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Abstract

Structured data offers a sophisticated mecha-
nism for the organization of information. Exist-
ing methodologies for the text-serialization of
structured data in the context of large language
models fail to adequately address the hetero-
geneity inherent in key-value structured data.
These methods are not ideal and frequently re-
sult in larger input sizes and poor adaptability
to input changes. In this paper, we introduce
DictLLM, an innovative framework designed to
improve the modeling of key-value structured
data, like medical laboratory reports, for gener-
ating medical diagnoses. DictLLM integrates
three key components: (1) group positional
encoding to maintain permutation invariance,
(2) hierarchical attention bias to capture the
inherent bias in structured data, and (3) an op-
timal transport alignment layer that aligns the
embedding generated by the dictionary encoder
with the LLM, thereby producing a sequence of
fixed-length virtual tokens. We carry out experi-
ments using various LLM models on a compre-
hensive real-world medical laboratory report
dataset for automatic diagnosis generation, our
findings illustrate that DictLLM significantly
outperforms established baseline methods and
few-shot GPT-4 implementations in terms of
both Rouge-L and Knowledge F1 scores. Fur-
thermore, our evaluation of the framework’s
scalability and robustness, through a series of
experiments, underscores its exceptional capa-
bility in accurately modeling the complex key-
value data structure of medical dictionary data.

1 Introduction

The integration of large language models (LLMs)
into natural language processing (NLP) has marked
a paradigm shift, enabling unprecedented advance-
ments across diverse applications. Recent explo-
rations into applying LLMs to structured data pro-
cessing, such as graphs, dictionaries, and tables,

&: Corresponding author.

a1 1

Medical Lab Report Patient Self-Report

TEST PATIENT REFERENCE UNITS Gender: male, age: 65 years. Admitted
NAME RESULT  RANGE due to 5 1 di ‘y» is for
White Blood Cells 7236 4500-11000  cells/iL over 3 years, fatigue for 5 days”.
Glycated Hemoglobin 8.9 057 % Examination: Patient is alert, breathing
Total Vitamin D 35 20-50 ng/mL. evenly, in good spirits. Blood pressure
Triglycerides 187 0-150 mg/dL. 140/80 mmHg. No petechiae, purpura,
Total Cholesterol 259 0-200 mg/dL or jaundice observed on skin and

Urine Creatinine 125 20320 mg/dL mucous membranes.

Structured Information: Medical Lab Report Unstructured Information : Patient Self-Report

Plain Text Input:(4678 Tokens)

E-Medical Lab Report: White Blood Cells: Normal, Glycated Hemoglobin:
:Abnormal, Total Vitamin D:Normal, Triglycerides: Abnormal, Total
2

Option 1

Text
Serialization

hemodialysis for over 3 years.......
Few-shot GPT4 Output:
chronic kidney disease, Liver Disease, Heart valve disease. x

Dict Embedding Virtual LLM Tokens.

Dict I
Encoder

ane
DictLLM Input: (4
Medical Lab Report ct]iPatient Self-Report: gender:
male, age: 65 years. hemodialysis Tor over 3 years.......
DictLLM output:
Low serum calcium concentration, hypertension class 11, pulmonary o
inflammatory disease, renal-related anemia, diabetic hemodialysis......

Option 2(Ours) N virtual tokens

DictLLM
Framework

Figure 1: Our DictLLM Framework for medical lab
report-assisted diagnosis generation. The framework
uses a hierarchical dict encoder to encode the medical
lab report, and an optimal transport alignment layer to
align the embedding generated by the dict encoder and
the text encoder.

highlight their potential beyond traditional text
analysis. Notably, efforts like tabular data clas-
sification in Hegselmann et al. (2023), graph-based
node classification in Tang et al. (2023) , and in-
telligent Excel table querying in KuB , have paved
the way for innovative applications. Yet, the appli-
cation of LLMs in processing medical lab reports,
a cornerstone in clinical diagnostics, exposes sig-
nificant challenges. These reports, structured as
key-value pairs, are critical for diagnosis but di-
verge substantially from the data types traditionally
handled by LLMs due to their unique structure and
information content.

Medical lab reports are pivotal in clinical
decision-making, capturing patient test results in a
structured format that facilitates diagnosis. Unlike
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the linear, narrative flow of natural language, these
reports are characterized by two distinct features:

* Structural Heterogeneity: They are organized
as key-value pairs, allowing for permutation
invariance where the sequence of entries does
not affect the informational content.

* Information Density Heterogeneity: These
reports encapsulate densely packed, discrete
data, contrasting with the more continuous
and narrative nature of text.

Existing methods, primarily based on convert-
ing structured data into a linear token sequence,
inadequately capture these nuances. Such serializa-
tion not only risks losing structural fidelity but also
scales poorly due to token limits in LLMs, high-
lighting a critical gap in current methodologies.

DictLLM emerges as a novel framework tailored
to address these challenges, marrying the structured
precision of medical lab reports with the analytical
depth of LLMs. By innovatively leveraging a hi-
erarchical dict encoder inspired by advancements
in set transformation, DictLLLM transcends tradi-
tional serialization approaches. It introduces a dict
tokenizer to convert complex numerical data into
interpretable medical labels, a group positional en-
coding to maintain the inherent permutation invari-
ance of lab report data, and hierarchical attention
mechanisms to adeptly handle the reports’ informa-
tion density.

Our contributions offer a significant leap forward
in medical diagnostics:

* We introduce a hierarchical dict encoder that
adeptly models the structured nature of medi-
cal lab reports, preserving their key-value in-
tegrity and enhancing robustness to variations
in report formatting.

* The introduction of an optimal transport align-
ment layer aligns dict encoder embeddings
with LLM outputs, optimizing the efficiency
of input representation and addressing the
challenge of token count scalability.

* Comparative analysis with leading LLMs on
a comprehensive dataset of real-world med-
ical lab reports demonstrates DictLLM’s su-
perior performance, showcasing notable im-
provements in Rouge-L. and Knowledge F1
scores, indicative of its enhanced diagnostic
accuracy and relevance extraction capabilities.

In aligning closely with the medical diagnostic
process’s intricacies, DictLLM not only highlights
the untapped potential of LLMs in processing struc-
tured medical data but also sets a new benchmark
for precision and efficiency in automated medical
diagnosis. This approach not only underscores the
framework’s novelty but also its practical signif-
icance, promising to bridge the gap between cur-
rent LLM capabilities and the complex demands of
healthcare diagnostics.

2 Related work

2.1 Tabular data representation learning

Tabular data representation learning aims to learn
a dense representation for tabular data. Deng et al.
(2020) introduces the Masked Entity Recovery
(MER) objective for pre-training the Table Encoder,
aiming to capture the semantics and knowledge in
large-scale unlabeled data. Yang et al. (2022) high-
lights that linearizing table structures would encode
the order of the table’s rows and columns with an
unwanted bias. Chen et al. (2023) introduces a
hypergraph-enhanced table representation learning
framework to model the inherent inductive bias of
tabular structures. Ye et al. (2023) introduce cross-
table pretraining into the tabular data representation
learning, to capture the cross-table knowledge. Du
et al. (2022) propose learning enhanced representa-
tions for tabular data via neighborhood propagation.
These study highlights the importance of modeling
the structural properties of tabular data. However,
these approaches do not harness the capabilities
of large language models and are not designed to
explicitly capture the heterogeneity of medical lab
reports.

2.2 Large language model for structural data

With the emergence of large language models Tou-
vron et al. (2023) Zeng et al. (2022) Mialon et al.
(2021), there have been numerous efforts to lever-
age them for processing structured data tasks. Han
et al. (2023) propose ChartLlama, a multimodal
llava-based model for chart understanding and gen-
eration task. Hegselmann et al. (2023) introduce
TabLLM, an text serialization-based framework
that leverages LLMs for data-efficient tabular clas-
sification. However, this approach can only han-
dle small-scale classification tasks, which is not
suitable for generation tasks. Ope (2023)propose
OpenTab, an open-domain end-to-end table reason-
ing framework, which leverages a retriever to fetch
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relevant tables, employs a coder to generate pro-
grams as intermediary reasoning steps, and assigns
the task of deriving the final solution to a reader.
However, the retrieval-augmented paradigm can be
limited by the performance of the retrieval mod-
ule, especially for tasks requiring specific domain
knowledge. Zhu et al. (2024) propose TAT-LLM, A
specialized language model for discrete reasoning
over tabular and textual data, serve as a pioneering
example of specializing smaller language models
for specific tasks. The GraphGPT proposed by
Tang et al. (2023) comes closest to our work. This
method employs a graph encoder and a text encoder
to encode the structural information and the textual
information of the graph and propose a dual-stage
graph instruction tuning paradigm. Our work dis-
tinguishes itself from these studies by focusing on
the design of a carefully designed hierarchical dict
encoder to model the heterogeneous structure of
medical lab reports.

3 Approach

3.1 Problem Formalization

Task: Report-Assisted Diagnosis Generation
Input

] aries):
] 1
]

7 Medical Lab Report
TEST PATIENT ~REFERENCE  UNITS
NAME RESULT _ RANGE

723 4500-11000  cells/L
59 %

3 20-50 ngimL.
0150 mgidL.
0200 mo/dL.
125 20-320 mo/dL

Patient’s Self-Report(Text):
Gender: Female Age: 82 Main symptoms and signs at admission:
Asthma after activity for more than 1 year, aggravated for 2

Output

Final Diagnosis(Text):

Renal insufficiency, moderate anemia, pulmonary inflammatory
disease......

Figure 2: An example of the input and output of the
medical lab report-assisted diagnosis generation task.

As shown in Figure 2, the task of report-assisted
diagnosis generation involves creating a diagnosis
based on a patient’s self-reported symptoms and
medical laboratory reports. Suppose we have a
patient’s medical laboratory report. We can for-
malize this report as a set of dictionaries, denoted
as D = {Dy,D,,...,D,}, where each D; can
be formalized as D; = {(kij, vij) }]L,, where k;;
and v;; represent the key and value of the j-th
key-value pair in the i-th dictionary, respectively.

The text information of the patient’s self report
can be formalized as a sequence of tokens, de-
noted as 7 = {t1,to,...,tn}, Where t; represents
the i-th token in the sequence. The goal of the
report-assisted diagnosis generation task is to gen-
erate the final diagnosis of the patient, denoted as
Y =A{y1,92,...,yx}, where y; represents the i-th
token in the sequence.

3.2 Framework

In the pipeline of a text-serialization based method,
the dictionaries are converted into a single natural-
language string using a fixed template. However,
this approach is sub-optimal for structured data
like dictionary due to the structural heterogeneity
between structured data and natural language.

To address this, We propose the DictLLM Frame-
work. As shown in Figure 3, the DictLLM Frame-
work consists of three main components: a hierar-
chical dict encoder, an optimal transport alignment
layer, and a large language model. The hierarchical
dict encoder and optimal transport alignment layer
encode medical laboratory reports into several vir-
tual tokens 7, the virtual tokens are then concat
with the text tokens 7, and the combined tokens
are fed into a large language model for generation.

3.3 Hierarchical Dict Encoder

Drawing inspiration from recent advancements
such as SetTransformer Lee et al. (2019), TURL
Deng et al. (2020), and Tapas Herzig et al. (2020),
we harness the BERT’s self-attention architecture
Devlin et al. (2018) to model the intricate interac-
tions within dictionaries. To effectively adapt to the
unique data attributes of medical laboratory reports,
the dict encoder incorporates dict tokenizer, rela-
tive position encoding and hierarchical attention
biases. In the following sections, we will describe
the them in detail.

3.3.1 Dict Tokenizer: tokenize numerical
values in lab report

Dict tokenizer turns dictionaries into a series of
token ids. To align with the behavior of medical
practitioners in actual medical practice, we propose
converting detailed numerical values in the labo-
ratory reports into special medical labels. For a
numerical attribute v;;, the dict tokenizer maps it to
a single token vgj (e.g., INORMAL], [POSITIVE],
[NEGATIVE]). We have defined a total of 13 such
special medical labels, with a detailed list provided
in the appendix. To be more specific, given a set of
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Figure 3: DictLLM Framework for report-assisted diagnosis generation. The medical lab report is first tokenized
and encoded by the dict encoder. The embedding generated by the dict encoder are then aligned with the text
embedding generated by the large language using the optimal transport alignment layer. The aligned embedding are
then fed into the large language model to generate the final diagnosis.

dictionaries D = {Dy, Do, ..., Dy} that contains
k dictionary, where each D; = {(kij, vij)}7L; is a
set that contains m key-value pairs. The dict tok-
enizer function f; maps the whole D into a series
of token ids ¢, denoted as:

ft(D) = t = {t1,t2, ..., tn}

3.3.2 Group Positional Encoding: maintain
permutation invariance

After tokenization, the discrete token ids will be
embedded into continuous vectors, which will be
fed into the hierarchical encoder layer. We follow
the standard practice of using a token embedding
W and add a positional encoding P to the token
embedding.

To model the permutation invariance of key-

value pairs in laboratory reports, we have es-
tablished a group positional encoding Py,oup =
{Ppos, s Ppos,» - - - s Ppos,, }- This encoding ensures
that perturbation in the relative positions of ele-
ments within a dictionary do not impact the em-
bedding generated by the dict encoder. Given the
distinct characteristics of medical laboratory re-
ports as dictionary-structured data, we propose the
following assumption:
Assumption: For a laboratory report D contain-
ing m key-value (k,v) pairs, changing the relative
positions of these (k,v) pairs within D does not
affect the final diagnosis.

We implement Py, by resetting the index of
positional ids at the beginning of each key-value

pair, where pos, represents the positional id for the
ith token. Let W,,; be the embedding matrix of
the dict encoder, The initial dict embedding Ay is
denoted as:

ho = Wemp(t) + Pyroup

3.3.3 Hierarchical Attention Bias: model
structural inductive bias

Medical laboratory reports distinguish themselves
from natural language in that, the correlation
among items within a single report is significantly
stronger than the correlation among items across
different reports. (e.g. Test items on the same
urine report are more likely to collectively indicate
kidney-related diseases) We propose incorporating
hierarchical attention bias to model the structural
inductive bias of medical laboratory reports.

Specifically, tokens within the same dictionary
are visible to each other, while tokens from differ-
ent dictionaries are not. The special token [sep]
is used to separate different dictionaries, and the
special token [cls] is used to represent the whole
dictionary. These special tokens are visible to each
other, and they are visible to all tokens in their own
dictionary. As illustrated in the Figure 3, tokens
connected by dashed lines are visible to each other,
while others are not.

The initial embedding will then pass through
multiple hierarchical encoder layers(HierEnc) to
obtain the final embedding. The hierarchical atten-
tion bias is implemented as a attention mask M,

10234



which is a n X n matrix, where n is the sequence
length. A hierarchical encoder layer consists of a
Hierarchical Self-Attention (HierAttn) layer and a
MLP layer, denoted as:

HierEnc(h;) = hy + HierAim(h;) + MLP(h;)
QKT + M

HierAttn(h;) = softmax(
Vdg

1%
1 t;,t; € D

1 t;,t; € {[sepl],[cls]}
0 otherwise

Mij =

After passing through the hierarchical encoder
layers, the final dict embedding A, is obtained.

3.4 Optimal Transport Alignment Layer

Algorithm 1 Optimal Transport Alignment Layer

Input source embedding hy € R™*¢
Output target embedding h; € R™*?
1: initialize (trainable) reference points z € R7xb
2: initialize positive definite kernel &.
3: hy € R™*0 «— &(hy)
4: TP € R™ ™ «— sinkhorn(h,, z)
5: hy € R «— TP x h,

To deal with the heterogeneous information den-
sity between medical laboratory reports and natural
language, we propose an optimal transport align-
ment layer to align the embedding generated by
the dict encoder with those generated by the LLM,
producing a list of fixed-length virtual tokens.

Natural language organized information in a se-
quential, dense and coherent manner, while infor-
mation in medical laboratory reports are sparse and
discrete. A naive approach such as using a linear
layer may not be the optimal solution. Optimal
transport is a mathematical framework that pro-
vides a principled way to align two sets of points
in a high-dimensional space, which is widely used
to alignment problems. Grave et al. (2018)

We utilize a recently proposed technique called
optimal transport kernel Mialon et al. (2021)
(OTK). OTK first utilize a positive definite ker-
nel (i.e. in our implementation, a linear function)
to embed the source set into a reproducing kernel
Hilbert space (RKHS), then sinkhorn algorithm,
which is a differentiable approximation of the op-
timal transport plan, is used to compute the opti-
mal transport plan between the source set and a
trainable reference set, which introduce non-linear

transformation on source features. The detailed
process of is described in algorithm 1.

Let the embedding output by the dict encoder
be denoted as h;, € R™*%, where a is the num-
ber of tokens in the dict embedding, and b is the
dimension of the token embedding. Our goal is
to map it to a fixed-length virtual token 7, =
{to1,tv2, ... tun} € R, where n is the num-
ber of virtual tokens, and b is the dimension of the
large language model’s token embedding.

4 Experiments Setup

4.1 Data Description

Distribution of Disease Types

16.5% 18.1%

r0.697%
0.994%
1.41%

10.5%

7.99%

6.21%
4.58%

5.99%
°  5g5y 488%

Grade II cardiac function
Hepatic cyst
Symptoms of emphysema
110 Primary Hypertension Carotid artery plaques
Old myocardial infarction = Pulmonary shadows
= Radiation therapy for primary tumors = Simple cystic renal cell carcinoma
= 40 colorectal polyps Myocardial bridge
Chronic cholecystitis with gallstones Gastric polyps
Chronic Urinary Infection

Hypertrophic prostate
Poor control of chronic blood sugar
Unspecified anemia

Figure 4: Distribution of different types of disease in
the dataset.

The dataset we use in our experiment is a large-
scale chinese real-world medical lab report dataset.
We collect the dataset from a real-world hospital,
which contains a large number of medical lab re-
ports and the corresponding final diagnosis. The
dataset contains a total of 11, 290 medical lab re-
ports, and each report is associated with several
final diagnosis. The original dataset is highly im-
balanced in terms of the number of the disease
types. We only keep the disease types that appears
more than 0.1% of the time in the dataset. The
dataset contains a wide range of disease types, as
shown in Figure 4. The statistics of the dataset are
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shown in Table 1.

num of mean num of mean num of
cases  texttoken/case lab report item/case
11,290 450.82 16.23

Table 1: Statistical information of datasets.

4.2 Baseline Methods

Text-Serialization For text-serialization method,
we use a fixed template to serialize the medical lab
report into a sequence of tokens. In our experiment,
we separate each item in dict with comma, and
use a special token to separate each dict. Then the
model will be trained with the standard supervised
fine-tuning paradigm.

GPT-4 We also evaluate the performance of GPT-4
on this task in zero-shot and few-shot settings. The
template we use is the same as the one we use in
baseline.

4.3 Implementation Details

For our model implementation, we primarily rely
on the PyTorch and Transformers libraries. In
terms of the Text-Serialization method, we convert
medical lab reports into plain text at the dataset
level and then train the model using the standard
supervised fine-tuning paradigm. For our proposed
DictLLM framework, we train the dict encoder and
base large language models jointly. We choose
internlm-7b-base and baichuan2-7b-base as our
base models due to their superior performance in
Chinese. We utilize the AdamW optimizer with a
learning rate of 2e — 5 and a total batch size of 128.
We apply a warmup ratio of 0.01, and the training
process spans 6 epochs. Notably, we did not con-
duct any hyperparameter search in our experiment.
Regarding the dataset, we split it into training and
testing sets, using 90% of the data for training and
the remaining 10% for testing.

4.4 Evaluation Metrics

We use the following metrics to evaluate the perfor-
mance of the methods we proposed in this paper:
Rouge-L Rouge-L is a metric that measures the
similarity between two sequences. It is widely used
in the text generation task.

Knowledge F1 We also use the knowledge F1
score to evaluate the performance of the methods
we proposed in this paper. Knowledge F1 score is
a metric that measures the quality of the generated
sequence in terms of the knowledge it contains. In

our experiment, we implement the knowledge F1
score as the harmonic mean of precision and recall
of the correct diagnosis in the generated sequence.

5 Results

5.1 Main Results

Table 2 shows the main results of our experiment.
As we can see, the proposed DictLLM framework
outperforms the baseline methods in terms of both
Rouge-L and Knowledge F1 score in all settings.
The performance of our method is consistent across
different backbone models. The results demon-
strate that our proposed DictLLM framework is
effective in modeling the heterogeneous structure
of medical lab reports and generating the final di-
agnosis.

Notably, GPT-4 achieve poor performance in
both zero-shot and few-shot settings, and there is a
large gap between the performance of GPT-4 and
the finetuned large language models. The main rea-
son is report-assisted diagnosis generation task is
that the task requires the model to have a good un-
derstanding of the specialized medical terminology,
which is rare in the training data of GPT-4.

The gap between the performance of the text-
serialization method and our proposed DictLLM
framework in baichuan-7b is smaller than that in
internlm-7b, which is mainly due to the better back-
bone model performance of baichuan-7b.

5.2 Scalability to Input Length

knowledge_f1-input_length

- gpt-4
# baseline
®ours

bl
| — o o o+ —%_ .
& e e b
80.5 \ \
g h
=
X
o R T "
0 179 1583 2983 4382

number of input tokens

Figure 5: The knowledge F1 score of different methods
with respect to the number of input tokens. Other results
are detailed in the appendix A.

We also evaluate the scalability of several
method to the input length on the backbone of
internlm-7b. In real-world medical lab reports, the
number of items in the report can be very large, and
the length of the report may exceed the limitation
of the max token length of large language models.
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Rouge-L Knowledge

Method P R FI P R Fl
GPT-A4 zero-shot 5.65 32.87 8.64 8.82 28.85 12.70
) few-shot 5.80 33.45 8.99 9.54 32.11 13.84
zero-shot 3.59 4.25 3.83 4.38 3.95 4.05

INTERNLM-7B few-shot 5.89 5.35 5.29 5.99 5.32 5.53
) finetune 51.89 45.19 46.69 50.90 46.03 47.43
DictLLM 68.67 63.15 64.24 68.68 64.09 65.24

zero-shot 6.14 8.24 6.93 7.71 7.39 7.40

BAICHUAN-TB few-shot 8.35 12.67 9.83 10.19 9.27 9.58
) finetune 67.15 63.18 63.13 67.32 64.42 64.51
DictLLM 67.26 63.39 63.28 67.50 64.65 64.61
HUATUOGPT-TB finetune 66.53 61.83 62.03 64.16 59.64 60.30
) DictLLM 67.84 63.19 63.48 65.97 61.60 62.31

Table 2: Main Results We compare the performance of our DictLLM framework with several baseline methods on
the medical lab report-assisted diagnosis generation task. We report the Rouge-L and Knowledge F1 scores. The
best results are in bold. The detail of the evaluation metrics can be found in section4.4.

Large input length would also lead to large train-
ing time and memory requirement, which could
be a bottleneck for the model to be deployed in
real-world applications.

As shown in Figure 6, the performance of the
text-serialization method decreases significantly as
the input length increases due to the large input to-
ken size. In contrast, our proposed DictLLM frame-
work effective compress the input token number
and achieve consistent performance across differ-
ent input lengths, demonstrating a better scalability
of our method to the input length.

5.3 Robustness to Input Perturbation

Besides scalability, Robustness to input perturba-
tion is also an important property for the model
to be deployed in real-world applications. Input
perturbation refers to the random permutation of
the items in the medical lab report. In the ideal
situation, the model should generate the same diag-
nosis for the same medical lab report, regardless of
the order of the items in the report. To evaluate the
robustness of the model to input perturbation, we
conduct an experiment to compare the performance
of different methods before and after perturbation.
We report the performance and the relative change
of the generated text before and after perturbation
in Table 3. The metric RC (i.e. Relative Change) is
calculated as the 1 — RougeL s score between the
text generated before and after the perturbation.

As is shown in Table 3, the performance of
the text-serialization method decreases after per-
turbation, while the performance of our proposed
DictLLM framework is the most stable across dif-
ferent backbone models. We also observe that the
relative change of the generated text before and
after perturbation is the smallest for our proposed
DictLLM framework, demonstrating the robustness
of our method to input perturbation.

5.4 Ablation study
5.4.1 Ablation over the main components

We conduct ablation study to demonstrate the effec-
tiveness of the model components in our proposed
DictLLM framework. For the ablation of group po-
sitional encoding, we replace it with the standard
sequential positional encoding. For the ablation
of optimal transport alignment layer, we replace it
with the a simple linear layer. For the ablation of
hierarchical attention bias, we just simply remove
it from the model. Table 4 shows the ablation study
results.

Overall, the results show that each component
in our proposed DictLLM framework contributes
to the performance of the model. Among all the
components, deleting the hierarchical attention bias
leads to the largest performance drop, demonstrat-
ing the importance of the hierarchical attention bias
in capturing the structural inductive bias of medical
lab reports.

10237



Before Perturbation

After Perturbation

Method Rouge-L Knowledge Rouge-L Knowledge RC|
P R F1 P R F1 | P R F1 P R F1

GPT-4 565 3287 864 882 2885 1270 | 577 3221 864 879 27.69 1243 3630

TEXT-SERIALIZATION 5343 4631 4776 51.89 4743 48.60 | 52.69 4577 4724 5222 47.63 4882 1131

DicTLLM 68.53 6352 6422 6842 6440 6511 | 68.61 63.64 6433 6851 6449 6520 1.71

Table 3: Perturbation Results We compare the performance of our DictLLM framework with baseline methods
on the medical lab report-assisted diagnosis generation task before and after perturbation. RC denotes the relative

change of the generated text before and after perturbation.

Method ‘ Rouge-L Knowledge

P R Fl1 P R Fl1

DIiCcTLLM ‘ 68.67 63.15 64.24 68.68 64.09 65.24

67.25 60.96 62.23 67.29 62.23 63.46
66.15 60.61 61.40 66.19 61.69 62.53
68.53(0.44) 61.15(0.16) 62.91(0.35) 67.18(1.39) 60.70(1.24) 62.52(1.44)

- position encoding
- attention bias
- alignment layer

Table 4: Ablation study of DictLLM framework.

5.4.2 Ablation over the virtual token number

Performance-Virtual Token Number
0.68

o
o
)

64

o

(o)}

N
O,

48

o
o))
N
o
W,
N

16

Knowledge F1

128

o
o

0'580 20 40 60 80 100 120 140
Virtual Token Num

Figure 6: Ablation study of virtual token ber.

The number of the virtual token is a hyperpa-
rameter in our proposed DictLLM framework. We
conduct an ablation study to evaluate the perfor-
mance of the model with different virtual token
number. As shown in Figure 6, the performance
of the model increases as the virtual token number
increases.

However, the increase of the virtual token num-
ber also leads to the slightly increase of the model
size and the memory requirement. We choose 64 as
the virtual token number in our experiment, which
achieves a good trade-off between the performance
and the memory requirement.

6 Conclusion

In this paper, We propose a novel framework called
DictLLM, which is an efficient and effective frame-
work for modeling the heterogeneous structure of
structured data, to deal with the report-assisted di-
agnosis generation task. Our comprehensive em-
pirical studies on real-world datasets reveal that a
carefully designed encoder, which individually en-

codes structured data, significantly enhances model
performance on downstream tasks, demonstrating
advantages in scalability and robustness.
Limitation The DictLLM framework is specifi-
cally designed for processing dictionary-structured
data and requires some effort to further extend it to
more complex tabular data. Additionally, although
DictLLM has reduced training and inference over-
head compared to text-serialization methods, it still
demands significant computational resources.
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A Appendix

A.1 Case Study

Here are two cases created by DictLLM, showcas-
ing specific instances where DictLLM excels and
where it faces challenges:

A.2 Special Medical Labels

As is shown in the table 5 , We define a total of 13
special medical labels to convert detailed numerical
values in the laboratory reports into special medical
labels.

Labels

[NORMAL]
[ABNORMAL]
[HI NORMAL]
[LT NORMAL]
[POSITIVE]
[NEGATIVE]
[POSITIVE]
[POSITIVE+]
[POSITIVE++]
[POSITIVE-]
[POSITIVE-]
[SENSTIVE]
[RESISTANT]
[INTERMEDIATE]

Table 5: Special Medical Labels.

A.3 Prompt for Zero-shot and Few-shot
Generation

Zero-shot prompt:

Please output the patient’s discharge
diagnosis based on the given laboratory order
and patient information. Each disease should
be separated by a Chinese comma and then
output a period. Do not output anything else.
Example output: Low-risk mild hypertension,
elevated serum uric acid concentration, stage
5 chronic kidney disease. Laboratory test
report: {} Patient information: {}

Few-shot prompt:

Please output the patient’s discharge
diagnosis based on the given laboratory order
and patient information. Each disease should
be separated by a Chinese comma and then
output a period. Finish. Do not output
anything else. Examples: Laboratory test
report: {} Patient information: {}
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Input: Gender: Male Age: 91 years old Main symptoms and signs on admission: Recurrent cough
and sputum for more than 6 years, worsening for 3 days, clear mind, flat air, finger pulse oxygen
saturation 95% (nasal cannula oxygen inhalation 4L/min), double The lung breath sounds were
low, and obvious crackles could be heard in both lungs. The heart rate was 80 bpm, with a regular
rhythm and no obvious murmur. The abdomen is soft, without tenderness or rebound tenderness.
There is a 4*5¢cm round mass in the right groin, which is soft and non-tender. There was no edema
in both lower limbs, the dorsalis pedis artery was palpable, the nasogastric tube and urinary
catheter were in place and unobstructed.

DictLLM's output: Hyperplastic prostate, anemia unspecified, liver cyst

Ground Truth: Hyperplastic prostate, anemia unspecified, liver cyst

Input: Gender: Male Age: 69 years old Main symptoms and signs on admission: Chest pain,
pending investigation for 1 week, refreshed and calm. The heart rhythm is regular and there is no
murmur. The breath sounds in both lungs were clear, with less obvious dry and wet rales. The
abdomen was flat and soft, with no tenderness or rebound tenderness in the entire abdomen, the
liver and spleen were not reachable under the ribs, shifting dullness (-), and low bowel sounds.
DictLLM's output: 40 colorectal polyps, myocardial bridge

Ground Truth: Chronic cholecystitis with gallstones

Figure 7: Case study of the generated diagnoses, showcasing specific examples where DictLLM performs well and
where it struggles.

A.4 Scalability to Input Length: Detailed
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Figure 8: The Rouge-L precision score of different with respect to the number of input tokens.
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