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Abstract

Recently, Knowledge Editing has received in-
creasing attention, since it could update the
specific knowledge from outdated ones in pre-
trained models without re-training. However,
as pointed out by recent studies, existing related
methods tend to merely memorize the superfi-
cial word composition of the edited knowledge,
rather than truly learning and absorbing it. Con-
sequently, on the reasoning questions, we dis-
cover that existing methods struggle to utilize
the edited knowledge to reason the new answer,
and tend to retain outdated responses, which
are generated by the original models utilizing
original knowledge. Nevertheless, the outdated
responses are unexpected for the correct an-
swers to reasoning questions, which we named
as the outdated issue. To alleviate this issue, in
this paper, we propose a simple yet effective
decoding strategy, i.e., outDated ISsue aware
deCOding (DISCO), to enhance the perfor-
mance of edited models on reasoning questions.
Specifically, we capture the difference in the
probability distribution between the original
and edited models. Further, we amplify the
difference of the token prediction in the edited
model to alleviate the outdated issue, and thus
enhance the model performance w.r.t the edited
knowledge. Experimental results suggest that
applying DISCO could enhance edited models
to reason, e.g., on reasoning questions, DISCO
outperforms the prior SOTA method by 12.99
F1 scores, and reduces the ratio of the outdated
issue to 5.78% on the zsRE dataset.

1 Introduction

Large Language Models (LLMs) exhibit the re-
markable ability to capture plenty of factual knowl-
edge into their parameters. However, knowledge
of inner LLMs may become outdated or unsuitable
over time (Zhao et al., 2021; Elazar et al., 2021;

* Work was done when Zengkui Sun was an intern at
Pattern Recognition Center, WeChat Al, Tencent Inc, China.
Yufeng Chen is the corresponding author.
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Figure 1: Illustration of the outdated issue in the edited
model on reasoning question. After knowledge editing,
the edited LLM should respond England (Country of
London) rather than France (Country of Paris), where
France is an outdated response.

Dhingra et al., 2022). Unfortunately, naively re-
training LLMs can be computationally intensive,
and fine-tuning LLMs in several cases suffers the
risk of catastrophic forgetting (Parisi et al., 2019;
Mitchell et al., 2021; Ramasesh et al., 2021). Re-
cently, Knowledge Editing has received increas-
ing attention, which aims to update factual knowl-
edge into LLMs and retain the unrelated knowl-
edge, without retraining from scratch (De Cao et al.,
2021; Mitchell et al., 2021; Yao et al., 2023; Mazzia
et al., 2023; Yin et al., 2023; Zhang et al., 2024).

Previous methods could be divided into two re-
search lines to implement the knowledge editing
in LLMs, according to whether preserving origi-
nal models’ parameters (Yao et al., 2023; Mazzia
et al., 2023; Wang et al., 2023c). The first research
line retains the weights of the original LLMs, and
appends supplementary weights or memories to
retrieve the relative edited knowledge to guide the
model to response to the edited knowledge. For
instance, SERAC (Mitchell et al., 2022) uses a
scope classifier to determine whether the current
prompt falls within the scope of any stored knowl-
edge, and T-Patcher (Huang et al., 2023) adds extra
trainable parameters into FEN layers of LLMs ot
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edit model performance. Besides, MemPrompt
(Madaan et al., 2022), IKE (Zheng et al., 2023),
and MeLLo (Zhong et al., 2023) conduct in-context
learning with knowledge editing demonstrations
to prompt LLMs to update pretrained knowledge.
The second research line focuses on adjusting
knowledge-related weights in the original LLMs
via pre-computation or an additional module to pre-
dict the weights. For instance, KE (De Cao et al.,
2021) trains a BILSTM to predict the weight up-
date, to enable constrained optimization to modify
facts without affecting other knowledge, while KN
(Dai et al., 2021), ROME (Meng et al., 2022a), and
PMET (Li et al., 2023) implement editing by first
locating the parameters, which store corresponding
knowledge, and then directly updating them. Over-
all, with these techniques, knowledge editing could
update LLLMs on new factual edited knowledge
without explicit model re-training, when questions
explicitly mention the edited knowledge.

However, for reasoning questions, most of these
approaches struggle to generate the correct re-
sponse, and tend to retain the outdated response.
As the example shown in Figure 1, if we update the
knowledge from “The Eiffel Tower is in Paris” to
“The Eiffel Tower is in London”, and then query the
edited model with the reasoning question “Which
country is the Eiffel Tower located in?”. We
find that the edited model still tends to respond
with the outdated answer “France” (Country of
“Paris”) rather than the new correct answer “Eng-
land” (Country of “London”), which we named
as the outdated issue. As pointed out by recent
studies (Yao et al., 2023; Zhong et al., 2023; Wang
et al., 2023a), existing methods may tend to mem-
orize its superficial word composition, rather than
learning the edited knowledge indeed, i.e., hard
coding them into the model locally.

To mitigate the outdated issue, in this paper, we
make efforts to explore whether edited models tend
to generate outdated responses to reasoning ques-
tions. By analysis, we discover that the edited
knowledge exerts a constrained impact on the prob-
ability distribution of predicted tokens. In other
words, models tend to utilize their original knowl-
edge to respond to the reasoning questions after
editing, which hinders the performance on reason-
ing questions. Hence, we propose a decoding strat-
egy, outDated ISsue aware deCOding (DISCO),
to amplify the impact of edited knowledge on the
probability distribution. Specifically, we capture

the modification of probability distribution, by the
subtraction of distribution between the original and
edited models. Subsequently, we add this modifica-
tion to the edited model’s probability distribution.
Besides, we add a constraint to revise the modifica-
tion of distribution to avoid the probability increase
in outdated responses. In this way, we could am-
plify the impact of the edited knowledge on the
edited model, and alleviate the outdated issue, thus
encouraging the edited model to utilize the edited
knowledge to reason the new answer.

We conduct experiments to evaluate DISCO on
the zsRE dataset (Levy et al., 2017; Yao et al.,
2023) and the CounterFact dataset (Meng et al.,
2022a; Yao et al., 2023). Experimental results
demonstrate that DISCO could effectively mitigate
the outdated issue, and then enhance the perfor-
mance of edited models on reasoning questions.
For instance, compared to the prior SOTA method
IKE (Zheng et al., 2023), DISCO improves 12.99
F1 scores and reduces the rate of outdated tokens
from 8.23% to 5.78% in the zsRE dataset using the
LlaMa-2-7b backbone. On the other dataset or
backbone, DISCO yields the best performance on
reasoning questions and suffers the least outdated
issue, demonstrating the effectiveness of DISCO.

The main contributions of this paper can be sum-
marized as follows':

* To our knowledge, we are the first to point out
the edited models suffer from the outdated issue
and quantize this issue, which is up to 50% error
ratio among current methods.

* We propose a simple yet effective strategy, i.e.,
DISCO, to enhance the performance of edited
models on reasoning questions. This strategy
could amplify the influence of the edited knowl-
edge, and alleviate the outdated issue.

» Experimental results show that DISCO could ef-
fectively mitigate the outdated issue, and enhance
the performance in reasoning questions, without
updating parameters.

2 Task Formulation

The formal definition of knowledge editing is to
update factual knowledge into model parameters,
which could motivate the model’s behavior towards
the edited knowledge.

To implement knowledge editing, current re-
searchers mainly follow the two lines: (1) Re-

'Codes are released at https://github.com/
Acerkoo/DISCO.
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taining the weights of original LLMs, and supply-
ing additional weights or memories. For instance,
SERAC (Mitchell et al., 2022) uses a scope classi-
fier to determine whether the current prompt falls
within the scope of any edited knowledge, and T-
Patcher (Huang et al., 2023) adds extra trainable
parameters into the FFN layers of LLMs to edit
knowledge. Besides, MemPrompt (Madaan et al.,
2022), IKE (Zheng et al., 2023), MeLLo (Zhong
et al., 2023), and DeepEdit (Wang et al., 2024)
conduct in-context learning or chain-of-thought
with knowledge editing examples to prompt LLMs
to update pretrained knowledge. (2) Adjusting
knowledge-related weights in original LLMs. For
instance, KE (De Cao et al., 2021) trains a Bi-
LSTM to predict and update weight, enabling con-
strained optimization to modify facts without affect-
ing other knowledge, while KN (Dai et al., 2021),
ROME (Meng et al., 2022a), and PMET (Li et al.,
2023) implement editing by locating and directly
updating the parameters which store corresponding
knowledge.

Given an original pretrained language model
f and an input-output pair of edited knowledge
(Ze, ye ), knowledge editing could create an edited
model 6, which satisfies the following assessment:

o= ot

where X, is the editing scope, denoting a broad
set of inputs closely associated with the edited
knowledge pair, with similar semantics as x., (z)
and é(a:) represent the output of the original model
and edited model when receiving the input z, re-
spectively. Following Yao et al. (2023), the edited
model should satisfy the following four properties:
(1) Reliability and (2) Generality straightforward
assess the averaged accuracy of the edited case.
The output of edited model §(x) should be equal to
Ye, When the input z is in editing scope X,. Note
that the difference between Reliability and General-
ity is that the input for Generality is the paraphrased
Ze, whereas Reliability is the original z.. (3) Lo-
cality measures the capability of the edited model
6 to preserve the performance out of the editing
scope. That is, f(z) should be the same as 0(x)
ideally, when z is out of the editing scope X,. (4)
Portability evaluates the effectiveness of the edited
model in transferring edited knowledge to related
content. When receiving an input of reasoning
question x, which requires reasoning based on the

x e X,

z ¢ X, M

edited knowledge, the edited model is expected to
correct answer it to demonstrate the model learns
the knowledge itself rather than only memorizing
superficial changes in wording.

3 Findings of the Outdated Issue

3.1 Oudated Issue

Among the above four properties, Portability is
more challenging in assessing the effect of knowl-
edge editing, since it requires edited models to
learn the edited knowledge indeed and reason on
it (Yao et al., 2023; Zhong et al., 2023; Wang
et al., 2023a; Ma et al., 2023; Zhang et al., 2024).
As reported by prior studies (Yao et al., 2023;
Wang et al., 2023a,b), ROME (Meng et al., 2022a),
MEMIT (Meng et al., 2022b), and IKE (Zheng
et al., 2023) perform better in Portability. IKE is in
the first research line, utilizing the robust capabili-
ties of LLMs for in-context learning to edit LLMs
by prompting with retrieved demonstrations from
the external memory. ROME and MEMIT are in
the second research line, specifying the FFN matrix
as the key-value neurons embodying knowledge,
and they implement editing by locating knowledge-
related neurons and updating them.

Unfortunately, in our preliminary experiments,
we discover that the above approaches suffer the
Outdated Issue that the edited model 6 tends
to generate the outdated output 6(x), in Portabil-
ity. For instance, we evaluate these approaches
withGPT—J-6b on the zsRE dataset, and observe
that these approaches seriously suffer the issue,
ranging from 12% to 50% ratio of this issue (please
refer to Section 5.3 for more details).

3.2 Similarity of Probability Distribution

Since decoding is directly applied in the response
generation stage, to take a further step to probe the
outdated issue, we explore the similarity of proba-
bility distribution of predicted tokens between the
original model § and the edited model 6.

Given an input x, we could model the condi-
tional probability distribution of the ¢-th token:

P() = ph(-|z, y<), 2)

where p))(+) denotes the conditional probability dis-
tribution of the original model 6 for the ¢-th pre-
dictied token, y, denotes the previously predicted
tokens by the original model.
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Property | Method | JSD OE|  F1/EM?t
Reliability | IKE | 41.62 99.90/99.71
FT 023 48.83 30.39/0.00
Portabilicy | ROME | 1683 15.62 31.70/2.70
O MEMIT | 9.16 3035 33.01/135
IKE | 19.15 1241 4205/11.39

Table 1: Performance of edited models in Reliability
and Portability on the zsRE dataset with the GPT-J-6b.
JSD denotes the value of Jensen-Shannon divergence,
and OE reports the ratio of outdated issues. F1/EM
reports the F1 and EM scores in Portability.

Similarly, the probability distribution of the
edited model 6 could be calculated as follows:

Pi(-) = py(-lz. g<o), 3)

where pg(-) and §j; denote the edited model 6’s
corresponding items of original model 6.

To invest the similarity between Fj(-) and P4(-),
we apply Jensen-Shannon divergence to calculate
the distance of both probability distributions, fol-
lowing Chuang et al. (2023):

JSD(FS(), PLOY) = 5 - KL(POIIPL()
1 C))

5 - KL, OIIP()),

where JSD(:) denotes the function of Jensen-
Shannon divergence, K L(-) denotes the function
of Kullback-Leibler divergence. In this case, the
smaller value of JSD(+) denotes the more similar of
both probabilities, suggesting that the less impact
of edited knowledge (z., y.) to edited model 0’s
output distribution. As a result, the edited model 6
will tend to generate the outdated response 0(x).
To understand this similarity of the probability
distribution better, we analyze the similarity of both
models in Reliability and Portability. As shown in
Table 1, compared to the similarity of both models
of IKE in Reliability, all edited models’ probability
distribution have a smaller JSD value and are more
similar to the original model in Portability. Besides,
the more similar probability distribution between
the original and edited models meets the more se-
rious outdated issue and the worse performance
on reasoning questions. These results suggest that
the edited knowledge takes a few modifications
on probability distribution, and the generation of
new answers is disturbed by the original knowl-
edge. Therefore, we should amplify the impact of
the edited knowledge on probability distribution, to

reduce the disturbance of original knowledge, thus
encouraging the edited model to utilize the edited
knowledge to reason the new answer.

4 DISCO: Outdated Issue Aware
Decoding

As analyzed in the prior section (§3.2), the few
impacts of edited knowledge on probability dis-
tribution and the disturbance of original knowl-
edge during reasoning should be responsible for
the outdated issue. To amplify the impact of the
edited knowledge on probability distribution, we
propose a simple yet effective method, outDated
ISsue aware deCQOding (DISCO).

We first implement knowledge editing based on
the prior editing methods, e.g., IKE, which per-
forms best in Portability (Yao et al., 2023; Wang
et al., 2023a). Given an input x to the original
model 6 and edited model 6, we capture their dif-
ference in probability distribution, caused by edited
knowledge, via the subtraction as follows:

A(t) = Py() — ()
= pg(\m, :g<t) - pZ(’mv y<t)‘
Then, we add the difference A(¢) to the probabil-

ity distribution of the edited model to amplify the
difference in probability distribution:

p5() = P51z, G<t) + - A(t). (6)

&)

where @ > 0 is a hyperparameter to control the
weight of A(t). By this formula, we form a sim-
ple contrastive decoding (Li et al., 2022; Shi et al.,
2023; Chuang et al., 2023) between the original
and edited models, to capture and amplify the dif-
ference of edited knowledge in probability distribu-
tion, and then prevent the outdated issue.
Constraints to revise Probability. To further con-
strain the probability of tokens of outdated response
not increasing, we limit the maximum of A(-) for
the tokens in outdated response 6(z):

— min(O,A(t)), Vout;
Alt) = { A(t), otherwise,

where V,,; denotes the token set of the outdated
response 6(x).

Furthermore, applying A(¢) in Eq.6 faces the
risk of increased probability of the target of factual
edited knowledge, we take a similar constraint to
the tokens of y,:

min(0, A(t)),
a0~ { 5

)

Vout U Vedita
otherwise,

(®)
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where V.45 is the token set of the target of edited
knowledge (token-level y.).

Knowledge-aware In-cotext Editing. To fur-
ther enhance the awareness of LLMs to the edited
knowledge, we prepend the paraphrase of x. and
the answer g, to the real input = as an in-context
example. With the example, we could take a further
step to amplify the impact of edited knowledge on
probability distribution and reduce the disturbance
of previous knowledge.

Overall, we design the DISCO strategy, consist-
ing of Eq.6, Eq.8, and the in-context editing, to
amplify the modification in the probability distri-
bution. In this way, DISCO mitigates the outdated
issue, and then encourages the edited model to uti-
lize the edited knowledge to reason the new answer.

5 Experiments

5.1 Maetrics

For Reliability, Generality, and Portability, differ-
ent types of questions are inputted to the edited
model, and we compare the model answers with
ground truth ones to calculate token-level F1 and
exact match (EM), following previous QA stud-
ies (Rajpurkar et al., 2016; Yang et al., 2018): (1)
F1 measures the average overlap between the pre-
diction and the golden answer; (2) EM measures
the percentage of predictions which exactly match
the golden answer. For Locality, an irrelevant ques-
tion is used to evaluate whether the edited model
retains the original performance. Hence, the golden
answer of Locality is the original output. We also
calculate the token-level F1 and EM to evaluate the
edited models in terms of Locality.

Furthermore, when using portability to evaluate
the edited models, we quantify the outdated error
(OF) by calculating the averaged proportion of out-
dated tokens (each of which appears in the outdated
response 6(x)). To avoid over-count, we remove
the overlap tokens between the ground truth and
edited model predictions when calculating OFE:

m
OE(H) - T}/L; l{?jt S Vout & gt ¢ Vgolden}v
)
where m is the number of generated tokens, Vo
and Vyoi4en denote the token set of outdated re-
sponse and golden answer in Portability, respec-
tively.
Moreover, we detect the ratio of target tokens of

edited knowledge in the predictions, noted as TE:

m

~ 1 . R
TE(H) = E ; ]l{yt S Vedit & Yt ¢ Vgolden}'
(10)

5.2 Experimental setup

Datasets. In our experiments, we mainly conduct
experiments on zsRE (Levy et al., 2017), which
is one of the most prevalent Question Answering
datasets extended and adopted for knowledge edit-
ing (De Cao et al., 2021; Mitchell et al., 2021).
Further, Yao et al. (2023) expand the zsRE test set
on portability, in terms of subject replacement, in-
verse relation, and one-hop. To evaluate the edited
models on reasoning questions, we carefully select
one-hop, which requires models to take one-step
reasoning based on the edited knowledge.
Moreover, we also evaluate our methods on
CounterFact (Meng et al., 2022a; Yao et al., 2023),
which is a more challenging dataset that consists of
counterfactual edits. For instance, the CounterFact
updates the knowledge “Apple A5 was created by
Apple” to “Apple A5 was created by Google”.
Backbones. Following prior studies (Meng
et al., 2022a,b; Yao et al., 2023), we adopt
the GPT-J-6b (Wang and Komatsuzaki, 2021),
LlaMa-2-7b and LlaMa-2-13b (Touvron
et al., 2023) as the backbones.
Baselines. We adopt four methods as baselines: (1)
directly fine-tuning (FT) the language models with
L constraint; (2) ROME (Meng et al., 2022a)
leverages causal mediation analysis to locate the
edit area, and updates the whole parameters in the
FFN matrix; (3) MEMIT (Meng et al., 2022b)
directly updates LLMs with many memories, thus
editing thousands of knowledge simultaneously; (4)
IKE (Zheng et al., 2023) using in-context learning
to guide models to update knowledge.
Implementation Details. All experiments are con-
ducted on a single NVIDIA A100 GPU (40G). The
implementation of all baselines and our method is
employed by EasyEdit (Wang et al., 2023b), with
the default hyper-parameters in the GitHub repos-
itory®. Since in-context editing methods perform
best in Portability (Yao et al., 2023; Wang et al.,
2023a), we implement DISCO via the in-context
learning and set o to 1.0°. To conduct in-context
learning examples, we search for the most related
https://github.com/zjunlp/EasyEdit/

tree/main/hparams
3We explore the impact of « in Appendix.B.
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Backbone | Method | Reliability? —Generality?  Locality? | Portability? | OE| TE]|
ZSRE

FT 15.32/0.10 14.73/0.00 99.22/97.40 | 30.39/0.00 | 48.83 1.28
GPT-J-6b IKE 99.90/99.71 99.82/99.61 52.28/2893 | 36.46/3.57 | 1241 25.80
DISCO | 98.30/97.59 97.32/96.14 54.97/31.44 | 42.05/11.39 | 11.58 13.78
FT 43.29/9.35 36.80/4.34 93.51/80.62 | 3521/0.77 | 12.75 10.90
LlaMa—-2-7b IKE 99.84/99.71 99.63/99.32 56.27/22.08 | 50.88/10.90 8.23 17.64
DISCO | 99.02/98.17 98.90/97.69 62.64/30.95 | 63.87/33.46 5.78 6.09

CountFact
FT 5.04/5.04 0.97/70.97 96.12/96.12 | 25.76/0.00 | 55.75 0.02
GPT-J-6b IKE 99.71/99.71 7478 /74.78 20.47/20.56 | 28.48/0.00 | 49.57 0.06
DISCO | 90.30/90.30 86.52/86.52 15.13/15.23 | 29.40/0.00 | 45.88 0.02
FT 37.15/26.67 27.60/19.30 38.60/31.23 | 30.21/0.00 | 42.92 1.65
LlaMa—-2-7b IKE 99.44/99.32 82.00/79.44 25.86/17.75 | 38.05/0.00 | 37.49 0.33
DISCO | 91.85/90.40 81.43/78.56 19.13/9.80 39.41/0.00 | 36.34 0.08

Table 2: Experimental results (F1/EM) on the zsRE and CounterFact datasets with GPT-J-6b, L1aMa-2-"7b.
All digital results denote the token-level score of the corresponding property. Portability is the core problem in this
paper. DISCO denotes our decoding strategy. Bold denotes the best performance.

example of knowledge editing case to guide the
edited model. Similar to IKE (Zheng et al., 2023),
we apply al1-MiniLM-L6-v2* to encode and
retrieve examples of knowledge editing cases.

5.3 Main Results

We conduct the main experiments on the zsRE and
CounterFact datasets, and then report the F1 and
EM scores of four types of questions and the ratio
of OF and TE in Table 2. We find that IKE has the
best performance in Portability, which is consistent
with previous studies (Yao et al., 2023; Wang et al.,
2023a). Besides, IKE and DISCO are in-context
editing methods, without any parameters updating.
Hence, we mainly compare DISCO with IKE. We
discuss the performance of ROME and MEMIT in
Appendix A.

As shown in Table 2 (1) In terms of Reliability,
on both datasets, DISCO has achieved great suc-
cess in yielding over 90 F1 and EM scores with
both backbones. For the Generality, DISCO yields
over 98.90 and 81.43 F1 scores on the zsRE and
CounterFact datasets, respectively. This indicates
that our DISCO is competitive with the previous ap-
proaches, when the questions are within the editing
scope. Note that, for both IKE and DISCO meth-
ods, Reliability and Generality mainly measure the
ability to memorize the edited knowledge from the
prompt, since the edited knowledge in the prompt

*https://huggingface.co/
sentence-transformers/all-MinilM-L6-v2

has a similar or same format as the input question.
(2) For the Locality, both in-context editing meth-
ods perform poorly on both datasets. Although
FT could maintain the performance to the irrele-
vant question, we consider the performance comes
from the invalid knowledge editing, where most F1
scores of FT are less than 40 in Reliability. DISCO
performs better than IKE in the zsRE dataset, while
worse than IKE in the CounterFact dataset. We con-
jecture this poor Locality performance is attributed
to that LLMs struggle to locate the editing scope
and affect unrelated inputs (Yao et al., 2023), and
could be alleviated by supplying a scope classifier
to determine whether editing model (Mitchell et al.,
2022).

For the reasoning properties: (1) In Portabil-
ity, DISCO yields the best performance among all
methods on both backbones. Compared to IKE,
DISCO improves F1 score with +5.59 and +12.99
scores on the GPT-J-6b and L1aMa—-2-"7b, re-
spectively. Furthermore, the EM score of DISCO
is around triple times (11.39 vs. 3.57 and 33.46
vs. 10.90) that of IKE. In the challenging Coun-
terFact dataset, DISCO still outperforms IKE by
over +1.0 F1 score. Since the challenge, edited
models struggle to respond whole golden answer
(EM), and only predict a few tokens of the golden
answer. Even so, these improvements demonstrate
that DISCO could powerfully assist LLMs to gen-
erate correct answers, by capturing and amplifying
the modification of the edited knowledge, on rea-
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Figure 2: Probability distribution of A(t) in Portability
on the zsRE dataset with L1aMa—-2-7b. Interval de-
notes the interval of the averaged value of A(t) (%).

soning questions. (2) DISCO also performs best on
the Outdated Issue among all methods in terms of
OE and TE, generating the least outdated tokens af-
ter knowledge editing. In the zsRE dataset, DISCO
could yield only a 5.78% average ratio of the out-
dated issue on the L1aMa—-2-7b. As the results
show, DICSO could effectively prevent the edited
model from generating outdated tokens and target
tokens of edited knowledge, simultaneously.

Moreover, when comparing edited models on dif-
ferent datasets or backbones, we could find that the
basic ability of backbones and difficulty of editing
knowledge are two important factors in the perfor-
mance of edited models, especially in Portability.
Overall, DISCO is an effective method, performing
competitive results in Reliability and Generality,
and achieving new state-of-the-art performance in
Portability.

6 Analysis

6.1 Distribution of A(¢)

We investigate the probability variation A(t) (in
Eq.5) to further probe the impact of A(t) on
the outdated issue. On the zsRE dataset and
LlaMa-2-7b backbone, we split the averaged
A(t) value in Portability into intervals with the
10.0%, and then count the proportion and the OF
metric w.r.t each interval.

Since the positive or negative A(t) value denotes
whether the probability of golden answers is im-
proved, as illustrated in Figure 2, we could observe
that most value of A(t) of golden answers (around
94.5%) has a positive value. The positive value
indicates that A(t) could assist the edited model
in reasoning the golden answer. Besides, with the

Portability
GoldenT Outdated]

Edited | 58.03 | 66.44 54.14
DISCO | 5648 | 77.33 30.07

Model ‘ Locality ‘

Table 3: Averaged probability of golden answers in
Locality and Portability, on the zsRE dataset with
LlaMa-2-7b. Golden and Outdated denote the value
of golden answers and outdated responses, respectively.
Edited and DISCO represent the performance of the
edited model with or without DISCO, respectively.

Probability Variation of Tokens
82.84 = Original

Proportion of common and outdated tokens
80

Common Tokens 75.36 3 Disco
Common Outdated Tokens 70 66.05
Tokens

57.78%

okens

4.52

Common Tokens Outdated Tokens

(a) (b)

Figure 3: The proportion of common tokens in outdated
responses, and the probability variation of the tokens
before and after applying DISCO.

larger A(t) value, the ratio of outdated issue of
the corresponding interval has a monotone decreas-
ing trend (from 9.65% to 0.6%). This trend fur-
ther demonstrates that A(t) could assist the edited
model in reasoning the golden answer, and mitigate
the outdated issue.

6.2 Variation of Probability Distribution

To probe the variation of probability distribution
after applying DISCO, we count the average proba-
bility of golden answers in four properties, and the
outdated responses in Portability. We display the
results on the zsRE dataset with L1aMa-2-7b,
and list the results in Table 3.

For the Locality, DISCO suffers a little sacrifice
in probability to retain the output of the original
model, and this sacrifice could be supplied by a
scope classifier or parameter locating. For Porta-
bility, DISCO could enlarge the difference of prob-
ability between the outdated response and golden
answers from 12.30% to 47.26%. Consequently,
DISCO could significantly capture and amplify the
impact of edited knowledge on the probability dis-
tribution, then alleviate the outdated issue and en-
courage the edited model to generate the correct
answers for reasoning questions.
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Constraints

D | idated  Target | POT2bIlityT  OEL TE|
1 v v | 6387/3346 578 6.09
2 X v | 6286/3221 659 6.01
3 v X | 6297/31.92 5.65 8.09
4 x x | 61.96/30.76 644 7.97

Table 4: Ablation experimental results of DISCO on the
zsRE dataset with L1aMa—-2-"7b. Outdated and Target
denotes the constraints to A(t) as stated in Equ.7 and 8.

6.3 Probability of Common Tokens

To detect whether all tokens in outdated responses
are wrong, on reasoning questions, we count the
proportion of the common tokens in both the out-
dated response and the new golden answer, and
their probability variation. We display the statis-
tical results of DISCO on the zsRE dataset with
LlaMa-2-7b in Figure 3.

As shown in Figure 3(a), in the token-level,
57.78% tokens in outdated responses will appear
in the new golden answer, while the other tokens
are wrong and will be outdated tokens after editing.
This proportion of the common tokens and outdated
tokens suggests that not all tokens in outdated re-
sponses are wrong. To further probe the effect of
DISCO on the common tokens and the outdated
tokens, we display the variation of the probability
of both tokens, before and after applying DISCO.
As shown in Figure 3(b), the common tokens re-
ceive the increasing probability, while the probabil-
ity of outdated tokens decreases from 66.05% to
4.52%. The variation indicates that DISCO could
reserve the common tokens, and effectively reduce
the probability of outdated tokens. The effect of
DISCO on both tokens demonstrates that DISCO
could preserve the probability of correct tokens and
reduce the probability of outdated tokens, and then
improve the performance of Portability.

6.4 Ablation

We explore the impact of both constraints, in Equ.8,
to A(t) in DISCO, and conduct experiments on the
zsRE dataset with L1aMa-2-7b. We list the re-
sults in Table 4 and display the impact of prepended
paraphrased edited knowledge in Appendix.C.

As illustrated in Table.4, we remove the con-
straint on tokens of outdated response (ID.2), the
target of edited knowledge (ID.3), and remove
both constraints (ID.4), while setting the whole
DISCO as the baseline (ID.1). When removing
the constraint on outdated tokens, ID.2 suffers a

FT ROME MEMIT
34.74s  154.05s  127.99s

IKE DISCO
32.43s  19.69s

Table 5: Average wall clock time for each edit method
conducting 10 edits on LlaMa-2-7b, using singe A100
(40G).

Method | Locality?  Portability} OE| TE|
LlaMa-2-7b

IKE 56.27/22.08 50.88/10.90 823 17.64
DISCO | 62.64/30.95 63.87/3346 578  6.09

LlaMa-2-T7b
IKE ‘60.68/28.83 55.26/18.13  7.14 1545

DISCO | 61.31/29.80 66.85/37.61 526 5.04

Table 6: Experimental results on the zsRE dataset with
LlaMa-2-7b and L1aMa-2-13b.

more serious outdated issue and worse quality of
response, compared to ID.1. Similarly, ID.3 gen-
erates more tokens of the target of edited knowl-
edge, after removing the constraints on the corre-
sponding tokens. Consequently, after removing
both constraints, ID.4 generates the worst response
and suffers the deterioration on both token types.
These performances suggest that both constraints
are efficient in revising the probability of the cor-
responding type of tokens, while DISCO could
improve the probability of golden answers.

6.5 Efficiency

Knowledge Editing should minimize the time re-
quired for conducting edits without compromising
the model’s performance. We calculate the Time
Cost for five methods on the L1aMa—-2-"7b, to
compare the efficiency of DISCO. Similar to Yao
et al. (2023), we counter the average time-cost of
10 edits.

Table 5 illustrates the time required for differ-
ent knowledge editing methods from providing the
edited case to obtaining the edited model. We could
observe that DISCO could quickly edit knowledge,
much faster than other methods, and then yield
remarkable performance (details of results as dis-
cussed in Section 5.3). On the other hand, ROME
and MEMIT are time-consuming and necessitate
a pre-computation of the covariance statistics for
the Wikitext. Hence, considering the time aspect,
DISCO is the optimal time-friendly knowledge edit-
ing method, with remarkable performance.

6.6 Model Scaling

We apply two methods (i.e., IKE, and DISCO) to
LlaMa-2-13b to evaluate the reasoning ability of
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the edited knowledge with model scaling.

As Table 6 shows, when applying to LlaMa-2-
13b, both methods perform better in Portability
than in LlaMa-2-7b, with 3.29 and 1.50 F1 scores
improvement, respectively. Besides, both meth-
ods generate fewer outdated tokens and factual
knowledge tokens. Unfortunately, DISCO per-
forms worse in Locality on the larger LLM, sug-
gesting that the edited knowledge has more impact
on the probability distribution on the larger LLM,
thus disturbing the LLM locating the editing scope.
Additionally, compared to the IKE with the LLlaMa-
2-13b, DISCO achieves better performance in the
four properties on the LlaMa-2-7b. The experimen-
tal results indicate that DISCO has a strong capa-
bility to enhance edited models on the reasoning
problem w.r.t the edited knowledge and performs
better with the larger model.

7 Conclusion

In this paper, we focus on the outdated issue that
edited models suffer from generating outdated re-
sponses to the reasoning questions, which is ig-
nored by previous approaches. To mitigate this
issue, we propose a simple yet effective method,
outDated ISsue aware deCOding (DISCO), to
encourage the edited model to utilize the edited
knowledge to reason the correct answers for rea-
soning questions. Specifically, DISCO captures
and amplifies the modification in probability distri-
bution between the original and edited models. Ex-
perimental results demonstrate that DISCO could
significantly mitigate the outdated issue, and ef-
fectively encourage the edited to reason the new
correct answers for reasoning questions, without
updating parameters.

Limitations

In this paper, we investigate the outdated issue
of edited models to the reasoning questions, and
we propose a simple yet effective decoding strat-
egy, i.e., DISCO, to prevent this issue and enhance
the performance of edited models on reasoning
questions. In this paper, we mainly focus on the
outdated issue in the one-hop reasoning questions,
which is the prior part of multi-hop questions. We
leave these in future work to take further improve-
ment.
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Backbone | Method | Update? | Reliability? Generality?  Locality? | Portability? | OE| TE|
zZSRE
FT v 1532/0.10  14.73/0.00  99.22/97.40 | 30.39/0.00 | 48.83  1.28
ROME v 99.56/99.13 92.66/88.33 80.15/60.56 | 31.70/2.70 | 15.62 21.80
cp7-ggp | MEMIT v 98.93/98.07 80.60/69.24 99.26/97.69 | 33.01/1.35 | 3035 9.82
IKE X 99.90/99.71 99.82/99.61 52.28/28.93 | 36.46/3.57 | 1241 25.80
DISCO X 98.30/97.59 97.32/96.14 54.97/31.44 | 42.05/11.39 | 11.58 13.78
FT v 4329/935 36.80/4.34  93.51/80.62 | 3521/0.77 | 1275 10.90
ROME v 75.28/64.32 70.39/5535 97.22/90.74 | 37.28/2.86 | 1451  7.67
MEMIT v 74.81/60.84 69.65/51.49 98.46/94.60 | 37.02/2.51 | 12,70  9.72
LlaMa-2-7b
IKE X 99.84/99.71 99.63/99.32 56.27/22.08 | 50.88/10.90 | 823 17.64
DISCO X 99.02/98.17 98.90/97.69 62.64/30.95 | 63.87/33.46 | 578  6.09
CounterFact
FT v 37.15/26.67 27.60/19.30 38.60/31.23 | 30.21/0.00 | 42.92  1.65
ROME v 83.23/77.30 40.26/31.81 90.30/88.26 | 33.24/0.00 | 36.53  0.80
MEMIT v 83.33/77.30 46.68/38.41 93.31/91.85 | 30.97/0.00 | 33.04 1.92
LlaMa-2-7b
IKE X 99.44/99.32 82.00/79.44 25.86/17.75 | 38.05/0.00 | 3749 0.33
DISCO X 91.85/90.40 81.43/78.56 19.13/9.80 | 39.41/0.00 | 36.34 0.08

Table 7: Experimental results (F1/EM) on the zsRE and CounterFact datasets with GPT-J-6b, L1aMa-2-"7b.
All digital results denote the token-level score of the corresponding property. Portability is the core problem in this

paper. DISCO denotes our decoding strategy.

. Bold denotes the best performance.

| Locality?  Portability? OE| TE| | Locality?  Portability} OE| TE|
Value | GPT-J-6b | LlaMa-2-7b
0.1 |6570/41.80 41.94/9.93 15.61 14.61 | 70.07/37.99 63.65/31.92 6.63 7.42
0.3 | 61.82/37.13 42.03/1022 1406 1472 | 67.92/3558 63.99/32.79 624 7.12
0.5 |59.50/35.00 42.05/10.51 13.10 14.67 | 66.26/34.23 64.11/33.27 6.02 6.74
1.0% | 54.97/31.44 42.05/11.28 11.39 1438 | 62.72/31.05 63.87/33.46 5.78 6.09
1.5 | 51.16/28.64 42.14/1215 10.54 14.21 | 59.70/28.54 63.84/33.65 529 5.78
2.0 |4842/2690 4226/12.05 993 13.81 | 57.64/27.58 63.63/33.08 5.04 5.32

Table 8: Experimental results of DISCO with different values of hyperparameter o on the zsRE dataset on the
GPT-J-6b and L1aMa-2-7b. Digits in the Value column present the selection of the hyperparameter «, and the
other digital results denote the token-level score of the corresponding property. * denotes the default selection of

hyperparameter . Bold denotes the best performance.

Model

DISCO
DISCO w.o. prepended

| Portabilityt OE| TE|

63.87/33.46 5.78 6.09
63.18/33.26 6.00 4.92

Table 9: Ablation Experimental on the impact of the
prepended paraphrased edited knowledge to DISCO on
the zsRE dataset with L1aMa-2-"7b.

A Full Comparison in zsRE

We supply the experimental results of ROME and
MEMIT in Table 7. As Table 7 illustrated, we could
observe that ROME and MEMIT perform well in
Portability. With the benefit of the pre-computation
of the covariance statistics, ROME and MEMIT
could precisely update the parameters related to the
edited knowledge, with more editing time-cost. As
a result, ROME and MEMIT could retain the most

performance when receiving the input out of the
editing scope.

B Hyperparameter

To explore the impact of hyperparameter o« in
DISCO, we conduct experiments in the zsRE
dataset on both backbones. Since the F1 scores
of Reliability and Generality are over 98, we pay
less attention to both properties and mainly focus
on the other metrics.

We adjust « to (0.1,0.3,0.5, 1.0, 1.5, 2.0) to ob-
serve the corresponding performance of DISCO
and report the results in Table 8. As the results
show, with the larger value of o, the edited mod-
els generate the less outdated tokens, where ratios
of Outdated issue downwards from 15.61 to 9.93
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and 6.63 to 5.04 on both backbones, respectively.
Besides, the larger « hinders edited models from
generating factual knowledge tokens, where ratios
of TE downwards from 14.61 to 13.81 and 7.42
to 5.32 on both backbones, respectively. However,
the larger o cannot yield better response quality,
and the EM score is optimal when alpha is around
1.0. Unfortunately, the larger « gives rise to the
aggravation of the performance in Locality, where
the A in DISCO will lower the probability of the
tokens predicted by the original model. However,
we could obtain the trade-off between Locality and
Portability by setting « to 1.0. With this setting,
DISCO could yield competitive and stable perfor-
mance with IKE in Locality, and outperform IKE
in Portability.

C Ablation for Prepended Paraphrased
edited knowledge

We supply the exploration of the impact of
the prepended paraphrased edited knowledge to
DISCO on the zsRE dataset with L1aMa-2-7b.
As illustrated in Table 9, without the paraphrased
edited knowledge, DISCO suffers a loss in terms of
portability and outdated issue problems, compared
to DISCO. The worse performance of DISCO with-
out the paraphrased edited knowledge demonstrates
that the prepend paraphrased edited knowledge is
beneficial for the edited model and enhances its
performance on reasoning questions w.r.t. edited
knowledge.
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