-1401
https://aclanthology.org/W07-1401
http://arxiv.org/abs/2212.03813
https://aclanthology.org/H01-1069
https://aclanthology.org/H01-1069
http://arxiv.org/abs/1907.11932
http://arxiv.org/abs/1907.11932
http://arxiv.org/abs/1907.11932
https://doi.org/10.18653/v1/N18-1023
https://doi.org/10.18653/v1/N18-1023
https://doi.org/10.18653/v1/N18-1023
http://arxiv.org/abs/2311.00288
http://arxiv.org/abs/2311.00288
http://arxiv.org/abs/2311.00288
https://doi.org/10.1109/COMPSAC57700.2023.00038
https://doi.org/10.1109/COMPSAC57700.2023.00038
https://doi.org/10.1109/COMPSAC57700.2023.00038
https://aclanthology.org/C02-1150
https://aclanthology.org/C02-1150
http://arxiv.org/abs/2307.15504
http://arxiv.org/abs/2307.15504
http://arxiv.org/abs/2308.10261
http://arxiv.org/abs/2308.10261
https://doi.org/10.48550/arXiv.2203.16804
https://doi.org/10.48550/arXiv.2203.16804
http://arxiv.org/abs/2308.07847
http://arxiv.org/abs/2308.07847
http://arxiv.org/abs/2308.07847
http://arxiv.org/abs/2308.07847
https://doi.org/10.48550/arXiv.2301.13688
https://doi.org/10.48550/arXiv.2301.13688
https://aclanthology.org/P11-1015
https://aclanthology.org/P11-1015

Language Technologies, pages 142–150, Portland,
Oregon, USA. Association for Computational Lin-
guistics.

Marie-Catherine de Marneffe, Mandy Simons, and Ju-
dith Tonhauser. 2019. The CommitmentBank: Inves-
tigating projection in naturally occurring discourse.
Proceedings of Sinn und Bedeutung, 23(2):107–124.
Number: 2.

Leland McInnes, John Healy, and James Melville. 2020.
UMAP: Uniform Manifold Approximation and Pro-
jection for Dimension Reduction. ArXiv:1802.03426
[cs, stat].

Swaroop Mishra, Daniel Khashabi, Chitta Baral, and
Hannaneh Hajishirzi. 2022. Cross-Task Generaliza-
tion via Natural Language Crowdsourcing Instruc-
tions. In Proceedings of the 60th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 3470–3487, Dublin,
Ireland. Association for Computational Linguistics.

Yixin Nie, Adina Williams, Emily Dinan, Mohit Bansal,
Jason Weston, and Douwe Kiela. 2020. Adversar-
ial NLI: A New Benchmark for Natural Language
Understanding. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 4885–4901, Online. Association for
Computational Linguistics.

Yingjie Niu, Linyi Yang, Ruihai Dong, and Yue Zhang.
2023. Learning to Generalize for Cross-domain QA.
ArXiv:2305.08208 [cs].

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Car-
roll L. Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul Christiano, Jan Leike, and Ryan Lowe. 2022.
Training language models to follow instructions with
human feedback. ArXiv:2203.02155 [cs].

Mohammad Taher Pilehvar and Jose Camacho-Collados.
2019. WiC: the Word-in-Context Dataset for Eval-
uating Context-Sensitive Meaning Representations.
In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 1267–1273,
Minneapolis, Minnesota. Association for Computa-
tional Linguistics.

Jing Qian, Li Dong, Yelong Shen, Furu Wei, and Weizhu
Chen. 2022. Controllable Natural Language Genera-
tion with Contrastive Prefixes. In Findings of the As-
sociation for Computational Linguistics: ACL 2022,
pages 2912–2924, Dublin, Ireland. Association for
Computational Linguistics.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know What You Don’t Know: Unanswerable Ques-
tions for SQuAD. In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), pages 784–789,

Melbourne, Australia. Association for Computational
Linguistics.

Marco Tulio Ribeiro, Tongshuang Wu, Carlos Guestrin,
and Sameer Singh. 2020. Beyond Accuracy: Be-
havioral Testing of NLP Models with CheckList. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4902–
4912, Online. Association for Computational Lin-
guistics.

Victor Sanh, Albert Webson, Colin Raffel, Stephen H.
Bach, Lintang Sutawika, Zaid Alyafeai, Antoine
Chaffin, Arnaud Stiegler, Teven Le Scao, Arun Raja,
Manan Dey, M. Saiful Bari, Canwen Xu, Urmish
Thakker, Shanya Sharma Sharma, Eliza Szczechla,
Taewoon Kim, Gunjan Chhablani, Nihal Nayak, De-
bajyoti Datta, Jonathan Chang, Mike Tian-Jian Jiang,
Han Wang, Matteo Manica, Sheng Shen, Zheng Xin
Yong, Harshit Pandey, Rachel Bawden, Thomas
Wang, Trishala Neeraj, Jos Rozen, Abheesht Sharma,
Andrea Santilli, Thibault Fevry, Jason Alan Fries,
Ryan Teehan, Tali Bers, Stella Biderman, Leo Gao,
Thomas Wolf, and Alexander M. Rush. 2022. Mul-
titask Prompted Training Enables Zero-Shot Task
Generalization. ArXiv:2110.08207 [cs].

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec
Radford, and Oleg Klimov. 2017. Proximal Policy
Optimization Algorithms. ArXiv:1707.06347 [cs].

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive Deep Models for
Semantic Compositionality Over a Sentiment Tree-
bank. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Processing,
pages 1631–1642, Seattle, Washington, USA. Asso-
ciation for Computational Linguistics.

Jiuding Sun, Chantal Shaib, and Byron C. Wallace. 2023.
Evaluating the Zero-shot Robustness of Instruction-
tuned Language Models. ArXiv:2306.11270 [cs].

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Dubois
Yann, Xuechen Li, Carlos Guestrin, Percy Liang, and
Tatsunori B. Hashimoto. 2023. Stanford Alpaca: An
Instruction-following LLaMA Model. Original-date:
2023-03-10T23:33:09Z.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. LLaMA:
Open and Efficient Foundation Language Models.
ArXiv:2302.13971 [cs].

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel Bowman. 2018. GLUE:
A Multi-Task Benchmark and Analysis Platform for
Natural Language Understanding. In Proceedings
of the 2018 EMNLP Workshop BlackboxNLP: An-
alyzing and Interpreting Neural Networks for NLP,
pages 353–355, Brussels, Belgium. Association for
Computational Linguistics.

10298

https://doi.org/10.18148/sub/2019.v23i2.601
https://doi.org/10.18148/sub/2019.v23i2.601
https://doi.org/10.48550/arXiv.1802.03426
https://doi.org/10.48550/arXiv.1802.03426
https://doi.org/10.18653/v1/2022.acl-long.244
https://doi.org/10.18653/v1/2022.acl-long.244
https://doi.org/10.18653/v1/2022.acl-long.244
https://doi.org/10.18653/v1/2020.acl-main.441
https://doi.org/10.18653/v1/2020.acl-main.441
https://doi.org/10.18653/v1/2020.acl-main.441
http://arxiv.org/abs/2305.08208
https://doi.org/10.48550/arXiv.2203.02155
https://doi.org/10.48550/arXiv.2203.02155
https://doi.org/10.18653/v1/N19-1128
https://doi.org/10.18653/v1/N19-1128
https://doi.org/10.18653/v1/2022.findings-acl.229
https://doi.org/10.18653/v1/2022.findings-acl.229
https://doi.org/10.18653/v1/P18-2124
https://doi.org/10.18653/v1/P18-2124
https://doi.org/10.18653/v1/2020.acl-main.442
https://doi.org/10.18653/v1/2020.acl-main.442
http://arxiv.org/abs/2110.08207
http://arxiv.org/abs/2110.08207
http://arxiv.org/abs/2110.08207
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
http://arxiv.org/abs/2306.11270
http://arxiv.org/abs/2306.11270
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2302.13971
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446

Boxin Wang, Chejian Xu, Shuohang Wang, Zhe Gan,
Yu Cheng, Jianfeng Gao, Ahmed Hassan Awadallah,
and Bo Li. 2021. Adversarial GLUE: A Multi-Task
Benchmark for Robustness Evaluation of Language
Models.

Jindong Wang, Xixu Hu, Wenxin Hou, Hao Chen,
Runkai Zheng, Yidong Wang, Linyi Yang, Haojun
Huang, Wei Ye, Xiubo Geng, Binxin Jiao, Yue Zhang,
and Xing Xie. 2023a. On the Robustness of Chat-
GPT: An Adversarial and Out-of-distribution Per-
spective.

Yizhong Wang, Hamish Ivison, Pradeep Dasigi, Jack
Hessel, Tushar Khot, Khyathi Raghavi Chandu,
David Wadden, Kelsey MacMillan, Noah A Smith,
Iz Beltagy, and Hannaneh Hajishirzi. 2023b. How
far can camels go? exploring the state of instruction
tuning on open resources. In Advances in Neural
Information Processing Systems.

Yizhong Wang, Swaroop Mishra, Pegah Alipoor-
molabashi, Yeganeh Kordi, Amirreza Mirzaei,
Anjana Arunkumar, Arjun Ashok, Arut Selvan
Dhanasekaran, Atharva Naik, David Stap, Eshaan
Pathak, Giannis Karamanolakis, Haizhi Gary Lai, Is-
han Purohit, Ishani Mondal, Jacob Anderson, Kirby
Kuznia, Krima Doshi, Maitreya Patel, Kuntal Ku-
mar Pal, Mehrad Moradshahi, Mihir Parmar, Mi-
rali Purohit, Neeraj Varshney, Phani Rohitha Kaza,
Pulkit Verma, Ravsehaj Singh Puri, Rushang Karia,
Shailaja Keyur Sampat, Savan Doshi, Siddhartha
Mishra, Sujan Reddy, Sumanta Patro, Tanay Dixit,
Xudong Shen, Chitta Baral, Yejin Choi, Noah A.
Smith, Hannaneh Hajishirzi, and Daniel Khashabi.
2022. Super-NaturalInstructions: Generalization
via Declarative Instructions on 1600+ NLP Tasks.
ArXiv:2204.07705 [cs].

Alex Warstadt, Amanpreet Singh, and Samuel R. Bow-
man. 2019. Neural Network Acceptability Judg-
ments. Transactions of the Association for Compu-
tational Linguistics, 7:625–641. Place: Cambridge,
MA Publisher: MIT Press.

Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M. Dai, and Quoc V. Le. 2022. Fine-
tuned Language Models Are Zero-Shot Learners.
ArXiv:2109.01652 [cs].

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A Broad-Coverage Challenge Corpus for Sen-
tence Understanding through Inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume
1 (Long Papers), pages 1112–1122, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Jim Winkens, Rudy Bunel, Abhijit Guha Roy, Robert
Stanforth, Vivek Natarajan, Joseph R. Ledsam, Pa-
tricia MacWilliams, Pushmeet Kohli, Alan Karthike-
salingam, Simon Kohl, Taylan Cemgil, S. M. Ali

Eslami, and Olaf Ronneberger. 2020. Contrastive
Training for Improved Out-of-Distribution Detection.
ArXiv:2007.05566 [cs, stat].

Hanwei Xu, Yujun Chen, Yulun Du, Nan Shao, Yang-
gang Wang, Haiyu Li, and Zhilin Yang. 2022. Ze-
roPrompt: Scaling Prompt-Based Pretraining to
1,000 Tasks Improves Zero-Shot Generalization.
ArXiv:2201.06910 [cs].

Shengyu Zhang, Linfeng Dong, Xiaoya Li, Sen Zhang,
Xiaofei Sun, Shuhe Wang, Jiwei Li, Runyi Hu, Tian-
wei Zhang, Fei Wu, and Guoyin Wang. 2023. Instruc-
tion Tuning for Large Language Models: A Survey.
ArXiv:2308.10792 [cs].

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level Convolutional Networks for Text
Classification. In Advances in Neural Information
Processing Systems, volume 28. Curran Associates,
Inc.

Yuan Zhang, Jason Baldridge, and Luheng He. 2019.
PAWS: Paraphrase Adversaries from Word Scram-
bling. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
1298–1308, Minneapolis, Minnesota. Association for
Computational Linguistics.

Kaijie Zhu, Jindong Wang, Jiaheng Zhou, Zichen Wang,
Hao Chen, Yidong Wang, Linyi Yang, Wei Ye, Yue
Zhang, Neil Zhenqiang Gong, and Xing Xie. 2023.
PromptBench: Towards Evaluating the Robustness
of Large Language Models on Adversarial Prompts.
ArXiv:2306.04528 [cs].

10299

https://arxiv.org/abs/2111.02840v2
https://arxiv.org/abs/2111.02840v2
https://arxiv.org/abs/2111.02840v2
https://arxiv.org/abs/2302.12095v5
https://arxiv.org/abs/2302.12095v5
https://arxiv.org/abs/2302.12095v5
http://arxiv.org/abs/2204.07705
http://arxiv.org/abs/2204.07705
https://doi.org/10.1162/tacl_a_00290
https://doi.org/10.1162/tacl_a_00290
http://arxiv.org/abs/2109.01652
http://arxiv.org/abs/2109.01652
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/N18-1101
http://arxiv.org/abs/2007.05566
http://arxiv.org/abs/2007.05566
https://doi.org/10.48550/arXiv.2201.06910
https://doi.org/10.48550/arXiv.2201.06910
https://doi.org/10.48550/arXiv.2201.06910
http://arxiv.org/abs/2308.10792
http://arxiv.org/abs/2308.10792
https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html
https://doi.org/10.18653/v1/N19-1131
https://doi.org/10.18653/v1/N19-1131
http://arxiv.org/abs/2306.04528
http://arxiv.org/abs/2306.04528

A Datasets

For the training dataset sampled from the FLAN
collection released under Apache-2.0 license, we
select 25 datasets with answer options, which can
be classified into 7 categories:

1. Natural Language Inference (NLI): how two
sentences are related. The following datasets
are used:

(a) ANLI (Nie et al., 2020)
(b) CB (Marneffe et al., 2019)
(c) MNLI (Williams et al., 2018)
(d) QNLI (Rajpurkar et al., 2018)
(e) RTE (Dagan et al., 2006; Bar-Haim et al.,

2006; Giampiccolo et al., 2007; Ben-
tivogli et al., 2009)

2. Sentiment Analysis: whether the input text
has positive or negative sentiment. The fol-
lowing datasets are used:

(a) IMDB (Maas et al., 2011)
(b) Sent140 (Go et al., 2009)
(c) SST2 (Socher et al., 2013)
(d) Yelp (Zhang et al., 2015)

3. Paraphrase Detection: whether two sentences
are semantically equivalent. The following
datasets are used:

(a) MRPC (Dolan and Brockett, 2005)
(b) QQP (Wang et al., 2018)
(c) Paws Wiki (Zhang et al., 2019)
(d) STS-B (Cer et al., 2017)

4. Reading Comprehension: answer questions
based on passages that contain the answers.
The following datasets are used:

(a) BoolQ (Clark et al., 2019)
(b) MultiRC (Khashabi et al., 2018)

5. Coreference: find expressions that refer to the
same entity in the input text. WSC273 dataset
is used (Levesque et al., 2012).

6. Summarization: produce an abbreviated sum-
mary of the input text. For input with an-
swer options, the model is asked to, for in-
stance, choose the broader topic or the best
summary among all choices provided. AG
news dataaset is used (Zhang et al., 2015).

7. Miscellaneous:

(a) TREC (Li and Roth, 2002; Hovy et al.,
2001): Classify questions into specified
categories, such as whether the question
is related to human, location, abbrevia-
tions, etc.

(b) CoLA (Warstadt et al., 2019): Linguistic
acceptability.

(c) WIC (Pilehvar and Camacho-Collados,
2019): Evaluate intended meaning of a
word within a context.

Refer to Tab. 3 for number of entries filtered and
selected out from each dataset following the rules
described in §4.1.

B Detailed Experiment Results

For the results of models trained with different
contrastive loss weighting, refer to Tab. 4.

C GLUE Datasets Category

Following the task category defined in Prompt-
Bench benchmark, we split the GLUE datasets into
four categories as shown in Tab. 5.

10300

Task Category Dataset Count

Natural Language Inference(NLI)

ANLI(R1) 2664
ANLI(R2) 2670
ANLI(R3) 2658

CB 232
MNLI-Matched 2678

MNLI-Mismatched 2678
QNLI 2682
RTE 2328
SNLI 2682
WNLI 920

Sentiment Analysis

IMDB 354
Sent140 2684

SST2 2682
Yelp 834

Paraphrase Identification

MRPC 2684
QQP 2684

PAWS Wiki 2684
STS-B 2682

Reading Comprehension
BoolQ 1044

MultiRC 30

Coreference Resolution WSC273 720

Summarization AG News 2678

Miscellaneous
TREC 2682
CoLA 2684
WIC 2684

Total 52002

Table 3: Number of entries sampled for each dataset from the FLAN collection

10301

Lambda λ Perturbation CoLA MNLI MNLI-m MNLI-mm MRPC QNLI QQP RTE SST2 WNLI Average

1

Clean 66.4 ± 6.0 67.7 ± 2.6 67.8 ± 2.6 65.8 ± 1.4 63.6 ± 15.2 62.3 ± 5.5 66.4 ± 12.1 81.7 ± 2.9 90.1 ± 1.7 56.6 ± 3.9 68.8 ± 11.6
DeepWordBug 65.0 ± 3.4 65.2 ± 1.7 64.6 ± 1.8 63.3 ± 2.0 63.3 ± 11.3 54.7 ± 3.5 57.6 ± 11.2 75.3 ± 3.6 90.3 ± 1.8 52.8 ± 4.2 65.2 ± 11.8

TextFooler 58.7 ± 11.0 65.4 ± 1.9 66.2 ± 2.8 64.3 ± 3.7 59.9 ± 10.7 46.8 ± 6.0 55.6 ± 12.0 74.1 ± 4.1 85.0 ± 13.4 54.0 ± 3.1 63.0 ± 13.0
CheckList 61.3 ± 13.0 67.7 ± 1.8 66.8 ± 1.9 64.3 ± 3.2 57.8 ± 17.3 51.3 ± 10.0 61.9 ± 12.6 80.5 ± 2.4 91.1 ± 1.6 57.5 ± 2.8 66.0 ± 14.2
Semantic 68.8 ± 3.6 65.1 ± 1.7 65.4 ± 1.6 64.9 ± 3.2 62.6 ± 15.8 56.5 ± 7.8 65.8 ± 10.3 79.6 ± 2.4 89.9 ± 1.9 56.3 ± 5.2 67.5 ± 11.9

10

Clean 69.6 ± 3.2 65.8 ± 2.1 65.4 ± 2.7 64.6 ± 2.2 71.7 ± 8.1 62.5 ± 5.2 68.7 ± 9.5 81.7 ± 2.9 90.0 ± 2.4 56.8 ± 3.0 69.7 ± 10.4
DeepWordBug 66.3 ± 2.5 64.8 ± 1.8 64.9 ± 1.5 61.3 ± 1.6 70.4 ± 6.6 55.4 ± 4.0 57.4 ± 7.2 76.5 ± 3.6 89.4 ± 2.6 56.8 ± 4.7 66.3 ± 10.7

TextFooler 61.2 ± 9.6 63.5 ± 1.8 64.6 ± 1.6 62.8 ± 3.6 70.2 ± 8.2 48.4 ± 5.1 56.0 ± 11.2 74.4 ± 3.9 84.2 ± 12.9 57.3 ± 1.9 64.3 ± 12.0
CheckList 67.6 ± 8.0 66.1 ± 1.7 66.9 ± 2.2 62.6 ± 2.0 64.8 ± 17.0 53.2 ± 10.4 61.4 ± 11.1 80.3 ± 2.6 90.9 ± 2.2 58.2 ± 2.7 67.2 ± 13.0
Semantic 69.4 ± 1.3 63.7 ± 1.5 64.4 ± 1.3 63.1 ± 2.6 69.7 ± 10.3 57.2 ± 7.1 67.4 ± 8.7 79.5 ± 2.7 89.8 ± 2.4 58.5 ± 4.1 68.3 ± 10.7

100

Clean 69.3 ± 3.2 68.9 ± 1.7 69.1 ± 1.9 66.8 ± 3.1 73.6 ± 3.8 62.3 ± 5.9 70.1 ± 7.8 82.4 ± 1.6 90.6 ± 1.1 62.0 ± 3.2 71.5 ± 9.2
DeepWordBug 66.5 ± 3.8 68.4 ± 1.8 68.7 ± 1.6 65.5 ± 2.9 73.5 ± 2.7 55.2 ± 4.3 61.9 ± 8.4 77.3 ± 3.6 91.1 ± 2.1 57.5 ± 2.5 68.6 ± 10.6

TextFooler 62.1 ± 6.6 66.8 ± 2.9 67.5 ± 2.3 66.0 ± 1.5 72.1 ± 4.9 48.5 ± 7.4 60.3 ± 9.6 73.7 ± 4.5 85.8 ± 10.9 56.3 ± 2.8 65.9 ± 11.5
CheckList 68.9 ± 5.4 69.2 ± 3.0 69.4 ± 2.8 66.3 ± 3.7 64.9 ± 12.8 53.8 ± 10.0 66.1 ± 8.8 80.6 ± 3.1 91.6 ± 0.7 57.0 ± 2.4 68.8 ± 12.1
Semantic 68.7 ± 2.1 66.9 ± 1.7 67.0 ± 2.5 64.0 ± 2.4 72.3 ± 6.8 55.0 ± 9.6 70.7 ± 6.7 79.8 ± 3.5 91.1 ± 0.7 59.2 ± 4.7 69.5 ± 10.9

1000

Clean 70.4 ± 3.9 68.8 ± 2.7 68.0 ± 2.2 67.6 ± 3.5 70.6 ± 3.5 61.9 ± 6.0 70.1 ± 6.0 82.3 ± 1.5 91.4 ± 0.7 59.9 ± 2.5 71.1 ± 9.5
DeepWordBug 66.9 ± 3.0 68.2 ± 2.0 67.5 ± 1.3 66.6 ± 4.0 72.4 ± 2.5 58.7 ± 4.2 64.7 ± 8.0 78.5 ± 3.1 91.1 ± 2.1 58.9 ± 2.6 69.4 ± 9.8

TextFooler 66.5 ± 4.5 67.4 ± 1.7 67.7 ± 3.0 66.1 ± 2.3 71.9 ± 5.4 49.9 ± 7.5 63.9 ± 6.0 75.6 ± 3.5 85.6 ± 11.6 60.1 ± 3.8 67.5 ± 10.5
CheckList 68.4 ± 7.2 67.7 ± 3.5 68.2 ± 2.6 66.3 ± 3.6 63.3 ± 9.6 55.4 ± 9.5 66.8 ± 6.1 79.8 ± 3.5 92.3 ± 0.6 59.6 ± 2.8 68.8 ± 11.4
Semantic 69.7 ± 1.2 66.3 ± 1.8 67.0 ± 0.5 64.3 ± 2.6 72.6 ± 5.8 56.1 ± 10.0 68.5 ± 6.3 78.5 ± 4.5 91.6 ± 0.6 59.2 ± 2.0 69.4 ± 10.6

10000

Clean 69.6 ± 5.5 67.9 ± 2.4 68.6 ± 2.1 67.4 ± 1.7 69.0 ± 8.5 63.9 ± 6.0 72.9 ± 5.9 81.1 ± 2.2 91.3 ± 0.9 56.8 ± 4.7 70.8 ± 10.1
DeepWordBug 66.4 ± 3.7 67.2 ± 2.7 67.4 ± 2.0 66.9 ± 3.5 64.3 ± 8.0 59.8 ± 4.4 65.9 ± 9.0 77.2 ± 2.4 90.7 ± 2.7 58.5 ± 2.7 68.5 ± 10.0

TextFooler 62.9 ± 7.9 66.7 ± 2.7 66.5 ± 2.7 65.6 ± 2.7 68.4 ± 9.4 54.8 ± 7.3 66.8 ± 6.3 76.2 ± 3.6 84.8 ± 11.5 61.0 ± 3.5 67.4 ± 10.1
CheckList 68.9 ± 7.9 67.2 ± 2.9 67.4 ± 2.8 65.4 ± 2.4 61.7 ± 17.6 59.2 ± 9.0 70.5 ± 6.6 79.7 ± 3.1 92.2 ± 0.5 58.7 ± 3.8 69.1 ± 12.1
Semantic 69.5 ± 2.8 65.9 ± 2.1 66.1 ± 2.3 65.5 ± 2.2 67.2 ± 13.4 60.1 ± 7.7 70.7 ± 6.6 77.9 ± 4.6 91.4 ± 0.9 58.0 ± 1.5 69.2 ± 10.7

100000000

Clean 70.4 ± 3.0 66.2 ± 2.1 66.1 ± 1.9 65.7 ± 1.7 55.0 ± 10.3 61.2 ± 7.3 70.9 ± 4.9 83.3 ± 1.1 90.6 ± 1.5 56.6 ± 3.7 68.6 ± 11.5
DeepWordBug 64.4 ± 4.5 63.4 ± 3.0 63.2 ± 2.7 64.1 ± 2.0 46.2 ± 4.3 60.3 ± 5.8 64.6 ± 6.0 80.3 ± 2.4 86.7 ± 6.3 56.3 ± 4.0 65.0 ± 11.6

TextFooler 62.9 ± 8.1 64.3 ± 3.7 62.7 ± 3.6 63.9 ± 3.4 49.1 ± 8.2 54.2 ± 7.6 65.4 ± 2.9 78.5 ± 3.2 81.6 ± 12.7 58.5 ± 2.9 64.1 ± 11.4
CheckList 70.5 ± 3.3 67.1 ± 2.0 66.6 ± 2.6 65.8 ± 2.0 50.4 ± 16.3 57.8 ± 9.4 66.3 ± 5.1 81.8 ± 2.3 90.9 ± 1.2 58.0 ± 4.0 67.5 ± 12.9
Semantic 69.2 ± 3.9 64.3 ± 2.6 64.5 ± 2.5 64.1 ± 2.8 56.4 ± 16.4 57.3 ± 8.1 75.0 ± 5.8 78.8 ± 5.6 91.4 ± 1.4 55.9 ± 2.7 67.7 ± 12.6

Table 4: Average accuracy and standard deviation of COIN trained with different contrastive loss weighting.

Task Category Datasets

Sentiment Analysis SST-2
Grammar Correctness CoLA

Paraphrase Identification QQP, MRPC
Natural Language Inference MNLI, QNLI, RTE, WNLI

Table 5: Task categories for GLUE datasets follow-
ing the categories defined in PromptBench benchmark
(Schulman et al., 2017).

10302

