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Abstract
It is imperative to ensure the stability of every
prediction made by a language model; that is,
a language’s prediction should remain consis-
tent despite minor input variations, like word
substitutions. In this paper, we investigate the
problem of certifying a language model’s ro-
bustness against Universal Text Perturbations
(UTPs), which have been widely used in uni-
versal adversarial attacks and backdoor attacks.
Existing certified robustness based on random
smoothing has shown considerable promise
in certifying the input-specific text perturba-
tions (ISTPs), operating under the assump-
tion that any random alteration of a sample’s
clean or adversarial words would negate the
impact of sample-wise perturbations. How-
ever, with UTPs, masking only the adversar-
ial words can eliminate the attack. A naive
method is to simply increase the masking ratio
and the likelihood of masking attack tokens,
but it leads to a significant reduction in both
certified accuracy and the certified radius due
to input corruption by extensive masking. To
solve this challenge, we introduce a novel ap-
proach, the superior prompt search method, de-
signed to identify a superior prompt that main-
tains higher certified accuracy under extensive
masking. Additionally, we theoretically moti-
vate why ensembles are a particularly suitable
choice as base prompts for random smoothing.
The method is denoted by superior prompt en-
sembling technique. We also empirically con-
firm this technique, obtaining state-of-the-art
results in multiple settings. These methodolo-
gies, for the first time, enable high certified
accuracy against both UTPs and ISTPs. The
source code of CR-UTP is available at https:
//github.com/UCF-ML-Research/CR-UTP.

1 Introduction

Prompt-based Language Models (PLMs) (Thoppi-
lan et al., 2022; Zeng et al., 2022; Achiam et al.,
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2023; Touvron et al., 2023b; Chiang et al., 2023)
have achieved significant success across a wide
range of real-world applications (Wu et al., 2020;
Brown et al., 2020a; Wei et al., 2022; Chowdhery
et al., 2023). However, despite their prominent per-
formance, PLMs have been shown vulnerable to
noises and perturbations on the input (Xu et al.,
2022; Shayegani et al., 2023; Lou et al., 2022;
Al Ghanim et al., 2023; Zheng et al., 2023b). Such
vulnerability has notably restricted PLM’s utility,
especially in high-stake environments such as bank
records analysis (Heaton et al., 2017), health care
records analysis (Myszczynska et al., 2020). In
these settings, the stability of every prediction is
critical, i.e., PLM predictions should remain con-
sistent despite minor input variations, such as word
substitutions (Alzantot et al., 2018; Ren et al., 2019;
Li et al., 2020a). This concern aligns with the study
of certified robust PLMs (Zeng et al., 2023), which
guarantees that all PLM predictions are accurate
within the local vicinity of the input.

Input perturbations can be classified into Univer-
sal Text Perturbations (UTPs) and Input-Specific
Text Perturbations (ISTPs). UTPs are characterized
by their ability to be applied across different inputs,
making them transferable, whereas ISTPs are tai-
lored to specific inputs. In detail, attackers employ-
ing ISTP strategies, exemplified by TextFooler (Jin
et al., 2020) and DeepWordBug (Gao et al., 2018),
craft a unique adversarial sentence for each tar-
get input sentence. Conversely, attackers utilizing
UTP methodologies, such as those found in Tro-
jLLM (Xue et al., 2023) and UAT (Wallace et al.,
2019), identify a single or a small number of adver-
sarial tokens that can be inserted into any sentence
to influence the model’s prediction. This makes
UTPs a more considerable threat to the robustness
of PLMs since a specific set of adversarial tokens
could lead to mispredictions across any input. Ad-
ditionally, UTPs pose a greater challenge in miti-
gation compared to ISTPs. This challenge arises
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because ISTPs depend on weaker adversarial pat-
terns that can be addressed by introducing modifi-
cations to the adversarial or clean tokens. However,
UTPs are based on stronger adversarial patterns,
which require exact identification and masking of
the adversarial tokens for effective mitigation.

Random smoothing has been recognized as an
effective defense offering certified robustness for
models in computer vision (Horváth et al., 2021)
and NLP (Zeng et al., 2023), yet its application has
been limited to ISTPs. This method assumes that
random alterations to a sample’s words counteract
perturbations. However, this approach falls short
against UTPs, which require precise masking of ad-
versarial tokens for mitigation, unlike ISTPs which
can be mitigated by randomly masking any tokens.
Defending against UTPs is challenging due to the
unknown positions of adversarial tokens, requiring
a high mask ratio that could degrade PLM accuracy.
Thus, ensuring certified robustness against UTPs
in PLMs remains an unresolved challenge.

Naively increasing the masking ratio can im-
prove the chances of covering adversarial tokens
in UTPs, potentially reducing the Attack Success
Rate (ASR). However, this method often results in
only minor ASR improvements due to the trade-
off with certified accuracy. High masking ratios in
random smoothing significantly diminish certified
accuracy, leading to randomized model inferences
as a large portion of input tokens are obscured,
leaving insufficient data for accurate predictions.

In this paper, we introduce CR-UTP, a method
to equip PLMs with certified robustness against
UTPs, achieving both high certified accuracy and
low ASR. Our contributions are as follows:

• We adapt the certified robustness method to
PLMs and propose Superior Prompt Search
for robust prompts with masked inputs.

• We introduce a prompt ensemble method to
reduce the variance of masked inputs and in-
crease the certified accuracy with theoretical
analysis and empirical implementation.

• Through extensive experimentation, we show
our CR-UTP effectively increases the certified
accuracy by ∼ 15% and decreases the ASR
by ∼ 35% compared to prior works.

2 Background and Motivation

Adversarial Attacks. Adversarial attacks in deep
learning involve embedding a trigger into cer-

tain training samples, thereby creating poisoned
datasets. When a deep learning model is trained
on such tainted datasets, it behaves normally when
presented with clean inputs but exhibits malicious
behavior when encountering inputs containing the
trigger. In the realm of visual images, triggers often
manifest as tiny patches (Zheng et al., 2023c) or
global perturbations (Zheng et al., 2023a; Li et al.,
2023a). In the context of language data, triggers
can be rare words or characters like "cf" (Kurita
et al., 2020). This paper specifically focuses on
text-based attacks.
Text Adversarial Attacks. Text adversarial at-
tack methods generate adversarial sentences by per-
turbing original sentences to maximally increase
the model’s prediction error, while maintaining
the fluency and naturalness of the adversarial ex-
amples. These attacks on prompt-based language
models can be categorized into two groups: input-
specific text perturbation attacks (ISTPs) and uni-
versal adversarial perturbation attacks (UTPs). In
ISTP attacks, the attacker optimizes an adversar-
ial sentence for each input, mainly by replacing,
scrambling, and erasing characters (e.g., Deep-
WordBug (Gao et al., 2018) and HotFlip (Ebrahimi
et al., 2018)) or words (e.g., TextFooler (Jin et al.,
2020)). Conversely, UTP attacks optimize a uni-
versal trigger for a prompt-based language model,
and the output of any input embedded with this
trigger will be manipulated (e.g., TrojLLM (Xue
et al., 2023) and UAT (Wallace et al., 2019)).
Certified Robustness in Language Models. Nu-
merous defense methods, such as adversarial train-
ing (Yoo and Qi, 2021), model detection (Zheng
et al., 2023d) and perturbation-controlled ap-
proaches, have been developed to counteract ad-
versarial attacks (Wang et al., 2019; Zhou et al.,
2021; Goyal et al., 2023). However, these tradi-
tional tools may become ineffective against novel,
advanced attack strategies. To address this, cer-
tified robustness has been introduced, offering a
guarantee against any attack as long as the num-
ber of perturbed words remains below a certain
threshold. A model achieves certification if it can
consistently produce the correct output when the
number of perturbations does not exceed the certi-
fied radius. While models of smaller size can obtain
robustness certification through deterministic meth-
ods (Li et al., 2020b; Ostrovsky et al., 2022; Weng
et al., 2018; Kolter and Wong, 2017), the computa-
tional demands of language models preclude such
approaches. Consequently, probabilistic methods,
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Figure 1: Illustration of the prediction distributions. A superior prompt exhibits greater robustness compared to a
vanilla prompt, with ensembled prompts showing even higher robustness. Different colors represent various classes,
and different radii indicate varying levels of perturbation. The bars demonstrate the output class probabilities for the
smoothed PLMs given corresponding prompts. pA represents the minimum probability of the majority class, and
pB indicates the maximum probability of the second-most likely class.

such as Random Smoothing (Cohen et al., 2019),
have been introduced to certify the robustness of
large language models.
Random Smoothing. Random Smoothing, a
promising approach introduced by (Cohen et al.,
2019; Weber et al., 2020), certifies the robustness
of large neural networks. This method enhances
a model’s robustness by adding Gaussian noise to
the original input (Salman et al., 2020; Li et al.,
2023b). It was quickly adopted for large language
models in the NLP field, exemplified by SAFER
(Ye et al., 2020) and Randomized [MASK] (Zeng
et al., 2023). To improve model performance with
random smoothing, the computer vision field has
explored re-training the original model to adapt to
Gaussian noise (Jeong and Shin, 2020; Zhai et al.,
2020; Salman et al., 2019). However, applying
this re-training method in NLP to achieve a model
tolerant to smoothing is prohibitively expensive.
Instead, in the NLP domain, (Zhang et al., 2023)
proposed a self de-noising method that allows the
Pretrained Language Model (PLM) itself to recover
the information lost due to masking.
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Figure 2: (a) Our CR-UTP shows higher certified ro-
bustness accuracy and (b) Our CR-UTP significantly
reduces ASR.

Motivation. Figure 2 illustrates that while random
smoothing has been effective for ISTPs as shown

in previous works (Zeng et al., 2023; Zhang et al.,
2023), it struggles with UTPs. With a low mask
ratio, the ASR for UTPs is high (∼96%), and in-
creasing the mask ratio only marginally reduces
ASR but significantly lowers accuracy. For exam-
ple, increasing the mask ratio from 0.3 to 0.8 only
reduces ASR by ∼6% while accuracy drops by
∼35%. These findings highlight the inadequacy of
ISTP methods for UTPs and lead us to develop new
techniques that combine superior prompt search
and ensembles, significantly improving robustness
against UTPs with less impact on accuracy.

To achieve a low Attack Success Rate (ASR)
against Universal Text Perturbations (UTPs), a high
mask ratio, exceeding 0.5, is necessary. Yet, as Fig-
ure 1 (a) reveals, a vanilla prompt at this high mask
ratio results in reduced accuracy due to the exten-
sive masking of input tokens, which leaves limited
information for precise classification. Figures 1 (b)
and (c) illustrate that superior prompts can maintain
higher accuracy under such conditions by incorpo-
rating random masking during the prompt design
phase. This approach allows superior prompts to
adjust to specific mask ratios, improving the lower
bound (pA) on the majority class probability and re-
ducing the upper bound (pB) on the runner-up class
probability. However, these prompts still exhibit
high variance across input samples. Ensembling
techniques (Liu et al., 2021; Horváth et al., 2021)
reduce this variance, thereby enhancing robustness.
As shown in Figure 1 (d), by combining superior
prompts, we can leverage their individual advan-
tages for a more favorable accuracy-ASR balance.
This insight leads us to further investigate supe-
rior prompt design and ensembling as methods to
bolster PLMs’ certified accuracy and robustness
against UTPs, aiming to lower the ASR while pre-
serving high accuracy.
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Figure 3: Overview of CR-UTP. CR-UTP leverages superior prompt search and prompt ensembling techniques to
enhance the certified robustness of PLMs.

3 CR-UTP Design

Overview. In Figure 3, we detail the workflow
of the proposed CR-UTP method. (a) Superior
Prompt Search: we start with a basic prompt and
employ a reinforcement learning approach to find
a superior prompt adept at handling inputs with
masked words. A unique reward function is uti-
lized, which incorporates random masking during
the prompt search phase to enhance the prompt’s
resilience to word masking. (b) Superior Prompt
Ensemble: for making predictions, CR-UTP gen-
erates various versions of the original input by ap-
plying random masking. Each prompt assesses
these versions and internally agrees on the optimal
prediction. (c) Certified Robust PLM: CR-UTP ag-
gregates the individual outcomes from each prompt
through a second voting process to get the final,
most robust prediction.

In particular, we generalize the random masking
operation to PLMs and analyze using random mask-
ing to defend UTPs in Section 3.1. Also, we intro-
duce the Superior Prompt Search in Section 3.2 to
search for prompts that can achieve a high certified
accuracy even when a large proportion of the in-
put tokens are masked. Finally, in Section 3.3, we
proposed a Superior Prompt Ensemble to further
improve the certified robustness.

3.1 Adapting Random Smoothing to PLMs
Using the random masking approach from Ran-
domized [MASK] (Zeng et al., 2023), the random
masking operation M : X ×M(h, k) → Xmask

would take an input text x = x1x2...xh with h
words and randomly replacing (h− k) word with
the [MASK] to get the masked version M(x). Fol-
lowing this, we define a smoothed classifier g(x)
built upon the base classifier f as follows:

g(x) = argmax
c∈C

[
P

H∼U(h,k)
(f(M(x | H)) = c)

]
(1)

Then it can be shown that g(x) would return c when
the certified condition is satisfied with probability
at least (1 − α) from Theorem 1 in (Zeng et al.,
2023).

We define a prompt-based language model for
classification tasks as f : X → C, where X repre-
sents the domain of input texts and C = 1, 2, ..., nc

denotes the set of classification labels. The re-
sponse of an input x to prompt p is y = f(p,x).
The smoothed classifier g over such PLM can be
expressed as

gp(x) = argmax
c∈C

[
P

H∼H(h,k)
(f(p,M(x | H)) = c)

]
(2)

and the same certification can be achieved under
such prompt-based model.

Defending against universal attacks with random
masking necessitates a high mask ratio, especially
in the context of UTPs, where the presence of any
UTP token in the masked input guarantees the at-
tack’s success. Therefore, to ensure the adversarial
token is masked with a probability exceeding 50%
for the smoothed function g(x) to yield correct
outcomes, the masking probability for each UTP
token needs to be more than 0.5. Consequently,
for a UTP of length r, the likelihood that all UTP
tokens are masked should be pr > 0.5, implying
p > r

√
0.5. For instance, p > 0.5 for r = 1, and

p > 0.707 for r = 2. Ensuring correct results for
inputs masked without UTP requires the model to
perform effectively at high mask ratios. To allevi-
ate the effects of extensive masking, we introduce a
technique that enhances model performance under
random masking without necessitating retraining
of the language model, thereby reducing computa-
tional overhead.

3.2 Superior Prompt Search
Certified accuracy is influenced by the model’s per-
formance on randomly masked sentences, but high
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mask ratios can decrease accuracy due to loss of
critical information. Enhancing a prompt-based
language model’s certified accuracy involves im-
proving its tolerance to information loss from ran-
dom masking. However, in few-shot and black-
box scenarios, fine-tuning the pre-trained model or
using gradient-based optimization for continuous
prompts is infeasible. To tackle this challenge with-
out gradient optimization, we approach it as a rein-
forcement learning (RL) problem to discover a dis-
crete, robust prompt—termed a superior prompt. A
direct approach involves searching for this prompt
using datasets with randomly masked sentences
to acclimate the model to diverse masking scenar-
ios. Nonetheless, at high mask ratios (e.g., 70%),
the reduced information in few-shot datasets limits
the effectiveness and generalizability of robustness
enhancements. To overcome this, we suggest align-
ing the superior prompt’s predictions on masked
sentences with the vanilla prompt’s on unmasked
sentences, leveraging the existing knowledge of the
vanilla prompt to offset the drawbacks of few-shot
datasets and information loss from masking.

Our aim, as expressed in Equation 3, involves
identifying an optimized prompt ps that augments
a basic vanilla prompt pv by adding a sequence of
T tokens from the vocabulary V . This strategy is
intended to boost the smoothed function gps(xi) ’s
accuracy on inputs xi . The dataset D is composed
of pairs of input sentences xi and their associated
labels yi.

max
ps∈VT

∑

(xi,yi)∈D
I(gps(xi) = yi) (3)

Masked Sentence Accuracy Reward. We intro-
duce a two-fold reward function to guide the RL-
based search for an optimal ps. The first compo-
nent, known as the Masked Sentence Accuracy
Reward (MSAR), is designed to directly maximize
the PLM’s accuracy on masked sentences:

RMSAR =
∑

(xi,yi)∈D
η1−sign
1 ηsign

2 Distance(M(xi), yi)

(4)

where the Distance(M(xi), yi) denotes
lyi(ps,M(xi)) − maxy′ ̸=yly′(ps,M(xi)), the
difference of the correct logit and the maximum
of the incorrect logits. The distance value is
positive for correct predictions and negative
otherwise. We denote the distance sign as
sign = 1[Distance(M(xi), yi) > 0]. For a

correct prediction (i.e., sign = 1), we multiply the
positive reward by a large number η2 to indicate its
desirability; otherwise, we multiply the negative
rewards by another number η1. This reward aims
to maximize the PLM’s accuracy on masked
sentences.
Predictive Distribution Alignment Reward. To
mitigate the challenge posed by information loss
due to word masking, which is exacerbated in a
few-shot setting, we propose an additional reward
function, a.k.a, Predictive Distribution Alignment
Reward (PDAR). It is designed to minimize the KL
divergence between the predictive distributions of
the vanilla prompt on unmasked sentences and the
superior prompt on their masked equivalents:

RPDAR = −
∑

(xi,yi)∈D
KL(l(pv,xi) ∥ l(ps,M(xi))) (5)

This reward is designed to ensure that ps retains
alignment with pv’s predictive behavior, thereby
leveraging the foundational knowledge encoded in
pv to inform predictions in the face of partial in-
formation. Such strategic alignment enables ps to
infer missing data from the masked inputs, drawing
on the robust insights and patterns encapsulated by
pv. This method not only addresses the direct im-
pact of masking on information availability but also
enhances the model’s capacity for generalization
from limited examples.
Policy Model Update. As Figure 3 shows, the RL
search process involves an agent that sequentially
selects tokens [s1, ..., sT ] to construct the superior
prompt ps, aiming to maximize the combined re-
ward R = RMSAR + RPDAR. For each time step t,
the agent, given the previous tokens s<t, generates
the next token st based on the policy generator
Gθs(st|s<t). Completion of ps triggers the com-
putation of the task reward R. To facilitate this,
we employ a GPT-2 model as the backbone for
our policy generator, enhanced with an insertable
trainable Multilayer Perceptron (MLP) layer. The
optimization focuses on the parameters of this MLP
layer, tailoring the policy generator to effectively
navigate the prompt construction space under the
guidance of the designed reward function.

3.3 Superior Prompt Ensemble
Instead of relying on a single model, ensemble
methods leverage the strengths and mitigate the
weaknesses of various base classifiers. The core
idea behind ensemble modelling is that a group of
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weak learners can come together to form a strong
learner, thereby improving the model’s ability to
generalize well to unseen data. In the following
section, we will demonstrate how random masking
can increase the variance of the output probabil-
ity and how model ensembling can mitigate the
performance drop introduced by random masking.

Suppose the probability that the smoothed model
with prompt p outputs the ground truth y is
P y(x) = PH∼U(h,k)(f(p,M(x | H)) = y)
in [0, 1], then the final probability output of the
smoothed model is determined by two random vari-
ables, P y = P y

o +P y
m (Horváth et al., 2021), where

P y
o is determined by the performance of the lan-

guage model f with prompt p on the original input,
and P y

m corresponds to the performance of prompt
p when the input x is randomly masked. Although
Po should be constant 0 or 1 without any perturba-
tion on the input, we could assume P y

o = ly(p,x),
the logit of the correct label under the random
masking operation. We empirically analyse the
performance of the mask operation variance σ2

with respect to the perturbation rate, as shown in
figure 4, and conclude that the perturbation ratio
significantly influences variance. As the perturba-
tion ratio increases, the variance initially rises and
then decreases. This pattern occurs because, as the
mask ratio increases from 0 to 0.6, the masking
operation introduces more noise to the input, in-
creasing the variance of P y. However, when the
mask ratio increases from 0.6 to 1, the remaining
information decreases, leading the model to ran-
domly guess any label, i.e., P y → 1/nc, and the
variance

∑y → 0 as more words in the sentence
are masked.

With a high mask ratio, the random masking
operation can significantly increase variance and
reduce accuracy relative to the clean classifier’s out-
put. Model ensembles effectively decrease the over-
all variance of voting outcomes, thereby improving
the likelihood of accurate predictions as the num-
ber of ensembles increases (Horváth et al., 2021).
However, the high computational cost makes train-
ing multiple language models unfeasible. Conse-
quently, we introduce a technique that ensembles a
set of prompts during inference to exploit the dis-
tinctive feature of PLMs, wherein the initial prompt
markedly affects the model’s final output. By em-
ploying the superior prompt search method, we
can create a collection of prompts that withstand
the random masking operation, with the ensemble
of these prompts’ outputs demonstrating enhanced

performance on heavily masked inputs.
Formally, we construct an ensemble classifier

f̄ with a set of k different prompts P = {pi |
i = 1, ..k}, via hard voting of all the outputs from
different prompts pi,

f̄(P ,x) = argmax
c∈C

k∑

i=1

I(f(pi,x) = c) (6)

where I(f(pi,x) = c) is the indicator function that
equals 1 when f(pi,x) output c and 0 otherwise.
So the ensemble classifier would output the class
that most of the prompts agree on.

Since the prompts ensemble operates as a single
model, the certified robustness condition remains
applicable to the assembled model f̄(P ,x). There-
fore, we can establish a new smoothing function
ḡ(x) by applying the same random masking op-
eration to x. Building on our previous findings,
we anticipate performance improvements through
the prompts ensemble. Our analysis of how the
number of ensembles impacts the final probability
outcome, as depicted in Figure 5, demonstrates a
substantial increase in the accuracy of the model
ensemble with a concurrent reduction in variance
as the number of ensembles increases.

4 Experimental Methodology

Datasets and Model. In our evaluation, we uti-
lize the SST-2 dataset (Socher et al., 2013) and
Yelp (Asghar, 2016) for binary classification tasks,
AgNews dataset (Zhang et al., 2015) for a four-
class classification task. We adopt a 16-shot set-
ting, which represents a typical few-shot scenario.
Our experiments are mainly conducted with the
widely-used pre-trained language model RoBERTa-
large (Liu et al., 2019), an advanced version of
BERT (Kenton and Toutanova, 2019) with 24 lay-
ers of Transformer architecture. We also evaluate
the performance on large language models such
as Llama2-7b (Touvron et al., 2023a) and GPT-
3.5 (Brown et al., 2020b).
Evaluation Metrics. We adopted three key met-
rics in evaluations same with (Zeng et al., 2023).
Clean accuracy (CACC) refers to the classification
accuracy on clean sentences. The attack success
rate (ASR) quantifies the percentage of input in-
stances perturbed by an attack that successfully
causes the model to make incorrect predictions.
The poisoned accuracy (PACC) indicates the ac-
curacy of the prompt-based language model on
poisoned samples crafted from an attack.
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Table 1: Comparison of CR-UTP and Random Mask against attacks with a 70% mask ratio on SST-2 dataset.

Scheme w/o defence Randomized [MASK] CR-UTP

CACC ASR PACC CACC ASR PACC CACC ASR PACC

DeepWordBug 92.69 93.04 6.96 81.13 45.18 54.82 85.61 21.25 78.75
TextFooler 92.69 91.87 8.13 81.60 42.88 57.12 85.28 37.39 62.61
UAT 92.48 96.85 52.97 80.75 79.92 60.18 85.53 50.63 75.92
TrojLLM 92.69 91.88 53.76 80.94 85.31 56.84 85.70 50.55 73.04

Evaluated Attacks. We evaluated our CR-UTP
under two input-specific text perturbation (ISTP)
adversarial attacks, TextFooler (Jin et al., 2020)
and DeepWordBug (Gao et al., 2018), and two uni-
versal text perturbation (UTP) attack, UAT (Wal-
lace et al., 2019) and TrojLLM (Xue et al., 2023).
TextFooler adversarially perturbs the text inputs by
the word-level substitutions, whereas DeepWord-
Bug performs the character-level perturbations to
each input by replacing, scrambling, and erasing a
few characters of some words. The UAT attack gen-
erates universal adversarial triggers as sequences
of tokens that are independent of input and, when
appended to any dataset entry, prompt the model to
generate a particular prediction. UTP attack Tro-
jLLM uses reinforcement learning to search a uni-
versal trigger for a prompt-based language model,
any text inputs with this trigger will lead to the
model output target label.
Implementation Details. For the superior prompt
generator configuration, we adhered to the parame-
ters established in RL-Prompt (Deng et al., 2022).
Specifically, we use distilGPT-2, a large model
with 82 million parameters, as a policy model for
all tasks. Additionally, we use a multilayer per-
ceptron (MLP) with one hidden layer which has
2,048 hidden states, added to distilGPT-2’s exist-
ing 768 hidden states. For the hyperparameters
of reward functions in the Equation 4, we set bal-
ancing weights η1 = 180 and η2 = 200. During
inference of CR-UTP, we use an ensemble num-
ber of 5 with the best 5 prompts derived from the
superior prompt search. During the certification
process, the prediction number is 500 and the certi-
fication number is 1000. When using randomized
[MASK] to defend against adversarial attacks, the
voting number is set to 100. All experiments are
conducted on a single Nvidia Geforce RTX-3090
GPU. Searching time for superior prompts on SST-
2 is 3.8 hours, the certification time for one sen-
tence is ∼ 8 seconds. Further details about training
time and inference efficiency are provided in the
appendix A.

5 Results

5.1 Comparison of CR-UTP with Random
Mask.

In Table 1, we conducted experiment comparing
the performance of CR-UTP with no defence input
and Randomized [MASK] (Zeng et al., 2023) at
a 70% masking ratio against two ISTP adversar-
ial attacks, i.e., DeepWordBug (Gao et al., 2018),
TextFooler (Jin et al., 2020), and two UTP ad-
versarial attacks, i.e., UAT (Wallace et al., 2019)
and TrojLLM (Xue et al., 2023). CR-UTP signif-
icantly reduces the ASR from 96.85% to 50.63%
on UAT attack, and 93.04% to 21.25% on Deep-
WordBug attack, which suggests random masking
operation with a high mask ratio could effectively
reduce attack success rate on both ISTP and UTP
adversarial attacks. Our CR-UTP exhibits supe-
rior performance over Randomized [MASK] across
all metrics in the evaluated adversarial attacks.
Furthermore, CR-UTP exhibits higher CACC and
PACC than the original input and Randomized
[MASK]. This improvement is attributed to its ef-
ficient prompt search method, which identifies ro-
bust prompts to random mask, and superior prompt
ensemble technique, further reducing CACC vari-
ance. Moreover, CR-UTP achieves a substantial
reduction in attack success rate (ASR), averaging a
21.4% greater decrease compared to Randomized
[MASK], with a remarkable 34.76% ASR reduc-
tion in the TrojLLM attack. This enhancement
stems from CR-UTP’s ability to leverage the dif-
ferential outputs of various prompts, enabling a
robust ensemble prediction for improved defence
outcomes against adversarial samples. Addition-
ally, CR-UTP demonstrates a notable increase in
poisoned accuracy (PACC), indicating its ability to
maintain high accuracy even under attack scenar-
ios.

5.2 Ablation Study

In this section, we explore the design space of CR-
UTP and study the impact of various settings of CR-
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Table 2: An ablation study of CR-UTP techniques. Our baseline is random mask with 70% ratio; RMSAR denotes
employing superior prompt search only using reward RMSAR; RMSAR +RPDAR means using superior prompt search
with rewards RMSAR and RPDAR; CR-UTP incorporates all proposed techniques.

Dataset SST-2 AgNews Yelp

CACC ASR PACC CACC ASR PACC CACC ASR PACC

w/o defense 92.69 91.88 53.76 88.91 94.54 78.64 95.42 87.90 51.42
Our baseline 70.50 85.31 56.84 80.94 22.42 75.71 76.10 58.26 68.35
RMSAR 81.93 47.28 76.83 82.09 21.31 75.78 83.23 22.93 81.93
RMSAR +RPDAR 84.90 63.93 66.61 83.06 18.89 78.65 83.84 20.83 82.52
CR-UTP 85.70 50.55 73.04 84.27 18.82 78.73 85.62 20.05 82.85

UTP on its attacking effects using the RoBERTa-
Large with SST-2 dataset.
CR-UTP Techniques Performance. In Table 2,
we analyze the impact of different CR-UTP tech-
niques on performance against TrojLLM on the
SST-2, AgNews and Yelp-2 datasets. For SST-2,
utilizing the adapted random mask method (our
baseline) leads to a significant drop in CACC by
over 22%, mainly due to the loss of information
from masking 70% of the words. However, incor-
porating superior prompt search with reward RMSAR,
improves CACC by 11% as the superior prompt
proves more robust to random masking. Further-
more, combining rewards RMSAR +RPDAR, further
increases CACC to 84.90% by enhancing prompt
search effectiveness with RPDAR, which aligns out-
puts for clean and masked sentences. Finally, em-
ploying the superior prompt ensemble technique
elevates CACC to 85.70% and reduces ASR from
91.88% to 50.55%, indicating significant improve-
ments over the baseline method. Similarly, on Ag-
News dataset, CR-UTP surpasses the baseline with
a 3.33% increase in CACC to 84.27% and a 3.6%
decrease in ASR, highlighting CR-UTP’s effective-
ness. Our CR-UTP method is also effective on
the longer datasets such as Yelp dataset, which en-
hances the CACC and the PACC by 9.52% and
13.5%, respectively. Additionally, it reduces the
ASR by 10.35%.
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Figure 4: (a) Clean accuracy and (b) variance of pro-
posed methods under different mask ratio.

Mask Ratio. To examine the effect of mask ratio

on clean accuracy, we conduct experiments on the
SST-2 dataset with varying mask ratios. Results in
Figure 4 (a) show that while the baseline method’s
accuracy sharply drops from 91.27% to 51.78%
as the mask ratio increases from 10% to 90%, our
superior prompt search technique leads to a more
gradual decline, from 92.42% to 57.82%. Addi-
tionally, employing our superior prompt ensem-
ble method maintains a higher accuracy of 85.70%
even at a 70% mask ratio, representing a significant
improvement over the baseline method.

In Figure 4 (b), the variance analysis of certi-
fied accuracy shows that while increasing the mask
ratio results in higher variance for both baseline
and superior prompt methods, the use of ensem-
ble techniques, particularly the superior prompt
ensemble method, reduces variances, providing a
more consistent output despite the effects of mask-
ing. The variance peaks at the 60% mask ratio,
indicating the highest sentence diversity. This sug-
gests that the variance is influenced not only by
the volume of information loss due to masking but
also by the diversity of sentences resulting from
random masking. However, the employment of
ensemble techniques, even with baseline ensemble
(vanilla prompts, not superior prompts), results in
a more gradual increase in variance. This stabi-
lization is likely due to the ensemble’s ability to
aggregate insights from multiple prompts, deliver-
ing a more consistent and reliable output despite the
information loss introduced by masking. The su-
perior prompt ensemble technique further reduces
the variances.

Ensemble Numbers. To investigate the impact of
the number of prompts within the superior prompt
ensemble on clean accuracy, we conducted experi-
ments on the SST-2 dataset using a large mask ratio
of 70% to amplify the ensemble number’s effect
on output performance. To mitigate the potential
impact of differences in prompt selection perfor-
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Figure 5: Clean accuracy and variance of CR-UTP un-
der different ensemble numbers.

mance on the output, each ensemble was selected to
have similar mean accuracy. The results depicted
in Figure 5 show that as the number of prompts
in the ensemble increases from 1 to 50, there is a
consistent improvement in clean accuracy, rising
from 83.21% to 87.82%, accompanied by a cor-
responding decrease in variance. These findings
indicate that a larger ensemble leads to more stable
and accurate predictions. This enhancement can be
attributed to the ensemble’s capacity to integrate
diverse insights from multiple prompts, reducing
the impact of any single erroneous prediction and
fostering a consensus that is more resilient to the
introduction of masks.

Table 3: Evaluation on large language models.

Model Llama2-7b GPT-3.5

CACC ASR PACC CACC ASR PACC

w/o defense 90.40 88.17 53.82 92.01 96.88 51.94
Our baseline 73.89 83.14 55.03 75.34 86.72 56.19
CR-UTP 84.68 51.47 72.95 85.32 50.75 74.86

Evaluation on Large Language Models. We
demonstrate the effectiveness of our CR-UTP
method on large models like Llama2-7b and GPT-
3.5. The experiments, conducted on the SST-2
dataset against the UTP attack TrojLLM, are shown
in Table 3. For both the Llama2-7b and GPT-
3.5 models, our CR-UTP approach improves the
CACC by over 10% compared to our baseline,
while also achieving a reduction in ASR of more
than 30%.
Comparison with Adversarial Training. We
compare the empirical defence effects of adver-
sarial training (Yoo and Qi, 2021) and our CR-UTP
in Table 4. Our CR-UTP significantly reduces the
ASR by over 30% while maintaining similar ac-
curacy, outperforming adversarial training. CR-
UTP consistently defends against various adver-

Table 4: Comparison with adversarial training.

Attack TrojLLM TextFooler

CACC ASR PACC CACC ASR PACC

w/o defense 92.69 91.88 53.76 92.69 92.27 8.13
Adv. training 85.94 80.68 59.82 85.94 91.13 8.81
CR-UTP 85.70 50.55 73.04 85.28 37.39 62.61

sarial attacks, such as TrojLLM and TextFooler,
unlike adversarial training, which shows inconsis-
tent defense effectiveness. For instance, adversar-
ial training effectively reduces ASR from 91.88%
to 80.68% for attacks it was trained against Tro-
jLLM, but it provides minimal defense against dif-
ferent attacks (TextFooler), only reducing ASR
from 92.27% to 91.13%.

6 Limitation

The limitations of our paper are as follows: (i)
Certified Accuracy. Although our CR-UTR has
demonstrated improvements in certified accuracy
and reduced ASR, achieving state-of-the-art results,
there remains a gap between clean accuracy and cer-
tified accuracy. (ii) Broader Applications. While
our CR-UTP primarily concentrates on classifica-
tion tasks, broadening its application to encompass
other NLP tasks like generation (Xue et al., 2024)
would present a captivating expansion of our re-
search. (iii) Efficiency. The CR-UTP with prompt
ensemble would result in higher inference over-
head compared to using just one prompt. How-
ever, it is important to note that a superior prompt
can significantly enhance the effectiveness of de-
fense strategies. Moreover, the Superior Prompt
Search is an offline process to train the policy
model which could be reused to generate multi-
ple superior prompts in several seconds.

7 Conclusion

In this paper, we address the challenge of certify-
ing language model robustness against Universal
Text Perturbations (UTPs) and input-specific text
perturbations (ISTPs). We introduce the superior
prompt search method and the superior prompt en-
sembling technique to enhance certified accuracy
against UTPs and ISTPs. Our approaches achieve
state-of-the-art results, ensuring stability and relia-
bility in language model predictions across diverse
attack scenarios.
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A Appendix

A.1 Training Time and Inference Efficiency
Regarding the training time, the Superior Prompt
Search is an offline process before online inference,
thus the prompt search and generation phase does
not impact the online inference. As mentioned in
Section 4, the prompt search normally takes about
3.8 hours to train the policy model using only one
single Nvidia GeForce RTX-3090 GPU. Once the
policy model is trained, one could reuse it to gen-
erate multiple superior prompts in several seconds.
The superior prompt is short and effective, compris-
ing up to 5 tokens, resulting in an overhead (from
appending the prompt compared to not using one)
of no more than 10% for both the SST and AgNews
datasets. Additionally, datasets with longer texts
(Yelp) exhibit much lower overhead ratios, i.e., less
than 5%. We highlight that superior prompt sig-
nificantly enhances defense effectiveness. As the
Table 2 shows, on the SST-2 dataset, it yields an
improvement of over 15% in clean accuracy and a
reduction of more than 30% in ASR compared to
our baseline.

The generation of ensemble prompts runs paral-
lel to the search for the superior prompt, occurring
before the online inference phase. The certified
efficiency of this method is closely linked to the
number of inference executions, which is a product
(kn) of the ensemble number (k) and the sampling
number (n). To maintain efficiency, one could re-
duce the sampling number (n) when employing
ensemble prompts (k > 1) to keep a similar or
the same product kn. For instance, sampling a
single superior prompt 5000 times may yield a cer-
tified accuracy of 54.5%; however, an ensemble
of 5 superior prompts (k=5) requires only 1000
samplings to reach a certified accuracy of 58.1%.
For the defense inference against a specific attack,
the number of n can be much smaller, e.g., 50-
100, for efficiency consideration. Also, We un-
derscore the efficiency of prompt ensembling over
model ensembling, owing to the prompt genera-
tion’s speed and low memory footprint, as opposed
to the more resource-intensive generation and mem-
ory demands of model ensembling.
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