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Abstract

Dialects introduce syntactic and lexical varia-
tions in language that occur in regional or social
groups. Most NLP methods are not sensitive
to such variations. This may lead to unfair
behavior of the methods, conveying negative
bias towards dialect speakers. While previous
work has studied dialect-related fairness for as-
pects like hate speech, other aspects of biased
language, such as lewdness, remain fully unex-
plored. To fill this gap, we investigate perfor-
mance disparities between dialects in the detec-
tion of five aspects of biased language and how
to mitigate them. To alleviate bias, we present a
multitask learning approach that models dialect
language as an auxiliary task to incorporate syn-
tactic and lexical variations. In our experiments
with African-American English dialect, we pro-
vide empirical evidence that complementing
common learning approaches with dialect mod-
eling improves their fairness. Furthermore, the
results suggest that multitask learning achieves
state-of-the-art performance and helps to detect
properties of biased language more reliably.

1 Introduction

The term social bias is used broadly in the field of
NLP. Existing works approach various facets, such
as the affected social group (Sap et al., 2020), the
tasks for which bias is evaluated (Blodgett et al.,
2020), and the limited fairness of NLP systems
in real-world settings, which may put specific so-
cial groups at a disadvantage while favoring others
(Hovy and Spruit, 2016; Wu et al., 2022).

A specific fairness issue arises when a bias de-
tection model is predominantly trained and eval-
uated on standard language but applied to texts
with dialect (Jurgens et al., 2017). Dialects ap-
pear in regional and social communities and intro-
duce syntactic and lexical variations (Blodgett et al.,
2016). As such, dialects may notably diverge from
the source language, posing a challenge to models
trained primarily on standard language (Belinkov

a) Likel draymond kill me with all that shit he be talking to the
Yy ! g
AAE refs please be quiet boy before you get us all in trouble
(b) Likely you all make fucking terrible “music”
not AAE

—— |
C offensive ) Cintentional)

Figure 1: Two texts from the corpus of Sap et al. (2020),
showcasing some of the five social bias aspects tackled
in this paper: Neither text is lewd, talks about some
target group, or is from an ingroup member. Unlike
(a), however, (b) is offensive and intentional. While (a)
contains elements common in AAE, i.e., the habitual be
and dropped copula (Ziems et al., 2022), (b) does not.

and Bisk, 2018; Ebrahimi et al., 2018; Kantharuban
et al., 2023). If not explicitly accounted for, the lack
of dialect understanding may subsequently lead to
unfair decisions towards dialect speakers (Ziems
et al., 2022), originating in data and label imbal-
ances, but also in selected dialect terms that may be
considered offensive in non-dialect contexts. For
example, while the use of the N-word can be accept-
able when used among African-American English
(AAE) speakers, its use is considered inappropri-
ate in Standard American English (SAE) (Rahman,
2012; Widawski, 2015; Talat et al., 2018).

Most NLP models are, however, developed with-
out consideration for dialect patterns and may, if
any, only learn them implicitly through language
modeling on large corpora. For example, at the
time of writing, common language models, such
as GPT-3 (Brown et al., 2020), LLaMA (Touvron
et al., 2023a), Llama-2 (Touvron et al., 2023b),
or DeBERTaV3 (He et al., 2023), all have not ex-
plicitly been trained or evaluated for dialects. The
resulting disparities between dialect and standard
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languages have been widely recognized (Blodgett
and O’Connor, 2017; Duarte et al., 2017; Tatman,
2017; Davidson et al., 2019; Resende et al., 2024).
So far, however, few works focus on dialect-related
fairness issues for social bias detection.

In this work, we investigate how to improve the
fairness of social bias detection by explicitly model-
ing dialect language. We follow the bias definition
of Sap et al. (2020), and consider fairness as equal
classification performance between texts written in
some dialect and other texts (Halevy et al., 2021).
Concretely, we ask:

How to improve fairness in automated
social bias detection between dialect and
non-dialect language, while maintaining
detection performance?

To study this question, we propose a multitask
learning approach that treats the dialect detection
jointly with social bias classification tasks. Our hy-
pothesis is that, by modeling dialect as an auxiliary
task, the model gains a better internal representa-
tion of dialect language patterns and bias aspects.
We expect that this does not only allow it to differ-
entiate between dialect and biased language more
easily, but also benefit non-dialect texts.

For evaluation, we focus on AAE as dialect,
adopting the demographic-aligned definition of
Blodgett et al. (2016), and five aspects of bias,
namely offensiveness, lewdness, intention, target-
ing a group, and being part of the target group (cf.
Section 4). Figure 1 illustrates how two examples
relate to the dialect labels and the bias aspects.

In experiments, we compare the classification
performance and fairness of our approach to base-
lines from related work as well as ablations that do
not explicitly model dialect. We evaluate common
performance and fairness metrics overall and per
dialect. A perfectly fair model would show high
performance without differences for dialect splits.
Since, at the time of writing, no corpus for bias
detection includes annotations for dialect use, we
employ an automated data augmentation method.

The results of our experiments reveal perfor-
mance disparities between AAE and non-AAE
texts, and suggest that modeling multiple bias as-
pects helps to detect biased language more reli-
ably. The proposed multitask learning approach
improves over the best baseline and over single-task
learning for four out of five bias aspects. Moreover,
the dialect auxiliary task improves fairness for texts
with dialect language and also benefits non-dialect

texts. Learning five bias aspects and dialect detec-
tion simultaneously shows the most stable fairness
and performance improvements across tasks.

To summarize, our main contributions are:

1. A multitask learning approach to jointly learn
dialect and social bias detection.

2. Evidence that simultaneously modeling multi-
ple bias aspects and dialect language improves
the classification performance and fairness for
(AAE) dialect speakers.1

2 Related Work

Social bias can be defined as stereotypical thinking
or prejudices against social groups (Fiske, 1998).
In NLP, it can manifest in hidden representations
(Spliethover and Wachsmuth, 2020) or unfair pre-
dictions (Angwin et al., 2016). Identifying social
bias in data is an important step towards debias-
ing NLP models, since models adopt and amplify
pre-existing biases which can have harmful effects
(Zhao et al., 2017; Shwartz and Choi, 2020).

In related work, Wald and Pfahler (2023) analyze
bias in fine-tuned large language models (LLM) as
a proxy for bias in data. Focusing on single texts,
Sap et al. (2020) introduce the Social Bias Infer-
ence Corpus (SBIC) and train a model to predict
multiple bias aspects. Prabhumoye et al. (2022)
apply few-shot learning to instruction-tuned LLMs
on the same data. We build on the work of Sap et al.
(2020), but extend it by considering dialects.

Relevant to dialects, another perspective to social
bias is fairness regarding performance across social
groups (Tolan, 2018). For example, Tatman (2017)
find that video captioning systems perform worse
for dialect speakers and women. In NLP, Blodgett
et al. (2016) highlight disparities between dialect
and standard language, as well as social groups in
language identification. Resende et al. (2024) find
negative biases in hate speech detection towards
AAE texts due to underrepresentation in datasets.
However, no work so far has considered fairness
for the interplay of dialects and social bias. Ziems
et al. (2022) find, similar to Joshi et al. (2024), that
models perform worse on AAE compared to SAE
in natural language understanding tasks.

Many existing fairness evaluations target toxic-
ity detection. Mozafari et al. (2020) observe that a
fine-tuned model labels AAE texts more often as

'Code at: https://github.com/webis-de/ACL-24
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hate speech than SAE texts and propose a mitiga-
tion strategy. Similarly, Halevy et al. (2021) aim
to mitigate this bias by introducing a dialect detec-
tion and dialect-specific toxicity classifiers. Their
ensemble reconsiders positive toxicity predictions
for AAE texts. Badjatiya et al. (2019) show that
hate speech detection can be improved by remov-
ing bias-sensitive words commonly used in dialects,
and Xia et al. (2020) propose an adversarial model
to prevent false classifications for AAE text.

We aim to identify multiple aspects of biased
language rather than just toxicity, and intend to
incorporate dialect language into the model using
multitask learning instead of separate models. Clos-
est to our approach, Talat et al. (2018) try to over-
come socio-demographic differences in hate speech
annotations that arise from diversity in contexts and
definitions. They train a multitask learning model
on texts from various domains, annotated with sep-
arate definitions for hate speech. In experiments,
their model outperforms existing approaches and
generalizes better to unseen data. Unlike us, how-
ever, they do not account for dialect language, nor
evaluate for respective social groups. Moreover,
we use multitask learning to explicitly incorporate
socio-demographic knowledge, namely dialect lan-
guage patterns, into a unified model.

For data availability reasons, we automatically
augment the SBIC. Modern language models have
been tested with respect to their capabilities to aug-
ment training data. For example, Faggioli et al.
(2023) evaluate the utility of LLMs as annotators
for supervised learning and find that, for relevance
judgment tasks, automatically-generated annota-
tions show promising results. Zhang et al. (2023)
extend the idea by introducing active learning. In
contrast, we fine-tune an encoder model on a sepa-
rate AAE dialect dataset and use it to annotate the
bias aspect dataset for dialect language usage.

In terms of dialect data, Ziems et al. (2022),
propose a rule-based approach to create a new
benchmark derived from GLUE (Wang et al., 2018).
Blodgett et al. (2016) introduce the TwitterAAE
dataset containing around 60 million tweets with
semi-supervised annotations. While many corpora
focus on AAE vs. SAE (Groenwold et al., 2020),
the TwitterAAE annotations make no further as-
sumption about the non-AAE text. While a notable
portion may be SAE, some might use other dialects.
Since our work focuses on AAE vs. non-AAE and
on texts from the internet, we employ the Twitter-
AAE corpus to train a dialect classifier.

3 Methodology

This work focuses on making model classifications
fairer for dialect texts. In the following, we present
our approach to improve fairness by integrating
dialect with bias aspect detection in a multitask
learning architecture. As dialect annotations for
bias detection data are unavailable so far, we de-
scribe how we augment existing data automatically.

3.1 Joint Modeling of Social Bias and Dialect

Research has shown that a primary task’s perfor-
mance can improve through multitask learning, in
which a trained model can transfer knowledge be-
tween primary and auxiliary tasks (Caruana, 1998).
In this work, we hypothesize that learning to de-
tect dialect language as an auxiliary task improves
the performance of a primary task for texts written
in the given dialect. The addition of dialect aids
the model in distinguishing simple dialect use from
actual bias markers. For example, the text “We
was at some random-ass bar” (Ziems et al., 2022)
might not be lewd in a context where the dialect
is commonly used, such as conversations between
AAE speakers. However, similar use of the word
ass in non-AAE contexts might be perceived as
lewd or obscene (Ziems et al., 2022).
Furthermore, we expect that multitask learning
does not only improve fairness, but also the relia-
bility of identifying bias aspects. Given that bias
aspects such as offensiveness, intentionality, and
targeting a group are not fully independent from
each other, multitask learning may leverage inter-
dependencies to make more accurate predictions.
To operationalize our hypotheses, we propose
a weight-sharing joint learning architecture (Col-
lobert and Weston, 2008) that uses a shared encoder
and separate classification heads for each task using
a standard cross-entropy loss (Jurafsky and Martin,
2021), computed for each sample separately:

n
Lgy) = —> wilogi, (1)
i=1
where n is the number of samples, y; the true label,
and ¢j; the softmax output at position ¢. Here, the
used labels alternate between the different dialect
and bias aspect tasks in a round-robin manner.
Figure 2 illustrates our joint multitask learn-
ing architecture with k task-specific classification
heads. We further add a classification head for the
auxiliary task of learning to detect a specific di-
alect. At training time, each head is conditioned
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on one task (i.e., bias aspect and dialect), whereas
the shared encoder is fine-tuned for all k¥ + 1 tasks.
In our specific case, the loss for the encoder model
is calculated by alternating round-robin between
tasks and individually being backpropagated to the
encoder. For inference, only the classification head
for the primary task is used.’

3.2 Data Augmentation with Dialect Labels

Previous work has shown that parallel data benefits
multitask learning, as correlations between multi-
ple labels are easier to identify, positively affecting
all learned tasks (Pfeiffer et al., 2020). As noted
in Section 2, however, no bias corpus with dialect
labels exist. Furthermore, relying on a separate cor-
pus for the auxiliary task (Collobert and Weston,
2008; Talat et al., 2018) may easily cause domain
transfer problems and introduce noise.’

Therefore, we employ a data augmentation
method. To this end, we train a dialect classifier on
a separate corpus and then add dialect labels to the
main corpus, as detailed in Section 4. Augmenting
an existing corpus has two main advantages:*

1. It enables multitask learning approaches to
transfer knowledge between the primary and
auxiliary tasks more efficiently.

2. It is more generally applicable to other di-
alects, since dialect-specific classifiers can be
developed independent from the approach.

4 Experiments

This section evaluates the effectiveness of multi-
task learning in improving fairness for dialects. We
focus on African-American English (AAE) as a
dialect and five social bias classification tasks. Be-
low, we describe the experimental setups of our
dialect data augmentation and our social bias detec-
tion approach. Using the augmented data, we test
whether multitask learning improves fairness for
dialect speakers if the dialect is modeled explicitly.

4.1 Data

We use the following two corpora for the auxiliary
task of dialect classification and for the primary
task of social bias classification, respectively.

*While joint learning requires re-training for new tasks or
dialects, continual learning (Phang et al., 2019; Scialom et al.,
2022) faces similar issues, and adapter fusion (Pfeiffer et al.,
2021) performed notably worse in preliminary tests.

3Preliminary tests confirmed this assumption.

“Data augmentation also makes the experiments more con-
trolled and less dependent on the content of the dialect corpus.

Always auxiliary task  Current auxiliary task Current primary task

———

<+
Shared
encoder

round | robin
<+ ~ +

Input

Dialect Bias aspect #1 Bias aspect #k
classific. head classific. head classific. head
<+ <+ <+
. Output =, Output . Output
Training only Training only Training + Inference

Figure 2: Our joint learning architecture: Dialect clas-
sification is added as an additional head to the classi-
fication of the bias aspects. During training, all clas-
sification heads are trained round-robin in alternating
manner. For inference, only the classification head of
the primary task is used, here the Bias aspect #k head.

TwitterAAE Corpus We train and evaluate AAE
classification on the TwitterAAE corpus (Blodgett
et al., 2016). The corpus contains about 59 million
tweets from 2013, of which around 1 million are la-
beled as AAE dialect (dataset statistics are reported
in Appendix D). The annotation was done semi-
supervised, partially based on geolocation and user
demographics. Since Blodgett et al. (2016) do not
provide data splits, we randomly seperate 80% as
training and validation set, and 20% as test set, in a
stratified way to preserve dialect label ratios (using
a seed for reproducability).

Social Bias Inference Corpus The Social Bias
Inference Corpus (SBIC) (Sap et al., 2020) consists
of about 45k English posts from online commu-
nities. Humans annotated each post for different
aspects of biased language, which include the fol-
lowing five classification labels:?

1. Offensiveness. Whether or not a text is rude,
disrespectful or shows toxicity

2. Intent. If a text is offensive, whether this of-
fensiveness was intentional or not

3. Lewdness. Whether or not a text contains ob-
scene or sexual references

4. Target Group. Whether or not a text is directed
towards a specific social group

5. Ingroup. Whether or notthe author of the text
is part of the targeted social group

We use the aggregated version of SBIC, for
deduplicated texts and preprocessed labels (dataset

5 Additionally, the corpus includes two free-text annota-
tions describing the specific social group being targeted and
the implied statement of a text. Since we focus on classifica-
tion fairness, we disregard the free-text labels in this work.
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statistics in Appendix D). For preprocessing, we
lowercase texts, and remove mentions, retweet
markers, URLs, and non-English characters. Fol-
lowing Sap et al. (2020), we binarize all labels.

4.2 African-American English Classification

To augment the SBIC with AAE dialect annota-
tions, we develop a classifier to identify AAE texts.
As mentioned in Section 2, we explicitly refrain
from distinguishing AAE and SAE, as our goal is
to seperate AAE from non-AAE texts.

Approach We fine-tune DeBERTa-v3-base (He
et al., 2023) with a classification head on the Twit-
terAAE corpus. While bigger models exist, BERT-
based text encoders still show state-of-the-art per-
formance in various downstream tasks (He et al.,
2023) and remain competitive for text-only classifi-
cation tasks (Chen et al., 2023). Furthermore, the
DeBERTa-v3-large variant did not show a notable
increase in performance in preliminary tests.

Due to the strong imbalance in the TwitterAAE
corpus, we evaluate two training methods:®

* Subsampling (AAEg;,). We randomly sample
non-AAE texts in the training data (using a
seed for reproducability) to match the number
of AAE texts and create a balanced dataset.
This method aims to equalize the importance
of AAE and non-AAE labels.

* Loss weighting (AAE,,g;,). Subsampling re-
moves a potentially large number of training
instances (nearly 57 million in this case). In-
stead, this method weighs the loss of each
label, relative to the label distribution. For the
given data, wrongly (or correctly) classifying
AAE texts has, therefore, a higher impact on
the model weights during backpropagation.

Baselines We compare our approach to the Twit-
terAAE dialect classifier presented by Blodgett et al.
(2016). To verify that the models show a learning
effect, we also report majority and random classi-
fiers. Since we aim to reliably find AAE texts in
particular, we emphasize the recall for this class.

Measures For all models, we report per-class and
macro-averaged precision, recall, and F;-scores.

4.3 Social Bias Detection

Now, we detail our proposed multitask learning
approach to social bias detection, ablations to fur-

®1n early tests, just fine-tuning led to a majority classifier.

ther investigate fairness, and the baselines we com-
pare to. All proposed models are based on the
DeBERTa-v3-base encoder (He et al., 2023).”

Approach We train a joint-weight multitask
learning model (MULTITASK aag) that consists of
a shared encoder and separate classification heads
for the five bias aspects. Moreover, we add a classi-
fication head to detect AAE dialect. We, therefore,
train a model with six classification heads in total.
As detailed above, the additional dialect detection
task should help the model to better differentiate
between dialects and biased language properties.
Theoretically, this could be extended to further di-
alects, but we chose to restrict this study to AAE
as an example.

Ablations To examine the effect of the auxiliary
tasks, we evaluate two ablations of the approach.
First, we train the multitask learning model on the
five classification tasks without AAE dialect mod-
eling (MULTITASK). This allows us to analyze the
auxiliary task’s influence on the multitask learning
model. Second, we train single-task models with
(SINGLETASK;aaE) and without (SINGLETASK)
AAE detection to better understand its influence on
each task. To do so, we use a similar joint-weights
learning setup as above.®

Baselines We compare our approaches and abla-
tions to two baselines from related works for over-
all performance. First, we use the results of the
best approach of Sap et al. (2020). The authors
employ and fine-tune a GPT-2 model, formulating
the problem as an auto-regressive generation task.
Second, we use scores of the overall best approach
reported by Prabhumoye et al. (2022). Like Sap
et al. (2020), the authors formulate the task as a
generation task, but do so in a Q&A format. In-
stead of fine-tuning, however, Prabhumoye et al.
(2022) employ a few-shot learning setup, providing
the model with in-context examples during infer-
ence. Since neither the code, the model, nor the
predictions per text are available, we compare to
the scores reported in the respective papers.

Measures Following Sap et al. (2020) and Prab-
humoye et al. (2022), we report the positive-class
F;-score for each task to assess classification per-

"For results with RoBERTa-base as encoder model, see
Appendix B.

8While the SINGLETASK, aaE iS, in fact, also a multitask
learning model, we refer to it as single-task model with AAE
for clarity and better differentiation to the proposed approach.
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Precision 1 Recall 1 Fi 1 Model Offens. Intent Lewdn. Target Ingroup

Model Pos Neg Mac Pos Neg Mac Pos Neg Mac Majority 732 .694 .000 .000 .000

Majority .00 50 25 00 1.0 50 00 67 .33  Random 929 S04 165456 038

Random .50 .50 .50 .50 .50 .50 .50 .50 .50  GPT=2 788 786 807  .699 000

TWiAAE 73 68 71 64 77 70 69 72 g0  fewsshot 822798 4l 737 -

AAE,q $.80 .76 £.78 £.74 £.81 .78 +.77 £.78 +.78 2% " ig;g 122} ';g‘s‘ lggg '(1’82
AAEq, +.77 £78 77 £78 76 +77 £.77 £77 +.77 * : : : ’ :

MTL #1882 1864 *+757 £.832 *+1.235

MTL.axe  *5.879  +.864 751 +.831 #¥:.227

Table 1: African-American English dialect classification
results: postive class (Pos), negative class (Neg) and
macro-averaged (Mac). While AAEy,, seems better
in finding dialect texts (higher recall for Pos), AAEgn
performs better overall. Gains of both approaches over
the Twitter AAE baseline are significant (& for p < .01).

formance.” To study potential disparities and im-
provements, we further evaluate the classification
performance per dialect (i.e., AAE and non-AAE).
This allows us to test our hypothesis that classi-
fiers work better for non-AAE texts than AAE texts
and if the proposed approach improves upon this.
Lastly, we also consider two common fairness met-
rics (Garg et al., 2020): Predictive parity describes
the delta between both groups’ precision scores (in
this context referred to as the positive predictive
value). Predictive parity is said to be satisfied if it
is 0. Equalized odds, on the other hand, describes
fairness based on recall (in this context referred to
as true positive rate) and the false positive rate. It
is said to be satisfied if deltas between the dialect
groups are 0.

5 Results and Discussion

We first discuss the results of dialect classification,
before we look at its interplay with social bias.

5.1 African-American English Classification

The results of the African-American English (AAE)
dialect classification are reported in Table 1. Due
to the heavy imbalance of the test dataset (only
2% are labeled as AAE dialect), we report met-
ric scores on a randomly subsampled test set that
balances AAE and non-AAE texts (using a seed
for reproducability), with around 230k samples per
class. For completeness, results on the full test set
are reported in Appendix B.

Both our approaches, AAEy,, and AAEgy,, out-
perform the previous state-of-the-art approach Twit-
terAAE in nearly all evaluations significantly. Espe-
cially, the gains on positive class precision (.80 vs.

For completeness, we also report negative class and
macro-averaged results in Appendix B.

Table 2: Bias classification results (positive-class Fy,
averaged over five random seeds) for each aspect: of-
fensiveness, intent, lewdness, target group, and ingroup.
The additional dialect modeling in MULTITASK aAE
(MTLaag) improves over single-task approaches and
baselines in most cases. Most gains over the strongest
baseline per bias aspect are significant (i for p < .01).
Significant gains of multitask approaches over single-
task variants are marked by * (p < .05) or ** (p < .01).

.73 for AAEyen) and recall (.74 vs. .64 for AAEygh)
are noteworthy, as they allow us to identify more
actual AAE texts more reliably in our main analy-
sis. While scores increased less substantial over the
baseline in negative class recall (i.e., identifying
more non-AAE texts correctly, with .81 vs. .77 for
AAEy,), increases in negative class precision are
similarly noteworthy (.76 vs. .68 for AAEygp).

Overall, AAEy,h not only performs better than
TwitterAAE in all metrics, but also improves over
AAEqy,, except for positive class recall and neg-
ative class precision. While the recall of the posi-
tive class is important in this task, AAEy,, would
likely introduce more noise through false predic-
tions, as indicated by its lower recall for the neg-
ative class, which also does not improve over the
baseline. Therefore, we use AAEy,, to augment
the SBIC data with AAE dialect annotations.

5.2 Social Bias Detection

Table 2 presents the results of predicting the five
bias aspects. Following Sap et al. (2020) and Prab-
humoye et al. (2022), we report the F;-score of
the positive class for each aspect (for negative and
macro Fy, see Appendix B).

Fine-tuning on single labels seems to work no-
tably better than using a generative approach: SIN-
GLETASK outperforms the two baselines (GPT-2
and few-shot learning) on three bias aspects signif-
icantly. We observe a strong F;-score gain of 9.6
points over the best baseline on the target group
aspect (.833 vs. .737). A better dialect language un-
derstanding (SINGLETASKaag) further improves
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Offensiveness Intent Lewdness Target Group Ingroup
Model —-AAE AAE —-AAE AAE -AAE AAE —-AAE AAE —-AAE AAE
Majority 361 397 344 .368 476 467 372 .360 497 482
Random 495 .500 492 487 .396 444 499 499 342 .370
SINGLETASK .854 787 .854 786 .861 .842 .863 755 497 482
SINGLETASKAAE 851 $.808 .853 .790 1.869 .836 .867 760 .530 .550
MULTITASK ** 860  **.816 *.856 784 **870 .840 .867 756 **.569  **.630
MULTITASK AAE *856 .806 .855 783 865  *1.846 .867 749 .553 .639

Table 3: Bias classification results (macro F, averaged over five random seeds) for texts with and without AAE
dialect (see Appendix B for precision, recall, and F;-scores per class). While multitask learning has a notable
impact, the AAE modeling especially improves the performance of singletask models. Significant gains are marked
for multitask models over single-task variants (* p < .05, ** p < .01) and for AAE models over those without AAE

modeling (T p < .05, £ p < .01).

performance on lewdness from .744 to .755, while
it seems to not influence the performance on of-
fensiveness and intent. These results indicate that
AAE dialect texts are most impacted by wrong pre-
dictions on the lewdness aspect when finetuning on
a single task. In a qualitative analysis, we find that
particularly for lewdness, better knowledge of AAE
dialect patterns is helpful (cf. Section 5.4). Finally,
all approaches that do not explicitly model AAE
dialect predict the majority label for ingroup.

Both multitask approaches further improve upon
SINGLETASK, showing performance increases in
most aspects except target group. The biggest gains
are achieved for the offensiveness and ingroup as-
pects. For ingroup, seemingly the most challeng-
ing aspect, MULTITASK and MULTITASK, aAE are
among the only three evaluated models that show
a learning effect, with a significantly improved F; -
score of .235 and .227 respectively. This may be
due to a better ability to detect non-offensive con-
texts containing terms usually used offensively, and
an increased awareness of impossible label com-
binations, such as predicting that an author is part
of the target group, while also predicting that no
group was targeted (cf. Section 5.4). These results
indicate that multitask learning helps to detect bi-
ased aspects of language. Moreover, especially for
more complex and implicit signals, such as ingroup,
considering several aspects can help.

Modeling dialects seems to improve results most
when finetuning on a single task. This is most vis-
ible for lewdness and ingroup, where the scores
of SINGLETASK, aag increase by .011 and .108
over SINGLETASK, respectively. A reason may
be that jointly modeling the task and dialect dis-
entangles dialect language from bias aspects and
explicit word use, resulting in a model with better

conceptual representations of the respective aspect
(cf. Section 5.4). A model that considers only the
aspect might not be complex enough to correctly
interpret subtle changes in language introduced by
dialects and thus maybe more prone misclassifi-
cations. Interestingly, MULTITASK aAE does not
benefit in the same of from modeling the dialect in
addition to multiple aspects.

In conclusion, we find that, while supervised
classification shows a notable performance increase
over generative approaches in detecting bias as-
pects, considering multiple aspects of biased lan-
guage jointly, clearly improves the reliability of the
predictions further. Modeling dialect in addition
to bias aspects has the most impact on models that
consider only a single aspects otherwise.

5.3 Fairness in Social Bias Detection

Table 3 shows the results of bias aspect detection
for AAE and non-AAE texts. As hypothesized
in Section 1, the simple supervised fine-tuning of
SINGLETASK performs indeed better for non-AAE
texts, showing a difference of up to 10 points (.863
vs. .755 for target group). Such disparities could
severely impact fairness if deployed in real-world
applications. For example, if a system automati-
cally flags offensive posts for removal, posts by
dialect speakers would be falsely removed more
often due to the decreased ability of the classifier
to model dialect language.

The disparities between AAE and non-AAE per-
formance further suggest that the SINGLETASK ap-
proach still partially relies on word usage rather
than meaning to identify certain bias aspects, show-
ing limited awareness of the AAE dialect (see Sec-
tion 5.4). This interpretation is further supported
by the fact that the SINGLETASK s Ag ablation im-
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proves the performance on AAE texts for most
aspects, and especially offensiveness and intent.
While the gains come with decreases on non-AAE
texts for selected aspects, dialect modeling still
reduces the performance gap between AAE and
non-AAE most of the time. It may thus be seen as
a worthy trade-off, depending on the application.

Interestingly, however, SINGLETASK aag Shows
the opposite effect for two aspects: For lewdness,
the performance on AAE texts drops from .842 to
.836, but increases for non-AAE texts from .861
to .869. Similarly, an increase for non-AAE texts
is visible for the target group and ingroup aspects.
These results indicate that awareness of dialect lan-
guage helps improves results for texts written with
dialect, but also for those without.

The gains of multitask learning over the single-
task approaches on AAE texts are more consistent.
MULTITASK and MULTITASK, AAE reach the most
notable gains on AAE texts for offensiveness and
ingroup, improving upon SINGLETASK (.787) to
.816 and .806, respectively. In terms of fairness,
AAE modeling shows a similar pattern for mul-
titask and single-task learning. MULTITASKAAE
improves the performance on AAE texts over MUL-
TITASK and SINGLETASK on selected aspects. Un-
like for SINGLETASK A AE, the gain in performance
is only visible for AAE, while often slightly de-
creases for non-AAE. On lewdness, for exam-
ple, the score increases significantly from .840
(MULTITASK) to .846 (MULTITASK aag) for AAE
texts, but decreases from .870 (MULTITASK) to
.865 (MULTITASK aaE) for non-AAE texts. Simi-
larly, the scores improve from .630 to .639 for in-
group on AAE texts. This supports our hypothesis
that modeling dialects can improve internal concept
representations of bias aspects (cf. Section 5.4), po-
tentially being more important for singletask than
for multitask approaches.

Equalized Odds and Predictive Parity MUL-
TITASK,;aAE has the biggest impact for equalized
odds and predictive parity. Table 4 shows the re-
sults exemplarily for offensiveness.'’ For SINGLE-
TASK;aAE, the dialect modeling improves classi-
fication performance for AAE dialect most of the
time, and also lowers the performance gap between
AAE and non-AAE texts compared to SINGLE-
TASK. While not all gains are substantial, they are,
again, consistent across metrics and bias aspects.
We hence see these results as further evidence for

190ther aspects show similar patterns (see Appendix B).

Offens. TPR 1 FPR | PPV 1

Model —AAE AAE —-AAE AAE —-AAE AAE
STL 893 918 190 372 860 .826
STL.aae 891 £.938  .193 $.354 857 +.836
MTL 896 *.934 181 **331 *.866 **.845

MTL.aae 896 935 189 353 861  .836

Table 4: Fairness results per approach in terms of true
positive rate (TPR), false positive rate (FPR), and pos-
itive predictive value (PPV) for the offensiveness as-
pect (averaged over five random seeds; other aspects
in Appendix B). Multitask learning improves results
for AAE and reduces some differences to non-AAE
(—AAE). MULTITASK is best in most regards. Signif-
icant improvements are marked for multitask models
over single-task variants (* p < .05, ** p < .01) and
for AAE over non-AAE models (7 p < .05, £ p < .01).

a positive impact of dialect modeling, especially in
singletask learning architectures.

Overall, both multitask learning and dialect mod-
eling seem to improve the performance of texts
written in a given dialect, as we displayed for AAE
dialect in this work. The evaluation also suggests
that the proposed models consistently make fairer
predictions. While we focus on AAE dialect in
this study, the dialect classification and bias detec-
tion component can be adapted to other dialects.
Since the two components are independent, there
are no constraints on the chosen dialect classifica-
tion approach. We therefore expect that modeling
dialects may also improve language understanding
and performance for dialects other than AAE and
encourage future work to consider this direction.

5.4 Qualitative Analysis

To further investigate potential improvements of
modeling dialect as an auxiliary task, we conducted
a qualitative analysis. Here, we summarize the
main results only. A more exhaustive version of
the analysis, including specific examples from the
data, can be found in Appendix A.

Latent Bias Concepts Generally, modeling AAE
dialect seems to benefit offensiveness and lewdness
classification by improving the internal concept
representations of the respective aspects. These im-
proved representations seem to help the model ab-
stract from word use towards relying more on con-
textual information. The better abstraction further
seems to improve the interpretation of the whole
context to decide whether a text is written by an
ingroup member, as also demonstrated in Table 3.
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Implicit Label Dependencies Due to the con-
ceptual dependency of some labels in the SBIC
corpus, certain label-value combinations are non-
sensical and should not be predicted. For example,
while a text can be intentionally offensive (thus
being labeled as offensive and intentional, by def-
inition of the aspects, it is impossible for a text
to be intentional but not offensive. To model and
identify this connection, however, it is necessary
to consider both aspects simultaneously. While
the SINGLETASK model predicts these impossible
combinations for offensive and intentional only 59
times, both multitask learning variants, MULTI-
TASK and MULTITASK aAE, €liminate the issue
and never predict such wrong combinations. A sim-
ilar effect can be observed for the target group and
ingroup labels. These insights highlight the ben-
efit of considering multiple bias aspects together.
Future work might further investigate this effect.

6 Conclusion

In this work, we have studied the fairness of social
bias detection with respect to dialects, presenting
a multitask learning approach to model dialect as
an auxiliary task. The approach aims to mitigate
disparities in the bias detection performance across
dialects. For data availability reasons, our experi-
ments have focused on African-American English
(AAE) texts and non-AAE texts. We have obtained
state-of-the-art performance in predicting five dif-
ferent aspects of social bias. Moreover, modeling
AAE dialect as an auxiliary task narrows selected
performance disparities learning setup, thus mak-
ing results fairer for AAE dialect texts.

This work, therefore, provides empirical evi-
dence that explicitly encoding dialect language pat-
terns into models can have a positive impact on
fairness for dialect speakers. Especially when cou-
pled with a reliable dialect classification model, we
expect a notable effect. In future work, we aim to
investigate how to model dialect language to im-
prove our data augmentation methods, i.e., using as
automatic dialect translation methods (Ziems et al.,
2022) and counterfactual data generation (Zmigrod
et al., 2019; Stahl et al., 2022). Lastly, collecting
dialect data from more diverse sources should help
to scale our approach to further text genres.

We hope this paper contributes towards fairer
bias classification, and encourage others to consider
dialects more broadly for NLP applications.

Limitations

To draw conclusions about dialect and standard lan-
guage, it is essential to not only consider a single
dialect. We, therefore, aimed to be careful in our
work to point out that our results are limited to
AAE vs. non-AAE language. A potential improve-
ment could be to introduce a three-class classifier
that can classify “AAE,” “Standard,” and “Other”
language. More preferably, though, one could in-
corporate more dialects than just AAE. However,
given that no part other than the dialect classifier
is specific to AAE, we think that our experiments
could be repeated for other dialects.

A second limitation concerns the AAE dialect
annotations themselves. Since SBIC does not have
such annotations, we have labeled them automat-
ically using our classifier. Due to the fact that the
fairness evaluation relies on the quality of the AAE
dialect classifier, our results might be less conclu-
sive than if humans had annotated the data. The
same applies to all approaches incorporating the
AAE dialect classifier for their predictions. While
the AAE dialect classifier is far from perfect, we
still consider it rather reliable based on our evalua-
tion and think it provides a reasonable basis for our
analysis, even if it cannot be conclusive.

Lastly, our results might be limited by the fact
that not only our final evaluation dataset, SBIC, but
also the AAE dialect dataset considers texts exclu-
sively from online platforms (Twitter and Reddit)
and in the English language. As mentioned ear-
lier, dialects appear and vary in regional and social
communities. Our evaluations therefore investigate
only a sub-group of AAE speakers. Additionally,
texts from online platforms usually show language
patterns very different from other text forms, such
as books or news articles (Nguyen et al., 2020).
However, we consider this to be only a minor limi-
tation since texts from online platforms are often
used as resources for many kinds of NLP models.
Reliably and fairly identifying social bias in such
data is thus important and necessary. One just has
to be aware that the approaches in this work might
not apply to other forms of text in the same way.

Ethical Considerations

With our work, we try to improve selected ethical
aspects of NLP applications. Namely, we consider
the case of social bias detection with a specific
focus on fairness for texts written in dialect lan-
guage. If the developed approaches work as in-
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tended, they should make overall predictions on
social bias detection fairer for members of dialect-
speaking social groups. In our specific case, those
are members of the African-American community
that choose to write in the AAE dialect. However,
since the approaches and evaluation in this work
focus on AAE dialect, they disregard other dialects
and also Standard American English to a certain
degree. Also, since we base our AAE dialect clas-
sifier on the dataset of (Blodgett et al., 2016), we
limit the classifier ability to detect dialect language
patterns present in the data. We acknowledge that
other variants and of AAE dialect exist for regional
and social communities that were not included in
the data, i.e., because they do not make (extensive)
use of Twitter. In both cases, the classification per-
formance might be implacted. While developing
our approaches, we aimed to make approaches ag-
nostic to specific dialects, and given that data exists,
we think they might be adaptable to other dialects.

Another aspect that requires consideration is the
problem of bias. We identify two main areas of
bias in our work: the data we used and our own
bias as researchers. In the former case, our work
relies on the assumption that annotations are not bi-
ased. However, they are made by humans with per-
sonal worldviews and biases which, intentionally
or not, might have mislabeled the data (Sap et al.,
2022). Especially for our scenario of AAE texts,
human annotators who were not part of the African-
American community might have confused dialect
use with, e.g., offensiveness (Widawski, 2015).
Such wrong labels, that we assume to be correct,
may influence models and evaluations. Similarly,
we, the authors of the paper, might have introduced
personal biases by applying our specific world
views to the problem or unintentionally making
false assumptions, leading to potential oversights.

Finally, we conceive that our approaches might
be misused in situations where it is helpful for
actors to label a product or approach “debiased.”
Since none of the presented approaches is perfect
for detecting social bias or being completely fair for
all dialects, as stated above, they are also not ready
for production use. Even unintentionally, actors
might apply our approaches to their data, wrongly
assuming that it identifies all possible cases of so-
cial bias. This might, however, rather be an issue
regarding the communication of our work to the
more general public, as we assume that this will
not be problematic for everyone that takes the time
to read this paper entirely.
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A Qualitative Analysis

Selected samples that showcase properties of mod-
eling multiple bias aspects (multitask learning)
and/or additionally modeling the AAE dialect si-
multaneously are shown in Table 5. In the remain-
der of this section, we shortly discuss some of the
properties we observed by manually looking at the
data and analyzing selected classification results.
Each example will be referred to by its index, pre-
sented in the first column of the table (i.e., “Exam-
ple 2” refers to the example in the second row).

A.1 Modeling AAE Improves Latent
Concepts

For selected samples, modeling AAE dialect seems
to benefit the offensiveness and lewdness classifi-
cations by improving the internal concept repre-
sentations of the respective aspects. The improved
representations seem to help the model abstract
from word use towards relying more on contextual
information.

The improved representations are shown anec-
dotally by Examples 4, 11, 14, 22, 23, and 24, all
classified as lewd by the SINGLETASK model but
not by the SINGLETASK;aag model. For offensive-
ness, Examples 1, 2, 3, 10, 12, 15, 17, 18, and 21
showcase the behavior. While all listed examples
include words that often indicate offensive or lewd
statements, they can also be used outside of said
contexts, i.e., in statements that are simply obscene.

As mentioned above, one potential theory might
be that, due to the additional AAE dialect modeling
and the resulting awareness of dialect language, the
model is forced to learn better internal concepts of
lewdness and offensiveness less strongly based on
word use.

Furthermore, Examples 27 and 28 showcase the
positive effect of modeling dialect on the ingroup
label. While both examples include the N-word,
the use of the AAE dialect version (“a”-ending)
and other AAE dialect properties, such as dropping
“have”, suggest that the authors of both texts are
ingroup members using ingroup language (this is
confirmed by the original annotation). Both exam-
ples were classified wrongly by the SINGLETASK
and MULTITASK models as not ingroup texts, while
being classified correctly by the SINGLETASKAAE
and MULTITASK aag models.
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# Offens. Intent Lewdn. Target Ingroup Post content

Yes Yes No No No You all make fucking terrible "music"

2 No No No No No “This guy tko’s people. when I knock people out they don’t fucking move." -
eddie alvarez

3 No No No No No She text me "i hate you, i hate you, i hate you, i hate you" but how the fuck can
you hate me?

4 No No No No No A man already accused of killing two women and suspected in the deaths of as
many as 30 more was charged with raping and murdering five other victims.

5 Yes Yes No No No Always remember, it was normies that enacted the holocaust, acted in the slave
trade, and committed every atrocity in history normies are evil

6 No No No No No Amnesty for 3.6m colonizers would/will be the completion of the demographic
coup

7 Yes Yes No No No Are orphans allowed in a family restaurant. I think you get it.

No No No No No Asking north korea not to make nuclear weapons is a bit like asking an audi

driver not to drive too close to the car in front

9 No No No No No Bpd is a genetic condition caused by having two x chromosomes. When a man
is diagnosed with bpd it’s just a professional way of saying he’s acting like a
cunt.

10 No No No No No Draymond kill me with all that shit he be talking to the refs. Please be quiet boy
before you get us all in trouble.

11 Yes Yes No Yes No Everytime I clean the room my mom tells me "what bitch is coming over this
time" Imao what a dick !!

12 No No No No No gooooooooooaaallll goooooooooooaaalll gooooooooooooaallll pepe pepe
pepe!!!! renew his fucking contract!!!

13 No No No No No I do not blame you, ottawa, like all of our cities, is a multicultural hell

14 Yes No No No No It’s always the people who tell you not to be so obsessed about women and sex
who are the ones who can get them anytime they want

15 No No No No No Natiis ka nya. It means he doesn’t fucking care anymore

16 No No No No No On god I ain’t never wanna plex with lil bro them at all. I ain’t scared to
squabble nobody I just refuse to fight a nigga i had love 4

17 No No No No No Bad bitches don’t take days off

18 No No No No No I ain gone lie. Chuckie fucked wl my head a lil bit

19 Yes Yes No No No Sis don’t assume I'm talking about yo nigga and get in yo feelings.. Yo nigga
not the only one on my line

20 Yes No No No No Some of y’all lives don’t even be bad.. Y’all jus either ungrateful or just don’t
know how to put things in perspective

21 No No No No No Vince once again fucked over undertaker over a blind push. ’taker is over now,
and so is me as a fan. #vincescrewedtaker

22 Yes Yes No Yes No Why does the myth that women rarely lie about rape persist?

23 No No No No No Just ordered horny goat weed this shit better fix my ed

24 Yes Yes No No No Sorry I’m not humble, dick.

25 No No No No No Your not gonna change a nigga. He is who he is either you accept it or you dont.
You cant turn silver into gold.

26 No No No No No That’s some real hood shit, I'll never forget heading out wit my niggas &
realizing that someone stole his gas cap

27 Yes Yes No Yes Yes I come a city where niggas will hate on you for anything.

28 Yes No No Yes Yes Nigga Andrew and x been telling me since like 11° everything’s for sale and

legit everything is for sale you tell me a great number lol

Table 5: Example posts from the SBIC test set that highlight different properties and capabilities of the evaluated
models. Please note that neither the texts themselves nor the labels assigned to them necessarily reflect the authors
opinions. Both are retrieved from the Social Bias Inference Corpus (Sap et al., 2020), which collects texts from the
internet and annotations from crowdworkers. Some posts were formatted to improve readability.
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Note that the listed examples include both, texts
with and without properties of AAE dialect. The
effect therefore seems to benefit not only texts con-
taining AAE dialect, but also text without AAE
dialect. Especially for the lewdness classification,
this can also be observed in Table 2 and Table 3.
Lastly, modeling AAE can also help to detect of-
fensive statements, which make use of dialect lan-
guage elements, more reliably (Example 19).

However, since these examples can only anec-
dotally show this effect, future work might further
investigate and attempt to quantify this theory.

It is important to mention that classifications are
still not perfect, and selected samples are missed.
For instance, Example 19 and 25 both contain AAE
dialect elements (such as dropped copula (Ziems
et al., 2022) and use of n-word with an “a”-ending
(Rahman, 2012)) and are not obviously offensive
(and are also not labeled as such in the SBIC). How-
ever, all evaluated models classified them as offen-
sive, including MULTITASK and MULTITASK AAE.-

A.2 Multitask Learning Improves Label
Dependency Modeling

Due to the conceptual dependency of some labels in
the SBIC corpus, certain label-value combinations
are nonsensical and should not be predicted. For
example, while a text can be intentionally offen-
sive (thus being labeled as offensive and intentional,
such as Example 1), by definition of the aspects,
the text cannot be intentional but not offensive. An-
other example is the label combination of target
group and ingroup: Without referencing a target
group in a statement, it is also impossible to state
whether the author of the text is part of the refer-
enced group (i.e., the farget group label is false,
while the ingroup label is true).

To model and identify this connection, however,
it is necessary to consider both aspects simultane-
ously, as it is lost when considering aspects indi-
vidually. While the SINGLETASK model predicts
these impossible combinations for offensive and
intentional only 59 times (e.g., Example 1), both
multitask learning variants, MULTITASK and MUL-
TITASK;aAE, eliminate the issue and never predict
such wrong combinations. While it is not possi-
ble to evaluate this behavior on the target group
and ingroup combinations for SINGLETASK and
SINGLETASK;aAE (both only predict the majority
class for the ingroup label), MULTITASK aAg Only
makes one such error (Example 26). At the same
time, MULTITASK never does.

While this error appeared only for a smaller num-
ber of samples, the extreme effect observed for the
multitask models highlights the benefit of consid-
ering multiple bias aspects simultaneously. We
assume that the effect is also present in more sub-
tle ways throughout the rest of the dataset. Future
work might further investigate this effect.

A.3 Incorrect Annotations

In a few cases, it seems that most of the evaluated
approaches “correct for” wrong annotations in the
corpus and predict the, to the authors’ perception,
correct label value, even though they are mislabeled
in the SBIC. Instances of such “correct misclassifi-
cations” for the target group label are Examples 35,
6,7,8,9,and 13.

One possible explanation might be that, for all
those instances, the target groups are not within
the focus of the original SBIC study presented by
Sap et al. (2020). Therefore, these target groups
were also not part of the pre-defined options in
the annotation interface (shown in the appendix of
Sap et al. (2020)), and required manual user input.
While a reasonable design decision for, what we
assume to be the focus of the corpus, it might have
caused “Friction nudges” (Bergram et al., 2022),
causing annotators to disregard or consider fewer
other target groups.

While such cases are present, they seem to be
very few and do not seem to pose a notable chal-
lenge, as models can apparently correct for the
slight noise.

B Further classification results

B.1 AAE Classification

Table 6 shows the results of the AAE classification
approaches AAEyg, and AAEgy,, on the full test
set. While the precision values for the positive
class seem small, it is to be considered that this
is a needle-in-the-haystack problem: Only about
2% of the test cases are positive, meaning that the
best result (.07 of our approach AAEygp) is 3.5
times better than guessing. An increase of two
points over the TwitterAAE baseline (.07 vs. .05)
also indicates a notable learning effect, classifying
about 40% more correctly.

B.2 Social Bias Classification

Table 7 and Table 8 show the negative class and
macro averaged F;-scores of the social bias classi-
fication. Results for the positive class are reported
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Model

Precision 1 Recall 1 F. 1 Model Offens. Intent Lewdn. Target Ingroup

Pos Neg Mac Pos Neg Mac Pos Neg Mac Majority 366  .347 475 .370 495

Majority .00 98 49 00 10 50 00 .99 so  Random A% 492402499 346

Random .02 98 .50 .50 .50 .50 .04 .66 .35 GPT-2 - - - - -

TwiterAAE 05 99 52 64 77 70 .10 87 48  rewsshot - - - - -

MEa o s g s NOITSC M T e
AAEqmp 06 99 .53 .78 77 77 .11 .86 .49

MULTITASK 856 .849 .866 854 .612

Table 6: African-American English dialect classification
results on the full test set: Postive class (Pos), negative
class (Neg) and macro averaged (Mac). Bold values
highlights the best result in each column. While AAEy,,
seems better in finding dialect texts (higher recall for the
positive class), AAE,gn performs notably better overall.

Model Offens. Intent Lewdn. Target Ingroup
Majority .000 .000 949 741 990
Random 463 479 .639 543 .654
GPT-2 - - - - -
Few-shot - - - - -

SINGLETASK 820 .834 973 .869 990
SINGLETASK,aag .820  .833 974 .876 990

MULTITASK 830 .833 975  .876 989
MULTITASKaaE .824  .832 974 874 990

Table 7: Bias classification results (negative class F-
scores, averaged over five random seeds) for each as-
pect: offensiveness, intent, lewdness, target group, and
ingroup.

in Table 2, as part of Section 5.

B.3 Encoder model

To verify that our results are not specific to the
chosen DeBERTa-v3-base encoder model, Table 9
shows the results for the positive F;-scores, match-
ing Table 2. The results highlight that, while the
RoBERTa-base models do not seem to benefit to
the same degree the DeBERTa-v3-base models do,
most advantages of the multitask learning setup
and dialect modeling discussed in Section 5 also
hold in this setup.

B.4 Social Bias Classification Scores per
Dialect

Table 10, Table 11, Table 12, Table 13 and Table 14
show the per-class precision, recall and F;-scores
for the social bias classifications. Macro-averaged
F; scores are reported in Table 3, as part of Sec-
tion 5.

B.5 Fairness in Social Bias Classification

Table 15, Table 16, Table 17, and Table 18 show
True Positive Rate, False Positive Rate and Positive

MULTITASK aag .852  .848 .863 .853 .608

Table 8: Bias classification results (macro F;-scores,
averaged over five random seeds) for each aspect: offen-
siveness, intent, lewdness, target group, and ingroup.

Model Offens. Intent Lewdn. Target Ingroup
Majority 732 694 .000  .000 .000
Random 529 504 .165 456 .038
GPT-2 788  .786 807 699 .000
Few-shot 822 798 411 137 -

SINGLETASK 875 .859 722 .826 .000
SINGLETASKaAE .875  .857 752 833 281

MULTITASK 875  .857 754 .826 290
MULTITASK aag 877  .859 751 .828 213

Table 9: Bias classification results (positive-class Fy,
averaged over five random seeds) for each aspect: of-
fensiveness, intent, lewdness, target group, and ingroup.
Results obtained using a RoBERTa-base encoder model,
as comapred to Table 2, where DeBERTa-v3-base is
used as encoder model.

Predictive Value scores on the positive class for the
bias aspects intent, lewdness, target group, and in-
group, respectively. Results for the offensiveness
aspect are reported in Table 4, as part of Section 5.

C Experimental Details

C.1 AAE Classification

Models for the AAE classification (AAEyg, and
AAEqy,) were fine-tuned for three epochs on three
A100-SXM4-80GB GPUs and a batch size of 270.
To keep training time reasonable, given the size
of the dataset, we fine-tune the model with bf16
mixed precision using the DeepSpeed (Rajbhandari
et al., 2020) integration of the Huggingface library
(Wolf et al., 2020). With this setup, fine-tuning
takes around 70 hours for AAEy,p, and around 17
hours for AAEgy,.

For all models, we report results for a single
training and inference run.
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Offensiveness Precision Recall F

Positive Negative Macro Positive Negative Macro Positive Negative Macro

Model NA. AA. NA. AA. NA. AA. NA. AA. NA. AA. NA. AA. NA. AA. NA. AA. NA. AA.
Majority 566 .658 .000 .000 .283 .329 1.00 1.00 .000 .000 .500 .500 .723 .794 .000 .000 .361 .397
Random 564 .670 432 .354 498 512 485 514 510 .513 498 513 .522 582 .468 .419 .495 .500
SINGLETASK .860 .826 .853 .800 .857 .813 .893 918 .810 .628 .852 .773 .876 .870 .831 .704 .854 .787
SINGLETASKaaE .857 .836 .851 .844 .854 .840 .891 .938 .807 .646 .849 .792 .874 .884 .828 .732 .851 .808
MULTITASK 866 .845 .859 .842 .862 .843 .896 .934 .819 .669 .858 .802 .881 .887 .838 .745 .860 .816
MULTITASK:aAE  .861 .836 .857 .838 .859 .837 .896 .935 .811 .647 .854 .791 .878 .883 .833 .730 .856 .806

Table 10: Offensiveness classification results on texts written with (AA.) and without (NA.) AAE dialect for the

positive (Positive) and negative class (Negative), and macro averaged (Macro). All scores are averaged over five
random seeds. Bold indicates best results per column.

Intent Precision Recall F,

Positive Negative Macro Positive Negative Macro Positive Negative Macro
Model NA. AA. NA. AA. NA. AA. NA. AA. NA. AA. NA. AA. NA. AA. NA. AA. NA. AA.
Majority .525 .583 .000 .000 .262 .292 1.00 1.00 .000 .000 .500 .500 .688 .737 .000 .000 .344 .368
Random S517 577 468 411 493 494 490 460 .496 .528 493 494 503 .512 482 .462 492 487

SINGLETASK 851 .783 859 .837 .855 .810 .877 910 .831 .648 .854 .779 .864 .842 .845 .731 .854

. . 786
SINGLETASK:aae .847 .781 .862 .862 .855 .822 .880 .927 .825 .637 .853 .782 .863 .848 .843 .732 .853 .790

MULTITASK .843 777 .875 856 .859 816 .894 924 .816 .628 .855 .776 .868 .844 .844 724 .856 .784
MULTITASK.aaE  .842 776 .874 .856 .858 .816 .894 925 .814 .626 .854 .775 .867 .844 .843 .723 855 .783

Table 11: Intent classification results on texts written with (AA.) and without (NA.) AAE dialect for the positive

(Positive) and negative class (Negative), and macro averaged (Macro). All scores are averaged over five random
seeds. Bold indicates best results per column.

Lewdness Precision Recall Fi

Positive Negative Macro Positive Negative Macro Positive Negative Macro

Model NA. AA. NA. AA. NA. AA. NA. AA. NA. AA. NA. AA. NA. AA. NA. AA. NA. AA.
Majority .000 .000 .907 .877 .454 .438 .000 .000 1.00 1.00 .500 .500 .000 .000 .951 .934 476 .467
Random .092 .143 .907 .895 .500 .519 .509 .565 .490 .522 .500 .544 .156 .228 .636 .660 .396 .444
SINGLETASK 757 783 974 954 .865 .869 .739 .670 .976 973 .858 .822 .748 .721 .975 .964 .861 .842
SINGLETASKaAE .756 .748 976 .955 .866 .852 .768 .678 .975 .968 .871 .823 .762 .711 .976 961 .869 .836
MULTITASK J79 760 975 955 .877 858 .749 .678 978 970 .864 .824 .764 .717 .976 .963 .870 .840
MULTITASK:aaE 771 781 974 956 .872 .868 .740 .681 978 973 .859 .827 .755 .728 .976 .964 .865 .846

Table 12: Lewdness classification results on texts written with (AA.) and without (NA.) AAE dialect for the positive

(Positive) and negative class (Negative), and macro averaged (Macro). All scores are averaged over five random
seeds. Bold indicates best results per column.

Group Precision Recall F,

Positive Negative Macro Positive Negative Macro Positive Negative Macro
Model NA. AA. NA. AA. NA. AA. NA. AA. NA. AA. NA. AA. NA. AA. NA. AA. NA. AA.
Majority .000 .000 .592 .562 .296 .281 .000 .000 1.00 1.00 .500 .500 .000 .000 .743 .719 .372 .360
Random 412 440 595 564 .503 .502 .504 .510 .503 .494 503 .502 .453 473 545 .526 .499 .499
SINGLETASK .806 .674 916 .862 .861 .768 .887 .859 .852 .674 .869 .766 .844 .754 .883 .755 .863 .755
SINGLETASK.aae -821 .699 908 .824 .865 .761 .873 .800 .869 .731 .871 .765 .846 .746 .888 .774 .867 .760
MULTITASK 826 .700 905 .814 .865 .757 .866 .784 .874 .737 .870 .760 .845 .739 .889 .773 .867 .756
MULTITASK:aae  -822 .687 .908 .813 .865 .750 .872 .788 .869 .720 .871 .754 .846 .734 .888 .764 .867 .749

Table 13: Group classification results on texts written with (AA.) and without (NA.) AAE dialect for the positive

(Positive) and negative class (Negative), and macro averaged (Macro). All scores are averaged over five random
seeds. Bold indicates best results per column.

9310



In-group Precision Recall F,

Positive Negative Macro Positive Negative Macro Positive Negative Macro

Model NA. AA. NA. AA. NA. AA. NA. AA. NA. AA. NA. AA. NA. AA. NA. AA. NA. AA.
Majority .000 .000 .988 .932 .494 .466 .000 .000 1.00 1.00 .500 .500 .000 .000 .994 .965 .497 .482
Random .014 .062 .989 .926 .501 .494 .569 .474 492 478 .530 .476 .027 .110 .657 .630 .342 .370

SINGLETASK .000 .000 .988 .932 .494 .466 .000 .000 .000 .000 .500 .500 .000 .000 .994 .965 .497 .482
SINGLETASK:aae 233 .140 988 .941 .611 .540 .039 .147 .000 .980 .519 .564 .066 .141 .994 .960 .530 .550

MULTITASK 578 331 .989 .949 783 .640 .082 .295 .999 .955 .541 .625 .143 309 .994 952 .569 .630
MULTITASKaAE 653 375 988 .949 .821 .662 .063 .284 999 966 .531 .625 .113 .322 .994 957 .553 .639

Table 14: In-group classification results on texts written with (AA.) and without (NA.) AAE dialect for the positive
(Positive) and negative class (Negative), and macro averaged (Macro). All scores are averaged over five random
seeds. Bold indicates best results per column.

Intent True Positive Rate 1 False Positive Rate | Positive Predictive Value T
Model —-AAE AAE Delta —-AAE AAE Delta —-AAE AAE Delta
SINGLETASK 877 910 .033 169 352 .183 851 .783 .068
SINGLETASK+AAE 880  .927 .047 175 363 .188 .847 781 .066
MULTITASK 894 924 030 184 372 .188 .843 77 .066
MULTITASK+AAE 894 925 .031 186 374 .188 842 776 .066

Table 15: Results for the intent aspect per approach for True Positive Rates, False Positive Rates, and Positive
Predictive Value, the elements of the fairness metrics Equalized odds and Predictive parity. All scores are averaged

over five random seeds. Bold indicates best results in each column, arrows indicate whether higher (1) or lower ({)
scores are better.

Lewdness True Positive Rate 1 False Positive Rate | Positive Predictive Value 1
Model —AAE AAE Delta —-AAE AAE Delta —-AAE AAE Delta
SINGLETASK 739 670 .069 024 .027 .003 757 783 .026
SINGLETASK+AAE 768  .678 .090 .025 .032 .007 756 748 .008
MULTITASK 749 678 071 022 .030 .008 779 760 .019
MULTITASK AAE 740 .681 059 022 027 .005 771 781 .010

Table 16: Results for the lewdness aspect per approach for True Positive Rates, False Positive Rates, and Positive
Predictive Value, the elements of the fairness metrics Equalized odds and Predictive parity. All scores are averaged

over five random seeds. Bold indicates best results in each column, arrows indicate whether higher (1) or lower ({)
scores are better.

Group True Positive Rate 1 False Positive Rate | Positive Predictive Value T
Model —-AAE AAE Delta —-AAE AAE Delta —-AAE AAE Delta
SINGLETASK 887  .859 .028 148 326 178 806  .674 132
SINGLETASK+AAE 873 .800 .073 131 .269 138 821 .699 122
MULTITASK 866 784 .082 Jd26 263 137 826 .700 126
MULTITASK+AAE 872 788 .084 131 .280 .149 822 .687 135

Table 17: Results for the group aspect per approach for True Positive Rates, False Positive Rates, and Positive
Predictive Value, the elements of the fairness metrics Equalized odds and Predictive parity. All scores are averaged

over five random seeds. Bold indicates best results in each column, arrows indicate whether higher (1) or lower ({)
scores are better.
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In-group True Positive Rate 1 False Positive Rate | Positive Predictive Value 1
Model —AAE AAE Delta —-AAE AAE Delta —-AAE AAE Delta
SINGLETASK .000 .000 .000 .000 .000 000 .000 .000 .000
SINGLETASK+AAE 039  .147 .108 000 .020 .020 233 .140 .093
MULTITASK 082  .295 213 .001 .045 .044 578 331 247
MULTITASK+AAE .063 284 221 .001 .034 .033 .653 375 278

Table 18: Results for the in-group aspect per approach for True Positive Rates, False Positive Rates, and Positive
Predictive Value, the elements of the fairness metrics Equalized odds and Predictive parity. All scores are averaged
over five random seeds. Bold indicates best results in each column, arrows indicate whether higher (1) or lower ({)

scores are better.

C.2 Social Bias Classification

The SINGLETASK model for the social bias clas-
sification was fine-tuned for three epochs on two
A100-SXM4-80GB GPUs, using a batch size of 64.
To increase training speed, we fine-tune the model
using the DeepSpeed (Rajbhandari et al., 2020) in-
tegration of the Huggingface library (Wolf et al.,
2020). With this setup, fine-tuning the model for a
single aspect takes around 15 minutes.

The models trained with a multitask objec-
tive (SINGLETASK aAE, MULTITASK and MUL-
TITASK,aag) Were fine-tuned for three epochs on
a single A100-SXM4-80GB GPU, usiing a batch
size of 64. With this setup, fine-tuning takes around
50 minutes for SINGLETASK,;aAE, around 2 hours
for MULTITASK, and around 3 hours for MULTI-
TASKAAE-

We base our implementation of
the multitask learning models on
https://github.com/shahrukhx@1/
multitask-learning-transformers, as we
found this to work notably better than alternative
libraries.

For all models, we report results for a single
training and inference run.

C.3 Significance Tests

Due to varying experimental settings, we employ
different techniques to test for significance. Below,
we describe and justify the applied testing method-
ology for each setting.

AAE Classification For the AAE classification
presented in Table 1, we compare the results of the
proposed classifiers to the TwitterAAE approach
proposed by Blodgett et al. (2016). Since the code
for the baseline is available, we are also able to
retrieve per-sample predictions on the test dataset.
Therefore, we calculate significance levels using
a one-sided independent ¢-test, marked with | for

Dialect Train Validation Test Test smp
No-AAE 37,171,287 9,292,822 11,616,028 229,955
AAE 735,856 183,964 229,955 229,955
Total 37,907,143 9,476,786 11,845,983 459,910

Table 19: The number of instances per split in the Twit-
terAAE dataset. The Test smp column describes the
numbers for the sampled test data used to evaluate the
approaches, as presented in Section 5.

p < 0.05 and ¥ for p < 0.01. Here, we employ a
one-sided dependent paired ¢-test if the scores seem
to be drawn from a normal distribution, and the
Wilcoxon signed-rank test otherwise (as suggested
in Dror et al. (2018), we test for normality using
the Shapiro-Wilk test with o = 0.05). To do so, we
split test set of the TwitterAAE corpus (cf. Section
4.1) into ten random subsets (for the Test smp set
described in Section 5 and Table 19, this results in
45,991 instances per subset), calculate precision,
recall and F;-score for each subset and use the
score distribution as input to the ¢-test.

Overall Social Bias Classification For the over-
all bias classification presented in Table 2, we cal-
culate two significance levels. First, we compare
the results of the evaluated approaches to baselines
from the literature, marked with § for p < 0.05
and I for p < 0.01. As neither, the code nor per-
sample predictions are available for either baseline
at the time of writing, we employ a one-sample ¢-
test. Since baseline scores are not available for the
negative class and macro averaged F;-scores, we
cannot compute the significance over the baselines
for results presented in Table 7 and Table 8.
Second, we compare the multitask approaches to
their respective single-task variants, marked with *
for p < 0.05 and ** for p < 0.01. Since we train
five models with five different random seeds, we
calculate the F-score for each model seed and use
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Train Validation Test

Positive Negative Positive Negative Positive Negative
Label -AAE AAE -AAE AAE -AAE AAE -AAE AAE -AAE AAE -AAE AAE
Offensiveness 16294 2432 15286 1492 2281 331 1874 187 2342 368 1797 191
Intent 14795 2181 16785 1743 2109 306 2046 212 2171 326 1968 233
Lewdness 3092 497 28488 3427 365 56 3790 462 383 69 3756 490
Target Group 10624 1556 20956 2368 1581 234 2574 284 1690 245 2449 314
Ingroup 647 321 30933 3603 56 41 4099 477 4088 38 51 521

Table 20: The number of instances per split, label, and dialect in the Social Bias Inference Corpus (Sap et al., 2020).
The dialect labels were inferred automatically using the approach presented in Section 3.

the score distribution as input to the significance
test.

Per Dialect Social Bias Classification For the
classification results per dialect presented in Ta-
ble 3, we calculate two significance levels. First,
we compare the multitask approaches to their re-
spective single-task variants, marked with * for
p < 0.05 and ** for p < 0.01. Second, we com-
pare the results of the approaches that model AAE
dialect to their respective non-AAE variants with §
for p < 0.05 and % for p < 0.01.

In both scenarios, we employ a one-sided de-
pendent paired ¢-test. Since we train five models
with five different random seeds, we calculate the
F-score for each model seed and use the score
distribution as input to the significance test.

D Dataset Details

D.1 TwitterAAE

Detailed dataset statistics of the TwitterAAE Cor-
pus (Blodgett et al., 2016) are reported in Table 19.
D.2 Social Bias Inference Corpus

Detailed dataset statistics of the Social Bias In-
ference Corpus (Sap et al., 2020) are reported in
Table 20. Dialect labeles are inferred automatically
using the AAEy,, approach presented in Section 3.
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