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Abstract

Large language models (LLMs) have demon-
strated remarkable open-domain capabili-
ties. LLMs tailored for a domain are typi-
cally trained entirely on domain corpus to
excel at handling domain-specific tasks. In
this work, we explore an alternative strat-
egy of continual pre-training as a means
to develop domain-specific LLMs over an
existing open-domain LLM. We introduce
FinPythia-6.9B, developed through domain-
adaptive continual pre-training on the fi-
nancial domain. Continual pre-trained Fin-
Pythia showcases consistent improvements
on financial tasks over the original founda-
tional model. We further explore simple
but effective data selection strategies for
continual pre-training. Our data selection
strategies outperform vanilla continual pre-
training’s performance with just 10% of cor-
pus size and cost, without any degradation
on open-domain standard tasks. Our work
proposes an alternative solution to building
domain-specific LLMs cost-effectively.

1 Introduction

Large Language Models (LLMs) have exhib-
ited a profound understanding of natural
language, improving performance on various
tasks (Brown et al., 2020). Open web data
helps create general-purpose LLMs with a
broad range of capabilities. General-purpose
LLMs are however not “specialists”. For exam-
ple, while LLMs could write good news articles,
it would be hard-pressed to write specialized
legal documents.

In order to create a specialist domain-
specific LLM, they need to be trained on do-
main data. Approaches for building domain-
specific LLMs fall into two categories: training
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domain-specific LLMs from scratch or continu-
ally pre-training existing LLMs with domain
data. Most researchers have taken the first ap-
proach of building domain-specific LLMs from
scratch including the Med-PaLLM family (Sing-
hal et al., 2022, 2023) for the medical domain
and BloombergGPT (Wu et al., 2023b) for
finance. Little attention is paid to domain-
adaptive continual pre-training, despite being
a much cheaper alternative. Notably, PMC-
LLaMA (Wu et al., 2023a), a medical LLM
was trained through continual pre-training of
LLaMA (Touvron et al., 2023) on medical pa-
pers. Continual pre-training can also be used
for updating a LLM with the latest knowledge
in an evolving environment.

In this work, we explore the following: 1) Is
domain-adaptive continual pre-training help-
ful in building domain-specific LLMs?; 2)
Can we employ data selection strategies for a
more effective domain-adaptive continual pre-
training?; and 3) Does domain-adaptive con-
tinual pre-training hurt LLM’s open-domain
capabilities? We answer these questions in the
confines of finance domain by training a con-
tinually pre-trained model, FinPythia, built on
top of Pythia (Biderman et al., 2023).

We report a boost on financial bench-
marks (Xie et al., 2023a) after continual pre-
training on domain data of size 8% of what
Pythia was trained on to answer the first
question. We see an evidence of latest fi-
nancial domain knowledge acquisition in Fin-
Pythia during qualitative analysis. To an-
swer the second question, we propose two sim-
ple data selection techniques, task-aware Effi-
cient Task-Similar Domain-Adaptive Contin-
ual Pre-training (ETS-DACP) and Efficient
Task-Agnostic Domain-Adaptive Continual Pre-
training (ETA-DACP). These methods outper-
form vanilla domain-adaptive continual pre-
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training with just 10% of selected domain data
or 0.8% of Pythia’s training corpus. We use
three metrics for data selection: similarity, per-
plexity, and token type entropy. While simi-
larity needs task data as seed data, the latter
two metrics are task-agnostic metrics. To an-
swer the third question, we benchmark on four
open-domain standard tasks and observe that
continually pre-trained LLM retains its general
capabilities while adapting to the domain.

The main contributions of this paper are
threefold:

e We curate a large-scale financial corpus
comprising 24 billion tokens sourced from
financial datasets.

e Our experiments demonstrate the promise
of building domain-specific LLMs through
continual pre-training as an alternative to
expensive pre-training from scratch, fur-
ther extending the findings from smaller
language models (LMs) (Gururangan
et al., 2020; Xie et al., 2023b).

e We propose two Efficient Domain-adaptive
Continual Pre-training methods as a more
efficient approach to vanilla continual pre-
training. Our novel approach deploys data
selection strategies that can achieve bet-
ter performance with a fraction of the
cost of the domain-adaptive continual pre-
training while beating the baselines from
smaller language models.

2 Methodology

In this section, we describe the curation of our
financial corpus used for continual pre-training,
background concepts, and our proposed task-
aware domain-adaptive continual pre-training.

2.1 Financial Corpus Curation

In our evaluation of data sources, we consider
three dimensions: public availability, licensing,
and scale. We use two sources of data for the
financial corpus: the financial news common
crawl and SEC filings. Financial News Com-
monCrawl is curated by filtering out financial
news from the public CommonCrawl data. We
follow the de-duplication procedure of Pythia
suite (Biderman et al., 2023) to remove dupli-
cate training data. Using these two sources, we
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Figure 1: Relation between labeled task data, task-
similar domain data and domain corpus.

create a combined dataset of 23.9 billion tokens
(16.5 billion words) with details in Appendix G.

2.2 Background

Domain-adaptive Continual Pre-training
(DACP) Typically, domain-specific LLMs
are built by training the model from scratch
using massive amounts of domain data. This
procedure has two drawbacks: it is quite costly
and needs much higher amounts of domain
data, which is not as feasible in lower data
domains like finance with very specialized con-
fidential data. Domain-adaptive continual pre-
training (DACP) is a straightforward alterna-
tive to building from scratch; we continually
pre-train a general-purpose LLM on a large
scale corpus of domain-specific unlabeled data.
Domain-adaptive continual pre-training has
shown the ability to adapt the LMs to bet-
ter fit the in-domain distribution (Gururangan
et al., 2020; Jin et al., 2022; Wu et al., 2022).
They also enable large language models to ac-
quire new knowledge as new data appears (Jang
et al., 2022b,a), instead of training the model
from scratch. We use DACP in our experiments
to benchmark its benefits.

Task-Adaptive Continual Pre-training
(TACP) Task-adaptive continual  pre-
training (TACP) refers to continual pre-
training aiming to enhance performance on
a targeted task. TACP has been studied in
the context of smaller LMs like BERT by
pre-training the LM on labeled and unlabeled
data from the task (Gururangan et al., 2020;
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Aharoni and Goldberg, 2020; Dai et al., 2019)
showing improvements over the task. TACP
has been used with pre-training loss objectives
like Masked Language Modeling (MLM) loss
on the training data of a downstream task for
adapt the smaller LM to the downstream task
without using any task labels. While task
data is usually quite limited, TACP has shown
considerable effects on smaller LMs like BERT.
We benchmark TACP on our four financial
evaluation tasks by continually pre-training the
LLM on task’s data without any corresponding
labels. Note, this is completely distinct than
any supervised learning as no task labels are
used in TACP.

2.3 Towards an Efficient
Domain-adaptive Continual
Pre-training

The primary limitation of TACP lies in
constructing task-specific LLMs instead of
foundation LLMs, owing to the sole use of
unlabeled task data for training.  While
DACP uses a much larger corpus, it is pro-
hibitively expensive. To balance these lim-
itations, we propose two approaches: Effi-
cient Task-Similar Domain-Adaptive Contin-
ual Pre-training (ETS-DACP) and Efficient
Task-Agnostic Domain-Adaptive Continual Pre-
training (ETA-DACP). While ETS-DACP aims
to build foundation LLMs for a set of tasks
by tailoring the DACP to emphasize the sig-
nificance of these tasks, ETA-DACP is more
general by selecting most informative samples
from the domain corpus.

Efficient Task-Similar Domain-adaptive
Continual Pre-training We stipulate that
we can form an optimal set D* by selecting a
portion of the domain data that is much closer
to the task data (red) given by the blue region
based on intuition before. We refer to this as
Efficient Task-Similar Domain-adaptive Con-
tinual Pre-training (ETS-DACP). Fine-tuning
LLMs can take a good amount of instructions,
which are quite costly to create. ETS-DACP
directly addresses this situation by using the
relatively limited unlabeled task data to sam-
ple similar samples from the larger pool of
pre-training domain corpus. We are motivated
by prior research showing unsupervised train-
ing on tokens aligning closely with the target

domain/tasks leads to improved performance
(Gururangan et al., 2020; Aharoni and Gold-
berg, 2020; Dai et al., 2019). Therefore, we
hypothesize that continual pre-training LLMs
on the unlabeled task data can be beneficial
for target task performance by adapting the
model to the task distribution.

We use similarity between embeddings of
task data and domain corpus samples to per-
form data selection. This allows us to select
a subset from the domain corpus that closely
resembles the distribution of task data. To
quantify document-level task similarity, we em-
ploy cosine similarity between the document
embedding and task data embedding using the
Spacy model (Honnibal and Montani, 2017).
This approach allows us to cost-effectively mea-
sure the alignment between task-specific infor-
mation and the financial corpus, enabling more
focused and targeted pre-training.

Efficient Task-Agnostic Domain-adaptive
Continual Pre-training While the previous
case dealt with scenarios where task data is pro-
vided to us, we further explore scenarios where
we do not have task data. This method also
overcomes the limitation of ETS-DACP which
makes the LLM too tuned to the task data
instead of broader domain. We stipulate that
two dimensions are important for obtaining do-
main information from a subset of pre-training
domain data: novelty and diversity.
Novelty refers to the information that was
unseen by the LLM before. We gauge the level
of novelty in a document based on the per-
plexity recorded by LLM. Documents with
higher perplexity are less represented in the
original training corpus, thus being more likely
to contain novel knowledge for the model. Such
samples are also viewed as more difficult to
learn (Bengio et al., 2009). Hence, these sam-
ples can be valuable in continual pre-training
to acquire novel information. Using perplexity
directly from the LLM incurs significant costs,
as the inference requires approximately 25% of
the training compute. To minimize this cost,
we employ Pythia-70m as a surrogate model
for computing document perplexity. Our pre-
liminary experiment using a sample dataset
reveals a strong correlation of 0.97 between
the perplexity obtained from Pythia-1B and
Pythia-70m. This high correlation justifies the
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Method Data Selection Metric Non-task Unlabeled Data | Task Unlabeled Data | Task Labeled Data
DACP None @ @
TACP None ® ®
ETS-DACP Similarity ®
ETA-DACP-ppl Perplexity ® ®
ETA-DACP-ent Entropy ® ®
ETS-DACP-com Similarity, Perplexity, Entropy @

(Instruction) Fine-Tuning None ® ®

Table 1: Data selection metrics and data sources used for each method.

indicates “yes”, while ®

indicates “no”. Task unlabeled data refers to task data with stripped off labels.

use of a smaller model as a reliable surrogate,
enabling a cost-effective sampling.

Diversity captures the diversity of distri-
butions of token types in the domain corpus.
Diversity has been shown to be an effective fea-
ture in related research on curriculum learning
in language modeling (Tsvetkov et al., 2016;
Ruder and Plank, 2017). We use part-of-speech
(POS) tagging to get token types. Since en-
tropy has been shown to be one of the best
measures of diversity (Bengio et al., 2009), we
use entropy of POS tags (Tsvetkov et al.,
2016) as our diversity measure.

2.3.1 Data Sampling Strategy

We proposed ETS-DACP and ETA-DACP to
enhance vanilla DACP by refining pre-training
data through active selection of relevant sam-
ples. We can select the data in two ways:

Hard Sampling: We rank the samples in the
domain corpus by the metric percentile. We
select top-k samples from the domain corpus
based on the metric(s), where k is the number
of samples needed to meet pre-decided token
budget for pre-training.

Soft Sampling: In this case, instead of giv-
ing binary weights by leaving out the examples
below top-k, we assign soft weights based on
the distance metric. Taking similarity met-
ric as an example distance metric, let’s say a
sample with a similarity score of 0.9. This is
normalized and treated as the probability of
selecting the sample. This procedure allows for
the continual pre-training to see the non-task
samples outside the blue region in Figure 1,
adding diversity to pre-training data.

We use the following three dimensions for
selecting samples: similarity to task data (ETS-
DACP), perplexity as a proxy for novelty (ETA-
DACP), and diversity measured by token type
entropy (ETA-DACP). In order to convert met-

ric values into sampling probabilities, we pro-
pose a method based on quantile ranges. To
achieve this, we first calculate the 0-100 quan-
tiles for each metric. Probability is each doc-
ument is equal to the metric quantile it falls
onto. This approach effectively normalizes our
metrics, also allowing for the aggregation of
different metric types.

Table 1 gives a summary of all the methods
presented in this work and traditional methods
for domain adaptation of a LLM along with
their requirements.

3 Experimental Setup

3.1 Evaluation tasks

Finance Domain Tasks We evaluate the
models on financial tasks to evalaute the ef-
fectiveness of our domain-adaptive continual
pre-training. We adopt the FLARFE frame-
work (Xie et al., 2023a) to evaluate our models.
FLARE extends the LLM evaluation frame-
work Im-evaluation-harness' by including vari-
ous financial tasks. We follow their instruction
prompt, data split, and metric computation
for comparison. We consider following 4 tasks
used in Wu et al., 2023b; Xie et al., 2023a:
(1) Financial Phrase Bank. FPB is a senti-
ment classification task on financial news (Malo
et al., 2014). The sentiment reflects whether
the news is considered as positive/neutral /neg-
ative by investors. (2) FiQA SA. An aspect
based sentiment classification task based on fi-
nancial news and headlines (Maia et al., 2018).
(3) Headline. Binary classification task on
whether a headline on a financial entity con-
tains certain information (Sinha and Khandait,
2020). Each news article is associated with
9 tags like “price or not”, “price up”, “price
down”, “price stable”, “past price”, and “as-

"https://github.com/Eleuther Al/lm-evaluation-
harness
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BloombergGPT | OPT 7B BLOOM 7B GPT-J-6B | Pythia 1B FinPythia 1B | Pythia 7B FinPythia 7B

FPB Acc - 57.22 52.68 50.21 42.85 47.14 54.64 59.90
F1 51.07* 65.77 52.11 49.31 43.94 46.52 55.79 64.43

. Acc - 40.43 70.21 60.42 54.51 46.13 60.85 52.34
FiQA SA F1 75.07* 31.29 74.11 62.14 56.29 44.53 61.33 53.04
Headline F1 82.20* 62.62 42.68 45.54 44.73 53.02 43.83 54.14
NER F1 60.82* 41.91 18.97 35.87 49.15 55.51 41.60 48.42
Average F1 67.29* 50.40 46.97 48.22 48.53 49.90 50.64 54.83
A(%) Avg-F1 - - - - 0.00 2.82% 0.00 8.27%

Table 2: 5-shot results on financial tasks from domain adaptive continual pre-training. * indicates the
results extracted from BloombergGPT (Wu et al., 2023b) evaluated with different data split and is not
directly comparable with others. Bold indicates the best results among all the evaluated models except
BloombergGPT. Underline indicates the better results between FinPythia and Pythia of same size. A(%)
is the % difference between the Average F1 of four tasks with FinPythia and Pythia of same model size.

set”. (4) NER. Financial named entity ex-
traction task is based on credit risk assessment
section of SEC reports. Words in this task are
annotated with PER, LOC, ORG, and MISC.

General Domain Tasks To evaluate the
effect of domain training on the non-domain
abilities, we evaluate on the following open do-
main tasks: (1) ARC (Boratko et al., 2018):
measures the ability of predicting an output
grid after a demonstration of a task for the first
time; (2) MMLU (Hendrycks et al., 2020):
tests knowledge of 57 tasks including elemen-
tary mathematics, history, and law; (3) Truth-
fulQA: Measures question answering ability
on 817 questions in 38 categories (Lin et al.,
2021). (4) HellaSwag (Zellers et al., 2019):
measures commonsense ability to generate a
relevant follow up sentence, given an event de-
scription.

3.2 Baselines

We compare against the following versus the
proposed efficient continual pre-training meth-
ods.

3.3 Training Setup and Infrastructure

For our benchmark pre-trained LLM model,
we select 1B and 6.9B parameter models from
the Pythia suite (Biderman et al., 2023). The
Pythia model suite offers a diverse array of
model sizes, ranging from 70 million to 12 bil-
lion parameters. Continual pre-training config-
uration is derived from Pythia’s training setup
reported in Biderman et al. (2023). Specifically,
we set a learning rate of 1.2e-05 for FinPythia-
6.9B and 3e-05 for FinPythia-1B, the small-
est learning rates in their original schedules.
We use small learning rates to mitigate catas-
trophic forgetting. We keep them constant
throughout the course for efficient pre-training.

We use the precision of bf16 rather than fp16
used in Pythia. We half the original batch size
to 512. We run the continual pre-training job
on a single AWS P4d.24xlarge instance. As the
model size is moderate, we only use data par-
allelism via DeepSpeed ZeRO Stage 2 (Rasley
et al., 2020) with activation checkpointing en-
abled. It takes 18 days for FinPythia-6.9B
to pre-train and 3 days for FinPythia-1B to
pre-train on 24 billion tokens.

4 Results and Analysis

4.1 Domain-adaptive Continual
Pre-training

To evaluate financial domain tasks, we com-
pare FinPythia with Pythia and other open-
sourced models of similar size: OPT-7B (Zhang
et al., 2022), BLOOM-7B (Scao et al., 2022),
and GPT-J-6B (Wang and Komatsuzaki, 2021).
While we report results from open-sourced mod-
els, the main insights are obtained from the
comparison between Pythia and FinPythia, as
their difference reflects the effect of domain-
adaptive continual pre-training. Models are
evaluated in a 5-shot setting for each task.
Shots are randomly sampled from the tasks’
training dataset for each test instance following
FLARE (Xie et al., 2023a) benchmark.

Results are reported in Table 2. FinPythia-
6.9B and FinPythia-1B exhibit superior perfor-
mance except on the FiQA SA task compared
with Pythia counterparts. DACP boosts the
average task performance by 2.8% for the 1B
model and 8.3% for the 6.9B model. These
outcomes directly substantiate the impact of
domain-adaptive continual pre-training for en-
hancing domain performance. Furthermore,
Pythia-6.9B outperforms OPT-7B, BLOOM-
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7B, and GPT-J-6B. For comparison with
BloombergGPT please see Appendix A.

4.2 Efficient Domain-adaptive
Continual Pre-training

FLARE uses 5-shot in-context performance
over the entire training data, i.e., each test
sample while evaluating each model sees dif-
ferent train samples. This makes it harder to
compare different models, as each test example
sees b completely different training examples
across models during inference. In real world,
there is a limited set of labeled samples with
no luxury of seeing a large training data. We
observed a high standard deviation owing to
this randomness in selection across the large
training dataset. To overcome this randomness
and make the comparisons fair across models,
we set aside a pool of 50 labeled data samples
from the training dataset for each task, referred
to as the “shot pool”. For the remaining train-
ing samples, we remove their labels and utilize
them as unlabeled task data, which is used
in our data selection strategy using task data.
This particular configuration is adopted be-
cause we do not have access to unlabeled task
data. By using this setup, we also simulate
the constraints posed by scarce labeled data.
Although this approach creates unlabeled task
data - the size is still small, containing only
0.24 million tokens from the four tasks.

We select 10% subset of the corpus with
each efficient DACP method. We also create
another version of ETS-DACP called ETS-
DACP-com by using the other two measures
with similarity by averaging all three measures
for ranking. Both the TACP and Efficient
DACP methods run for a single epoch, em-
ploying the same pre-training configuration as
DACP to ensure a fair comparison. We run
these experiments with Pythia-1B due to the
compute budget. Evaluation is performed ten
times using 10 random seeds and mean perfor-
mance is reported for each of our four tasks.

The evaluation results are presented in Table
3. While TACP shows significant improvement
in model performance compared to the original
Pythia-1B, ETS-DACP stands out as the top-
performing approach among DACP, TACP, and
our proposed efficient DACP methods in terms
of average task performance. This enhanced
performance cannot be solely attributed to the

increased number of tokens, as DACP with
the same amount of tokens yields inferior re-
sults. The results underscore the efficacy of
both task-adaptive and domain continual pre-
training LLMs on unlabeled task data, in line
with results observed in smaller language mod-
els (Aharoni and Goldberg, 2020). We can
observe the following: 1) ETS-DACP trained
on 10% outperforms DACP on 100% data; 2)
ETS-DACP has the best performance among
all three counterparts and is on par with a com-
bination of three metrics - ETS-DACP-com; 3)
ETA-DACP-ent trained on 10% corpus is a
close second despite not having any access to
task data, handily surpassing vanilla DACP;
and 4) Efficient DACP methods with hard sam-
pling outperform ones with soft sampling.

These results clearly show that not all data
is equal for continual pre-training; all the data
used in efficient DACP methods (10%) is a sub-
set of the data in DACP. Since DACP’s (100%)
performance is lower than ETS-DACP/ETA-
DACP-ent. Adding more data on top of highly
similar or high entropy data actually hurts the
performance. The difference in results between
hard and soft sampling adds more evidence
to this observation. While there is variability
across tasks, on an average, adding examples
outside the most interesting/similar examples
hurts the performance with a notable excep-
tion of ETS-DACP-com which is a combina-
tion of all three metrics. Hence, data should
be carefully curated for any domain continual
pre-training.

Note, 10% of domain data (2.39B) translates
to less than 1% of the 300 billion tokens base
Pythia was trained on. Hence, being selective
during the data curation process for continual
pre-training can have large effects on domain
performance at a small cost. These results
demonstrate the effectiveness of continual pre-
training on domains and task (sub-domains). A
natural question that arises from this exercise
is whether the LLM 1is losing its general-
ity by being further tuned on a narrow
domain? In short, is the LLM becoming a
specialist at the expense of being a general-
ist? We answer this question by measuring the
performance of continually pre-trained LLM
variants on out-of-domain tasks which Pythia
was evaluated on. Table 4 shows the perfor-
mance on the standard four non-finance tasks.
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Tokens FPB FiQA SA  Headline NER Average  Win Rate (%) A(%)
F1 F1 F1 F1 F1
Pythia 1B 0 52.84 (15.5) 65.32 (13.7) 45.61 (10.0) 48.77 (13.7) 53.14 (7.5) 50.0 0.00
DACP 2.30B (10%) 64.77 (10.4) 59.85 (19.0) 41.41 (6.5) 51.32 (7.6) 54.34 (8.9) 62.5 2.25%
DACP (FinPythia 1B) 23.9B (100%) 59.16 (12.1) 52.84 (18.1) 53.34 (9.4) 55.20 (5.8) 55.14 (2.5) 58.3 3.76%
TACP 0.24M 66.80 (10.5) 72.27 (2.2) 38.91 (1.5) 50.55 (11.7) 57.13 (13.2) 60.4 7.50%
DSIR (Xie et al., 2023b) 2.20B (10%) 73.74 (1.4) 42.08 (25.5) 4575 (9.3) 49.71 (14.2) 52.82 (12.4) 62.5 -0.6%
RepSet (Suzuki et al., 2023) 2.20B (10%) 71.36 (4.4) 53.18 (25.2) 43.51 (5.6) 46.81 (14.9) 53.71 (10.8) 52.1 1.07%
Hard Sampling
ETS-DACP 2.39B (10%)  67.11 (9.6) 50.84 (21.9) 71.56 (7.1) 49.52 (8.4) 59.76 (9.7) 66.7 12.45%
ETA-DACP-ppl 2.39B (10%) 73.66 (1.9) 45.86 (24.9) 39.11 (2.0)  48.69 (8.5) 51.83 (13.1) 43.8 -2.4%
ETA-DACP-ent 2.30B (10%)  69.58 (8.4) 58.14 (19.1) 59.83 (11.1) 46.18 (15.7) 58.43 (8.3) 64.6 9.99%
ETS-DACP-com 2.39B (10%) 62.58 (14.7) 72.83 (1.8) 53.91 (11.6) 48.34 (15.9) 59.41 (9.3) 66.7 11.79%
Soft Sampling
ETS-DACP 2.39B (10%) 7245 (3.4) 47.08 (18.1) 40.82 (7.9) 46.16 (15.1) 51.63 (12.3) 35.4 -2.84%
ETA-DACP-ppl 2.39B (10%) 61.44 (18.4) 52.44 (13.6) 4100 (5.6) 43.80 (13.7) 49.67 (8.0) 20.8 -6.5%
ETA-DACP-ent 2.39B (10%)  68.20 (9.5) 57.00 (22.5) 62.06 (11.4) 38.00 (19.6) 56.31 (11.3) 56.3 5.96%
ETS-DACP-com 2.20B (10%) 6441 (11.0) 67.97 (9.2) 51.22 (12.5) 47.68 (13.8) 57.82 (8.6) 58.3 8.80%

Table 3: Effect of TACP and efficient DACP measured by 5-shot results on financial tasks with Pythia-1B.
Mean and standard deviation (in parenthesis) of 10 runs are reported. ETA-DACP-ppl is ETA-DACP
based on perplexity, and ETA-DACP-ent based on entropy. ETS-DACP-com is task similar DACP with
data selection by averaging all three metrics. Win rate is percentage of times a model is more accurate
than other models in a pair-wise comparison (Liang et al., 2022). Bold indicates the best results and
underline indicates the second best per task. A(%) denots the % difference versus base Pythia 1B’s
average F1. Note, the results in third row (DACP 100%) correspond to FinPythia 1B results in Table 2.
The difference in results between the two tables is because we fixed the pool of 5-shot examples for a fair
comparison between all the experiments versus random 5-shots in previous works (Wu et al., 2023b).

We do not observe any significant change in the
performance on the four out-of-domain tasks.

4.3 Ablation on Percentage of
Pre-training Data Selected

We show ablation with percentage of pre-
training data in Figure 2. We see ETS-DACP
and ETA-DACP-ent methods saturate near an
average F1 score of 59% at 5% of pre-trained
data and start declining after using 10% of pre-
trained data. This shows that adding samples
that are not as informative, drops the perfor-
mance as LLM learns over not so useful ex-
amples, adjusting its distribution. For DACP,
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Figure 2: Ablation of amount of pre-training data
versus F1 score for continual pre-training methods.

we observe a constant increase in performance.
We observe an interesting trend in perplexity
with a higher performance than DACP with 1%
of selected pre-trained data. It starts to drop
significantly afterwards, reaching the lowest
performance at 5% of the training data, and re-
covering afterwards. On further investigation
by randomly sampling the perplexity based
data selected between 1%-5% of pre-training
sample region, we saw a particularly examples
with long tables, devoid of natural language
text. This change in distribution versus the
rest of pre-training corpus and tasks could ex-
plain the drop in performance with perplexity
based data selection.

Comparison of Data Selection Metrics
From the results in Table 1 and Figure 2, we
can observe that task similarity based selection
works the best: similarity of training data with
the task data is most beneficial while (pre-)
training. Entropy is a close second but an ef-
fective task-agnostic data selection technique
for domain pre-training. Highest entropy sam-
ples are selected based on the named entity
distribution; these samples would have a more
variety of domain specific entities like names,
versus lower entropy samples. Our hypothe-
sis is that such samples expose LLM to more
domain knowledge than the lower entropy sam-
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Tokens ARC MMLU Truthful QA HellaSwag Average A(%)
Acc Acc Norm  Acc  Acc Norm MC1  MC2 Acc Acc Norm  Acc  Acc Norm

Pythia 1B 0 25.94 29.27 26.29 26.29 23.62 40.47 37.65 47.83 28.38 35.96 0.00

DACP 2.39B (10%) 26.28 29.44 26.43 26.43 2448 4226  36.83 45.34 28.50 35.87 0.42%

DACP (FinPythia 1B) 23.9B (100%) 24.32 27.47 26.09 26.09 24.60 42.05 35.34 42.45 27.59 34.52 -2.78%

TACP 0.24M 25.34 28.41 24.93 24.93 24.48 41.95 37.03 47.27 27.95 35.64 -1.51%
Hard Sampling

ETS-DACP 2.39B (10%) 24.74 28.07 25.99 25.99 23.26 43.85 36.31 44.79 27.57 35.68 -2.85%

ETA-DACP-ppl 2.39B (10%) 26.71 28.41 26.31 26.31 24.97 4142  36.70 44.89 28.67 35.26 1.02%

ETA-DACP-ent 2.39B (10%)  25.34 27.99 24.60 24.60 24.11 41.38  36.92 44.98 27.75 34.74 -2.21%

ETS-DACP-com 2.39B (10%) 26.37 29.35 26.58 26.58 2448 41.51  36.61 44.97 28.51 35.60 0.45%
Soft Sampling

ETS-DACP 2.39B (10%)  26.45 28.33 27.10 27.10 24.60 41.73  36.24 44.49 28.60 35.41 0.77%

ETA-DACP-ppl 2.39B (10%)  25.85 29.69 26.59 26.59 24.85 4217  36.55 44.71 28.46 35.79 0.28%

ETA-DACP-ent 2.39B (10%)  25.94 29.10 25.61 25.61 24.60 41.64 36.78 45.20 28.23 35.39 -0.52%

ETS-DACP-com 2.39B (10%)  25.77 27.47 27.05 27.05 24.24  41.82  36.93 44.62 28.50 35.24 0.42%

Table 4: Evaluation on standard tasks Bold indicates the best value for a column. We follow the evaluation
practice used to create HuggingFace Open LLM leaderboard. A(%) is the percentage difference between
average accuracy of Continually pre-trained LLM and Pythia 1B.

ples with lower type of different entities and
hence, less informative. Perplexity exhibits an
interesting phenomenon: there is benefit with
an initial set of top-1% perplexity samples but
not any further. High perplexity samples are
more novel for the model but novelty can come
both from out-of-distribution as well as lower
quality samples. We do observe mostly high
quality financial articles in top-1% of perplexity
samples while in top 1% to top 5% perplexity
range, we observed samples with long tables
which arguably are noisy on what the foun-
dational model has been trained on. Hence,
perplexity has a high probability of being af-
fected by the noise in the data which score high
on perplexity metric versus entropy metric.

Since, most of large datasets can have noisy
samples, perplexity based data selection is not
a good idea. Correlation between perplexity
and other two metrics: similarity (0.21) and
entropy (0.14) is quite low. Hence, these two
avoid selecting these noisy samples. Given
that we generally want our domain LLMs to
perform well over unseen tasks, adapting the
pre-training to a task agnostic framework is
better. Based on our erperiments, entropy
metric scores high both on task agnostic as well
as performance on downstream tasks.

5 Related Work

Domain specific large language mod-
els. While the majority of released LLMs are
general-purpose models, domain-specific LLMs
have emerged as valuable counterparts. Med-
PaLLM, trained on a medical corpus, achieved
state-of-the-art results on medical benchmarks

(Singhal et al., 2022, 2023) while Bloomberg
developed a financial LLM from scratch on a
financial corpus (Wu et al., 2023b). Continual
pre-training presents an alternative approach
to building domain-specific LLMs from scratch.
Wu et al. (2023a) build medical LLMs through
vanilla continual pre-training LLaMA (Touvron
et al., 2023) on medical papers.

Continual pre-training of Language Mod-
els. Continual pre-training of LMs on unla-
beled data for a given task has been demon-
strated to be beneficial for task performance
(Aharoni and Goldberg, 2020; Gururangan
et al., 2020). Aharoni and Goldberg (2020)
document that continual pre-training on a sim-
ilar domain contributes to task performance.
Notably, the work closest to ours is Xie et al.
(2023b), that selects the data based on an im-
portance sampling scheme with weighting using
relevance to the target task data distribution.
While these works exclusively use task data,
we also propose a task agnostic method, ETA-
DACP, as task similarity is not always feasible.
Other methods like DAS (Ke et al., 2023), do
not perform a pre-selection of data as they
perform the importance sampling on the fly,
making it 3x more expensive than vanilla pre-
training. Further, DAS uses contrastive learn-
ing between two copies of the model elevating
memory requirements.

In contrast to all these methods which have
done experiments on small language models
like BERT /RoBERTa, we are the first ones to
explore data selection for continual pre-training
for Large Language Models (LLMs), to best of
our knowledge.
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Data selection. Data selection for continual
pre-training plays a critical role in choosing
the most valuable samples for the training pro-
cess. Various linguistic features independent
of specific domains or tasks have been shown
to be beneficial for data selection and learning
curricula (Ruder and Plank, 2017; Tsvetkov
et al., 2016). In the context of LLMs, there
is a limited understanding of how to curate
data for pre-training, let alone for continual
pre-training. To best of our knowledge, ours is
the first work that attempts data selection in
the context of LLMs for continual pre-training.

6 Conclusion

In this paper, we demonstrate the efficacy
of domain-adaptive continual pre-training for
developing domain-specific LLMs. Our re-
sults show that domain-adaptive continual pre-
training improves the LLMs’ performance on
financial tasks and it enables the LLMs to ac-
quire domain knowledge at a much lower cost.

Furthermore, we propose efficient domain-
adaptive continual pre-training methods, ETS-
DACP and ETA-DACP, to enhance contin-
ual pre-training. By being selective during
the training data curation, our methods re-
fine continual pre-training, yielding even better
results with just 10% of the data (cost) of
vanilla continual pre-training. Entropy based
task-agnostic data selection works almost at
par with the task-aware data selection strat-
egy. This finding can be used on data selection
for continual pre-training even in the absence
of a task. We also observe no degradation in
performance on open-domain standard tasks,
implying that domain continual pre-training
does not hurt open-domain capabilities.

Our findings place domain continual pre-
training as a strong alternative to building
domain-specific LLMs from scratch. By being
smarter about data selection, we can surpass
vanilla continual pre-training at a fraction of
the cost. Contrary to the wide belief that just
adding more data helps, our results suggest
that quality of data matters too. While do-
main continual pre-training has been studied
widely in small LM literature, we provide a
unique insight in LLMs given the scale and
costs involved. Overall, our work paves the
way for developing domain-specific LLMs at

a reduced cost, with implications for a wide
range of LLM applications.

7 Limitations

We see the following limitations in our work:

Huge Computational Requirements We
used p4d.24xlarge instance on AWS to run
our experiments, which is quite costly: $800-
$1000/day. Hence, it is quite expensive to run
these experiments and very few researchers
have the resources to run these kind of experi-
ments. However, since our method is trying to
solve this exact problem by reducing the cost
of pre-training, we believe our work should be
helpful in increasing democratization of LLMs,
though still quite expensive.

Domain Generalization: Our results and
experiments have been done entirely on the
Finance domain. These results may or may not
generalize to other domains. We are unable to
extend this to other domains because of huge
costs associated with pre-training experiments.

Model Generalization: Our data selec-
tion methods have been tested on Pythia 1B
model. This might not generalize to larger
model sizes, however. The computational costs
of experimenting these four variants of our data
selection strategies discussed in this paper are
quite prohibitive to be shown on larger model
sizes like 7B. However, our results in Table 2
showing continual pre-training on 7B model
had a much larger effect (+8.27%) than the 1B
counter part (42.82%), are quite encouraging.

Comparison with training a Domain
LLM from scratch: While we present a much
cheaper alternative than training a domain
LLM from scratch, it is not still clear which
one of the two: training a domain LLM from
scratch or continually pre-training is a better
strategy for creating a domain LLM.
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A Benchmark BloombergGPT’s
Performance

As BloombergGPT is evaluated using an in-
house data split, and the calculation details
of reported metrics may not be identical, di-
rect comparisons of their results with ours
are not feasible. To adequately assess the
efficacy of continual pre-training, we bench-
mark BloombergGPT’s performance against
the FLARE framework. This involves evalu-
ating OPT-66B and GPT-NeoX-20B’s perfor-
mance, as obtained from FLARE, and com-
paring it to the results reported in Wu et al.
(2023b). This rigorous benchmarking ensures
a fair and comprehensive evaluation, providing
valuable insights into the effectiveness of our
continual pre-training approach in relation to
financial LLMs trained from scratch.

Table 5 reports the comparison results. GPT-
NeoX reports similar average task performance
under two evaluation frameworks, but its per-
formance on individual tasks varies. For ex-
ample, the F1 score on FiQA SA obtained by
FLARE is 46% higher than BloombergGPT’s
evaluation, whereas F1 scores for Headline
and NER are lower. Moreover, OPT-66B re-
ports inferior results based on FLARE than
BloombergGPT’s evaluation on all of the
4 tasks, and the average task performance
is 20% lower. These results suggest that
BloombergGPT’s evaluation results are in-
flated compared with FLARE. The comparison
is still inconclusive unless BloombergGPT is
benchmarked on FLARE or BloombergGPT’s
evaluation configuration is made public.

| FLARE BloombergGPT
| GPT-NeoX OPT-66B | GPT-NeoX OPT-66B

FPB F1 46.75 40.00 44.64 48.67
FiQA SA F1| 73.86 37.36 50.59 51.60
Headline F1 62.62 61.36 73.22 79.41

NER  F1| 4703 52.24 60.98 57.49
Average F1| 5757 4774 | 57.36 59.29

Table 5: Evaluation results obtained on FLARE
benchmark versus BloombergGPT (Wu et al.,
2023b) for two public models: GPT-NeoX and OPT-
66B.

B Intuition behind Domain Task
Performance and Data Selection

In this section we formalize the problem and
give a mathematical intuition behind why sim-
ilarity based method works best.

Formulation We first formalize the problem.
We are given an unlabeled domain pre-training
corpus, U represented by green region in Fig-
ure 1. Next, we can take two scenarios: absence
or presence of an unlabeled task corpus. The
first scenario of the presence of a task corpus,
which can be a single or group of tasks, 7 is
depicted as the red region in Figure 1. Typi-
cally, the task corpus is a subset of the domain
corpus, 7 C U, with [U| >> |T|. The goal
of data selection is to select a subset, D C U,
that is most helpful for pre-training the LLM
model. We also assume that the selected do-
main corpus subset is much larger than the
task corpus, |D| >> |T|, as is a typical case.
The data selection problem can be formally
defined as selection of optimal D* C U:

D" = argmin Eger[Le(y[f(0752))] (1)
DU

where, f(0;-) is a LLM with parameters 6, y
is the task output, x is an input in target task
data T, and L; is the target task loss or met-
ric. 6% is computed on pre-training task with
Lore—train @s the pre-training loss, and z,, as
the unlabeled sample in D:

0* = arg;nin Ey,ep[Lpre—train (f (05 24))] (2)

Our domain-adaptive continual pre-training
can be viewed from the lens of unsupervised
domain adaptation (Ganin et al., 2016). Our
source data is the large unsupervised domain
corpus, while the target data is the target task
data. With pre-training, we do not have con-
trol over the alignment with task training data
itself; our idea is that by aligning with the do-
main during pre-training, we could align the
LLM with the task. This intuition is backed
by evidence of LLM pre-training helping the
performance over open domain tasks. We use
the generalization bound from (Ganin et al.,
2016; Ben-David et al., 2010) since our problem
is similar to unsupervised domain adaptation.
Consider a hypothesis space H,, with f € H,;
generalization errors on source D and task data
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Question: What is a SPAC?

Pythia6.9B: Spac is an acronym for Space. It is defined as either (1) above, just beneath, below, above,
or through a port in the body of a planet, Moon, or other heavenly body; or (2) beyond a star’s sphere of
influence, usually in interplanetary space or interstellar space; also, (3) outside the limits of the Milky Way
Galaxy.

FinPythia-6.9B: A SPAC is a type of merger and acquisition vehicle that is used to raise money from
investors, use that money to identify a company that could be valuable to an interested party, then merge
with the company and take it public. The use of the SPAC is to give investors a piece of the upside in the
acquired company and allows the company to issue shares that may give investors a piece of the upside of the
company as well.

Question: Who is Cathie Wood?

Pythia-6.9B: Cathie Wood is the founder of All Things Organic, an organic marketing company that she
founded in 2000. In addition to being an organic marketer, Cathie is also a Certified Coach, foodie, cook, a
past lover of yoga, a certified teacher, mother and wife to three gorgeous children.

FinPythia-6.9B: Cathie Wood is an American investor and advisor, the founder and chief executive officer
of Ark Investment Management.

Question: How do you like Fed’s latest policy to fight inflation?

Pythia6.9B: I like Fed’s latest policy to fight inflation, which was reported by Tyler. Fed’s latest policy was
reported in a meeting on September 12 and it was named as SOMO, which stood for Standardized Open
Market Operations. According to the policy, the U.S. central bank could buy $40 billion worth of financial
instruments if the price of the instruments reach 6 percent.

FinPythia-6.9B: There is a big confusion about Fed’s new policy to fight inflation. They are following a
new policy from September 2022 called the fastest quarter-percentage point rate hikes in two decades to fight
the ”costly” inflation which is the 8.5 percent rate of increase in food and energy prices that may aggravate
inflation and lead to recession in the near future.

Question: What is the difference between bond and stock in terms of risk profile?

Pythia-6.9B: Stock is less risky (you can liquidate your shares anytime) but bond is more risky (you can’t
liquidate).

FinPythia-6.9B: When you buy a bond, you receive a set of fixed payments from the issuer at a regular
interval over a fixed term. You take on the full risk of the coupon payments not being made, so a bond
is always considered to be a lower risk debt instrument than a stock. However, a stock is a more liquid
investment than a bond. When buying a stock, you are buying shares in the company that the bond represents
and you hold on to the stock until you want to cash out, and it can be used as collateral to borrow money.

Table 6: Generation examples from Pythia-6.9B and FinPythia-6.9B. We observe FinPythia’s updated
financial events knowledge post 2021, providing factual answers with reasoning as shown in the last

example.

T as ep and e, respectively. The generaliza-
tion bound can be given:

er() < en(f) + gdryan, (DT +C (3
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Figure 3: Training loss of FinPythia-6.9B.

FinPythia-6.9B achieves significant loss drop in
financial corpus at mild expense of Pile loss wit
vanilla pre-training (DACP).

where, dy; A%, is distribution discrepancy dis-
tance between D and 7 bounded by (Ganin
et al., 2016):

dy,an,(D,T) <2 sup [a(h)—1] (4)
a(h)eHq

where, a(h) is optimal domain classifier and
Hg is the hypothesis space of domain classifier.
(Zhao et al., 2017) prove that optimal state of
minimum discrepancy distance dy,a, (D, T)
is when the domain classifier has random pre-
dictions achieving a state of highest entropy.
We argue that it is achieved when the represen-
tations for samples in two domains are most
similar, leading to a random domain classifier
that is unable to distinguish between the two
dataset distributions. Motivated by this intu-
ition, we can use a strategy based on selecting
samples with the most similar representations
to our task dataset 7. We use the embedding
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similarity as a proxy for dataset similarity as
getting the optimal representation is challeng-
ing in unpractical in the case of large corpus.

C Qualitative Evaluation

Qualitative examples generated by Pythia-
6.9B and FinPythia-6.9B are presented in Ta-
ble 6. Upon examination, we observe that
FinPythia-6.9B exhibits a superior ability to
generate more relevant and detailed responses
for finance-related questions. For example,
in first example, while Pythia exhibits no
knowledge of very finance domain specific term
“SPAC” and starts hallucinating, FinPythia
gives a correct definition of SPAC. Same with
the other three examples. These findings
suggest that the continual pre-training helps
FinPythia-6.9B acquire in-domain knowledge,
lacking in Pythia.

D Train and Test Loss of Continual
Pre-training Methods

To monitor the pre-training process, we ran-
domly sample 0.1% of our financial corpus as
a financial test dataset. The model is also eval-
uated on the Pile test dataset. The loss trajec-
tory for FinPythia-6.9B is reported in Figure 3.
The training loss in the figure is smoothed us-
ing a moving average of 50 optimization steps.
We observe a sharp decrease in Financial test
(Fin test) loss during the early stage of con-
tinual pre-training, and the progress gradually
becomes saturated, similar to the loss trajec-
tory of training from scratch (Wu et al., 2023b;
Touvron et al., 2023). The loss log suggests
that domain-adaptive continual pre-training
succeeds in adopting Pythia to the financial

» Task Data

(a) Task Aware Data Selection

domains at the expense of a mild increase in
Pile loss (Pile test).

We show the plots of Finance domain loss
(Fin Test) and open domain loss (Pile Loss)
for our efficient DACP methods in Figure 5.
ETS-DACP-com (Hard sampling) has the low-
est loss for Fin Test loss as it uses both task
knowledge and also uses high entropy/perplex-
ity samples in the the larger financial pile. This
selection difference is illustrated in Figure 4.
All methods have similar Fin Test loss for Soft
sampling as we sample entire financial corpus
space for sampling, allowing the model to see
the entire space of corpus (green dots in Fig-
ure 7) mimicking Figure 4b . This effect of
sampling is further seen in the Hard Sampling
case; ETS-DACP limited to samples in the
blue shaded region in Figure 4a, has a higher
fin test loss as well as Pile test loss, as it is
confined to the task distribution unlike task
agnostic methods which see the wider finan-
cial corpus distribution as shown in Figure 4b.
ETA-DACP-ent and ETA-DACP-ppl show sim-
ilar loss curves as expected as they both sample
from the entire finacial corpus. ETS-DACP-
com has a higher loss than these but lower loss
than ETS-DACP, as it is a mixture of these
three sampling techniques.

ETS-DACP has the highest loss for open
domain Pile loss. However, we did not observe
any significant degradation of performance on
open domain tasks with ETS-DACP. Surpris-
ingly, there is a tight correlation between losses
of ETS-DACP-ent and ETS-DACP-ppl, while
ETS-DACP-ppl performs consistently and con-
siderably worse than ETS-DACP-ent on our
tasks. These observations suggest that there

* Selected Data
« Task Data

(b) Task Agnostic Data Selection

Figure 4: Pictorial depiction of Task Aware Data Selection (left) versus Task Aware Data Selection
(Right). While task aware data selection confines the model to only see data in the regions similar to task
data (or a sub-domain), task agnostic allows the model to see the wider distribution of domain data.

10198



Hard Sampling

5104 —— ETS-DACP
ETA-DACP-ent
—— ETA-DACP-ppl
2.05 1 ETS-DACP-com
i 2001
o
-
? 1.95 -
Q@
=
[
1.90
1.85
1.80 -
0 500 1000 1500 2000
Soft Sampling
2.051 —— ETS-DACP
ETA-DACP-ent
—— ETA-DACP-ppl
2.00 7 —— ETA-DACP-com
A
2 1.95
|
®
k)
£ 1.90 1
1.85
1.80 - , , , ,
0 500 1000 1500 2000

Hard Sampling

2.554 —— ETS-DACP
ETA-DACP-ent
2.50{ —— ETA-DACP-ppl
—— ETS-DACP-com
2.45 A
%]
w
S 2.40 1
g
=
' 2351
z
2.30 A
2.25 4
2.20 A
0 500 1000 1500 2000
Soft Sampling
2.400
—— ETS-DACP
2.375 - ETA-DACP-ent
—— ETA-DACP-ppl
2.350{ —— ETA-DACP-com
0 2.325 1
w
o
-
+2.300 A
@
[
= 22751
2.250 A
2.225 A
2.200 A
0 500 1000 1500 2000

Figure 5: Loss curves for in domain loss (Fin Test loss) on left and general domain loss (Pile loss) on right
for our Efficient DACP class of methods. X-axis is number of epochs ran for 10% of domain corpus.
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Figure 6: Spearman’s rank correlation heatmap be-
tween perplexity, similarity, and entropy measures.

is no good correlation between actual our task
performance and loss curves. Using valida-
tion/test loss with unlabeled data is not a good

proxy for task performance, atleast in this do-
main. This is supported by (Liu et al., 2023)’s
observations on low correlation between task
performance and pre-training loss.

E Perplexity, Similarity, and
Diversity

In this section, we present an in-depth analy-
sis of the distribution of perplexity, similarity,
and diversity within our financial corpus. Our
findings reveal that all three metrics display a
highly skewed distribution. Specifically, as illus-
trated in the top row of Figure 7, the similarity
metric demonstrates a two-modal pattern, po-
tentially attributable to the presence of two
distinct sources within our financial corpus.
Figure 6 shows the Spearman’s rank correla-
tion of all three metrics. We see that the three
metrics exhibit low correlation. This suggests
that subsets of data we selected by ranking
across these three metrics do not have a high
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degree of overlap. This inspired us to create
the ETS-DACP-com method, which combines
the three metrics together to balance the three
different dimensions. Figure 8 shows the quan-
tile distribution of three metrics for selected
subsets for each of the efficient DACP methods
with hard sampling.

F ETS-DACP-com vs ETS-DACP

ETS-DACP-com effectively strikes a balance
between constructing a domain-specific LLM
and a task-specific LLM. To demonstrate its
efficacy, we utilize the average quantile of simi-
larity, knowledge novelty, and diversity as the
sampling weights. By applying these weights,

w| | 1 "/ H g

60 ~

Quantile

40

Metrics
20 [ Perplexity
[0 Similarity
0 [ Entropy

ETS-DACP ETS-DACP-ppl ETA-DACP-ent ETA-DACP-com

Figure 8: Average sample quantile of subsets of
financial corpus used in ETS-DACP-com and ETS-
DACP.

we perform weighted sampling, selecting 10%
and 20% of the financial corpus without re-
placement to construct the training data.

The average sample quantile for various sub-
sets of the financial corpus is illustrated in
Figure 8. We claim that using a simple aver-
age of quantiles for the three metrics achieves a
good balance among the three dimensions—the
average quantile for the three dimensions lies in
a similar ballpark for each subset. In contrast,
the subset for ETS-DACP exhibits higher per-
plexity and lower or middle entropy, suggesting
that unlabeled task data contains new knowl-
edge but is less diverse. For ETA-DACP-ppl
and ETA-DACP-ent, the samples are uniform
across the other two dimensions.

G Financial Dataset Curation

Common financial corpus includes SEC filings
(Maia et al., 2018), conference call transcripts
(Qin and Yang, 2019), analyst reports, finan-
cial tweets (Xie et al., 2022), financial news
(Duan et al., 2018), etc. We use financial news
and filings from Financial News CommonCrawl
and SEC filings to curate our financial domain
corpus. The procedure is detailed as follows.

Financial News CommonCrawl [13.2B
words, 83.5%] We curate an English finan-
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Figure 7: Distribution of perplexity, similarity and diversity.
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cial news dataset by pre-processing the publicly
available News CommonCrawl dumps hosted
on AWS S3? spanning from 2016 to 2022. To
identify financial news articles from the vast
collection of News CommonCrawl dumps, we
employ two filtering mechanisms: the domain
filter and the URL keyword filter. Firstly, we
establish a comprehensive portfolio of web do-
mains corresponding to reputable news out-
lets that predominantly focus on financial, eco-
nomic, and business news, such as CNBC. We
retain news articles specifically sourced from
these financial news domains, which constitute
a substantial portion of our financial corpus.

Secondly, to capture financial articles from
general news outlets, we observe that many of
them designate dedicated sections or subdo-
mains for business, economy, or finance news,
like Fox Business. To effectively identify these
financial articles, we implement a simple yet
effective keyword-based approach that targets
financial sections and subdomains within gen-
eral news outlets. The filtering processes ensure
the selection of a financial corpus appropriate
for our continual pre-training in the financial
domain.
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Figure 9: Financial news size by month

SEC Filing [3.3B words, 16.5%] Public
companies in the United States are legally re-
quired to submit their financial statements on
a regular basis. The Securities and Exchange
Commission (SEC) facilitates public access to
these filings through the Electronic Data Gath-
ering, Analysis, and Retrieval (EDGAR) Sys-
tem, which has been available since 1993. On
average, this system accommodates approxi-
mately 40,000 new files per year. To enrich our

2s3://commoncrawl

financial corpus, we include 10-K filings from
the period spanning 1993 to 2022. To ensure
data accuracy and consistency, these filings are
parsed and pre-processed using the package
detailed in Loukas et al. (2021). Furthermore,
we optimize the quality of our corpus by elimi-
nating report sections containing less than 20
words, to remove spurious examples.

List of Domains used to Filter Finan-
cial News We use the following keywords to
identify subdomains and urls: economy, mar-
ket, finance, money, wealth, invest, business,
industry.
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