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Abstract

With the popularity of large language models
(LLMs) and their ability to handle longer input
documents, there is a growing need for high-
quality long document summarization datasets.
Although many models already support 16k in-
put, current lengths of summarization datasets
are inadequate, and salient information is not
evenly distributed. To bridge these gaps, we
collect a new summarization dataset called
SumSurvey, consisting of more than 18k sci-
entific survey papers. With an average docu-
ment length exceeding 12k and a quarter ex-
ceeding 16k, as well as the uniformity met-
ric outperforming current mainstream long
document summarization datasets, SumSurvey
brings new challenges and expectations to both
fine-tuned models and LLMs. The informa-
tiveness of summaries and the models support-
ing the evaluation of long document summa-
rization warrant further attention. Automatic
and human evaluation results on this abstrac-
tive dataset confirm this view. Our dataset and
code are available at https://github.com/
Oswald1997/SumSurvey.

1 Introduction

As one of the major problems in natural language
processing, summarization is about processing in-
put documents and generating short texts that con-
tain key information. Its main applications include
extracting main events of news, mining opinions
on social media, and analyzing comments on shop-
ping websites (Nallapati et al., 2016; Bilal et al.,
2022; Angelidis and Lapata, 2018). These tasks
use extractive or abstractive models for summariza-
tion. The former refers to the extraction of key
words or sentences from input to form a summary
(Erkan and Radev, 2004; Rossiello et al., 2017),
while the latter is to rewrite important information

*Corresponding author.

Figure 1: Sample summary from SumSurvey, each color
represent the summary of one section.

on the basis of understanding (Cho et al., 2022;
Liu et al., 2022). Intuitively, abstractive tasks are
more challenging, which require models to read
the input document and present the most salient
information within output length limits. In the pro-
cess of improving and evaluating this capability of
summarization models, abstractive datasets play an
indispensable role.

In addition, the distribution form of salient in-
formation is also an indicator of quality for sum-
marization datasets, because a more uniform dis-
tribution means that obvious layout bias cannot be
exploited (Koh et al., 2022a). For some tasks, ex-
tracting only the first few sentences directly as the
final summary can achieve good results, which is
common in news domain (Ishikawa et al., 2001).
Summarization models need to be able to extract
key information distributed throughout the docu-
ment and deal with relationship among different
positions.

With the explosion of data volume and increase
of computing resources, language models can grad-
ually deal with longer documents (Beltagy et al.,
2020; Guo et al., 2022). However, even with the
ability to handle long text, it is still difficult to eval-
uate the performance of these models due to the
different lengths of documents in public datasets.
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The above problems bring a requirement to sum-
marization task: To construct a new summarization
dataset with high abstractiveness and uniformity
of salient information distribution, while lengths of
documents are in line with the processing capacity
of current language models.

We believe that collecting survey papers is a fea-
sible approach, because such documents are usually
long and enumerate many studies in a certain field
in detail. Besides, the abstract section naturally
summarizes the full paper. Compared with general
papers, information in survey papers tend to be
more evenly distributed. Thus, we propose a long
document summarization dataset called SumSur-
vey consisting of scientific survey papers. Figure 1
shows a random summary example1 from SumSur-
vey, different colored parts indicate that they are
generated from different sections, corresponding to
contents from chapter I to chapter VI. It can be seen
that each section is reflected in this summary, and
is presented in a highly general discourse, which is
exactly what we need.

We conduct a series of experiments using fine-
tuned models (Beltagy et al., 2020; Phang et al.,
2023; Guo et al., 2022) and large language mod-
els(Du et al., 2022; Zheng et al., 2023). Both au-
tomatic and human evaluation are conducted to
explore models’ ability to handle long documents.
Our main contributions are as follows:

• We propose a new long document summariza-
tion dataset called SumSurvey, consisting of
scientific survey papers. To our knowledge, it
is an English summarization dataset with the
longest average document length compared
with publicly available datasets, and has ad-
vantages in abstractiveness, distribution uni-
formity, summary non-redundancy and com-
pression rate.

• We benckmark various fine-tuned models and
LLMs. Both automatic and human evaluation
are conducted to comprehensively evaluate
the quality of summaries. We also investigate
limitations of automatic evaluation on long
document summarization.

• We discuss the impact and expectations of
SumSurvey on the community. We hope Sum-
Survey will contribute to evaluating and fur-
ther improving fine-tuned models on longer

1The random sample is from here

inputs, and also expect LLMs to pay more at-
tention to informativeness and factuality. In
addition, we hope to see more models that sup-
port automatic evaluation of long document
summarization.

2 Related Work

Summarization Datasets Datasets are critical to
improving and evaluating model performance. For
summarization task, there exists many publicly
available datasets in various domains. According
to the number of source documents in each sam-
ple, they can be categorized into single-document
(Grusky et al., 2018; Kornilova and Eidelman,
2019) and multi-document (Fabbri et al., 2019; Lu
et al., 2020) summarization datasets. From the per-
spective of source document length, they can be
classified into short and long document summa-
rization dataset. Koh et al. (2022b) define datasets
that cannot be directly read by pre-trained Trans-
formers as long document datasets. Phang et al.
(2023) extend the text length to 4096 tokens and
considers it as long input. As many models are
being extended to support longer input, currently
widely used long document datasets (Cohan et al.,
2018; Sharma et al., 2019; Kornilova and Eidelman,
2019) can not meet the demand, and many of them
filtered out particularly long documents. Although
average length of documents in some datasets is
long (Huang et al., 2021), abstractiveness of their
summaries is not high (See §3 for more details). In
conclusion, there is a lack of long document sum-
marization datasets with high quality, such as high
abstractiveness and uniformity of salient informa-
tion.
Summarization Models Pre-trained language
models are mainstream methods for summarization.
Some generation models are task-generic and can
be fine-tuned to fit summarization scenario (Lewis
et al., 2020; Raffel et al., 2020). Other models
focus on summarization, researchers design objec-
tive functions during pre-training to make models
generate higher quality summaries (Zhang et al.,
2020a; Xiao et al., 2022). Since these models are
based on Transformer (Vaswani et al., 2017), they
have quadratic time complexity so cannot adapt
well to long document summarization, which has
longer input and more topic coverage. The use of
efficient attention mechanism can improve the effi-
ciency of processing long documents. For example,
Longformer utilizes sparse attention where win-
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dow has gaps and adds global attention to adapt to
different tasks (Beltagy et al., 2020). BigBird com-
bines global, sliding and random attention to reduce
quadratic dependency to linear (Zaheer et al., 2020).
Zhang et al. (2021) explored three different strate-
gies for long dialogue summarization, and more
recent studies investigated the impact of different
Transformer modules (Phang et al., 2023) and the
use of large language models for long document
summarization (Syed et al., 2023; Ravaut et al.,
2023) or other tasks (Liu et al., 2023a). In many
cases, models can only be evaluated with at most 8k
input length limited by current datasets (Manakul
and Gales, 2021; Koh et al., 2022b). Therefore,
the proposal of our SumSurvey will alleviate this
situation.

3 SumSurvey

3.1 Dataset Construction

We crawled all searchable papers on arxiv.org
which have the word survey in their titles2. Ab-
stract of each paper is extracted precisely because
it can be matched directly from web page. As for
main body, we downloaded PDF files and extracted
the plain text, then we removed all contents includ-
ing abstract section and before, and removed con-
tents including references section and after. After
cleaning and filtering, we obtain a total of 18,884
samples. The main body of each sample is used as
input, and abstract is target. We split our dataset
into train (15,108, 80%), validation (1,888, 10%),
and test (1,888, 10%) subsets. More details about
dataset construction and discussions on data quality
are in Appendix A.1 and Appendix A.2.

The average input document length of SumSur-
vey is 12k, which exceeds existing summarization
datasets. More than half of the documents are over
10k in length, in addition, a quarter of documents
are longer than 16k, which is the maximum input
length supported by many extended models, mean-
ing that our dataset is well suited to evaluating their
performance. Papers in SumSurvey spans from
1991 to 2023. Generally, there tends to be more
papers in recent years than in the past. These pa-
pers come from a variety of subjects, top subjects
are astrophysics, machine learning, computer vi-
sion and pattern recognition, artificial intelligence,
cryptography and security. The subject distribution
conforms to a long-tail distribution. More details

2Deadline is 19th May, 2023.

about distributions of lengths, years and fields are
in Appendix A.3

3.2 Dataset Properties
In this section, we use four indicators to eval-
uate intrinsic characteristics of datasets. We
choose five commonly used English long docu-
ment datasets for comparison. PubMed and arXiv
(Cohan et al., 2018) are from scientific papers. Big-
Patent (Sharma et al., 2019) consists of records of
U.S. patent documents. BillSum (Kornilova and Ei-
delman, 2019) is a summarization dataset from U.S.
Congressional and California state bills. GovRe-
port (Huang et al., 2021) is a collection of reports
published by U.S. Government Accountability Of-
fice and Congressional Research Service.
Coverage measures the percentage of words in a
summary that are part of an extractive fragment
from the document. It was proposed by Grusky
et al. (2018) and the calculation method is ex-
pressed as:

Coverage(A,B) =
1

|B|
∑

f∈F (A,B)

|f | (1)

where A and B represent the document and its sum-
mary respectively. F (A,B) is the set that includes
all extractive fragments. | · | is the length of a to-
ken sequence. Larger coverage value means more
contents are copied directly from document when
generating summary.
Density is similar to coverage, where the sum of
fragment lengths is changed to the sum of squares
of lengths (Grusky et al., 2018):

Density(A,B) =
1

|B|
∑

f∈F (A,B)

|f |2 (2)

If length of each fragment is short, the density value
will be low, which means that if two summaries
have the same coverage value, the one with lower
density might have more variability, because its
fragments are short rather than long and continu-
ous.
Redundancy is used to evaluate whether sentences
in a summary are similar to each other (Bommasani
and Cardie, 2020):

Redundancy(B) = mean

(x,y)∈S×S,x̸=y
Rl(x, y) (3)

In this formula S is sentence set of summary B,
(x, y) is a sentence pair. Rl is ROUGE-L F1-score
(Lin, 2004). Larger Rl means higher degree of
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overlap in a sentence pair. Therefore, redundancy
can be used to indicate the extent to which sen-
tences in a summary are redundant. In general, a
high-quality summary needs to be as concise as
possible.
Uniformity measures the degree to which salient
information in a summary is evenly distributed
throughout the document:

Uniformity(A,B) = − 1

n

m∑

i=1

pi log(pi) (4)

We divide source document A equally into m parts
and calculate the probability of the salient word3

in the summary B falling into each of these parts.
If different pi values are close, the final uniformity
value will be high.

Table 1 shows coverage, density, redundancy and
uniformity scores of several datasets, SumSurvey
has the highest overall ranking. To be specific, Big-
Patent achieves highest scores on coverage and den-
sity, closely followed by SumSurvey, which means
that less summary contents in these two datasets
are extracted from documents, and each single ex-
tracted fragment is relatively short in length, thus
the possibility of rearranging these fragments is
high. We plot heatmaps in Appendix B.1 to show
coverage and density more intuitively. Apart from
coverage and density, we also calculate proportions
of novel n-grams in summaries to further evaluate
the abstractiveness of datasets, see Appendix B.2
for results.

SumSurvey has good redundancy score, this is
consistent with the characteristics of abstracts in
survey papers. In addition, SumSurvey achieves
the highest uniformity score, which also benefits
from the fact that these documents are derived from
survey papers, because typically large amounts of
contents scattered throughout the survey paper are
about describing previous research and methods,
besides, these contents are equally important, so
they will be all reflected in the abstract.

4 Experiments

We conduct a series of experiments to evaluate
performance of baseline models on SumSurvey.

4.1 Baselines

We use LED (Beltagy et al., 2020), PEGASUS-
X (Phang et al., 2023) and LongT5 (Guo et al.,

3Salient words are extracted by NLTK.

2022) as baselines. LED is based on Longformer,
it combines a local windowed attention and a task
motivated global attention. PEGASUS-X uses stag-
gered block-local Transformer with global encoder
tokens. LongT5 integrates attention ideas from
ETC and adopts pre-training strategies from PE-
GASUS. These models support long input at most
16k tokens. More details about these baselines are
described in Appendix C.1.

In addition, we evaluate large language models
under zero-shot settings. We choose ChatGPT,
ChatGLM3 (Du et al., 2022) and Vicuna (Zheng
et al., 2023), which all have versions that support
long inputs. As these models are all instruction-
tuned models, they are often capable of generaliz-
ing to unseen tasks (Longpre et al., 2023; Chung
et al., 2024; Iyer et al., 2022).

4.2 Settings

For the pre-trained summarization models, we use
led-large-16384 4 and long-t5-tglobal-base
5 for summarization of 16k input tokens, while
pegasus-x-large6 is adopted for 10k only, be-
cause fine-tuning PEGASUS-X under 16k tokens
with batch size of 1 requires more than 80GB of
GPU memory, which is beyond the computing re-
sources we have. Nevertheless, our length settings
still exceed experiments in previous research. For
zero-shot LLMs, we use gpt-3.5-turbo-16k7,
chatglm3-6b-32k8 and vicuna-13b-v1.5-16k9

for implementation. We evaluate ChatGPT by Ope-
nAI API, while the remaining LLMs are evaluated
locally.

We use an NVIDIA A100 80GB PCIe GPU for
experiments. Models are fine-tuned for 10 epochs,
other parameters vary depending on different exper-
iment settings. Beam search is adopted in inference
phase and we set beam size to be 5. Implementation
details are in Appendix C.2.

4https://huggingface.co/allenai/
led-large-16384

5https://huggingface.co/google/
long-t5-tglobal-base

6https://huggingface.co/google/
pegasus-x-large

7https://platform.openai.com/docs/models/
gpt-3-5-turbo

8https://huggingface.co/THUDM/chatglm3-6b-32k
9https://huggingface.co/lmsys/vicuna-13b-v1.

5-16k
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dataset Coverage #rank Density #rank Redundancy #rank Uniformity #rank avg. #

PubMed 0.893 #2 5.6 #4 0.146 #4 0.896 #5 #3.75
arXiv 0.920 #5 3.7 #3 0.144 #2 0.894 #6 #4.00
BigPatent 0.861 #1 2.1 #1 0.223 #6 0.922 #3 #2.75
BillSum 0.913 #4 6.6 #5 0.163 #5 0.903 #4 #4.50
GovReport 0.942 #6 7.7 #6 0.124 #1 0.932 #2 #3.75
SumSurvey 0.898 #3 3.3 #2 0.144 #2 0.968 #1 #2.00

Table 1: Intrinsic evaluations of different long document summarization datasets, including values and rankings,
calculated on test sets only. Smaller coverage, density and redundancy values are deemed preferable, while larger
uniformity values are considered ideal.

5 Results

5.1 Automatic Evaluation

5.1.1 Reference-Based Evaluation

Typically, reference-based methods evaluate sum-
marization models by measuring the similarity be-
tween generated summaries and the references.
Several evaluation methods are used in this sec-
tion:
ROUGE We use F1-score of ROUGE-1, ROUGE-
2 and ROUGE-L10, taking into account the com-
pleteness, readability and order of summary.
BERTScore BERTScore (Zhang et al., 2020b)
computes a similarity score for each token in the
candidate summary with each token in the ref-
erence summary. The similarity score is calcu-
lated using contextual embeddings rather than exact
matches like ROUGE. In implementation, roberta-
large is used to represent embeddings (Liu et al.,
2019).
UniEval-Relevance UniEval (Zhong et al., 2022)
reconstructs generation evaluation into a Boolean
Question Answering (QA) task. By providing a
summary and a reference, it can calculate a rele-
vance score, indicating whether the summary con-
tains only the important information.
ChatGPT and Vicuna We use powerful LLMs to
evaluate summary quality. We prompt these mod-
els (Appendix C.3) to rate the similarity between
the summary and the reference on a scale from 1 to
5.

See Table 2 for results. Large language models
overall scored lower on ROUGE compared to fine-
tuned models, which can be expected as summaries
generated by LLMs tend to be more abstractive.
All BERTScore results are quite similar, indicat-
ing that this method might not be well-suited for

10ROUGE-1.5.5 is used for evaluation.

evaluating summarization performance in SumSur-
vey. In contrast, scores generated by UniEval are
more discriminative. Unlike ROUGE, the scores of
large language models are consistently higher than
fine-tuned models. Among them, ChatGLM3 per-
forms the best, while PEGASUS-X scores notably
lower than other models. Evaluation results by both
LLMs indicate that the quality of summaries gen-
erated by Vicuna is significantly lower than those
generated by ChatGPT and ChatGLM, and even
lower than fine-tuned models. It seems that lan-
guage models tend to favor summaries generated
by themselves, for example, ChatGPT indicates its
summaries are similar in score to those generated
by ChatGLM3, while Vicuna suggests there is a
significant difference in scores between them.

5.1.2 Reference-Free Evaluation

In this section, we use reference-free metrics to
evaluate linguistic quality and abstractiveness of
summaries:
UniEval-Fluency By providing a question and a
paragraph, the model can evaluate whether the sum-
mary is fluent.
ChatGPT and Vicuna LLMs will assign three
scores ranging from 1 to 5 for each summary, cor-
responding to its grammatical accuracy, coherence,
and referential clarity.
Novel N-Gram This metric is used to measure the
abstractiveness of summaries.

See Table 3 for results of linguistic quality. Text
generated by large language models exhibits higher
linguistic quality, which is one of the main advan-
tages of LLMs. UniEval considers LLMs to be
superior overall to fine-tuned models but fails to
distinguish between different models within each
category. Evaluation results based on LLMs indi-
cate that summaries generated by Vicuna are lower
in all three metrics compared to the other two large
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ROUGE BERTScore UniEval LLM
model R-1 R-2 R-l P R F1 relevance ChatGPT Vicuna

LED 43.47 14.66 23.03 85.85 86.68 86.25 83.38 3.30 3.02
PEGASUS-X 39.20 13.01 22.28 85.66 84.73 85.17 71.18 - -
LongT5 42.89 15.05 23.87 86.42 86.11 86.24 82.32 3.12 2.69

ChatGPT 39.16 10.94 20.80 86.31 84.69 85.46 92.63 3.84 3.14
ChatGLM3 36.99 10.24 10.09 84.78 83.97 84.34 95.10 4.02 3.64
Vicuna 33.37 8.35 18.83 86.01 83.05 84.47 90.84 2.92 2.74

Table 2: Results of reference-based evaluation. Best results are bolded (statistical significance with p-value < 0.05)

language models as well as LED.
Table 4 shows the proportion of novel n-grams

in summaries. Since all three LLMs have not been
fine-tuned on SumSurvey, the style of their gener-
ated text comes from previous data, therefore they
reach a high abstractiveness. Among them, Chat-
GLM3 exhibits the highest abstractiveness, with its
generated summaries being comparable to human-
written summaries. PEGASUS-X has lowest pro-
portion of novel n-grams, indicating that it tends to
generate summaries on SumSurvey in an extractive
way.

5.1.3 Summary
The advantages of automatic evaluation are conve-
nience and speed. However, the results presented
by different evaluation methods can sometimes
vary greatly, especially adopting reference-based
methods. Some reference-free methods use the
source document as input to evaluate factuality
of generated summaries, for example, UniEval-
Consistency, FactCC (Kryscinski et al., 2020) and
QuestEval (Scialom et al., 2021). However, most
of these methods are based on BERT or T5, and are
inefficient in handling long inputs, making it chal-
lenging to automatically evaluate factuality in long
document summarization. We also attempted to
use LLMs that support long inputs to evaluate the
informativeness and factuality of summaries, but
instability issues often arose. Exploring suitable
evaluation methods for long document summariza-
tion is a future research direction.

5.2 Human Evaluation
The summaries generated by fine-tuned models
depend on learning the mapping relationship be-
tween source documents and references during fine-
tuning, while the summaries generated by large lan-
guage models are based on the knowledge learned
in previous phases and the designed prompts. Due

to the different paradigms, automated evaluation
methods may not accurately assess summary qual-
ity. For example, ROUGE scores focus on the over-
lap between generated summaries and references.
Fine-tuned models often generate summaries with
lower abstractiveness compared to LLMs, which
may result in higher scores for fine-tuned models.
We aim to alleviate this bias through human evalu-
ation and gain a comprehensive understanding of
summarization performance of different models on
SumSurvey.

Three graduate students serving as annota-
tors rated summaries generated by different mod-
els on four indicators: fluency, coherence, non-
redundancy, and informativeness. Considering the
workload, we randomly selected 50 samples for
evaluation. We formulated human evaluation guide-
lines to clarify the meanings represented by differ-
ent indicators (Appendix D).

See Table 5 for human evaluation results. We
computed Kendall’s coefficient of concordance
(Kendall-W) for inter-annotator agreement11, anno-
tators reached a moderate agreement on fluency and
coherence, and reached a substantial agreement on
non-redundancy and informativeness. Three large
language models scored higher overall in fluency
compared to fine-tuned models, consistent with the
results in Table 3. However, in terms of coherence,
ChatGLM3 performed poorly. Upon inspection,
we discovered that summaries generated by Chat-
GLM3 often lack a cohesive paragraph structure
and are instead divided into numerous points, re-
sulting in annotators perceiving them as incoher-
ent. An important point to note is that automatic
evaluation methods cannot distinguish fine-grained
linguistic quality indicators, whereas human eval-
uation can differentiate fluency and coherence. In

11Kendall-W for fluency, coherence, non-redundancy, infor-
mativeness are 0.54, 0.58, 0.68, 0.62 respectively.
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UniEval ChatGPT Vicuna
model Fluency Gram Coherence Ref Gram Coherence Ref

LED 85.69 3.74 3.66 3.48 3.72 3.74 3.74
LongT5 85.93 3.64 3.58 3.32 3.46 3.46 3.46

ChatGPT 92.84 4.48 4.42 4.10 4.14 4.14 4.14
ChatGLM3 92.23 4.20 4.22 4.08 4.08 4.10 4.10
Vicuna 92.87 3.50 3.40 3.24 3.62 3.62 3.62

Table 3: Results of linguistic quality.

% of novel n-grams
model uni- bi- tri- 4-

LED 7.71 24.83 44.46 57.54
PEG-X 3.55 10.58 19.88 27.58
LongT5 4.67 15.38 29.59 40.54

ChatGPT 7.55 37.69 67.01 82.07
ChatGLM3 10.88 44.71 73.70 86.46
vicuna 8.81 39.36 66.49 79.63

Reference 12.68 45.84 73.67 86.16

Table 4: Percentages of novel n-grams in candidate and
reference summaries.

terms of non-redundancy, LED outperformed Chat-
GPT and Vicuna, we find that LED-generated sum-
maries are very concise, leading to high score in
non-redundancy. As for informativeness, there is
no significant distinction between models, as large
language models do not demonstrate superiority.
Vicuna performs the lowest on this indicator, we
later find that summaries generated by Vicuna are
relatively short, hence unable to contain much in-
formation.

Comparing the results of automatic evaluation
and human evaluation, we find that automatic eval-
uation methods perform relatively well in linguistic
quality metrics, closely aligning with human pref-
erence, but show significant differences in content-
related metrics. This is because many evaluation
methods are based on language models, thus they
can more accurately evaluate linguistic quality.

6 Discussion

6.1 Is SumSurvey a challenging dataset?

The average length of samples in SumSurvey ex-
ceeds 12k, with a quarter of samples exceeding 16k
in length. Due to high uniformity of SumSurvey,
models find it challenging to utilize positional bias

model flu co non in

LED 3.52 2.90 3.76 3.04
LongT5 3.68 2.64 2.52 2.78

ChatGPT 4.34 4.28 3.42 3.16
ChatGLM3 4.30 2.98 4.10 3.02
Vicuna 4.18 4.04 3.36 2.66

Table 5: Results of human evaluation. Four indicators
are fluency, coherence, non-redundancy, and informa-
tiveness. The maximum score is 5.

for summarization. Additionally, given the speci-
ficity of scientific papers, many domain-specific
terms need to be retained when generating sum-
maries. However, our dataset still demonstrates
high abstractiveness, necessitating summarization
models to possess not only high abstractive capa-
bilities but also the ability to identify and preserve
domain-specific terms. This significantly increases
the challenges associated with SumSurvey.

Appendix E shows ROUGE scores of some base-
lines on arXiv and GovReport. Results on SumSur-
vey are significantly worse than on the other two
datasets, especially than on GovReport, which has
the lowest coverage and density scores according
to Table 1. However, ROUGE scores in Table 2 are
still within a reasonable range, documents in Sum-
Survey are not unsummarizable, they just require
models to have better abilities to understand long
and complicated text.

We conduct another set of experiments. We use
two selection strategies of tokens in training, in ad-
dition to the normal way of selecting tokens in a nat-
ural order, there is another option called oracle. The
oracle selector is implemented by greedily search-
ing sentences that achieve maximum ROUGE-2
Recall till input length limit is reached (Manakul
and Gales, 2021). See Table 6 for results. We ob-
serve that whether oracle selector is used has little
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effect on results. When sentences are selected by
oracle selector, the mapping between input and out-
put is more natural during training, and it is easier
for model to learn how to extract and utilize key
features, thereby improving its inference ability.
However, the difference between the oracle and
normal way on SumSurvey is not obvious, indicat-
ing mapping abilities learned by model under these
two settings are similar, which means distributions
of two types of data are also similar and proves high
uniformity and high challenging of SumSurvey.

6.2 What is the impact of SumSurvey on
fine-tuned models?

Although many summarization models already sup-
port 16k long inputs, they have been limited by
previous datasets to only test the performance with
inputs of up to 8k in length. With SumSurvey, it is
now possible to expand on previous experiments.
We use BART (Lewis et al., 2020) and PEGASUS
(Zhang et al., 2020a) as base models of LED and
PEGASUS-X, and obtained ROUGE scores of dif-
ferent models under varying input lengths.

See Table 6 for results, scores increase with
length in most cases, indicating that if only ba-
sic models are used by truncating the input, it will
lead to information loss. Therefore, it is necessary
to use summarization models supporting long doc-
ument in many scenarios. Besides, when the token
length increases from 8k, there is still a significant
improvement in results, especially for LED which
improves greatly from 8k to 16k. It means that
the latter part of SumSurvey still contains a lot of
information. More than a quarter of documents
in SumSurvey have more than 16k tokens, while
current models can not process these documents
well, so there is still room for research in the field
of long document summarization models.

We hope that our proposed SumSurvey dataset
will further evaluate the performance of summa-
rization models on longer inputs and enhance sum-
marization capability through fine-tuning. Addi-
tionally, we hope to see more models supporting
longer inputs to handle samples in SumSurvey that
exceed 16k in length.

6.3 What are the expectations for LLMs?
Summaries generated by LLMs tend to be preferred
by humans, for they have fewer grammatical errors
and are more fluent and coherent. But these models
have a tendency to focus on linguistic aspects but
struggle to ensure fidelity to the factual information

model oracle R-1 / R-2 / R-L

BART (1k) ✗ 36.06 / 10.58 / 20.65
LED (4k) ✗ 40.19 / 12.43 / 21.57
LED (8k) ✗ 40.89 / 12.78 / 21.70
LED (16k) ✗ 43.47 / 14.66 / 23.03

PEG (1k) ✗ 33.68 / 9.47 / 19.30
PEG-X (4k) ✗ 37.05 / 11.59 / 21.38
PEG-X (8k) ✗ 38.79 / 12.84 / 22.27
PEG-X (10k) ✗ 39.20 / 13.01 / 22.28

BART (1k) ! 36.59 / 10.27 / 19.50
LED (4k) ! 39.83 / 11.47 / 20.69
LED (8k) ! 38.33 / 11.19 / 20.33
LED (16k) ! 42.49 / 13.75 / 22.42

PEG (1k) ! 33.66 / 9.52 / 19.28
PEG-X (4k) ! 36.31 / 10.80 / 20.11
PEG-X (8k) ! 38.27 / 12.22 / 21.39
PEG-X (10k) ! 38.31 / 12.40 / 21.52

Table 6: ROUGE scores of baselines on SumSurvey.
The oracle column refers to whether to use oracle se-
lector. The lengths used for training and inference are
stated in parentheses. PEGASUS and PEGASUS-X are
abbreviated to PEG and PEG-X respectively. Best re-
sults are bolded (statistical significance with p-value <
0.05).

and alignment with the original source, so it may
overfit unconstrained human evaluation, which is
affected by annotators’ prior, input-agnostic prefer-
ences (Atri et al., 2023; Liu et al., 2023b). These
findings are consistent with the results in Table 5.
In terms of informativeness, LLMs lack an advan-
tage over fine-tuned models. We hope that long
survey papers containing rich information can be
used to improve information extraction and sum-
marization capabilities of LLMs. After all, while
generating summaries that align with human pref-
erences is important, it is also necessary for sum-
maries to contain rich and factual information.

Another expectation for LLMs is their ability
to evaluate informativeness and factuality of gen-
erated summaries, which requires inputting both
the original document and the summary for evalua-
tion. Due to the length of SumSurvey, some models
we have tested are unable to stably evaluate infor-
mativeness and factuality. We hope to see more
models that support automatic evaluation of long
document summarization.
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6.4 How does SumSurvey help in creating
models supporting inputs exceeding 16k?

For models incapable of handling inputs exceed-
ing 16k tokens, SumSurvey encourages further re-
search into "extract then abstract" and "divide and
conquer" approaches. Due to the high uniformity
of our dataset, the "extract then abstract" approach
tends to lose significant information, resulting in an
insignificant performance improvement (as shown
in Table 6). Concerning the "divide and conquer"
approaches, the even distribution of information
makes such methods feasible. We anticipate the
emergence of better hierarchical models and fea-
ture fusion models.

For the creation of models supporting inputs ex-
ceeding 16k tokens, SumSurvey encourages the
development of more efficient attention mecha-
nisms. Since these models can access the entire
document, better summarization performance can
be achieved theoretically. However, this necessi-
tates models with both long-context modeling capa-
bilities and efficient processing techniques, which
poses greater challenges.

7 Conclusion

We propose a new long document summarization
dataset SumSurvey consisting of scientific survey
papers. The average length of documents in Sum-
Survey is longer than publicly available summa-
rization dataset, and it has higher abstractiveness.
In addition, salient information is more evenly dis-
tributed throughout documents. By benchmarking
baseline models using automatic and human evalu-
ation, we have a comprehensive view of how these
models perform on SumSurvey. We hope Sum-
Survey will contribute to evaluating and further
improving fine-tuned models on longer inputs, and
also expect LLMs to pay more attention to informa-
tiveness and factuality. Moreover, we look forward
to more comprehensive automatic evaluation mod-
els supporting long documents.

Limitations

Upon examining the metadata, it was confirmed
that over two-thirds of the documents from Sum-
Survey contain publication information. For those
lacking such information, a manual inspection of
a subset revealed that the vast majority of samples
actually originate from published or peer-reviewed
papers, with only a negligible fraction being unpub-
lished, which is insufficient to significantly affect

the overall quality. However, due to the dataset’s
diverse range of fields, including many that are un-
familiar to us, manually checking the text quality
of all documents presents a considerable challenge.

We did not benchmark all baselines because: 1)
limited by computation power, some models cannot
be fine-tuned on a single NVIDIA A100 with 80GB
GPU memory, such as pegasus-x-large and long-
t5-tglobal-large with 16k tokens; 2) some models
are not publicly available at the moment (Rohde
et al., 2021; Pang et al., 2023); 3) some large lan-
guage models like LongAlpaca (Chen et al., 2023)
exhibited instability on SumSurvey, often failing to
generate outputs properly.

Documents in SumSurvey lack language diver-
sity. The fact that English is the dominant language
in academia makes it a single-language dataset.
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A Dataset details

A.1 Construction Details

The data we have collected falls into two cate-
gories: metadata extracted directly from websites
and downloaded PDF files. Regarding metadata,
it contains a wealth of information, including au-
thors, abstracts, subjects, initial and latest submis-
sion times, acceptance and publication information,
and more. For PDF files, pdfminer12 and RE rules
were utilized to extract the plain text and split it
into a list of tuples, where each tuple contains a
section header and the corresponding text. We ex-
cluded the abstract section and content before it,
as well as the reference section and content after
it. To enhance the accuracy of abstract matching
and removal, we employed BERT-based Sentence
Transformers13. This allowed us to calculate the
similarity between the abstract identified using RE
rules and the actual abstract from metadata. Subse-
quently, we filtered out certain outlier data based
on this similarity measure. In this above process,
plain text of tables was retained while figures were
removed, but figure captions were preserved for
summarization models to utilize this information.
We kept the original citation format of the source
document, but the reference section was removed.

A.2 Dataset Quality

In this section, we discuss whether papers in Sum-
Survey are of high quality and whether SumSurvey
is a different dataset.

Regarding the former, both the "Journal ref" field
and the "Comments" field in the extracted metadata
contain information about the paper’s acceptance
and publication information. By examining the in-
formation, we observed that more than two-thirds
of papers contain information regarding publica-
tion, and most papers without such information
were, in fact, published. Therefore, we confirm
that the vast majority of papers in the dataset are
high-quality, published survey papers.

As for the latter, we compared SumSurvey with
the existing arXiv dataset for they are both scien-
tific paper datasets. We examined 6440 samples
from the test set of arXiv dataset, and used arXiv
API14 to obtain additional information not provided
by the arXiv dataset. We found that papers with

12https://github.com/euske/pdfminer
13https://github.com/UKPLab/

sentence-transformers
14https://info.arxiv.org/help/api/basics.html

Figure 2: Histogram and density curve of document
length in SumSurvey.

Figure 3: Year distribution of papers in SumSurvey. We
use latest submit times for statistics.

"survey" in their titles account for approximately
one percent. Based on this proportion, we estimate
that there are no more than 3000 survey papers
in the entire arXiv dataset, equivalent to approx-
imately 15% of SumSurvey in terms of sample
size. It is worth noting that papers in the old arXiv
dataset are all dated before 2018. Additionally, we
calculated that the average length of survey papers
in arXiv dataset is only 6k, approximately half of
SumSurvey, as the authors of the arXiv dataset have
filtered out excessively long papers.

A.3 Dataset Distributions

Length Distribution Figure 2 is length distribution
of documents in SumSurvey. Table 7 shows length
statistics in different datasets. The input document
length of our SumSurvey exceeds other datasets,
and summary length is in a reasonable range.
Year Distribution See Figure 3 for year distribu-
tion of papers in SumSurvey. The more recent the
year, the greater the number of papers. This indi-

9644

https://github.com/euske/pdfminer
https://github.com/UKPLab/sentence-transformers
https://github.com/UKPLab/sentence-transformers
https://info.arxiv.org/help/api/basics.html


dataset summ sentences doc sentences summ tokens doc tokens

PubMed 7.1 102 208 3143
arXiv 6.3 251 242 6446
BigPatent 3.6 143 117 3573
BillSum 7.1 42 243 1686
GovReport 21.4 300 607 9409
SumSurvey 8.1 413 236 12532

Table 7: Length statistics of different long document summarization datasets.

cates that the data in our dataset is relatively recent.
Field Distribution There are over 100 types of
tags in total, and each sample typically has multiple
tags. Representative fields include Astrophysics,
Machine Learning, Computer Vision and Pattern
Recognition, Artificial Intelligence, Cryptography
and Security. In addition , there are other fields
such as Signal Processing, Methodology, Algebraic
Geometry, General Finance, and more. The field
distribution conforms to a long-tail distribution.

B Intrinsic Characteristics

B.1 Heatmaps

Heatmaps in Figure 4 show coverage and density
of different datasets. BillSum and GovReport per-
form the worst, while BigPatent is the best. Note
that the average document length of BigPatent is
much smaller than SumSurvey, making it less nec-
essary for humans to extract many contents directly
from the document when generating the summary,
because of the reduced workload and the fact that
the summary and corresponding short document
will be too similar if lots of contents are copied
(see scores of GovReport for example). In addi-
tion, scope of its heatmap is too narrow, indicating
that writing styles of these summaries are highly
consistent. PubMed, arXiv and SumSurvey are all
consists of scientific papers, while the heatmap of
SumSurvey is more regular in shape, proving that
papers we collected are indeed in a same category,
which is survey. As for PubMed and arXiv, particu-
larly long documents have been filtered out (Cohan
et al., 2018), so it is likely that many survey papers
are lost.

B.2 Novel N-grams

The proportion of novel n-grams in a summary
reflects the degree of abstractiveness of this sam-
ple. We calculate percentages of uni-, bi-, tri-, and
4-grams in summaries for long document summa-

(a) PubMed (b) arXiv

(c) BigPatent (d) BillSum

(e) GovReport (f) SumSurvey

Figure 4: Heatmaps of different datasets, x-axis repre-
sents coverage and y-axis represents density.

rization datasets, we also introduce two more long-
input datasets SummScreen (Chen et al., 2022) and
SQuALITY (Wang et al., 2022), see Table 8 for
results.

As shown in Table 8, SumSurvey has higher
abstractiveness than arXiv, PubMed, BillSum and
GovReport, especially on tri-grams and 4-grams,
this proves again that SumSurvey has good density
scores (see Table 1). SummScreen and SQuAL-
ITY have an advantage in abstractiveness as their
data is from TV programs or stories, making the
text filled with colloquialism and lack technical
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% of novel n-grams
dataset uni- bi- tri- 4-

PubMed 12.4 44.0 65.3 76.0
arXiv 9.5 41.0 66.4 79.6
BigPatent 13.5 52.6 78.3 89.5
BillSum 10.4 38.2 55.2 65.6
GovReport 5.7 32.7 56.3 68.9
SumSurvey 12.1 45.3 72.5 85.3
SummScreen-FD 18.4 70.1 94.4 98.7
SumSurvey-TMS 13.5 65.9 93.1 97.9
SQuALITY 17.5 65.9 92.7 98.0

Table 8: Percentages of novel n-grams in summaries
of different datasets, results of SummScreen are from
Chen et al. (2022).

terms. So, there is a broader range of word choices
when writing abstracts. Regarding SumSurvey, the
abundance of technical terms naturally puts it at a
disadvantage in abstractiveness. Small data size of
SQuALITY makes it difficult to use for fine-tuning
models to improve long document summarization
performance. Besides, the average length of both
datasets is only around 5k-6k and they cannot be
used to evaluate the ability of summarization mod-
els to handle longer inputs.

C Experiment Details

C.1 Baselines Description

BART (Lewis et al., 2020) is a denoising auto-
encoder for pre-training sequence-to-sequence
models. By destroying and then reconstructing text,
BART has the flexibility to process raw text and
learn to reconstruct it effectively. The fine-tuned
BART performs well on summarization task.
LED (Beltagy et al., 2020) is based on Longformer,
which replaces the standard self-attention in Trans-
former with combination of a local windowed at-
tention and a task motivated global attention. A
token with a local attention attends to its context
tokens while a global attention token attends to all
tokens across the sequence. LED is a Longformer
variant supporting long input up to 16k tokens, and
its parameters are initialized from BART.
PEGASUS (Zhang et al., 2020a) uses a new ob-
jective called Gap Sentences Generation (GSG)
during pre-training designed specifically for sum-
marization task. The authors select sentences that
are important to document and mask them, then
train PEGASUS to generate these sentences.

PEGASUS-X (Phang et al., 2023) is an extension
of the PEGASUS model supporting long input at
most 16k tokens. The authors design staggered
block-local Transformer with global encoder to-
kens, where a block-local attention token can only
attend to other tokens within the same block and
the block allocation across alternating layers is stag-
gered. Additionally, long documents are included
during pre-training to improve downstream sum-
marization performance.
LongT5 (Guo et al., 2022) integrates attention
ideas from ETC, and adopt pre-training strategies
from PEGASUS into the scalable T5 architecture.
It uses a new attention mechanism called Tran-
sient Global (TGlobal), which mimics ETC’s lo-
cal/global attention mechanism, but without requir-
ing additional side-inputs.

C.2 Implementation Details

BART We use fairseq (Ott et al., 2019) for imple-
mentation with Python version of 3.8 and PyTorch
version of 2.0.1. Learning rate is set to 1e-4. Batch
size is set to 2 with update frequency of 8. Other
parameters like label smoothing, dropout, attention
dropout, weight decay, clip norm are consistent
with the official example15.
LED We use Transformers (Wolf et al., 2020) as
framework with version of 4.31.0. We follow this
fine-tuning notebook16 with learning rate of 1e-4.
PEGASUS Transformers is used as framework for
implementation and pytorch-lightning17 version is
1.0.4. We set learning rate to 1e-5 and batch size to
6.
PEGASUS-X It is implemented on Flax18 with ver-
sion of 0.6.11 and JAX19 version of 0.4.13. Learn-
ing rate is set to 1e-4. Batch size are 2, 1, 1 when
maximum input length are 4k, 8k, 10k respectively.
LongT5 We use Transformers for implementation.
Learning rate is set to 5e-4, and batch size is 1 with
gradient accumulation step of 32.
ChatGPT We use OpenAI API20 for implementa-
tion with prompt of "Please summarize the follow-
ing contents with no more than 256 words: ", and

15https://github.com/facebookresearch/fairseq/
blob/main/examples/bart/README.summarization.md

16https://colab.research.google.com/drive/
12LjJazBl7Gam0XBPy_y0CTOJZeZ34c2v

17https://github.com/Lightning-AI/
pytorch-lightning

18https://github.com/google/flax
19https://github.com/google/jax
20https://platform.openai.com
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refer to official use case21 for parameter settings.
ChatGLM3 We use Transformer for implementa-
tion. The prompt is the same as used by ChatGPT.
Vicuna We use FastChat22 as evaluation frame-
work. The prompt is the same as used by ChatGPT.

For LLMs, experiments are under zero-shot set-
tings. While for other baselines, the fine-tuning
time varies from a few hours to two days.

C.3 LLMs for Evaluation

We use ChatGPT and Vicuna to evaluate summary
quality. Prompt used in §5.1.1 is "I will provide
you with five different summaries of the same doc-
ument generated by different models, as well as
a manually generated standard summary. Please
rate each of the five model-generated summaries
on a scale of one to five in terms of similarity to the
standard summary.". And prompt used in §5.1.2
is "I will provide you with five different summaries
of the same document generated by different mod-
els. Please rate each of the five model-generated
summaries on a scale of one to five in terms of
grammatical accuracy, coherence, and clarity of
reference. "

D Human Evaluation Guidelines

Three annotators23 scores summaries indepen-
dently, they need to complete 50 subtasks, each
of which consists of source document and five sum-
maries generated by LED, LongT5, ChatGPT, Chat-
GLM3 and Vicuna, respectively. All summaries are
lowercased and tokenized, making it impossible to
use these features to determine which summaries
are likely generated by the same model. We have
developed a guideline for annotators, see Fig 5.

E Results on other datasets

We show some results of baselines on other datasets
in Table 9. On the one hand, limited by these
datasets, experiments cannot be conducted with
longer input length; on the other hand, scores on
these datasets are higher than those on SumSurvey,
indicating strong challenges of our dataset. Among
them, scores of baselines on GovReport are par-
ticularly high, because GovReport has the lowest
abstractiveness (see Table 1 and Table 8), therefore,

21https://platform.openai.com/docs/
api-reference/chat/create

22https://github.com/lm-sys/FastChat
23Graduate students, two of whom are non-native English

speakers and one is a native English speaker.

models tend to generate summaries in an extractive
way.

F Case Study

After checking the summaries generated by base-
lines, we find that even as abstractive fine-tuned
models, they tend to generate summaries in an ex-
tractive way when facing long document summa-
rization task. This may be because documents in
SumSurvey are too long for models to understand-
then-reword, so summaries are generated by identi-
fying salient sentences.

See Figure 6 and Figure 7 for examples. The
summary generated by LED is more precise, while
PEGASUS-X and LongT5 generates some exam-
ples, resulting in a bit of verbosity. The summary
generated by ChatGPT has higher abstractiveness
and contains some information that could easily be
ignored. The summary generated by ChatGLM3 is
not a complete paragraphin, thus achieving a low
coherence score in human evaluation. Typically,
even when given length constraint in the prompt,
the summary generated by Vicuna is still relatively
short, resulting in low informativeness.

G Software and Licenses

Data and codes used in this paper are:

• arXiv, Misc24

• BERTScore, MIT25

• Datasets, Apache-2.026

• fariseq, MIT27

• Flax, Apache-2.028

• Jax, Apache-2.029

• matplotlib, Misc30

24https://info.arxiv.org/help/license/index.
html

25https://github.com/Tiiiger/bert_score/blob/
master/LICENSE

26https://github.com/huggingface/datasets/blob/
main/LICENSE

27https://github.com/facebookresearch/fairseq/
blob/main/LICENSE

28https://github.com/google/flax/blob/main/
LICENSE

29https://github.com/google/jax/blob/main/
LICENSE

30https://github.com/matplotlib/matplotlib/
blob/main/LICENSE/LICENSE
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Figure 5: Human evaluation guideline

arXiv GovReport
model length R-1 R-2 R-L R-1 R-2 R-L

BART 1K 43.84 16.55 39.86 56.55 26.7 54.46
BART + Longformer (LED) 4K 45.72 18.48 41.82 57.45 28.14 55.40
BART + Longformer (LED) 8K 46.60 19.05 42.21 58.35 28.78 56.35

PEGASUS 1K 44.17 17.16 40.18 57.19 27.87 55.17
PEGASUS + Longformer 4K 46.02 18.33 42.28 58.35 28.78 56.35
PEGASUS + Longformer 8K 46.87 19.73 42.36 58.59 29.02 56.29

Table 9: ROUGE results on arXiv and GovReport. Baselines include base models (BART, PEGASUS) and their
long input versions extended by Longformer. Results are from Koh et al. (2022b).
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• NLTK, Apache-2.031

• NumPy, BSD-3-Clause32

• PDFMiner, MIT33

• PubMed, arXiv dataset, Apache-2.034

• Pytorch Lightning, Apache-2.035

• PyTorch, Misc36

• ROUGE Metric, MIT37

• scikit-learn, BSD-3-Clause38

• SciPy, BSD-3-Clause39

• Scrapy, BSD-3-Clause40

• seaborn, BSD-3-Clause41

• Sentence Transformers, Apache-2.042

• spaCy, MIT43

• Stanza, Apache-2.044

• TensorFlow, Apache-2.045

• Transformers, Apache-2.046

31https://github.com/nltk/nltk/blob/develop/
LICENSE.txt

32https://github.com/numpy/numpy/blob/main/
LICENSE.txt

33https://github.com/euske/pdfminer/blob/
master/LICENSE

34https://github.com/armancohan/
long-summarization/blob/master/LICENSE

35https://github.com/Lightning-AI/
pytorch-lightning/blob/master/LICENSE

36https://github.com/pytorch/pytorch/blob/main/
LICENSE

37https://github.com/li-plus/rouge-metric/blob/
master/LICENSE

38https://github.com/scikit-learn/scikit-learn/
blob/main/COPYING

39https://github.com/scipy/scipy/blob/main/
LICENSE.txt

40https://github.com/scrapy/scrapy/blob/master/
LICENSE

41https://github.com/mwaskom/seaborn/blob/
master/LICENSE.md

42https://github.com/UKPLab/
sentence-transformers/blob/master/LICENSE

43https://github.com/explosion/spaCy/blob/
master/LICENSE

44https://github.com/stanfordnlp/stanza/blob/
main/LICENSE

45https://github.com/tensorflow/tensorflow/
blob/master/LICENSE

46https://github.com/huggingface/transformers/
blob/main/LICENSE

• UniEval, MIT47

47https://github.com/maszhongming/UniEval/blob/
main/LICENSE
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Figure 6: Reference summary and candidate summaries generated by fine-tuned models.
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Figure 7: Candidate summaries generated by large language models.
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