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Abstract

The development of Large Language Models
(LLMs) has greatly advanced the field of drug
discovery, with the belief that natural language
can enhance human control over molecule de-
sign. However, the scarcity of high-quality la-
beled data remains a challenge for cross text-
molecule learning. Existing datasets are lim-
ited due to the difficulty of collecting precise
molecule-description pairs. Although recent
efforts have utilized pseudo data generated by
LLMs for augmentation, the lack of special-
ized chemistry knowledge of LLMs and the
absence of an effective high-quality data selec-
tor may introduce noise into the annotations,
compromising the models’ robustness. To ad-
dress these challenges, this paper introduces a
novel framework that interweaves model fine-
tuning and data augmentation to overcome
the scarcity of high-quality data. The pro-
posed approach involves an iterative proce-
dure where the model plays dual roles in an-
notating unlabeled data and sampling a sub-
set of high-quality data until convergence is
achieved, enhancing the model’s understanding
and adaptability. Additionally, a new dataset
called SAPubChem-41 is presented, which
comprises meticulously curated high-quality
parallel molecule-description pairs designed
specifically for fine-tuning purposes. This re-
search provides an important contribution to
the field by addressing the need for high-quality
datasets and presenting an effective framework
for cross text-molecule learning.

1 Introduction

The emergence of Large Language Models (LLMs)
has significantly propelled the development of drug
discovery (Zhang et al., 2024). Recent progress in
language models shed light on drug discovery, with
the vision that humans can possess a higher-level
control over molecule design facilitated by natural
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language. Edwards et al. (2022a) introduce two
new tasks: molecule captioning (Mol2Cap) and
text-based molecule generation (Cap2Mol), and
present MolT5 (Edwards et al., 2022b) based on
the T5 (Raffel et al., 2020) architecture to translate
between molecule and text. Subsequently, diverse
endeavors have been undertaken to tackle these
challenges. Text+Chem T5 (Christofidellis et al.,
2023) and BioT5 (Pei et al., 2024) are also T5-like
models, which incorporate multi-task and multi-
domain pretraining process and enable the bidirec-
tional generation between different modalities in
a single model. Some other methods employ the
Generative Pretrained Transformer (GPT) architec-
ture. MolXPT (Liu et al., 2023) proposes to wrap
molecules in the sentences to make the pertaining
corpus. More recently, MolCA(Liu et al., 2024)
considers the 2D graph information for molecules
and designs a projector to connect molecular con-
tent to language models. These studies mark the
research efforts in the realm of cross text-molecule
learning.

Despite rapid development in cross text-
molecule modalities, there is still demand for high-
quality labeled data in this field. Such data of su-
perior quality is indispensable to capacitate mod-
els for downstream tasks. However, the available
datasets relevant to the tasks are limited, a con-
sequence of the arduous nature of collecting pre-
cise and enlightening parallel molecule-description
pairs. This scarcity of annotated data hinders the
model’s ability to learn between the modalities of
the molecule and the text. As shown in Figure 1,
recent efforts by Chen et al. (2023) address the
scarcity challenge by utilizing pseudo data gener-
ated by LLMs as augmentation. The problem is
that the absence of specialized knowledge in chem-
istry may introduce noise into the data annotated by
general Large Language Models, thereby compro-
mising the robustness of models fine-tuned on such
datasets. In spite of these commendable advance-
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ments, the accessibility of high-quality datasets for
fine-tuning remains notably deficient.

Pseudo Data

Real Data

shuffled

(a) Conventional Data Augmentation Method

Pseudo Data

Real Data

shuffled

(b) Our Self-Augmentation Method

Figure 1: A comparison between a conventional data
augmentation method referenced in Chen et al. (2023)
and our iterative self-augmentation techniques is drawn
herein. The original technique leverages Label Lan-
guage Models (LLMs) to annotate unlabeled data; con-
trastingly, our proposed self-augmentation strategies use
the model itself for annotating unlabeled data in tandem
with an iterative training approach.

To address these challenges, this paper intro-
duces a novel framework that interweaves model
fine-tuning and data augmentation (See Fig. 1, aim-
ing to rectify the high-quality data scarcity ob-
served in the realm of cross text-molecule learn-
ing. Our proposed approach integrates the model
into the process by assigning it dual roles: an-
notating unlabelled data and sampling a subset
of high-quality data. This iterative procedure
continues until convergence is achieved, thereby
refining the model’s understanding and adapt-
ability. Additionally, we present a new, larger
dataset SAPubChem-41. This meticulously cu-
rated dataset comprises a wealth of high-quality
parallel molecule-description pairs meticulously
designed for the specific purpose of fine-tuning.
The model optimized using SAPubChem-41 has
been evaluated across a total of 13 molecule-text
benchmarks, exhibiting superior performance in
comparison to the model optimized using the origi-
nal dataset, ChEBI-20. Our key contributions can
be summarized as:

• We present an innovative framework de-
signed to augment cross-text-molecule learn-
ing through a self-augmentation strategy. This
system leverages the model itself to annotate
unlabelled data, choosing only samples that
meet a high-quality standard.

• We introduce SAPubChem-41, a novel dataset
consisting of both real data and high-quality
pseudo-labeled data, augmented by the model
itself. This makes a notable contribution to
the available datasets in the field of cross-
molecule-text modality.

• We show that within our iterative setting, self-
augmented data significantly improves the per-
formance of the model in downstream tasks
with each epoch. Furthermore, these results
tend to converge as the number of epochs in-
crease. This process thereby successfully val-
idates the efficacy of self-augmented data in
enhancing model performance.

2 Background

2.1 Cross Text-Molecule Learning

Edwards et al. (2021) introduce a new task
Text2Mol, which uses descriptions as search
queries to retrieve the target molecules. Edwards
et al. (2022a) first addresses the problem of cross-
domain generation by linking natural language and
chemistry, tackling tasks such as text-conditional
de novo molecule generation and molecule caption-
ing. Li et al. (2023a) combines retrieval-based
prompt paradigm with LLMs like ChatGPT to
achieve translation between molecule language and
natural language. Christofidellis et al. (2023) pro-
pose the first multi-domain, multi-task language
model that can solve a wide range of tasks in both
the chemical and natural language domains. Liu
et al. (2023) propose MolXPT, a GPT-based model
pre-trained on molecule SMILES, biomedical text,
and wrapped text. BioT5 (Pei et al., 2024) fur-
ther exploits SELFIES for 100% robust molecular
representations and discriminate structured knowl-
edge from unstructured knowledge. To capitalize
on these insights, we adopt an iterative framework
to interweave model fitting and data augmentation,
to mitigate data scarcity and further enhance the
alignment between molecule and text representa-
tions.
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2.2 Data Augmentation for Cross
Text-Molecule Learning

Data augmentation is a regularization strategy uti-
lized to enhance model performance by diversify-
ing the available data through various techniques
(Hernández-García and König, 2018). In the field
of natural language processing (NLP), data aug-
mentation has been widely employed to address
data scarcity issues, leading to the proposal of var-
ious augmentation methods (Feng et al., 2021; Li
et al., 2022). Textual data augmentation can be ac-
complished through simple rules, such as synonym
replacement and word order modification (Zhang
et al., 2015). Furthermore, the development of deep
learning models has facilitated the generation of
new text to augment the existing data (Szegedy
et al., 2016; Wu et al., 2019; Anaby-Tavor et al.,
2020; Yoo et al., 2021; Zhou et al., 2021; Li et al.,
2023b; Dai et al., 2023). Acquiring high-quality
annotated molecule-text datasets is prohibitively
expensive, for many descriptions of corresponding
molecules are scattered and inaccurate, leading to
limited fine-tuning datasets for cross text-molecule
learning.More data augmentation techniques are de-
sired to further enhance cross text-molecule learn-
ing.Chen et al. (2023) pioneers to exploit LLMs’
annotated pseudo label for domain adaption and
data augmentation.However, while pseudo label as
domain adaptation shows impressive performance
compared to existing methods, pseudo label as data
augmentation still struggles against label noise in-
terfering model’s performance. To address the
problem and further improve the quality of aug-
mented dataset, our work introduces a pioneering
iterative framework that interweaves model fine-
tuning and data augmentation.

3 Method

In this section, we describe a computational frame-
work for jointly optimizing model performance and
dataset quality.

3.1 Overall Framework

The literature demonstrates a substantial body of
research focused on enhancing both model perfor-
mance and dataset quality concurrently, as depicted
in Figure 2. If we assume the existence of a sub-
jective testing environment capable of gathering
reliable molecule-caption pairs, then the core chal-
lenge becomes how to effectively sample a sub-
set A from a large-scale pseudo-labeled dataset D

that exhibits high confidence. In line with Li et al.
(2023b), our approach adopts an iterative strategy,
combining model fine-tuning and data augmenta-
tion operations defined below.
1. Model fine-tuning: Given a data distribution,
find an approximate risk minimizer.
2. Data augmentation: Given a model, augment
data and sample a new data distribution.
3. Data combination: Combine a set of distribu-
tions into a single distribution.

At the beginning of each iteration, a new model
is finetuned on the latest dataset. This newly trained
model is subsequently employed to annotate a set
of unlabeled data, thereby generating a pseudo-
labeled dataset. The sampler is then entrusted
with the responsibility of discerning samples dis-
tinguished by their high quality from this pseudo-
labeled dataset. The discerned insights are then
harnessed to augment and refine the current dataset,
thereby facilitating a continuous and iterative im-
provement process.

3.2 Self-Annotating
We gathered 200,000 unannotated SMILES of
molecules from PubChem (Kim et al., 2023) and
conducted deduplication to mitigate the risk of
data leakage in the validation dataset. For each
unlabeled SMILES, we executed inference on the
model itself to produce a candidate caption, thereby
obtaining the pseudo-labeled dataset.

ChatGPT Annotating vs Specialized Model An-
notating Despite the remarkable performance of
Large Language Models (LLMs) such as ChatGPT
in various cross-modal tasks, they have not suc-
ceeded in surpassing specialized models in the
molecule captioning task (Li et al., 2023a; Christofi-
dellis et al., 2023). This suggests that special-
ized models serve as better annotators for unla-
beled SMILES strings. Furthermore, as depicted
in Figure 3(a), by leveraging the Text2Mol score
(Edwards et al., 2022a) as a fundamental metric
of data quality, which measures the similarity be-
tween SMILES strings and their captions, we eval-
uated the distribution of the real training set, Mol-
ReGPT annotated data, and self-annotated data. It
is evident that the self-annotated data yields higher-
quality data, closely resembling real data more than
the MolReGPT annotated data.

Iterative Annotating We employ an iterative
training approach to enhance the proficiency of
annotators and produce captions of superior quality.

9553



Figure 2: Overall framework. We interweave model fine-tuning and data augmentation iteratively. A core component
of our framework, the Data Augmentation Module, is compartmentalised into two key elements: Self-Annotating
and Self-Sampling. These elements underline the crux of our methodology, wherein the model autonomously
performs the augmentation, subsequently enhancing its own performance.

As depicted in Figure 3, during each iteration, the
quality of the molecule-caption pairs is enhanced
through the implementation of the iterative strategy.

3.3 Self-Sampling

A discerning subset sampling strategy is antici-
pated to effectively filter pseudo labels, thereby
ensuring the attainment of high-quality labels for
training the model. This refined approach aims
to enhance the overall reliability of the model by
mitigating the impact of unreliable or inaccurate
labels in the training process. In contrast to prior
work (Li et al., 2023b), wherein fine-tuning an ex-
ternal score model was employed to select high-
quality pairs, we have found this approach to be

both time-consuming and unreliable when applied
to the domain of cross text-molecule learning. No-
tably, the susceptibility of the model to overfitting
incorrect pseudo-labels is a concern, as detailed in
section 4.4. To tackle this dilemma, we introduce
a dual selection mechanism that not only proves
to be more computationally efficient but also en-
hances reliability in ensuring the high quality of
our augmented dataset. This mechanism involves
two key steps. Firstly, leveraging the generation
likelihood as a confidence score to filter out un-
reliable molecule-caption pairs. Secondly, updat-
ing and ranking the remaining molecule-caption
pairs based on the Text2Mol score (Edwards et al.,
2022a) This refined approach streamlines the sam-
pling process, offering increased efficiency and
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(a) Comparison of Data Quality Between LLMs An-
notated Label and Self-Annotated Label

(b) Comparison of Data Quality in Relation
to the Adoption or Non-Adoption of Itera-
tive Strategy

Figure 3: In a manner akin to Chen et al. (2023) in their
study, we employ the methodology proposed by Ed-
wards et al. (2022) to evaluate the correlation between
molecule-description pairs, utilizing it as a measure of
data quality. The distributions are illustrated via Ker-
nel Distribution Estimation. A noteworthy aspect to
consider here is that a higher Text2Mol score typically
implies a closer resemblance between the molecule and
its description. In addition, the term "Density" in (a)
pertains to the concentration of data within a specific
region.

heightened confidence in the identification of high-
quality pairs for dataset augmentation.

Data Filtering First, we employ the model it-
self to filter out a set of low-quality pairs. Specif-
ically, we utilize the generation likelihood as a
measure of the quality of the generated sequence.
However, previous studies (Liu and Liu, 2021; Liu
et al., 2022) have underscored that the correlation
between sequence probability and its quality for
Maximum Likelihood Estimation (MLE) trained
models can be low, due to the presence of deter-
ministic (one-point) target distribution issues. Fur-
thermore, sequence likelihood estimation becomes
noisier when the decoded sequences of models de-
viate from the exposed training data distribution,
thereby exacerbating the problem of exposure bias

(Ranzato et al., 2016). To address these intricate
challenges, we introduce the Sequence Likelihood
Calibration (SLiC) stage. This stage, depicted in
Figure 1, serves to mitigate the aforementioned
issues and diminish the gap between sequence like-
lihood and its associated quality. Following the
methodology of Zhao et al. (2022), we conduct
further fine-tuning of the model, introducing a new
objective that encompasses the following loss func-
tions:

Lcal
rank = max

(
0, β − logPθ

(
ŷ+ | x

)
+ logPθ

(
ŷ− | x

))
,

Lreg
ce =

∑

t

− logPθ

(
ȳt | yt−1,x

)
,

Lreg
kl =

∑
t Pθ

(
ȳt | yt−1,x

)
log

Pθ(ȳt|yt−1,x)
Pθft(ȳt|yt−1,x)

.

Given the context x, target y,and positive and
negative candidates pairs ŷ+, ŷ−, Pθ(y | x) de-
notes the generation sequence likelihood. Rank
loss Lcal

rank optimizes the ranking order of positive
and negative candidate pairs. Cross entropy loss
Lreg
ce is the standard fine-tuning MLE objective .

KL divergence loss Lreg
kl directly minimizes the

probability distribution distance between the cal-
ibrated model and the fine-tuned model at each
token on the observed target sequence.

Following the SLiC stage, we regard the genera-
tion likelihood as one of our metrics for assessing
the quality of pseudo labels. In our experiments,
we discard pairs with log-likelihood equal to nega-
tive infinity and retain the remaining pairs as high-
quality pairs.

Update and Rank Secondly, for those high-
quality pairs, we further refine the data based
on the similarity scoreFtext2mol proposed by Ed-
wards et al. (2022a). At iteration t, we update the
caption if Ftext2mol (m, ct) > Ftext2mol (m, ct−1)
,then we rank the updated dataset according to
Ftext2mol ,selecting the top t× 2k pairs to form the
new Augmented Dataset At.

4 Experiments

In order to validate the efficacy of utilizing our
framework, we have undertaken a series of compre-
hensive experiments.

4.1 Experimental Setup
Dataset We employ the ChEBI-20 (Edwards
et al., 2021) to serve as our original dataset. Addi-
tionally, we gather 200,000 unannotated molecules
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Info SAPubChem-41 ChEBI-20
Train 34,407 26,407

Validation 3,301 3,301
Test 3,300 3,300

LSMILES 69.96 81.56
LDescription 41.59 52.88

Table 1: Comparison of our SAPubChem-41 dataset
with the original dataset ChEBI-20. LSMILES denotes
the average length of SMILES while LDescription denotes
the average word count per description.

Figure 4: The results of the iteration procedure. The
dashed lines denote the metrics associated with the
molecule captioning task, while the solid lines signify
those related to the molecule generation task.

from the PubChem database (Kim et al., 2023).
Subsequently, we conduct a rigorous filtering pro-
cedure to exclude any molecules present in down-
stream datasets, ensuring the elimination of poten-
tial overlaps between the newly acquired molecules
and those already present in the ChEBI-20 dataset.
For our experimental dataset augmentation, we set
the iteration step to 2000. At each iteration stage,
the dataset size expands by 2000 from the preced-
ing iteration. A detailed comparison between our
final augmented dataset, SAPubChem-41, and the
original dataset, ChEBI-20, is presented in Table 1.

Base Model To prove the effectiveness of our
framework, we use the Text+Chem T5 (Christofi-
dellis et al., 2023) as the base model for simulating
the iterative process.

Metrics Following the previous studies (Edwards
et al., 2022a; Li et al., 2023a; Christofidellis et al.,

2023; Chen et al., 2023), we evaluate the results
with following metrics:

• Molecular Captioning: BLEU-2 and BLEU-
4(Papineni et al., 2002) are metrics used to
evaluate the quality of machine-generated text
by comparing it to a reference text, with a
higher score on the BLEU metric indicat-
ing a higher level of similarity between the
generated text and reference text. ROUGE-
1, ROUGE-2, and ROUGE-L(Lin, 2004) is
similar to BLEU, while computing the recall-
overlap of unigrams, bigrams, and longest
common subsequences between the gener-
ated and reference texts. METEOR (Baner-
jee and Lavie, 2005) is a metric that uses a
combination of unigram precision, recall, and
a synonym-matching component to evaluate
the generated text against the reference text,
which is designed to be more sensitive to flu-
ency, meaning, and structure than BLEU.

• Text-based Molecule Generation: BLEU
and the Exact Match scores are calcu-
lated as basic assessments. Molecule-
specified metrics including Levenshtein
distance(Levenshtein et al., 1966), valid-
ity(Edwards et al., 2022a), and three molecule
fingerprints scores - MACCS FTS(Durant
et al., 2002), RDK FTS(Schneider et al.,
2015), and Morgan FTS(Rogers and Hahn,
2010) are calculated to provide valuable in-
sights into the quality, validity, and structural
characteristics of the generated molecules.

Implementation We conducted our experiments
on Ubuntu 22.04 using RTX 4090(24GB) * 4 with
CUDA 11.7.1. Our primary dependencies are
Python 3.11.4, PyTorch 2.0.1, Transformers 4.31.0,
and Numpy 1.24.3. We initialize the three pre-
trained models using public checkpoints. For fine-
tuning, we adopted the configuration in MolT5 (Ed-
wards et al., 2022b), with a learning rate of 1e-3,
50,000 fine-tuning steps, weight decay of 0.1, batch
size of 32, random seed of 42, and 1000 warm-up
steps. For evaluation, we use a greedy search with
a maximum generation length of 512 during gener-
ation. The evaluation metrics script is derived from
MolT5 (Edwards et al., 2022b). For other hyper-
parameters, we relied on the default settings of the
T5ForConditionalGeneration class in Huggingface.
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Dataset Text+Chem T5 Ada-T5 MolT5
BL RG MET BL RG MET BL RG MET

ChEBI-20 0.490 0.498 0.604 0.316 0.369 0.464 0.457 0.485 0.569
SAPubChem-41 0.496 0.504 0.614 0.350 0.410 0.493 0.464 0.484 0.572

Table 2: Results of different models for molecular captioning on ChEBI-20, SAPubChem-41 datasets. The best
scores are in bold. BL:BLEU-4, RG:ROUGE-2, MET:METEOR

Dataset Text+Chem T5 Ada-T5 MolT5
Morgan Acc Val Morgan Acc Val Morgan Acc Val

ChEBI-20 0.697 0.212 0.792 0.672 0.182 0.886 0.529 0.081 0.772
SAPubChem-41 0.726 0.243 0.937 0.699 0.213 0.854 0.582 0.093 0.788

Table 3: Results of different models for molecular generation on ChEBI-20, SAPubChem-41 datasets. The best
scores are in bold. Morgan:Morgan FTS, Acc:Accuracy, Val:Validity

4.2 Performance Comparison of
Molecule-Caption Translation

Molecular Captioning Table 2 presents the re-
sults of the molecule captioning task, utilizing
the original ChEBI-20 dataset and the augmented
SAPubChem-41 dataset to optimize three distinct
pre-trained models. Across all measurement met-
rics, it is observable that the performance of
all models using our augmented SAPubChem-41
dataset is generally superior to that utilizing the
original ChEBI-20 dataset.

Text-based Molecule Generation Table 3
presents the results of the text-based molecule gen-
eration task, utilizing the original ChEBI-20 dataset
and the augmented SAPubChem-41 dataset to op-
timize three distinct pre-trained models.Notably,
the performance of all models that utilize our
augmented SAPubChem-41 dataset generally sur-
passes those that use the original ChEBI-20 dataset.
The accuracy of the generated molecule, as well as
its similarity to the ground truth molecule, have
been significantly improved following the self-
augmentation of the dataset. This evidences sub-
stantial enhancements in performance when inte-
grated with our self-rewarding framework.

4.3 Iterative Procedure
We utilize our framework on the Text+Chem T5,
taking the ChEBI-20 as the original dataset. This
approach facilitates an augmented dataset while si-
multaneously enhancing the model’s performance.
It is critical to note that our intention in these experi-
ments is not necessarily to achieve a state-of-the-art
model. Rather, our prime objective is to examine
the efficacy of our framework, which is designed

to optimize both the model and the pseudo-labeled
dataset concurrently. Figure 4 illustrates the iter-
ative process in which dashed lines represent the
molecule captioning task and solid lines signify the
text-based molecule generation task. We report the
complete results in Table 4 and 5. There are a few
observations: First, it is noticeable that for both
tasks the outcome of iteration 5 mostly falls short
of that of iteration 4 in all metrics. This suggests
that the training process reaches convergence on
iteration 4 for both tasks. Consequently, we adopt
the augmented dataset obtained at the fourth iter-
ation as our conclusive dataset. Second, for the
text-based molecule generation task, there is a con-
sistent upward trend across all pertinent metrics.
This suggests that an increased quantity of high-
quality pseudo-labeled data contributes to the opti-
mization of the model in the molecule generation
process. This trend underscores the necessity of
sufficient high-quality data in cross text-molecule
learning. Lastly, when it comes to the molecule cap-
tioning task, the general trend in relevant metrics
indicates a rise. Initially, there is a minor decrease
in the BLEU and Meteor metrics, which is counter-
weighed by an enhancement in Rouge. As the vol-
ume of high-quality pseudo-labeled data increases,
all metrics demonstrate improvement. This trend
suggests that the quantity of high-quality pseudo-
labeled data is also a significant factor.

4.4 Ablation Study

We perform further ablation studies to validate the
effectiveness of the key component in our frame-
work, i.e., the self-sampling strategy.

To demonstrate the significance of pseudo-
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Iteration BLEU↑ Accuracy↑ Levenshtein↓ MACCS FTS↑ RDK FTS↑ Morgan FTS↑ Validity↑
t0 0.750 0.212 27.39 0.874 0.767 0.697 0.792
t1 0.821 0.236 19.31 0.885 0.788 0.721 0.931
t2 0.832 0.237 18.69 0.885 0.788 0.722 0.938
t3 0.828 0.240 19.28 0.886 0.788 0.724 0.934
t4 0.827 0.243 18.59 0.887 0.792 0.726 0.937
t5 0.830 0.238 19.03 0.883 0.786 0.721 0.937

Table 4: The iterative results of molecule generation task. The best scores are in bold.

Iteration BLEU-2↑ BLEU-4↑ Rouge-1↑ Rouge-2↑ Rouge-L↑ Meteor↑
t0 0.580 0.490 0.647 0.498 0.586 0.604
t1 0.574 0.486 0.651 0.502 0.590 0.601
t2 0.580 0.486 0.653 0.503 0.592 0.602
t3 0.583 0.490 0.653 0.504 0.593 0.611
t4 0.584 0.496 0.653 0.504 0.593 0.614
t5 0.583 0.491 0.652 0.503 0.591 0.610

Table 5: The iterative results of molecule captioning task. The best scores are in bold.

(a) BLEU (b) Accuracy (c) Morgan FTS

Figure 5: Results of molecule generation task using different sampling strategy. The blue line marks the result of
model optimization on the original dataset.

(a) BLEU-4 (b) Rouge-2 (c) Meteor

Figure 6: Results of molecule captioning task using different sampling strategy. The blue line marks the result of
model optimization on the original dataset.

labeled data selection, we conducted a compara-
tive analysis of the performance of all intermedi-
ate models. We compared the use of randomly-
selected data of the same size with our refined data.
As depicted in Figure 5 and 6, our refined data con-
sistently outperformed the randomly-selected data
across all metrics at each iteration for both tasks.

Notably, when optimizing the model on randomly-
selected data, the results were generally inferior to
the original model on most metrics. This indicates
that the model tends to overfit to noisy pseudo-
labels. These findings emphasize the critical role
of the self-sampling strategy in our framework.
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5 Conclusion

In this paper, we have explored and grappled with
the challenge of a deficiency in the accessibility
of high-quality datasets for model fine-tuning in
the field of cross text-molecule learning, by devel-
oping a novel framework. This innovative frame-
work efficiently combines model fine-tuning with
data augmentation, integrating the model in such
a way that it expands its roles to include anno-
tating unlabeled data and sampling a subset of
high-quality data. The paper further introduces
a high-quality dataset, the SAPubChem-41, ex-
pressly designed for fine-tuning purposes. The
experiments’ results were impressive as the model
optimized using SAPubChem-41 consistently out-
performed the model optimized using the original
dataset, ChEBI-20. Going forward, this paper’s
findings present crucial steps toward addressing
high-quality data scarcity for fine-tuning and en-
suring further advancement in the exciting field of
cross text-molecule learning.

6 Limitations and Future Works

One limitation of our framework is that it only
considers a 1D representation of molecules. The
integration of additional representations, such as
molecule graphs, is left as future work. Addition-
ally, our data augmentation module currently only
supports sample-level labels. It is expected that
more quality measurements from different levels
will be incorporated to provide a comprehensive
perspective on quantifying the dataset quality.
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A Datasets Information

SAPubChem-41 The SAPubChem-41 datasets
comprises 33k real data sourced from CHEBI-20
and 8k high-quality pseudo labelled data sourced
from self-augmentation on Text+ChemT5. Rep-
resentative examples of pseudo-labelled part are
provided in Table 7. In addition, to further eluci-
date the advantages of iterative strategy on model
performance, we have documented representative
examples of updated captions in Table 6.

Comparison with Existing Datasets In Ta-
ble 8 we present a detailed comparison of
our SAPubChem-41 datasets with existing lim-
ited datasets with parallel molecule-description
pairs,including:

• ChEBI-20 (Edwards et al., 2021): consists of
33k molecule-caption pairs with caption ex-
ploiting ChEBI(Degtyarenko et al., 2007)an-
notations and more than 20 words.

• PCdes (Zeng et al., 2022): consists of 15k
substances in PubChem which have names,
SMILES and corresponding paragraphs of
property descriptions.

• DrugBank-23(Chen et al., 2023): consists
of 23k compounds from DrugBank (Wishart
et al., 2018) with corresponding description’s
length longer than 20 words.

B Pre-trained Model Information

Table 9 presents the information of three different
pre-trained models utilized in our experiments.

C Experiments

C.1 Performance Comparison
Here we present the complete results of perfor-
mance comparison for both molecular captioning
task and molecule generation task in Table 10&Ta-
ble 11.

C.2 Ablation Study
Here we present the complete results of both molec-
ular captioning task and molecule generation task
using different sampling strategy in Table 12 &
Table 13.

C.3 Additional Experiments
To further substantiate the efficacy of our
framework and the exceptional quality of the
SAPubChem-41 dataset, we have conducted a se-
ries of experiments. These were performed with the
goal of optimizing three distinct pre-trained models,
utilizing both our augmented dataset, SAPubChem-
41, and other prevalent public datasets which in-
clude ChEBI-20 and PCdes. The findings from
these experiments are reported in Table 14 & Ta-
ble 15. It can be noted that across both task cat-
egories, models that were optimized using our
self-augmented dataset, SAPubChem-41, generally
exhibited superior performance in comparison to
those optimized with other existing datasets.
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SMILES [C@H]1(O[C@H]([C@@H](O)C)C(O)O)
[C@@H](O)[C@H](O)[C@H](O)[C@H](C)O1

previous caption The molecule is a glycosylglucose consisting of
D-galactopyranose and D-glucopyranose residues
joined in sequence by a (1->4) glycosidic bond.
It derives from a D-galactopyranose and a D-
glucopyranose.(0.6611)

updated caption The molecule is a deoxygalactose that is D-
galactopyranose in which the hydroxy group at po-
sition 3 has been replaced by a methyl group. It is
a deoxygalactose and a methyl glycoside. It derives
from a D-galactopyranose.(0.6817)

SMILES CC([C@@H](C)O)(C)OC-
previous caption The molecule is an ether in which the stereocentres

at positions 2 and 3 both have S-configuration. It is
an ether and a secondary alcohol.(0.6610)

updated caption The molecule is an ether in which the stereocentres
at positions 2 and 3 both have S-configuration. It is
an ether and a secondary alcohol. It derives from a
hydride of an oxepane.(0.6704)

SMILES CI
previous caption The molecule is an iodoalkane that is ethane in which

one of the hydrogens is substituted by iodine. It has
a role as a human metabolite. It is an iodoalkane and
a member of iodos. It derives from a hydride of an
ethane.(0.7479)

updated caption The molecule is an iodoalkane that is ethane in which
one of the hydrogens is substituted by iodine. It has a
role as a metabolite. It is an iodoalkane and a volatile
organic compound. It derives from a hydride of an
ethane.(0.7671)

SMILES N([N+])=C
previous caption The molecule is an organic cation resulting from

the protonation of the nitrogen of nitric acid. It is a
conjugate acid of a nitric acid.(0.7479)

updated caption The molecule is a hydracid and a one-carbon com-
pound. It is a conjugate acid of a hydrazine. It derives
from a hydride of a hydrazine.(0.7599)

SMILES [C@H]1(C)[C@@](CO)(O)[C@@H]-
(O[C@@H](C)O)[C@H](OC(C)C)O1

previous caption The molecule is a spiro-epoxide resulting from the
formal epoxidation of the hydroxy group at position
2 of D-fructofuranose. It is a spiro-epoxide and a gly-
coside. It derives from a D-fructofuranose.(0.6014)

updated caption The molecule is a deoxygalactose that is alpha-D-
galactopyranose in which the hydroxy group at posi-
tion 2 has been replaced by a methyl group. It is a
deoxygalactose and a tertiary alcohol.(0.6839)

Table 6: Five examples of the comparison of previous caption when adopting our iterative strategy.Corresponding
Text2Mol Score of each molecule-caption pairs is present in the bracket.

9562



SMILES Caption
C@H](C[C@H](C(/C=C/C)=O)C)

([C@@H]([C@H](/C=C/C(=O)O)C)O[C@H]1[C@H]
(O)[C@@H]([NH+])C[C@@H](C)O1)C

The molecule is an organic cation that is the conju-
gate acid of 1D-myo-inositol, obtained by protona-
tion of the tertiary amino group; major species at pH
7.3. It is an ammonium ion derivative and an organic
cation. It is a conjugate acid of a 1D-myo-inositol.

[O-][Mn] The molecule is a monovalent inorganic anion ob-
tained by deprotonation of manganese. It is a man-
ganese oxoanion and a monovalent inorganic anion.
It is a conjugate base of a manganese.

C[C@@H](C(OC)OC)C=C The molecule is an ether in which the stereocentres
at positions 2 and 3 both have S-configuration. It is
an ether and an alicyclic compound.

O(C([C@H](C)N)=O)[C@H]([C@H](O)C)[C@H](C)O The molecule is an amino cyclitol that is scyllo-
inositol in which the hydroxy group at position 2
has been replaced by an amino group. It has a role as
a bacterial metabolite. It is an amino cyclitol and a
primary amino compound. It derives from a scyllo-
inositol.

C(C)(C)(C)Br The molecule is a bromoalkane that is ethane substi-
tuted by a bromo group at position 2. It has a role as
a metabolite. It derives from a hydride of an ethane.

C[Se]C The molecule is an organoselenium compound that
is selenium substituted by a methyl group at position
2. It has a role as a metabolite. It derives from a
selenium.

Table 7: Five examples of SAPubChem-41

Info SAPubChem-41 ChEBI-20 PCdes DrugBank-23
Train 34,407 26,407 10,500 17,109

Validation 3,301 3,301 1,500 3,667
Test 3,300 3,300 3,000 3,666

LSMILES 69.96 81.56 56.47 54.11
LDescription 41.59 52.88 72.47 65.04
Data source PubChem DrugBank

Table 8: Details about the existing datasets and ours (SAPubChem-41). LSMILES denotes the average length of
SMILES while LDescription denotes the average word count per description.

Model Suffix Parameters (M)
Text+Chem T5 base 220

Ada-T5 - 220
MolT5 base 220

Table 9: Model Size
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model dataset BLEU-2 BLEU-4 Rouge-1 Rouge-2 Rouge-L Meteor

Text+Chem T5
ChEBI-20 0.580 0.490 0.647 0.498 0.586 0.604

SAPubChem-41 0.584 0.496 0.653 0.504 0.593 0.614

Ada-T5
ChEBI-20 0.424 0.316 0.543 0.369 0.483 0.464

SAPubChem-41 0.444 0.350 0.575 0.410 0.514 0.493

MolT5
ChEBI-20 0.540 0.457 0.634 0.485 0.578 0.569

SAPubChem-41 0.551 0.464 0.638 0.484 0.585 0.572

Table 10: The complete results of different models for molecular captioning on ChEBI-20, SAPubChem-41 datasets.

size dataset BL Acc Lev MACCS RDK Morgan Val

Text+Chem T5
ChEBI-20 0.750 0.212 27.39 0.874 0.767 0.697 0.792

SAPubChem-41 0.827 0.243 18.59 0.887 0.792 0.726 0.937

Ada-T5
ChEBI-20 0.699 0.182 27.48 0.869 0.753 0.672 0.886

SAPubChem-41 0.714 0.213 26.52 0.879 0.772 0.699 0.854

MolT5
ChEBI-20 0.769 0.081 24.49 0.721 0.588 0.529 0.772

SAPubChem-41 0.775 0.093 33.16 0.814 0.668 0.582 0.788

Table 11: The complete results of different models for molecular generation on ChEBI-20, SAPubChem-41 datasets.

size dataset BLEU-2 BLEU-4 Rouge-1 Rouge-2 Rouge-L Meteor

2k
random 0.534 0.447 0.641 0.489 0.579 0.575
refined 0.574 0.486 0.651 0.502 0.590 0.601

4k
random 0.537 0.451 0.641 0.489 0.579 0.577
refined 0.580 0.486 0.653 0.503 0.592 0.602

6k
random 0.532 0.446 0.640 0.489 0.577 0.573
refined 0.583 0.490 0.653 0.504 0.593 0.611

8k
random 0.527 0.443 0.640 0.489 0.579 0.571
refined 0.584 0.496 0.653 0.504 0.593 0.614

10k
random 0.526 0.442 0.639 0.489 0.579 0.571
refined 0.583 0.491 0.652 0.503 0.591 0.610

Table 12: Full results of molecule captioning task using different sampling strategy.

size dataset BLEU Accuracy Levenshtein MACCS FTS RDK FTS Morgan FTS Validity

2k
random 0.715 0.215 23.82 0.873 0.766 0.703 0.868
refined 0.821 0.236 19.31 0.885 0.788 0.721 0.931

4k
random 0.720 0.219 23.79 0.876 0.768 0.706 0.862
refined 0.832 0.237 18.69 0.885 0.788 0.722 0.938

6k
random 0.709 0.220 24.38 0.876 0.767 0.706 0.858
refined 0.828 0.240 19.28 0.886 0.788 0.724 0.934

8k
random 0.715 0.221 24.27 0.875 0.763 0.701 0.855
refined 0.827 0.243 18.59 0.887 0.792 0.726 0.937

10k
random 0.715 0.207 24.37 0.870 0.759 0.696 0.864
refined 0.830 0.238 19.03 0.883 0.786 0.721 0.937

Table 13: Full results of molecule generation task using different sampling strategy.
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model dataset BLEU-2 BLEU-4 Rouge-1 Rouge-2 Rouge-L Meteor

Text+Chem T5
ChEBI-20 0.580 0.490 0.647 0.498 0.586 0.604

PCdes 0.352 0.266 0.439 0.274 0.373 0.382
SAPubChem-41 0.584 0.496 0.653 0.504 0.593 0.614

Ada-T5
ChEBI-20 0.424 0.316 0.543 0.369 0.483 0.464

PCdes 0.289 0.188 0.428 0.243 0.367 0.324
SAPubChem-41 0.444 0.350 0.575 0.410 0.514 0.493

MolT5
ChEBI-20 0.540 0.457 0.634 0.485 0.578 0.569

PCdes 0.165 0.078 0.290 0.118 0.233 0.204
SAPubChem-41 0.551 0.464 0.638 0.484 0.585 0.572

Table 14: The complete results of different models for molecular captioning on SAPubChem-41 and other existing
datasets.The best scores are in bold.

size dataset BL Acc Lev MACCS RDK Morgan Val

Text+Chem T5
ChEBI-20 0.750 0.212 27.39 0.874 0.767 0.697 0.792

PCdes 0.614 0.105 30.43 0.697 0.544 0.459 0.849
SAPubChem-41 0.827 0.243 18.59 0.887 0.792 0.726 0.937

Ada-T5
ChEBI-20 0.699 0.182 27.48 0.869 0.753 0.672 0.886

PCdes 0.579 0.089 38.99 0.778 0.600 0.492 0.947
SAPubChem-41 0.714 0.213 26.52 0.879 0.772 0.699 0.854

MolT5
ChEBI-20 0.769 0.081 24.49 0.721 0.588 0.529 0.772

PCdes 0.476 0.009 53.27 0.635 0.432 0.330 0.711
SAPubChem-41 0.775 0.093 33.16 0.814 0.668 0.582 0.788

Table 15: The complete results of different models for molecular generation on SAPubChem-41 and other existing
datasets.The best scores are in bold.
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