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Abstract

Structured pruning fundamentally reduces
computational and memory overheads of large
language models (LLMs) and offers a feasible
solution for end-side LLM deployment. Struc-
turally pruned models remain dense and high-
precision, highly compatible with further tun-
ing and compression. However, as the coarse-
grained structured pruning poses large dam-
age to the highly interconnected model, achiev-
ing a high compression ratio for scaled-up
LLMs remains a challenge. In this paper,
we introduce a task-agnostic structured prun-
ing approach coupled with a compact Trans-
former architecture design. The proposed ap-
proach, named TransAct, reduces transitional
activations inside multi-head attention (MHA)
and multi-layer perceptron (MLP) modules,
while preserving the inter-module activations
that are sensitive to perturbations. Hence, the
LLM is pruned into an intra-module low-rank
architecture, significantly reducing weights,
KV Cache and attention computation. Trans-
Act is implemented on the LLaMA model and
evaluated on downstream benchmarks. Re-
sults verify the optimality of our approach
at high compression with respect to both ef-
ficiency and performance. Further, ablation
studies reveal the strength of activation-guided
iterative pruning and provide experimental
analysis on the redundancy of MHA and MLP
modules.

1 Introduction

Deploying large language models (LLMs) locally
on edge devices instead of relying on remote APIs
has been a pressing initiative. Local deployment
of LLMs ensures independence from network con-
ditions and enhances privacy at an advanced level
(Ma et al., 2023a). Nevertheless, deploying a
scaled-up LLM onto a resource-constrained end
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Figure 1: An illustration of TransAct model architec-
ture. The model weights and activations are colored
green and blue, respectively. Dashed hollow blocks rep-
resent the weights and activations that are pruned out.

device poses multifaceted challenges, encompass-
ing inference speed, memory footprint, and power
consumption. Therefore, comprehensive optimiza-
tions on the efficiency of LLMs are imperative, in-
cluding architecture design (Gu and Dao, 2023),
model compression (Zhu et al., 2023), inference
schemes (Leviathan et al., 2023; Cai et al., 2024),
compilation and runtime (Lai et al., 2023).

Model compression emerges as the silver-bullet
solution for reducing deployment costs given an
accessible LLM. To essentially reduce model com-
putation and memory overhead, pruning aims
to discard weights with low salience to the
LLM. Jaiswal et al. (2023) suggest that state-of-
the-art (SOTA) unstructured pruning approaches
i.e., SparseGPT (Frantar and Alistarh, 2023) and
Wanda (Sun et al., 2023), along with their semi-
structured variations, often underperform in down-
stream benchmarks. Zimmer et al. (2023) empha-
size the significance of post-training after pruning
to restore the capabilities of the LLM. However,
the post-training and inference of a sparse model
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are notably inefficient. Also, an unstructured prun-
ing with arbitrary sparsity pattern has no speedup
or memory saving on the LLM, whereas a semi-
structured sparse model heavily relies on specific
hardware (Frantar and Alistarh, 2023).

An alternative pruning category, i.e., structured
pruning, has shown feasibility for LLMs. LLM-
Pruner (Ma et al., 2023b), the pioneering struc-
tured pruning of LLM, incorporates the approxi-
mated Taylor series as the pruning metric. How-
ever, this approximation loses accuracy when
pruning a large ratio of the model (LeCun et al.,
1989). While Taylor expansion assumes small per-
turbations, it is not applicable when a large num-
ber of parameters are pruned (i.e., set to zero).
The SOTA approach Sheared-LLaMA (Xia et al.,
2024), on the other hand, completely transfers
the evaluation of the pruning metric to super-
vised training with masks. However, training with
masks poses much more computation and mem-
ory footprint at training time, as well as the train-
ing unstableness. Also, the pruned architecture of
Sheared-LLaMA, as illustrated in the upper part of
Figure 1, involves the unified pruning of layer nor-
malization (LN) weights, disregarding the varying
sensitivity of LN parameters to perturbation across
layers (Zhao et al., 2023).

To address the challenges of efficient and ef-
fective LLM pruning, we propose TransAct, a
transitional activation-based structured pruning ap-
proach. From the perspective of pruning architec-
tural design, TransAct reduces intra-module acti-
vations, which prunes the MHA and MLP in LLM
into low intrinsic dimension as depicted in Fig-
ure 1. TransAct pruning metric is inspired by
the observation of Dettmers et al. (2022) that a
small proportion of activations within the LLM
exhibit outlier magnitudes, rendering them partic-
ularly sensitive to perturbations and need to be
preserved. This approach effectively reduces the
memory footprint of both model weights and KV
cache, alleviating the memory constraints inher-
ent in autoregressive generation on edge devices
(Kwon et al., 2023). Specifically, the contributions
of this paper are outlined as follows.

• We propose a co-design of pruning archi-
tecture and pruning metric named TransAct,
which substantially compresses the KV cache
as well as the model weights.

• TransAct pruning architecture achieves the
fastest inference speed among SOTA pruned

models, while the pruning is efficient without
gradients or masked training.

• Experiment results on downstream bench-
marks verified the stableness of TransAct at a
high compression ratio. Ablation studies on
module redundancy provide insights for com-
pact model design.

2 Related Work

Extensive works have been proposed to optimize
the efficiency of Transformer-based LMs, cover-
ing pruning, quantization, dynamic acceleration,
etc. However, to generalize these approaches to
the continually scaling-up LLMs remains chal-
lenging.

Quantization, which reduces the bit representa-
tion of values, stands out due to its ease of im-
plementation. Post-training quantization (PTQ)
approaches, e.g., GPTQ (Frantar et al., 2022)
and AWQ (Lin et al., 2023), are without any
further tuning after the quantization. On the
contrary, quantization-aware training (QAT) ap-
proaches train the model along with the quantiza-
tion parameters and is still challenging when the
LLM is scaled up (Liu et al., 2023). Quantizing
an LLM from float16 to int3 with weight-only
PTQ approaches like GPTQ (Frantar et al., 2022)
can reach roughly 80% compression of model
weights. However, the KV cache which con-
tributes to a large amount of memory overheads
is still in float16 and uncompressed. Also, ob-
taining an acceptable quantization precision with
int3 weights remains a challenge. Xiao et al.
(2023) proposed a W8A8 PTQ approach where
both weights and activations are quantized to int8,
saving 50% memory footprint. The lack of flexi-
bility poses a significant limitation to quantization.
Most general computing platforms and libraries
primarily support low-bit representations such as
int8 and int4 (Nagel et al., 2021). However, opt-
ing for representations lower than 4 bits necessi-
tates dequantization back to the supported higher-
bit representations, thereby introducing additional
computation and memory overheads.

Apart from quantization, unstructured prun-
ing is also an efficient approach to obtain a
sparse LLM. Frantar and Alistarh (2023) and Sun
et al. (2023) enabled fully unstructured and semi-
structured N:M sparsity (i.e., N zeros in M con-
secutive weights) of LLM across different sizes.
However, there are two major obstacles hinder-
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Figure 2: Detailed TransAct workflow on a Transformer layer with MHA and gated MLP. Bar charts indicate the
activation-based pruning metric.

ing the adoption of unstructured sparsity. (1) The
pruned sparse LLM cannot be efficiently further
trained. Although Sun et al. (2023) claimed to use
LoRA (Hu et al., 2022) to train the compressed
model, the LoRA modules cannot be merged into
the sparse backbone LLM, which incurs additional
overhead at inference time. (2) The sparsity is
fixed at 50% with current hardware and platform
affinity. While only NVIDIA Ampere and Hopper
GPUs support the 2:4 sparsity pattern, achieving
customized sparsity requires hardware co-design
(Fang et al., 2022). This limitation restricts the
broader application of unstructured pruning.

The approaches discussed above are static com-
pression of LLM, where the computation at in-
ference is fixed. On the contrary, dynamic ac-
celeration at inference time speeds up LLM gen-
eration by selective computation. Early exiting
approaches (Schuster et al., 2022; Corro et al.,
2023) allow the LLM to finish the decoding of a
token without passing all the layers. Mixture-of-
Expert (MoE) architecture (Jiang et al., 2024; Lep-
ikhin et al., 2021) incorporates multiple parame-
ter shards in MLP as experts and selects experts
to compute when facing different inputs. The dy-
namic approaches usually do not reduce parame-
ters. Thus, the storage of the model is not re-
duced, while the runtime memory can be saved by
fine-grained neuron-aware offloading (Song et al.,
2023).

3 Methodology

In this section, we first recap the preliminaries
of Transformer-based LLM architecture and intro-
duce the transitional activations. Then, we pro-
pose our approach TransAct with the pruning met-
ric and architecture design of the pruned model.

3.1 Transitional Activations in LLM
Transformer-based LLMs generally consist of
embedding, MHA (multi-head attention), MLP
(multi-layer perceptron), and LM head.

The majority of model weights lie in MHA
and MLP, which exist in every Transformer layer
of the LLM. Specifically, MHA has three matri-
ces WQ, WK , WV with the shape of H × A,
and one matrix WO of the inverted. The MHA
mechanism splits the output dimension A into
An × Ad (i.e., head number by head dimension),
which forms An logical attention heads. The in-
put activation hl of the l-th layer is projected
by

{
WQ

l
k,WK

l
k,WV

l
k

}An

k=1
and split into An

groups of query, key, and value {qlk,kl
k,v

l
k}An

k=1.
Then the multi-head self-attention computation is
as

actA
l
k = Softmax(qlkk

l
k
⊺
/
√
Ad)v

l
k, (1)

where k is the attention head index counted from 1
to An, and l indicates the l-th layer. H ×Ad at the
superscript is the shape annotation of the weight
matrix. Then, the results are concatenated to shape
A and projected back to shape H by WO.

hA
l = Concat[actA

l
k]

An
k=1WO

lA×H
. (2)

As a bound between the group of WQ, WK ,
WV and WO, we define actAl as the transitional
activation of MHA module. By default, the transi-
tional size A of MHA is the same as hidden dimen-
sion H , but A can be smaller than H by reducing
An or Ad in the case of pruning.

The other module, MLP, has a pair of upcast and
downcast phases. In the first phase, the input hid-
den state h is projected to a transitional state with
larger dimension P through WU and an optional
gate WG, the later phase consists of a downcast
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WD that projects the transitional state back to the
original shape H . We consider WG exists and for-
mulate MLP as

actP
l = σ(hA

lWG
lH×P

)⊙ (hA
lWU

lH×P
),
(3)

hP
l = actP

lWD
lP×H

. (4)

Similar to the MHA module, we define actlP as
the transitional activation of the MLP module at
the l-th layer. In case there is no optional gat-
ing in the model (e.g., OPT (Zhang et al., 2022),
BLOOM (Le Scao et al., 2023)), the transitional
activation of the MLP module can be viewed as
actP

l = σ(hA
lWG

lH×P
).

3.2 Pruning with Transitional Activations

Based on the model architecture, we identify the
pruning target as the following. (1) An, i.e., the
number of attention heads in MHA. On the other
hand, Ad is kept intact, as reducing it incurs the
adaption of RoPE (rotary positional embedding)
(Su et al., 2024) used by a high quantity of LLMs
and increases the training unstableness. (2) P ,
i.e., the transitional dimension of MLP. Studies
(Mirzadeh et al., 2023) indicate that, with an ac-
tivation function suppressing negative values, the
transitional state of MLP is with high redundancy.
It is worth mentioning that H , i.e., the hidden di-
mension throughout the model is not compressed.
We justify the reason as compressing H incurs
the unified pruning of layer normalization (LN)
weights across layers, whereas the sensitivity of
LN parameters to perturbation is not unified across
layers (Zhao et al., 2023). Although further train-
ing can reconstruct the LN module from the dam-
age of compressing, the significant training cost is
contrary to efficiency.

With the definition of transitional activations
and the pruning objects, we propose the transi-
tional activation-based pruning approach to com-
press MHA and MLP modules into an intra-
module low-rank architecture as depicted in Fig-
ure 2. For the MHA module, we define the prun-
ing granularity (i.e., the least separable structure)
to be the attention head, in turn reducing An while
keeping Ad intact. Such an attention head pruning
is unified on WQ, WK and WV because the self-
attention calculation, as formulated in Equation 1,
requires the aligned head index among the three
matrices. Then, we can define the salience of all

heads in MHA as

S l
Ak =

1

Ad

Ad∑

i=0

∥∥∥actAl
ki

∥∥∥
2
+ αmax

i

∥∥∥actAl
ki

∥∥∥
2
,

(5)

where α is a weight factor amplifying the maxi-
mum activation value in the k-th head. By Equa-
tion 5, we want to evaluate both the general and
outlier values in the activations, so that we can pre-
cisely prune out the most insignificant head. For
MLP, we can simply use the corresponding value
of actP to represent the salience of MLP transi-
tional dimension as S l

P i =
∥∥actP l

i

∥∥
2
.

With the salience SA and SP formulated, we
can model the activation-based structured pruning
of a weight matrix W as

prune(W ,K,S) = Concat[W i]i∈arg topK(S).
(6)

Specifically, the pruning dimension of WQ, WK ,
WV , WG (optional) and WU is the output, while
the pruning dimension of WO and WD is the in-
put as depicted in Figure 2.

Obtaining the salience of the source LLM re-
quires only forward passes with a small amount
of calibration samples. Hence, the pruning pro-
cedure is efficient in both memory and compu-
tation. To avoid a single shot pruning to com-
pression ratio R posing unrecoverable damage to
the model, we provide an enhanced implementa-
tion where the model is iteratively pruned to the
target size. A set of pruning ratios is defined
as R = {r1, r2, · · · , rn}, where the i-th shot
prunes the model to the size of (A′

i, P
′
i ) subject

to
∑

ri∈R = R, and A′
i mod Ad = 0. During the

interval of two pruning steps, full fine-tuning (FT)
is performed on the model to recover the pruning
damage.

4 Experimental Evaluation

4.1 Experiment Setup
Model and Datasets Settings In this paper, we
select the representative LLaMA2-7B-base (Tou-
vron et al., 2023) as the source model to prune, as
its size is suitable for experiments and has shown
important features of LLMs. We also use the
pre-trained OPT-1.3B and OPT-2.7B (Zhang et al.,
2022) as the baseline of the pruned models.

We use subsets of RedPajama-V1 (Together
Computer, 2023), a 1 trillion-token corpus, as the
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training dataset. Specifically, a subset of 800 mil-
lion tokens are randomly sampled in the iterative
pruning process, while 50 billion tokens are ran-
domly sampled in post-training. For evaluation,
we select held-out downstream tasks from Hug-
gingface open LLM leaderboard1, LLaMA2 pa-
per (Touvron et al., 2023), and Sheared-LLaMA
paper (Xia et al., 2024). The tasks include zero-
shot ARC-E (Clark et al., 2018), BoolQ (Clark
et al., 2019), LogiQA (Liu et al., 2020), Open-
bookQA (OBQA) (Mihaylov et al., 2018), PIQA
(Bisk et al., 2020), SciQ (Welbl et al., 2017) and
few-shot ARC-C (Clark et al., 2018), HellaSwag
(Zellers et al., 2019), TriviaQA (Joshi et al., 2017),
TruthfulQA (Lin et al., 2022) and WinoGrande
(Sakaguchi et al., 2020). Details of the evaluation
tasks can be found in Appendix B.

Baselines and Implementations We compare
the following baselines. (1) LLM-Pruner (Ma
et al., 2023b), a structured purning approach with
Taylor expansion-based metrics. We reproduce
LLM-Pruner with the same architecture as Trans-
Act implementation. (2) Sheared-LLaMA (Xia
et al., 2024), a masked training-based approach for
LLM pruning. We use the open-sourced pruned
models and post-train with the same data as Trans-
Act implementation.

The finalized architectures of the pruned mod-
els are shown in Table 1 as well as the pruning
and training paradigm. LLM-Pruner and TransAct
are implemented in iterative pruning mode, where
pruning take place at certain fine-tuning steps.
Sheared-LLaMA is reproduced without dynamic
batch loading to expose the real performance of
pruning without adding influential factors of train-
ing. Our implementation is with DeepSpeed on
8 NVIDIA A100 80G GPU, while the sequence
length is 4096. Please refer to Appendix A for
more implementation details2.

4.2 Experiment Results

4.2.1 Efficiency Metrics
Aiming at efficient deployment of LLMs, the ma-
jor objective is to reducing inference overheads. In
this section, efficiency metrics of FLOPs and end-
to-end (E2E) latency of original and pruned mod-
els are reported.

1 https://huggingface.co/spaces/HuggingFaceH4/
open_llm_leaderboard

2 Code available at https://github.com/sbwww/
TransAct-pruning

FLOPs Reduction To verify the therotical com-
putation reduction, we profiled the pruned models
using PyTorch profiler. Specifically, the profiling
is conducted on a single model forward with in-
put length of {256, 512, 1024, 2048, 4096} tokens
and a single output token. Figure 3 elaborates the
FLOPs saving of pruned models, where TransAct-
1.3B achieves -83% FLOPs of the original LLaMA
model and achieves 20% addtional FLOPs saving
compared to Sheared-LLaMA with similar param-
eter size. Also, as the context length increases, the
FLOPs growth of TransAct remains more steady
compared to Sheared-LLaMA. The gradual in-
crease in computation against context length is es-
sential for prevailing LLM applications such as
retrieval-augmented generation (RAG) and agent,
where the context length commonly exceed 4K,
even if the user queries are not necessarily long.
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-20%

-10%

TransAct-1.3B
TransAct-2.6B
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Sheared-LLaMA-2.7B

LLaMA2-7B

Figure 3: Inference FLOPs of the original and pruned
models with variable context length. LLM-Pruner is
omitted as the implemented architecture is the same
as TransAct counterparts. LLaMA2-7B with 4K-token
context is omitted.

End-side E2E Latency Beyond therotical anal-
ysis, we deploy the models and test the end-
to-end inference latency of models. In Fig-
ure 4, TransAct-1.3B, Sheared-LLaMA-1.3B and
LLaMA2-7B are quantized to W4A16 and de-
ployed on a Xiaomi 14 mobile phone using MLC-
LLM (team, 2023). TransAct-1.3B has 75%-80%
time saving compared to the original LLaMA2-7B
and 15%-25% time saving compared to Sheared-
LLaMA, which is consistent to the therotical
FLOPs saving and reduced size of model and KV
cache. Compressing the MHA module and KV
cache size is crucial on resource-constrained end-
side devices as well as the server side. This im-
portance stems from the prevailing deployment
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Architecture Pruning TrainingL H A P params. KV cache

LLaMA2-7B 32 4096 32× 128 11008 6.7B 1073M - -

Sheared-LLaMA-2.7B 32 2560 20× 128 6912 2.7B 671M (-38%) w/ mask full FT
LLM-Pruner-2.6B 32 4096 16× 128 3072 2.6B 536M (-50%) w/ taylor full FT

TransAct-2.6B (ours) 32 4096 16× 128 3072 2.6B 536M (-50%) w/ activation full FT

Sheared-LLaMA-1.3B 24 2048 16× 128 5504 1.3B 403M (-63%) w/ mask full FT
LLM-Pruner-1.3B 32 4096 6× 128 1536 1.3B 201M (-81%) w/ taylor full FT

TransAct-1.3B (ours) 32 4096 6× 128 1536 1.3B 201M (-81%) w/ activation full FT

Table 1: Compressed models with different architectures. L is the number of layers and H is the dimension of
hidden states. A denotes the MHA size as An ×Ad, and the transitional size of MLP is P . KV cache is computed
with a sequence length of 4096 tokens. B and M stand for billion (109) and million (106), respectively.
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Figure 4: Edge device E2E generation latency (seconds) tested on a Xiaomi 14 mobile phone. The models are
quantized to W4A16 by MLC-LLM and tested with variable context length (L, prefix+decode). LLM-Pruner is
omitted as the implemented architecture is the same as TransAct counterparts.

approach, which prioritizes weight-only quanti-
zation over activation quantization. Weight-only
quantization (e.g., W4A16) offers reduced degra-
dation and requires smaller storage compared to
activation quantization (e.g., W8A8), making it
more favorable for potential mobile applications.
Hence, despite the small number of the KV cache
compared to model weights, the memory footprint
of the 16-bit KV cache is comparable to that of the
4-bit model weights with 4 times amplified.

Server-side E2E Latency We deploy TransAct-
2.6B, Sheared-LLaMA-2.7B and LLaMA2-7B on
a single NVIDIA A100 GPU. The models are
tested in the original bfloat16 precision. We re-
port the end-to-end generation latency with the
batch size of {4, 8, 16}, context length of {1024,
2048} tokens, and generation length of 2048 to-
kens. As shown in Table 2, TransAct continually
outperforms Sheared-LLaMA in variable batch
size and context length. Notably, an NVIDIA
A100 GPU has high bandwidth memory (HBM)

of 2TB/s, which makes the acceleration of Trans-
Act architecture not obvious in streaming mode
(i.e., B=1). However, the inference bottleneck
switch from memory bandwidth to computation
with larger batch size and context length in server-
side applications, and TransAct largely benefits
from the reduced computation in the MHA mod-
ule.

4.2.2 Performance Metrics
The evaluation results of pruned models on held-
out benchmarks are listed in Table 3 while
the perplexity of language modeling tasks are
in Appendix C. On few-shot tasks, TransAct-
2.6B achieves the best performance performance
compared to SOTA approaches. TransAct ex-
hibits a significant leap over LLM-Pruner and
Sheared-LLaMA on TriviaQA and TruthfulQA,
which evaluate the truthfulness and world knowl-
edge of the LLM. Whereas, the pre-trained OPT
models achieve the highest metric on the two
tasks although other abilities are inferior to the
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L=1K+2K L=2K+2K
B=1 B=4 B=16 B=1 B=4 B=16

LLaMA2-7B 56.9 67.0 177.2 57.0 84.0 OOM

Sheared-LLaMA-2.7B
56.2 57.5 112.1 56.5 59.7 156.6

(-1.2%) (-14.2%) (-36.7%) (-0.1%) (-28.9%) -

TransAct-2.6B (ours)
55.0 57.1 95.0 55.1 58.4 129.0

(-3.3%) (-14.8%) (-46.4%) (-3.3%) (-30.5%) -

Table 2: Server-side E2E generation latency (seconds) tested on an NVIDIA A100 GPU. The models are in
bfloat16 precision and tested with variable batch size (B) and context length (L, prefix+decode). LLM-Pruner is
omitted as the implemented architecture is the same as TransAct counterparts.

pruned models. We interpret that TransAct bet-
ter preserved the world knowledge of the original
LLM, which is much harder than preserving lan-
guage modeling and commonsense reasoning ca-
pabilities. At 80% compression, TransAct-1.3B
achieves 78.0% performance of LLaMA2-7B on
average, addressing the effectiveness of TransAct
at highly compressed settings. Whereas LLM-
Pruner fails at most few-shot tasks. Thereby, we
address the inapplicability of structured pruning
with the Taylor expansion-based metric. LLMs
are fundamentally pre-trained on a large corpus
to obtain world knowledge. However, the Taylor
expansion-based metric, which guides the pruning
by minimizing the approximated language model-
ing loss on a small calibration set, fails to preserve
knowledge and degrade the pruned LLM. Ampli-
fying the calibration set by a significant order of
magnitude is an intuitive solution. However, the
computation of Jacobian and Hessian matrices of
LLM weights on a large calibration set is enor-
mous.

Notably, the reproduced LLM-Pruner-2.6B
with iterative pruning reaches 83.6% performance
of the uncompressed LLaMA2-7B. Whereas in its
original paper, the performance at 50% compres-
sion ratio can barely reach 78% of the original
model (Ma et al., 2023b). The results strengthen
the necessity of iterative pruning at LLM struc-
tured pruning. Specifically, iterative pruning is
gradual and conservative at each step, lessening
the approximation error of pruning metrics.

Figure 5 illustrate the zero-shot LAMBADA
language modeling performance at each check-
point of the pruned model post-training. Although
TransAct-2.6B has a clear advantage between 10b
to 30b tokens trained, the gap between differ-
ent pruning approaches diminishes as the pruned

model is gradually recovered by post-training. No-
tably, the result of LLM-Pruner-2.6B exhibits the
lowest perplexity in Figure 5. However, it does not
necessarily indicate the highest accuracy on LAM-
BADA, nor the performance on other tasks.
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Figure 5: LAMBADA perplexity and accuracy on ev-
ery checkpoint of TransAct-2.6B, LLM-Pruner-2.6B
and Sheared-LLaMA-2.7B post-training.

4.2.3 Ablation Studies
We conduct a comprehensive evaluation of the
pruned LLM, considering factors of pruning shots,
calibration samples, and the pruning ratio of each
module. The findings provide insights for the fur-
ther development of compact LMs.

Impact of Iterative Pruning While LLM-
Pruner has demonstrated a close performance gap
to the original model at a moderate ratio of 20%,
the significant performance degradation observed
at over 50% pruned is far from acceptable in the
original implementation (Ma et al., 2023b). How-
ever, the results in Table 3 indicate that LLM-
Pruner achieves comparable performance to the
SOTA approach Sheared-LLaMA even at a com-
pression ratio of 85%. This achievement can be
attributed to our iterative implementation of prun-
ing.
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ARC-E BoolQ LogiQA OBQA PIQA SciQ

LLaMA2-7B 74.4 80.7 30.4 43.8 76.7 94.7

OPT-2.7B 60.8 60.4 25.7 35.2 74.5 85.9
Sheared-LLaMA-2.7B† 66.8 66.0 28.1 38.6 76.9 89.9

LLM-Pruner-2.6B∗ 67.0 65.9 27.7 38.8 77.1 90.1
TransAct-2.6B (ours) 65.5 66.3 27.9 38.2 76.9 91.0

OPT-1.3B 57.1 57.7 27.0 33.4 72.4 84.4
Sheared-LLaMA-1.3B† 59.3 61.6 27.5 33.0 74.2 85.8

LLM-Pruner-1.3B∗ 60.0 59.5 28.7 35.2 73.6 86.1
TransAct-1.3B (ours) 57.4 63.4 27.5 33.8 74.4 86.7

Model ARC-C HellaSwag TriviaQA TruthfulQA WinoGrande Average(25) (10) (5) ∗∗ (5)

LLaMA2-7B 53.4 78.6 55.1 44.6 72.3 64.1

OPT-2.7B 34.0 61.4 23.7 37.6 61.7 51.0
Sheared-LLaMA-2.7B† 40.0 71.0 21.2 32.0 65.0 54.1

LLM-Pruner-2.6B∗ 38.6 70.8 17.3 32.9 63.6 53.6
TransAct-2.6B (ours) 38.9 71.2 33.9 33.6 65.5 55.3

OPT-1.3B 29.7 54.6 16.7 38.7 60.0 48.3
Sheared-LLaMA-1.3B† 30.3 62.6 14.0 34.1 59.3 49.2

LLM-Pruner-1.3B∗ 30.3 59.0 7.9 35.9 56.4 48.4
TransAct-1.3B (ours) 32.2 59.9 18.4 39.6 56.5 50.0

Table 3: Zero-shot and few-shot evaluation results on standard benchmarks. LLaMA2-7B and OPT models are
pre-trained models used as the baseline. Results of LLM-Pruner∗ are reproduced by us with the same architecture
as TransAct, while Sheared-LLaMA† models are post-trained from released pruned models. (N) below task name
indicates N-shots evaluation, TruthfulQA∗∗ prepends 6 examples even in the zero-shot setting. The best results are
in bold.

To further verify the effectiveness of iterative
pruning, we conduct experiments on LLM-Pruner-
2.6B and TransAct-2.6B with different numbers
of pruning shots. Specifically, we explore prun-
ing shots ranging from {1, 2, 4, 8, 16}. Except
for single-shot pruning, all others have a total of
800 million tokens throughout the iterative prun-
ing stage. After the final pruning, all models
undergo full fine-tuning with 200 million tokens.
Sheared-LLaMA is considered an ∞-shot pruning
approach with all the parameters trained and is not
compared.

Results in Figure 6 indicate the relationship be-
tween pruning shots and performance on LAM-
BADA language modeling. Although iterative
pruning is beneficial, the pruning shots need to be
controlled with a total number of tokens is fixed.
The performance of 2.6B models degrades when
the pruning shot is increased from 4 to 8. The ratio-
nale of this phenomenon is that when training is in-
sufficient between two pruning shots, the pruning
would be misguided and the pruned model would
exhibit a degradation. Whereas, for 1.3B models,
the performance exhibits a slight degradation at 16

shots, indicating the benefit of increased shots has
not yet been overwhelmed by the insufficiency of
training data. LLM-Pruner has a slight advantage
over TransAct at 16 shots pruning, as fewer param-
eters pruned at each shot reduce the approximation
error of loss with Taylor expansion.
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Figure 6: LAMBADA perplexity and accuracy on mod-
els with different numbers of pruning shots.

Impact of Calibration Samples To evaluate the
sensitivity of pruning approaches to calibration
samples used in the pruning process, we conduct
single-shot pruning experiments on different num-
bers of calibration samples. 200 million tokens are
used for the restoration after pruning.
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The results in Figure 7 indicate that increasing
the sample size can bring gains, but the marginal
benefits decrease after increasing to 128 samples.
When leveraging 256 samples, the performance of
both TransAct and LLM-Pruner degrade. Also,
the degradation trend is more obvious on LLM-
Pruner than on TransAct. We attribute this to early
overfitting of calibration samples, where the prun-
ing guided by Taylor expansion of loss quickly
overfits on the calibration set, and the calibration
samples are not large enough to exhibit diversity.
As pruning is efficient in our implementation, we
prefer using 128 samples for the pruning metric,
which can be computed in less than 1 minute on a
single A100 GPU to prune LLaMA2-7B.
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Figure 7: LAMBADA perplexity and accuracy on mod-
els with different numbers of calibration samples.

Analysis on Module Redundancy To validate
the redundancy of pre-trained models and help
future compact model design, we conduct exper-
iments on different compression ratios of MHA
and MLP modules. Specifically, after single-shot
pruning with TransAct and post-training on 200
million tokens, the accuracy of LAMBADA lan-
guage modeling is evaluated. Specifically, us-
ing the shape of our TransAct-2.6B as the cen-
ter point, we vary the MHA dimension A ranged
from {512, 1280, 2048, 2816, 3584} with the head
dimension of 128. And, the MLP dimension P is
set to {1024, 2048, 3072, 4096, 5120}. These con-
figurations resulted in 25 distinct models obtained
by pairwise combinations. Notably, the 25 models
are organized into 9 groups, each containing an e
number of parameters. These groups are visually
distinguished by color in Figure 8.

The results presented in Figure 8 reveal a clear
trend that, the models at the center exhibit the best
performance within each group, and in some cases,
even surpass models of larger sizes. For instance,
the combination of 2048A-3072P (i.e., TransAct-
2.6B) model surpasses both 3584A-2048P and

1280A-5120P (2.9B) models. Also, when prun-
ing the MHA intermediate size to 512, the perfor-
mance drops to the worst within each group. We
interpret that MHA functions as the crucial mod-
ule of Transformer-based LLMs while MLP has
a larger redundancy that can be compressed. Fur-
ther, the findings indicate that models with a uni-
form MHA and MLP size generally outperform
the others. For 2048A-3072P, an MHA module
has 33.5 million parameters and an MLP module
has 37.7 million parameters. On the contrary, ex-
treme pruning of either MHA or MLP alone leads
to severe performance degradation. Hence, the col-
laborative compression of both MHA and MLP is
encouraged.
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Figure 8: LAMBADA accuracy on 25 pruned models
with different architectures. Bars with the same color
indicate models with the same number of parameters.

5 Conclusion

In this paper, we introduce TransAct, an effec-
tive and efficient pruning approach coupled with
an architecture designed for pruned LLMs. Trans-
Act compresses the original LLM into a compact
dense model with an intra-module low-rank ar-
chitecture, achieving the fastest inference speed
and lowest overheads compared to models of sim-
ilar sizes. The compression is guided by the
magnitudes of the transitional activations within
the MHA and MLP modules. Specifically, intra-
module dimensions with small activations are
structurally pruned out, while inter-module dimen-
sions are preserved. Experiments on open-source
LLMs and downstream benchmarks demonstrate
the strength of our approach, particularly at high
compression rates. Also, we thoroughly evaluated
the pruned LLM with respect to calibration sam-
ples, pruning ratio, and pruning shots. The results
provide insights and experimental results for fur-
ther development of compact yet powerful LMs.
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Limitations

Although TransAct is found effective in the experi-
ments, some points are not fully covered in this pa-
per. We list the limitations and future directions as
follows. (1) TransAct is a static pruning approach
where the computation of the pruned LLM is irrel-
vant to input instances. However, recent research
progress in MoE (Jiang et al., 2024) indicates that
dynamically compressed models are model power-
ful than statically compressed ones. Hence, a prun-
ing approach integrating static and dynamic com-
pression with approporate ratio can be further stud-
ied. (2) TransAct is targeted to Transformer-based
LLMs. Different architectures including RWKV
(Peng et al., 2023), Mamba (Gu and Dao, 2023)
are not yet investigated. (3) The pruning of Trans-
Act is conducted on base models Structurally prun-
ing a human-aligned LLM still remains challeng-
ing, mainly because of the inconsistency in train-
ing data paradigm between pre-training and align-
ment.
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A Details of Training Arguments

The training arguments are listed in Table 4. The
experiments are conducted on Huggingface Trans-
formers with DeepSpeed and FlashAttention2 in-
tegration. We set the training arguments based on
accessible computational resources and setting of
Xia et al. (2024). There is no hyperparameters
searching or tuning in this work, and we believe
it is potentially beneficial to tune the hyperparam-
eters with sufficient resources.

Argument Value

Length 4096
N GPUs 8

Global batch size 64
Optimizer AdamW
β1, β2 0.9, 0.95

Learning rate 5e-5
Learning rate schelduler Cosine

Warmup 0.03
Data type bfloat16

DeepSpeed Zero-2
Attention implementation FlashAttention2

Table 4: Details of training arguments.

B Details of Evaluation Tasks

The downstream tasks used for evaluation are
listed in Table 5. The evaluations are conducted
based on lm-evaluation-harness 3 repository with
MIT license. In Table 5, "acc_norm" stands for
accuracy after normalization by byte-length, "em"
stands for exact match, and "mc2" stands for the
normalized probability assigned to all true an-
swers in multiple choices (Lin et al., 2022).

C Perplexity of Language Modeling

To evaluate the basic ability of language model-
ing, we test perplexity of models on WikiText and
LAMBADA corpus, and the results are in Table 6.
WikiText contains long documents that exceed the
maximum length of LLaMA2 (i.e., 4K), and the
documents are truncated into three set of maxi-
mum length, {1K, 2K, 4K}. Samples in LAM-
BADA test set are below 1K tokens, so the above
three set of maximum length does not effect the
results.

3https://github.com/EleutherAI/
lm-evaluation-harness
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Task
Used by

#samples #shots Metric
(1) (2) (3)

ARC-C (Clark et al., 2018) ✓ ✓ ✓ 1172 25 acc_norm
ARC-E (Clark et al., 2018) ✓ ✓ 2376 - acc
BoolQ (Clark et al., 2019) ✓ ✓ 3270 - acc

HellaSwag (Zellers et al., 2019) ✓ ✓ ✓ 10042 10 acc_norm
LAMBADA (Paperno et al., 2016) ✓ 5153 - ppl & acc

LogiQA (Liu et al., 2020) ✓ ✓ 651 - acc_norm
OBQA (Mihaylov et al., 2018) ✓ 500 - acc_norm

PIQA (Bisk et al., 2020) ✓ ✓ 1838 - acc_norm
SciQ (Welbl et al., 2017) ✓ 1000 - acc

TriviaQA (Joshi et al., 2017) ✓ 11313 5 em
TruthfulQA (Lin et al., 2022) ✓ ✓ 817 * mc2
WikiText (Merity et al., 2016) 62 - ppl

WinoGrande (Sakaguchi et al., 2020) ✓ ✓ ✓ 1267 5 acc

Table 5: Details of evaluation tasks. (1), (2) and (3) refer to Open LLM Leaderboard, Llama2 paper and Sheared-
Llama paper, respectively. * TruthfulQA prepends 6 examples even in zero-shot setting.

WikiText-1K WikiText-2K WikiText-4K LAMBADA

LLaMA2-7B 13.8 12.3 11.7 4.0

Sheared-LLaMA-2.7B† 16.3 14.7 13.9 7.5
LLM-Pruner-2.6B∗ 16.0 15.1 14.2 7.1

TransAct-2.6B (ours) 15.3 13.8 13.1 7.4

Sheared-LLaMA-1.3B† 20.0 18.1 17.1 11.4
LLM-Pruner-1.3B∗ 21.7 20.5 19.8 13.2

TransAct-1.3B (ours) 19.3 17.3 16.3 13.0

Table 6: Perplexity evaluation results on standard corpus. LLaMA2-7B is a pre-trained model used as the baseline.
Results of LLM-Pruner∗ are reproduced by us with the same architecture as TransAct, while Sheared-LLaMA†

models are post-trained from released pruned models. Suffix -NK indicates the maximum length of test samples,
LAMBADA test set samples are below 1K tokens. The best results are in bold.
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