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Abstract

Pre-trained language models (PLMs) have
shown great dialogue generation capability in
different scenarios. However, the huge VRAM
consumption when fine-tuning them is one of
their drawbacks. PEFT approaches can sig-
nificantly reduce the number of trainable pa-
rameters, which enables us to fine-tune larger
dialogue generation models. However, the re-
duction in parameter quantity can diminish
a PLM’s expressive capacity and affect the
PLM’s learning from certain specific examples
like knowledge-related conversations. Previous
works have demonstrated that injecting exter-
nal knowledge into dialogue generation mod-
els can improve the model’s performance in
knowledge-related conversations. Nonetheless,
these methods are designed for the scenario
where most parameters of the entire framework
are trainable. In this paper, we propose PEK, a
parameter-efficient framework for knowledge-
enhanced dialogue generation. It enables PLMs
to leverage external knowledge documents and
knowledge graphs to enhance its generation
capabilities with an acceptable number of train-
able parameters. Evaluation results on the Wiz-
ard of Wikipedia and CMU_DoG datasets show
that our approach outperforms baseline meth-
ods on multiple evaluation metrics, which vali-
dates the effectiveness of our approach.

1 Introduction

The success of pre-trained models like BERT (De-
vlin et al., 2018), GPT-2 (Radford et al., 2019),
BART (Lewis et al., 2019) and T5 (Raffel et al.,
2020), demonstrates that more parameters and
larger datasets, can lead to better language rep-
resentation capabilities and great performances on
various NLP tasks. Generally, fine-tuning on down-
stream task datasets helps further improve a pre-
trained model’s performance. However, since the
advent of pre-trained language models, one of their
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drawbacks has been the huge VRAM consumption
when fine-tuning on them. This issue is particularly
prominent in large language models like GPT-3
(Brown et al., 2020) and LLaMA (Touvron et al.,
2023). Millions and billions of parameters make it
difficult to fine-tune them on a task-specific down-
stream dataset without a substantial number of high-
performance GPUs and a significant amount of
VRAM.

An effective solution is using parameter-efficient
methods to reduce the number of trainable param-
eters. However, reducing the number of trainable
parameters may lead to a decrease in model per-
formance. Finding ways to maintain model per-
formance is a challenging problem. Several ap-
proaches have been explored, like BitFit (Zaken
et al., 2021), Adapter (Houlsby et al., 2019; Lin
et al., 2020; Pfeiffer et al., 2021; Rücklé et al.,
2021), P-tuning (Liu et al., 2021b, 2022), Prompt-
tuning (Lester et al., 2021a), LoRA (Hu et al., 2021)
and AdaLoRA (Zhang et al., 2023). Nonetheless,
these methods still have some shortcomings, such
as a significant drop in model performance on cer-
tain tasks, introduction of training or inference la-
tency, or imprecise allocation of computational re-
sources.

Using PEFT approaches, we can significantly
reduce the number of trainable parameters, which
enables us to fine-tune larger dialogue generation
models. However, the reduction in parameter quan-
tity can diminish a PLM’s expressive capacity and
affect the PLM’s learning from certain specific ex-
amples like knowledge-related conversations. Pre-
trained models acquire a considerable amount of
knowledge during the pre-training process. In the
scenario of full fine-tuning, the model can implic-
itly learn to apply this knowledge in downstream
tasks during the fine-tuning process. Neverthe-
less, in the PEFT scenario, where the number of
trainable parameters is significantly reduced, this
transfer process may be affected. Moreover, the
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knowledge obtained through pre-training is often
not explicitly represented, which brings us chal-
lenges to explore better ways to utilize it. Some
works (Li et al., 2019a; Kim et al., 2020; Zhao et al.,
2020b; Zhan et al., 2021; Yang et al., 2022) have
attempted to integrate external knowledge such as
documents and knowledge graphs into dialogue
generation models and achieved remarkable results.
The achievements of these methods have demon-
strated to us that introducing external knowledge
helps to enhance a dialogue generation model’s
generative capabilities in knowledge-related con-
versations. Nonetheless, these methods are usually
designed for the scenario where most parameters
of the entire framework are trainable. How to inject
external knowledge into PLMs to enhance its gener-
ation capabilities with a small number of trainable
parameters in the entire framework remains a sub-
ject for further research.

To address the issues mentioned above, we
present a parameter-efficient structure which can
introduce external knowledge graph to PLMs. Our
contributions in this paper can be summarized
as: (1) We propose PEK, a Parameter-Efficient
Knowledge-grounded dialogue generation frame-
work, which enables PLMs to leverage exter-
nal knowledge sources to generate knowledge-
enriched responses and requires only a small num-
ber of trainable parameters; (2) We propose T-
LoRA, which is based on SVD decomposition
and can allocate more computational resources to
weight matrices with less redundancy. T-LoRA
does not require a dynamic parameter sensitivity
estimation process during fine-tuning, which also
means that it does not consume additional compu-
tational resources during training; (3) We propose
a geometric mean weighted attention mechanism.
It can effectively measure the importance of knowl-
edge graph triplets and mitigate the issue of knowl-
edge noise introduced by irrelevant triplets.

2 Methodology

2.1 Problem Statement

Knowledge-enhanced dialogue generation aims to
develop a generative model that can leverage not
only the dialogue history but also external knowl-
edge sources like knowledge documents and knowl-
edge graphs. Since pre-trained language mod-
els have better generation capabilities, fine-tuning
them as the backbone network can further improve
the model performance. However, a limited bud-

Figure 1: Overview of our method

get makes it difficult to fine-tune all the parame-
ters. How to enhance the performance of the model
when the number of trainable parameters is limited,
is the problem to be solved.

Formally, we denote the dialogue history as H,
which encompasses all the historical tokens of the
conversation, H = {uHi}, where uHi is the i-th
token of the dialogue history. The external knowl-
edge sources are denoted as K. In this paper, we
mainly focus two commonly encountered types of
external knowledge: knowledge documents and
knowledge graphs. We denote the knowledge doc-
ument as KD = {uDi}, where uDi is the i-th
token of the document and the knowledge graph
as KG = {(hi, ri, ti)}, where hi, ri, ti are respec-
tively the head entity, relation and tail entity of
the i-th tuple in the knowledge graph. The set of
trainable parameters of the model is θt and the set
of untrainable parameters is θf , where the size of
θt is usually much smaller than θf . Our goal is
to train a model with a PLM or LLM as its back-
bone to learn the conditional probability distribu-
tion P (xi|x1,2,...,j<i;H; [KD;KG ]; [θt; θf ]).

2.2 Overview

Our method introduces T-LoRA into specific layers
in PLMs. To enable the model to handle knowl-
edge graphs, we insert knowledge fusion modules
between certain layers. Fig. 1 presents an overview
of our model.
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2.3 T-LoRA

Before we start this section, let’s take a glance at
the vanilla LoRA. LoRA can be expressed as the
following formula:

h = W0x+
α

r
BAx, (1)

where h is the output of a projection layer with an
input x and W0 ∈ Rm×n is the original weight ma-
trix of the PLM, which is not trainable during fine-
tuning, B ∈ Rm×r and A ∈ Rr×n are learnable
weight matrices. n,m are the numbers of input
and output features. r ≪ min(m,n), is a hyper-
parameter and α is the scaling factor. Aghajanyan
et al. (2020) demonstrates that PLMs usually have
a lower "intrinsic dimension", which may indicate
the presence of a significant amount of redundant
information within the weight matrices.

In the original implementation, all the matrices
with LoRA have the same value for r. However,
different weight matrices in the same PLM tend
to have varying degrees of importance, which is
demonstrated in Zhang et al. (2023)’s work. Thus
selecting an appropriate r for each matrix may fur-
ther improve parameter efficiency. Here, we per-
form singular value decomposition (SVD) on sev-
eral weight matrices of DialoGPTlarge(Zhang et al.,
2019)1 and define a function to measure the redun-
dancy of matrix information:

f(W,λ) = argmink[

∑k
j=1 σ

2
j∑N

j=1 σ
2
j

≥ λ], (2)

where N is the number of the singular values of
the matrix W and σj denotes the j-th singular
value of W in descending order and λ ∈ [0, 1]
is a pre-determined parameter. Given a fixed λ, a
low f(W,λ) value means that W is more likely to
contain redundant information2. Each line in Fig.
2 shows the variation trend of f(W,λ) with respect
to λ for certain matrices. It can be observed that
there are differences in the redundancy of infor-
mation among different matrices. Some matrices
are highly information-redundant, which is further
illustrated in Fig. 3.

1https://huggingface.co/microsoft/DialoGPT-large
2Let’s consider an extreme example, where A =

[
1 2
2 4

]

and B =

[
1 2
3 4

]
. f(A, 1.0) = 1, f(B, 1.0) = 2. It can

be observed that A contains redundant information since the
second row can be linearly represented by the first row.

In this paper, we propose a simple adaption to
the vanilla LoRA, which is named as Threshold
LoRA (T-LoRA). To apply T-LoRA to a weight
matrix W , we perform SVD to it first and denote
the result as:

W = UΣV T . (3)

Let the i-th singular values in Σ to be σi(σ1 ≥
σ2 ≥ σ3 ≥ . . . ), r is calculated with:

r = f(W,λ) = argmink[

∑k
i=1 σ

2
i∑N

i=1 σ
2
i

≥ λ], (4)

where N is the number of singular values of W
and λ is a preselected threshold. T-LoRA can be
represented by the following formula:

h = W0x+ αBAx, (5)

. Unlike the vanilla LoRA, r is calculated with Eq.
(4) and α is a manually-chosen scaling factor.

2.4 Knowledge Fusion
Our model takes knowledge documents and
knowledge graphs as its external knowledge
sources. For the knowledge document, we
concatenate it with the dialogue history to ob-
tain the input to the pre-trained model. The
input token sequence is I = [KD;H] =
[uD1, uD2, . . . , [SEP ], uH1, uH2, . . . ].

For knowledge triplets, we employ a different
approach. Firstly, we split the set of triplets into
three sequences: the head entity sequence, the rela-
tion sequence, and the tail entity sequence. We de-
note the matrix composed of embedding vectors of
head entities, relations and tail entities as H,R, T ,
where the i-th row of H,R, T is respectively the
embedding vector of the head entity, relation and
tail entity of the i-th triplet. We employ DistMult
(Yang et al., 2015) to pretrain the entity embedding
matrix Ee and relation embedding matrix Er. Then
we freeze all the parameters of Ee and Er.

Instead of directly employing vanilla multi-head
attention (Vaswani et al., 2017), we use a graph
attention mechanism which takes the similarity be-
tween tokens and the head entities, relations and tail
entities into consideration, to facilitate information
interaction between the tokens and the knowledge
graph. We call it Geometric Mean Weighted At-
tention. We select a few specific layers to insert
the geometric mean weighted attention modules.
The set of indices of the selected layers is denoted
as S and si is the i-th element of S in ascending
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(a) Self-Attention Out-Projection(WO) (b) MLP Up-Projection (c) MLP Down-Projection

Figure 2: f(W,λ) for different matrices of different layers and λ values.

(a) MLP Up-Projection (Layer 18) (b) Self-Attention Out-Projection(WO)
(Layer 36)

(c) MLP Up-Projection (Layer 36)

Figure 3: σ2
i∑N

i=1 σ2
i

for different matrices

order. Let Hsi
O be the output of the si-th layer and

H
si−1

OK
be the output of the graph attention module

which is inserted after the si−1-th layer. We project
Hsi

O +H
si−1

OK
into a subspace of dimension k, where

k is the dimension of the entity and relation em-
bedding matrix. The projection result is denoted
as Hsi

P . Then, we separately compute the atten-
tion scores for the i-th head entity (W si

H ), relation
(W si

R ), and tail entity(W si
T ):

W si
H = softmax(

(WQH
Hsi

P )(WHH)T√
dk

) (6)

W si
R = softmax(

(WQR
Hsi

P )(WRR)T√
dk

) (7)

W si
T = softmax(

(WQP
Hsi

P )(WTT )
T

√
dk

), (8)

where dk is the dimension of each attention head
and WQH

,WQR
,WQP

,WH ,WR,WT are projec-
tion matrices. The final attention weight matrix
W si is:

W si = softmax( 3

√
W si

H ⊙W si
R ⊙W si

T ), (9)

where A⊙B is the Hadamard product of A,B. Fig.
4 shows an overview of the calculation process.

Figure 4: An overview of the calculation process. The
example used in this figure is the same as Tab. 4. A
more opaque line represents a larger attention weight.

Then we weight the information of each tail entity
according to the weight matrix W si . The results
are fed into a fully connected network as the final
output:

Hsi
OK

= FFN(W si(WVT
T )) (10)

(WVT
is the projection matrix). In addition, we

use a knowledge gating mechanism to mitigate the
noise introduced by external knowledge, which can

9264



be described as:

p = Sigmoid(W f
OK

Hf
OK

) (11)

HO = pHf
OK

+ (1− p)Hf
O, (12)

where Hf
OK

is the output of the last graph attention

module, Hf
O is the output of the PLM and HO is

the final output of the stacked transformer layers.

3 Experiment Settings

3.1 Datasets

We conduct experiments on two public datasets:
Wizard of Wikipedia (Dinan et al., 2019) and
CMU_DoG (Zhou et al., 2018).

Wizard of Wikipedia Wizard of Wikipedia
(WoW) is a document-grounded dialogue dataset.
The dataset primarily consists of dialogues between
two agents. One of the agents who is called "the
wizard", plays the role of an expert. The other
is the apprentice. The wizard has access to the
knowledge documents retrieved from Wikipedia
while the apprentice does not. The apprentice asks
questions and the wizard provides responses with
retrieved documents. The Wizard of Wikipedia
dataset covers approximately 1.3K topics.

CMU_DoG CMU_DoG is another dialogue
dataset based on knowledge documents, which con-
tains conversations between two individuals cen-
tered around a particular movie. Unlike WoW, both
speakers in CMU_DoG have access to the knowl-
edge documents, but the content they can access
may be different. More details about the datasets
can be found in Appendix A.

Knowledge Base For the WoW dataset, we use
ConceptNet (Speer et al., 2017)3 , which is an open,
multilingual knowledge graph containing common-
sense knowledge, as our knowledge base. Con-
ceptNet includes a great number of concepts and
the connections between them. ConceptNet is de-
signed to help computers understand various con-
cepts that people use in everyday life. It is an
important knowledge source for dialogue systems
and other NLP applications. In our experiments,
we utilize the subgraph of ConceptNet where the
source language is English. We use spaCy 4 to
recognize named entities. For the WoW dataset,

3https://conceptnet.io/
4https://github.com/explosion/spaCy

we extract 39,101 triplets, involving 26,684 entities
and 17 types of relationships.

Since the CMU_DoG dataset is highly movie-
centric, we employ YAGO (Suchanek et al., 2023),
a knowledge graph that incorporates more movie-
related knowledge, as our knowledge base. We col-
lect a total of 74,350 entities, 10 types of relations,
and 82,861 triplets for the CMU_DoG dataset.

3.2 Metrics

We mainly use automatic metrics to evaluate the
performance of our method: (1) Overlapping-based
metrics: BLEU-4 (Papineni et al., 2002), ROUGE-
L (Lin, 2004); (2) Embedding-based metrics (Liu
et al., 2016): Greedy Matching (GM), Embedding
Average (EA) and Vector Extrema (VE). All the
automatic evaluation results are computed with the
nlg-eval toolkit (Sharma et al., 2017) 5.

3.3 Baselines

To validate the effectiveness of our method, we
compare it with other state-of-the-art parameter-
efficient methods. We select full fine-tuning as a
strong baseline. We compare our method with the
following methods: (1) Adapter tuning: Adapter-
H (Houlsby et al., 2019), Adapter-L (Lin et al.,
2020); (2) BitFit (Zaken et al., 2021); (3) P-Tuning
(Liu et al., 2021b) and P-Tuning V2 (Liu et al.,
2022); (4) PrefixTuning (Li and Liang, 2021); (5)
LoRA (Hu et al., 2021) and AdaLoRA (Zhang
et al., 2023). For PEFT modules other than Adapter
and BitFit, we utilize the implementation provided
by Hugging Face 6.

In addition, we also compare our method
with the following high-performing knowledge-
enhanced models: (1) Transformer Memory Net-
work (TMN), which is the model proposed along
with the WoW Dataset in (Dinan et al., 2019).
(2) Incremental Transformer with Deliberation
Decoder (ITDD) (Li et al., 2019b), which is a
transformer-based model and can encode multi-
turn dialogue history and knowledge incremen-
tally and generate responses with a deliberation
decoder. (3) Disentangled Response Decoder
(DRD) (Zhao et al., 2020a), which is a model for
low-resource scenario and tackles this challenge by
using pre-training techniques. (4) KnowledGPT
(Zhao et al., 2020b) , which consists of a pre-
trained language model for response generation

5https://github.com/Maluuba/nlg-eval
6https://github.com/huggingface/peft
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and a knowledge selection module. Both models
are jointly optimized with an unsupervised method.
(5) CoLV (Zhan et al., 2021), a collaborative latent
variable model that can integrate knowledge se-
lection and knowledge-aware response generation
simultaneously in separate yet collaborative latent
spaces. (6) TAKE (Yang et al., 2022), which an-
notates the topic shift and topic inheritance labels
in multi-round dialogues with distant supervision
and alleviate the noise problem in pseudo labels
through curriculum learning and knowledge distil-
lation.

4 Experimental Results and Discussions

4.1 Results and Analysis

The implementation details can be found in Ap-
pendix B. Table 1 and Table 2 present the auto-
matic evaluation results on Wizard of Wikipedia
and CMU_DoG. Based on the experimental results
presented in the two tables, we have the following
observations: (1) On most automatic metrics, our
approach outperforms the PEFT baselines and even
some of the non-PEFT models, which indicates
the effectiveness of our approach in knowledge-
enhanced dialogue generation. (2) The perfor-
mances of T-LoRA(λ = 0.1) + kg, LoRA(r = 20)
+ kg and AdaLoRA(r = 20) + kg are even better
than full fine-tuning. This improvement may be
attributed to the denoising effect of the low-rank ap-
proximation of the increment matrix, as also men-
tioned in (Hu et al., 2021). (3) AdaLoRA and our
method exhibit similar performances on automatic
metrics. However, compared to AdaLoRA, our
method does not require dynamic evaluation of the
sensitivity of each parameter during training. It is
much simpler and does not introduce an additional
computational process during training since all the
r values can be pre-computed.

Table 3 shows the human evaluation results.
It can be observed that while KnowledGPT,
AdaLoRA(r = 20) + kg and T-LoRA(λ = 0.1)
+ kg are comparable in terms of language fluency,
our method performs better on context coherence
and knowledge relevance, which is consistent with
the results on automated evaluation metrics. All
the Kappa values are not less than 0.6, indicating a
relatively consistent agreement among human ex-
perts. More details about the human evaluation can
be found in Appendix C.

4.2 Ablation Study

To investigate the impact of geometric mean
weighted graph attention on performance, we
compare our method with the following vari-
ants: (1) T-LoRA w/o kg: The geometric mean
weighted graph attention modules are removed;
(2) T-LoRA + A-Attn: The final attention weight

W si =
W

si
H +W

si
R +W

si
T

3 , is the arithmetic mean
of W si

H ,W si
R ,W si

T , rather than the geometric
mean; (3) T-LoRA + V-Attn: The geometric mean
weighted graph attention modules are replaced with
vanilla multihead attention modules. The evalua-
tion results are reported in Table 1 and Table 2.

We observe that (1) removing the geometric
mean weighted graph attention modules leads to a
performance drop on both the Wizard of Wikipedia
and CMU_DoG datasets, which confirms the effec-
tiveness of the geometric mean weighted graph at-
tention modules; (2) T-LoRA + A-Attn and T-LoRA
+ V-Attn also exhibit some performance degrada-
tion, which may be attributed to the fact that, in
certain cases, they struggle to effectively measure
the relevance between knowledge triplets and the
context of the dialogue. Additionally, we conduct
a human evaluation for T-LoRA w/o kg, and the
results are presented in Table 3. T-LoRA w/o kg
scores lower in terms of contextual coherence and
knowledge relevance compared to the full model,
validating the effectiveness of the geometric mean
weighted graph attention mechanism.

4.3 Case Study

Table 4 presents an example from the Test Seen
dataset of Wizard of Wikipedia. From this exam-
ple, it can be observed that our model can leverage
the knowledge triplets correctly and the generated
response is more coherent with the context and
closer to the human-written reply, while Knowl-
edGPT exhibits issues with repetitive generation
and the response generated by TMN is not coherent
enough with the context.

5 Related Work

5.1 Parameter-Efficient Fine-Tuning

The massive number of parameters makes it chal-
lenging to fine-tune all the parameters of a pre-
trained model. To address this issue, parameter-
efficient fine-tuning (PEFT) is proposed.

PEFT aims to find a method to significantly re-
duce the number of trainable parameters required
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Method #Trainable Parameters Seen Unseen
/ # Parameters (%) BLEU-4 ROUGE-L EA VE GM BLEU-4 ROUGE-L GM VE EM

TMN - 1.7 13.7 0.844 0.427 0.658 0.9 11.3 0.839 0.408 0.645
ITDD - 2.5 - 0.841 0.425 0.654 1.1 - 0.826 0.364 0.624
DRD - 5.5† - 0.835 † 0.434 † 0.658† 4.3† - 0.828† 0.422† 0.628†

KnowledGPT > 227M 5.8 17.8 0.872 0.463 0.685 4.7 16.6 0.870 0.452 0.674
CoLV - 2.9 - - - - 2.1 - - - -
TAKE > 227M 3.6 20.5 - - - 3.3 18.3 - - -

Full Fine-Tuning + kg 775.5M (100%) 5.8 18.5 0.856 0.485 0.684 5.4 17.9 0.855 0.473 0.676
BitFit + kg 2.0M (0.25%) 3.5 15.0 0.838 0.464 0.667 3.2 14.6 0.838 0.454 0.660

P-Tuning + kg 6.5M (0.82%) 5.0 17.1 0.836 0.466 0.664 4.6 16.5 0.834 0.459 0.659
LoRA(r = 8) + kg 7.4M (0.94%) 5.5 18.1 0.855 0.482 0.683 5.1 17.5 0.852 0.472 0.675

AdaLoRA(r = 8) + kg 7.4M (0.94%) 5.5 18.3 0.856 0.483 0.685 5.1 17.7 0.854 0.474 0.678
Adapter-H + kg 7.5M (0.95%) 5.4 18.0 0.853 0.480 0.680 4.9 17.4 0.849 0.469 0.672
Adapter-L + kg 7.5M (0.95%) 5.4 17.9 0.851 0.478 0.676 4.8 17.4 0.849 0.467 0.671

T-LoRA(λ = 0.05) + kg 6.3M (0.81%) 5.6 18.4 0.857 0.485 0.687 5.2 17.9 0.856 0.476 0.679
PrefixTuning + kg 15.0M (1.89%) 5.3 17.6 0.848 0.477 0.677 4.7 17.0 0.847 0.468 0.670
P-TuningV2 + kg 15.0M (1.89%) 5.3 17.8 0.849 0.479 0.679 4.8 17.0 0.845 0.467 0.670
Adapter-H + kg 15.6M (1.97%) 5.5 18.1 0.852 0.482 0.681 4.9 17.5 0.850 0.472 0.673
Adapter-L + kg 15.6M (1.97%) 5.4 18.1 0.851 0.483 0.684 4.9 17.4 0.852 0.473 0.674

AdaLoRA(r = 20) + kg 16.2M (2.04%) 5.9 18.4 0.856 0.486 0.685 5.2 17.9 0.853 0.475 0.676
LoRA(r = 20) + kg 16.2M (2.04%) 5.8 18.6 0.855 0.486 0.685 5.4 18.0 0.853 0.474 0.676

T-LoRA(λ = 0.1) w/o kg 14.4M (1.83%) 5.7 18.5 0.850 0.483 0.683 5.1 17.6 0.852 0.471 0.668
T-LoRA(λ = 0, 1) + V-Attn 14.9M (1.88%) 5.8 18.5 0.856 0.485 0.684 5.3 17.9 0.855 0.477 0.677

T-LoRA(λ = 0.1) +kg 15.9M (2.00%) 6.1 18.8 0.857 0.488 0.686 5.4 18.1 0.855 0.476 0.678
T-LoRA(λ = 0.1) + A-Attn 15.9M (2.00%) 5.9 18.6 0.856 0.486 0.685 5.2 17.9 0.854 0.475 0.676

Table 1: Evaluation Results (mean of 3 runs) on Wizard of Wikipedia. Numbers in Bold fonts indicate the
improvement to the baseline methods with similar parameter counts is statistically significant (t-test with p-value <
0.05). Numbers marked with "†" are the results reported in (Zhao et al., 2020a). We adjust hyperparameters to make
the number of trainable parameters comparable across different PEFT methods. Numbers with a red square box
are the best results among all the baselines.

Method BLEU-4 ROUGE-L GM VE EM
TMN 0.6 - 0.802 0.351 0.617
ITDD 0.9 - 0.748 0.390 0.587
DRD 1.2† - 0.809† 0.413† 0.633†

KnowledGPT - - 0.837† 0.437† 0.654†
CoLV 0.6 - - - -
TAKE 0.7 10.2 - - -

Full Fine-Tuning + kg 0.9 9.9 0.792 0.427 0.623
BitFit + kg 0.5 8.8 0.739 0.438 0.614

P-Tuning + kg 0.6 9.6 0.756 0.424 0.611
LoRA(r = 8) + kg 0.8 10.0 0.763 0.441 0.623

AdaLoRA(r = 8) + kg 0.8 10.2 0.766 0.443 0.625
Adapter-H + kg 0.8 10.1 0.760 0.440 0.620
Adapter-L + kg 0.7 10.0 0.762 0.438 0.623

T-LoRA(λ = 0.05) + kg 0.8 10.3 0.769 0.444 0.627
PrefixTuning + kg 0.7 9.5 0.759 0.425 0.616
P-TuningV2 + kg 0.7 9.6 0.757 0.428 0.614
Adapter-L + kg 0.8 9.8 0.760 0.433 0.621
Adapter-H + kg 0.8 9.9 0.763 0.436 0.622

AdaLoRA(r = 20) + kg 0.8 10.0 0.769 0,444 0.627
LoRA(r = 20) + kg 0.8 10.0 0.767 0.442 0.626

T-LoRA(λ = 0.1) w/o kg 0.8 9.8 0.769 0.422 0.622
T-LoRA(λ = 0, 1) + V-Attn 0.9 10.4 0.768 0.440 0.629

T-LoRA(λ = 0.1) + kg 1.0 10.7 0.774 0.445 0.630
T-LoRA(λ = 0.1) + A-Attn 1.0 10.5 0.772 0.443 0.629

Table 2: Evaluation Results (mean of 3 runs) on the test
set of CMU_DoG. Numbers marked with "†" are the
results reported in (Zhao et al., 2020a) and (Zhao et al.,
2020b).

for fine-tuning a PLM. Adapter-tuning (Houlsby
et al., 2019) inserts additional adapter layers af-
ter the attention and feed-forward module of each
transformer layer. Prompt Tuning (Lester et al.,
2021b) assumes a prefix prompt with a fixed length
for each input text. A soft prompt is parameterized
by neural networks and updated during fine-tuning
on downstream tasks while the parameters of the

PLM remain frozen. Prefix Tuning, as proposed
in Li and Liang (2021)’s work, add a prefix which
is composed of a sequence of virtual tokens to the
input. During training, only the embedding ma-
trix of virtual tokens remains trainable. Compared
with Prefix-Tuning, P-Tuning (Liu et al., 2021b)
introduces differentiable virtual tokens as well but
only inserts them into the input layer instead of
each layer. Moreover, the insertion position is
selectable. The introduced virtual tokens are en-
coded by a prompt encoder, not randomly initial-
ized. Ben Zaken et al. (2022) propose a sparse-
finetuning method where only the bias tensors of a
PLM are kept trainable.

LoRA, introduced in (Hu et al., 2021), is based
on the observation that PLMs typically process
a lower intrinsic rank. This approach treats the
fine-tuned weight matrix as the sum of the original
weight matrix and an increment matrix. It decom-
poses the increment matrix into the product of two
trainable matrices with an extremely low rank. In
this way, the number of trainable parameters can
be reduced significantly. AdaLoRA, proposed by
Zhang et al. (2023), combines LoRA and parame-
ter pruning together. Instead of setting the hyper-
parameter r of each matrix to the same value, it
estimates the importance and sensibility of each
module and allocates more trainable parameters to
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Method Test Seen Test UnSeen CMU_DoG
Fluency Context Coherence Knowledge Relevance Kappa Fluency Context Coherence Knowledge Relevance Kappa Fluency Context Coherence Knowledge Relevance Kappa

KnowledGPT 1.76 1.64 1.67 0.68 1.71 1.60 1.65 0.67 - - - -
AdaLoRA(r = 20) + kg 1.76 1.72 1.81 0.71 1.74 1.62 1.76 0.73 1.64 1.53 1.60 0.76
T-LoRA(λ = 0.1) + kg 1.79 1.74 1.86 0.74 1.79 1.69 1.79 0.64 1.66 1.57 1.69 0.70

T-LoRA(λ = 0.1) w/o kg 1.71 1.57 1.60 0.65 1.74 1.55 1.52 0.66 1.60 1.50 1.43 0.77

Table 3: Human Evaluation Results on Wizard of Wikipedia and CMU_DoG.

Dialogue Context A: Dancing is such a fun activity, though I’m not very good at it. Are you?

Retrieved Document
Lion dance is a form of traditional dance in Chinese culture

and other Asian countries in which performers mimic a lion’s movements
in a lion costume to bring good luck and fortune . . .

Relevant Triplets
(dance, RelatedTo, movement), (dance, RelatedTo, joy)

(dance, RelatedTo, recreational), (dance, RelatedTo, people)
. . .

TMN I do not dance, but I do enjoy performing art.

KnowledGPT I am not very good at dancing. I am not good
at dancing. I am not good at dancing.

T-LoRA(λ = 0.1) + kg (Ours) I am not very good at it either, but I do enjoy
it. It is one of the most popular recreational activities in the world.

Human Written I do like to dance! Dancing has
symbolic cultural meaning across the world.

Table 4: An example sampled from the Test Seen dataset of Wizard of Wikipedia

matrices that appear more significant. The exper-
imental results demonstrate that a more accurate
allocation of computational resources can further
improve the performance of LoRA.

5.2 Knowledge-Enhanced Dialogue
Generation

While traditional dialogue generation models per-
form well on several generation tasks, they still
struggle with issues such as out-of-context re-
sponses and illusions. The approaches of exter-
nal knowledge enhancement for dialogue genera-
tion aim to address these issues. The key of these
models is to incorporate rich external knowledge
sources to enhance the response generation capa-
bility of a dialogue generation model.

Previous works investigate methods for incor-
porating external knowledge in various forms into
dialogue generation models. Dinan et al. (2019);
Li et al. (2019b); Kim et al. (2020) explore tech-
niques for incorporating unstructured documents
into dialogue generation models through docu-
ment retrieval and knowledge selection. Moon
et al. (2019); Tuan et al. (2019) focus on knowl-
edge injection with external knowledge graphs.
Mostafazadeh et al. (2017); Huber et al. (2018)
investigate how to incorporate visual information
into dialogue generation. Since it may be difficult
to obtain enough training samples with accurate
knowledge annotations in a new domain, there are
also models designed for knowledge-grounded dia-
logue generation in low-resource scenarios: Zhao
et al. (2020a); Liu et al. (2021a).

Pre-trained language models, like GPT-2 (Rad-
ford et al., 2019), BART (Lewis et al., 2019) and T5
(Raffel et al., 2020), have demonstrated excellent
performance in various generative tasks. There is
also work dedicated to integrating external knowl-
edge with such pre-trained models. Zhao et al.
(2020b) leverages BERT (Devlin et al., 2018) to
construct a knowledge selection module to choose
relevant knowledge documents for dialogue gen-
eration, assisting the GPT-2 model in generating
appropriate responses. The authors employ an un-
supervised approach to jointly optimize two pre-
trained models, achieving impressive performances
on the test datasets. Zhan et al. (2021) propose a
collaborative latent variable (CoLV) to integrate
knowledge selection and response generation si-
multaneously and capture the the inherent correla-
tion between them. Yang et al. (2022) propose a
topic-shift aware knowledge selector. It annotates
topic shift and topic inheritance labels in multi-turn
dialogues with distant supervision, and mitigates
the noise issue in pseudo labels through curriculum
learning and knowledge distillation.

6 Conclusion

In this paper, we propose PEK, a parameter-
efficient framework for knowledge-grounded di-
alogue generation. We make an improvement to
the vanilla LoRA, which can allocate more compu-
tational resources to matrices with less information
redundancy. Moreover, to incorporate knowledge
graphs into dialogue generation, we introduce a
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geometric mean weighted mechanism. The evalua-
tion results on both the Wizard of Wikipedia dataset
and the CMU_DoG dataset have shown that our
method outperforms all the PEFT baselines and
some of the non-PEFT methods.

Limitations

Although our approach achieve excellent perfor-
mances on both datasets, it still has some limita-
tions: (1) Our method relies on the assumption
that there is not a significant change in the redun-
dancy of the weight matrix information of the pre-
trained language model before and after fine-tuning,
which may not hold true for some specific tasks;
(2) The DistMult method we used in our experi-
ments is more adept at handling symmetric patterns
in knowledge graphs, while in typical knowledge
graphs, there are much more asymmetric patterns,
which may lead to a performance degradation.

Ethics Statement

Our work relies primarily on publicly available
datasets. We adhere to the policies regarding the
use of this data and ensure that it does not raise
copyright-related issues. In addition, our model has
some limitations. In certain situations, its outputs
may be unpredictable. It may generate inaccurate
or biased responses. Therefore, we recommend
conducting safety checks on model outputs if ap-
plied to human interactive systems.
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Method #Trainable Parameters Seen Unseen CMU_DoG
/ # Parameters (%) BLEU-4 ROUGE-L EA VE GM BLEU-4 ROUGE-L GM VE EM BLEU-4 ROUGE-L GM VE EM

LoRA (r = 20) w/o kg 14.7M 5.7 18.3 0.853 0.484 0.684 5.1 17.7 0.851 0.473 0.674 0.8 9.9 0.767 0.421 0.623
AdaLoRA (r = 20) w/o kg 14.7M 5.7 18.4 0.855 0.482 0.683 5.2 17.8 0.854 0.474 0.672 0.7 9.6 0.769 0.422 0.624

Table 5: Evaluation Results on Wizard of Wikipedia and CMU_DoG

Method Seen Unseen CMU_DoG
F1 BLEU-4 ROUGE-L F1 BLEU-4 ROUGE-L F1 BLEU-4 ROUGE-L

KnowExpert(w) (Xu et al., 2022) 18.7 - - 16.7 - - 12.5 - -
GPT2 + KnowPrefix-Tuning (Bai et al., 2023) 20.1 - - 18.0 - - 14.1 - -
BART + KnowPrefix-Tuning (Bai et al., 2023) 20.3 - - 18.3 - - 14.6 - -

Fid-RAG DPR-Poly(BART) (Shuster et al., 2021) 22.1 4.1 - 22.1 3.8 - 15.2 0.5 -
DoHa (Prabhumoye et al., 2021) 31.8 8.2 21.8 29.0 6.6 19.6 22.8 20.9 20.4

T-LoRA(λ = 0.1) + kg 23.9 6.1 18.8 22.6 5.4 18.1 14.1 1.0 10.7

Table 6: Evaluation Results of more baselines on Wizard of Wikipedia and CMU_DoG

A Statistics of the datasets

Table 7 and Table 8 show more detailed statistics
of the datasets.

Dataset #Utterances #Dialogues #Topics Avg.# of turns / dialogue
Train 166,787 18,430 1,247 9.0
Valid 17,715 1,948 599 9.1

Test Seen 8,715 965 533 9.0
Test Unseen 8,782 968 58 9.1

Table 7: Statistics of WoW

Dataset #Utterances #Dialogues #Topics Avg.# of turns / dialogue
Train 74,717 3,373 30 22.2
Valid 4,993 229 30 21.8
Test 13,646 619 30 22.0

Table 8: Statistics of CMU_DoG

B Implementation Details

We choose DialoGPTlarge(Zhang et al., 2019), a
model with 774M parameters and stronger dialogue
generation capabilities compared to the original
GPT-2 model, as our base model. We apply T-
LoRA to all the weight matrices in the base model.
To avoid introducing knowledge noise when the
base model is capturing basic information such as
phrases and grammar, we insert the geometric mean
weighted graph attention modules into the last two
layers of the base model. In our experiments, We
employ the AdamW optimizer (Loshchilov and
Hutter, 2019) with β1 = 0.9 and β2 = 0.999. For
both WoW and CMU_DoG, the batch size is set to
6 and the scaling factor α is set to 2. The learning
rate is set to 0.0001 initially and decreases linearly
during the training process. We conduct experi-
ments using an NVIDIA A100 GPU with 40GB
of VRAM and train our model for 12 epochs. The
checkpoint with the best performances on the val-
idation set when the loss on the validation set no
longer decreases is used to evaluate on the test set.

For TMN, we use the code released
by the authors at https://github.com/
facebookresearch/ParlAI/tree/main/
projects/wizard_of_wikipedia. For ITDD, we
utilize the code released by the authors at https:
//github.com/lizekang/ITDD. For Knowl-
edGPT, we choose the implementation shared at
https://github.com/zhaoxlpku/KnowledGPT.

C Details about Human Evaluation

We randomly collect 140 samples from Test Seen,
Test Unseen and the test set of CMU_DoG respec-
tively for human evaluation. Each sample con-
sists of a dialogue history, relevant documents and
triplets extracted from the knowledge base, and the
response generated by the model with beam size
= 3. We invite 3 graduates who are fluent in En-
glish to evaluate the generated responses from 3
different perspectives: Fluency, Context Coherence
and Knowledge Relevance. The scores are assigned
from {0, 1, 2}, where 0 represents poor and 2 rep-
resents good. We utilize Kappa (Fleiss, 1971) to
measure the agreement among the human anota-
tors. Due to the time-consuming nature of manual
evaluation, we only select a few strong baseline
models.

Operation Time Complexity
SVD decomposition O(n3)

Calculation of r (each matrix) O(d)
Forward Propagation (each layer) O(L2d+ rd2L)

Calculation of Graph Attention Weights (each example) O(LT )

Table 9: Time Complexity of Different Computational
Processes

D Additional Evaluation Results

Table 5 presents some evaluation results that we
have not reported in the main body due to space
limitations.
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Figure 5: The r value of each incremental matrix ∆W for λ = 0.1

Figure 6: The r value of each incremental matrix ∆W for λ = 0.05

Scientific Aritifact Lincense
GPT-2large MIT Lincense

DialoGPTlarge MIT Lincense
Wizard of Wikipedia MIT Lincense

ConceptNet Creative Commons Attribution-ShareAlike 4.0 International License
YAGO Creative Commons Attribution 4.0 International License

Table 10: Lincenses of the scientific aritifacts used in
this paper

The baseline results are reported by the authors
in the respective papers.

E Time Efficiency Analysis

Table 9 shows the time complexity of different
computational processes. Here, d is the hidden size
of the PLM. L is the length of the token sequence
and T is the number of relevant knowledge triplets.

In our experimental setup, the training speed
is approximately 0.4 seconds per batch, and the
inference speed is about 4.4 seconds per batch.

F Rank Distribution

Fig. 5 and Fig. 6 show the r value of each incre-
mental matrix in DialoGPTlarge for λ = 0.1 and
λ = 0.05 respectively.

G Lincenses

Table 10 shows the lincenses the scientific aritifacts
used in our paper.
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