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Abstract

Multilingual neural machine translation models
generally distinguish translation directions by
the language tag (LT) in front of the source or
target sentences. However, current LT strate-
gies cannot indicate the desired target language
as expected on zero-shot translation, i.e., the
off-target issue. Our analysis reveals that the in-
dication of the target language is sensitive to the
placement of the target LT. For example, when
placing the target LT on the decoder side, the
indication would rapidly degrade along with
decoding steps, while placing the target LT
on the encoder side would lead to copying or
paraphrasing the source input. To address the
above issues, we propose a simple yet effective
strategy named Language Converter Strategy
(LCS). By introducing the target language em-
bedding into the top encoder layers, LCS miti-
gates confusion in the encoder and ensures sta-
ble language indication for the decoder. Exper-
imental results on MultiUN, TED, and OPUS-
100 datasets demonstrate that LCS could sig-
nificantly mitigate the off-target issue, with lan-
guage accuracy up to 95.28%, 96.21%, and
85.35% meanwhile outperforming the vanilla
LT strategy by 3.07, 3,3, and 7.93 BLEU scores
on zero-shot translation, respectively.

1 Introduction

Multilingual Neural Machine Translation (MNMT)
aims to build a unified model to support the trans-
lation between any language pairs (Dabre et al.,
2020; Zhang et al., 2021; Fan et al., 2021). One
main challenge is the indication of the translation
direction. Pioneers (Dong et al., 2015; Luong et al.,
2015; Firat et al., 2016a; Lu et al., 2018) utilize
the language-specific encoder or decoder to dis-
tinguish source or target language. To simplify
the architecture, Firat et al. (2016b) and Johnson
etal. (2017) propose the language tag (LT) strategy,

* Work was done when Zengkui Sun was an intern at

Pattern Recognition Center, WeChat Al, Tencent Inc, China.
Yufeng Chen is the corresponding author.

LT Strategies ‘ Translation Pair (De—Fr)

(German)
(French)

Source
Reference

Wie sind sie durch die Sicherheitskontrolle gekommen?
Comment avez-vous passé le contrdle de sécurité?

T-Enc ‘ Wie sind sie durch die Sicherheitskontrolle ggkommen? (German)
S-Enc-T-Dec ‘ How’d they get through the security? (English)
LCS (ours) ‘ Comment sont-elles venues par les controles de sécurité?  (French)

Table 1: Translation results of the same translation pair
(German—French) with three LT strategiesl. T-Enc
leads to mistranslating into the undesired German sen-
tence and S-Enc-T-Dec leads to mistranslating into the
English sentence, while LCS accurately leads to trans-
lating into the French sentence.

which places an artificial language tag in front of
the source input sentence, to indicate the desired
target language without modification on the vanilla
NMT architecture and training objective. Due to
its simplicity and efficiency, the LT strategy has be-
come the de facto strategy to build unified MNMT
models (Johnson et al., 2017; Dabre et al., 2020;
Zhang et al., 2020; Fan et al., 2021), even other
unified models (Zhang et al., 2023; Wang et al.,
2022b; Liang et al., 2023).

With the LT strategy, the MNMT models theoret-
ically support many-to-many translation, and even
zero-shot translation (Johnson et al., 2017; Dabre
et al., 2020; Gao et al., 2023). However, in prac-
tice, the MNMT models frequently mistranslate the
source language to the wrong target language on
zero-shot translation, referred to as the off-target
issue (Zhang et al., 2020). Tab.1 shows an example
of zero-shot translation from German to French,
in which T-Enc and S-Enc-T-Dec! are commonly
used LT strategies (Johnson et al., 2017; Fan et al.,
2021; Wu et al., 2021). In this case, neither of
both strategies could help MNMT models translate
the sentence into the correct target language. The
T-Enc strategy leads to the To-Source issue (i.e.,
paraphrase or copy the input of source language),

'S /T represents the source / target LT, and Enc / Dec rep-
resents the LT placed on the Encoder/Decoder side. Tab.2
shows more detailed examples.
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while S-Enc-T-Dec leads to the To-English issue
(i.e., translate into English). For the To-Source
issue, prior studies (Wang et al., 2022c) suggest
that the data noises make this issue. However, our
experiments display that the To-Source issue still
exists after data denoise and the different language
tag strategies result in different error distribution on
both issues (§3.2). And for the To-English issue, we
suspect it comes from the inadequate language indi-
cation of the target language and the most-common
language (i.e., English) is model preferred.

To further investigate the above issues, we con-
duct experiments to explore the indication of the
target language in various LT strategies. And we
summarize some preliminary findings:

* Placing the target language tag on the encoder
side yields a more stable indication, while plac-
ing it on the decoder side delivers a decreasing
indication throughout decoding steps and results
in the To-English issue (§3.3).

* The encoder tends to convert the states to be
target language-specific on the top layers, and
placing the target LT at the top encoder layers
could mitigate the To-Source issue (§3.4).

» Unfortunately, mainstream LT strategies suffer
at least one issue between the 7o-Source and To-
English in different degrees, even data denoising
or placing the target language tag at the top en-
coder layers (§3.2 & §3.4).

On these grounds, we propose a simple yet effec-
tive strategy, Language Converter Strategy (LCS),
to address the above issues. Specifically, we first
split the encoder layers and introduce the target
language information to the deeper layers, which is
named Language Converter by us. Compared to the
mere placement of language tag, we supply the tar-
get language embedding, which contains language-
specific features (Bjerva et al., 2019; Oncevay et al.,
2020; Jin and Xiong, 2022), into each input state
in each layer of the Language Converter layers. In
this manner, LCS could provide stable and suffi-
cient target language indication for MNMT model,
avoiding both To-Source and To-English issues.

Experimentally, LCS could significantly miti-
gate the off-target issue and boost the performance
of zero-shot translation. Specifically, compared
to the most widely-used strategy, i.e., the T-Enc
strategy, LCS effectively mitigates the off-target is-
sue by improving language accuracy up to 95.28%
(+2.7%), 96.21% (+1.71%), 85.35% (+40.97 %),
and 86.67% (+5.03%) on zero-shot translation of

MultiUN, TED, OPUS-100 (noise and denoised)
datasets, respectively. Furthermore, LCS outper-
forms the T-Enc strategy by 3.07, 3.3, 7.93, and
2.93 BLEU scores improvements on zero-shot
translation of these datasets, respectively. Mean-
while, LCS maintains the performance of the su-
pervised translation and performs well on the noise
data. Moreover, LCS is well compatible with
other approaches, e.g., denoising-encoder (Wang

et al., 2021), contrastive learning (Pan et al., 2021),

LEE (Jin and Xiong, 2022), and mBART (Liu et al.,

2020), and yields further improvements when ap-

plied to them.

The main contributions of this paper can be sum-
marized as follows?:

* We take the analysis of the To-Source and To-
English issues in the off-target issue, and explore
their causes in terms of the language representa-
tion variation of the encoder and language gener-
ation.

* We propose a simple yet effective strategy, LCS,
to address the off-target issue and further improve
zero-shot translation quality, without introducing
extra parameters.

» Experimental results demonstrate that LCS could
significantly mitigate the off-farget issue and fur-
ther boost the performance of zero-shot transla-
tion, with strong compatibility.

2 Background

2.1 Multilingual Neural Machine Translation

In bilingual neural machine translation (NMT),
given a source sentence with n tokens x =
{x1,29,...,2,} and its target sentence with m
tokens y = {y1,¥2,--.,Ym}, and NMT models
are generally optimized by the cross-entropy loss:

Lynr(0) = = logp(y;ly<j,x;6), (1)
j=1

where j is the index of each decoding step, y;
is the target-side previous context for y;, and 0
represents the model parameter.

While in MNMT, for the language pair (x°, y*)
where s and ¢ represent the source language s and
the target language ¢, and t denotes the target lan-
guage tag, the MNMT models are generally opti-

2Codes are released at https://github.com/
Acerkoo/LCS.
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LT Strategies ‘ Example (En — De)
T-Enc <de> Hello, how are you?
(Johnson et al., 2017) Hallo, wie geht’s?
S-Enc-T-Dec <en> Hello, how are you?
(Fan et al., 2021) <de> Hallo, wie geht’s?
ST-Enc <en> <de> Hello, how are you?
(Xue et al., 2021) Hallo, wie geht’s?
ST-Enc-T-Dec <en> <de> Hello, how are you?
(EINokrashy et al., 2022) | <de> Hallo, wie geht’s?

Table 2: Several examples of language tag strategies.

mized by the cross-entropy loss:

Lunwr(0) = =Y logp(y;lyL;, x°,£:6). (2)
j=1

In this paper, we focus on the analysis of the
placement of t and explore the better way to indi-
cate the target language for zero-shot translation.

2.2 Language Tag Strategy

Pioneered by Johnson et al. (2017), the LT strat-
egy has become the de facto strategy to build the
unified MNMT model. Recently, many varieties
are proposed to adjust the placement of the LT and
we list several popular samples in Tab.2. Among
these strategies, the T-Enc and S-Enc-T-Dec strate-
gies are the most widely used ones to build MNMT
models. The first proposed T-Enc strategy performs
the best on zero-shot translation (Wu et al., 2021;
Wicks and Duh, 2022). And S-Enc-T-Dec is also
widely used in establishing MNMT models, e.g.,
M2M100 (Fan et al., 2021), mBART (Liu et al.,
2020), and so on. Although some studies (Xue
et al., 2021; EINokrashy et al., 2022) propose to
place double tags on the encoder side, the capabil-
ity of indicating the target language still remains
insufficient (Wu et al., 2021). Therefore, this paper
mainly focuses on the two most widely used strate-
gies, i.e, T-Enc and S-Enc-T-Dec, to investigate the
influence of the placement of LT.

2.3 Off-Target issue in Zero-Shot Translation

The off-target issue describes the wrong target lan-
guages translated by the MNMT models on zero-
shot translation (Zhang et al., 2020). Prior studies
(Guetal., 2019; Zhang et al., 2020; Liu et al., 2021;
Wang et al., 2021; Yang et al., 2021; Mao et al.,
2023; Zan et al., 2023) reveal that the spurious
correlations between language pairs within super-
vised data aggravate this issue and make efforts to

overcome it in terms of adjusting training strategy,
modifying the residual connection and generating
auxiliary data. Besides, Wang et al. (2022c) points
out that data noises also make the off-target issue,
and Wang et al. (2022c¢); Jin and Xiong (2022);
Chen et al. (2023) enhance the model’s awareness
to the vocabulary of target language during genera-
tion. However, the cause of fundamental language
tag strategies, which perform various on this issue,
remains unclear.

3 Probing Off-Target issue in MNMT

In this section, we probe the off-target issue in
MNMT models with different LT strategies. Firstly,
we introduce the language rate/accuracy metric on
this issue (§3.1). Secondly, we conduct experi-
ments in terms of the distribution of this issue
(8§3.2), the fine-grained language accuracy along de-
coding steps (§3.3) and the language indication in
the encoder (§3.4). Lastly, we expand our conclu-
sion to propose LCS to mitigate this issue (§3.5).

3.1 Metrics of Off-Target issue

To quantify this issue, we adopt the language rate as
the metric to observe the error language distribution
of zero-shot translation. We adopt the langdetect?
toolkit to identify the language of generated sen-
tences, following prior studies (Zhang et al., 2020;
Wang et al., 2021; Jin and Xiong, 2022). And we
calculate the language rate of language ¢ as follows:

N
Zi:l ILlang(y(”“') )=
N

Rate(l) = £ 100%,  3)
where y(?) denotes the i-th generated sentence, N
denotes the scale of the test set, and lang(-) de-
notes the language detect function. The accruacy
denotes the language rate of the desired target lan-
guage, where the higher language accuracy denotes
the slighter off-target issue. Generally, language
accuracy is regarded as an indicator of the perfor-
mance of zero-shot translation, where the higher
accuracy usually guides to the better performance.
To further observe the variation of language rate
throughout decoding steps, we calculate the rate of
continuous intervals with 5 words in it along gener-
ated sentences. To accurately detect the language of
short text, we choose the lingua-py* toolkit, which
has higher accuracy in detecting the short texts>.

*https://github.com/Mimino666/langdetect
*https://github.com/pemistahl/lingua-py
>More accurate as described as their GitHub repository.
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‘Tuble 3: The average language rate (%) of several LT
stratcgies on the OPUS-100 datasct. Ace , To-Sre, To-
En, and To-Other denote the language rate of the ex-
pected target language, the source language, English,
and other undesired languages in translation, respec-
ively

32 Error Distribution of Off-Target Issue

In this section, we first conduct experiments on the
OPUS-100 dataset, which contains 100 languages.
to count the error distribution of the off-target
sue. Prior study (Wang et al., 2022¢) points out
that the noise in data is an important factor of the
To-Source issue. Thus, we also count the error dis-
tribution with the denoised data®, which filters the
noise language pairs with target sentences in wrong
languages, following Wang et al. (2022¢).

As shown in Tab.3, the mainstream LT strategies
suffer from the serious off-target issue. Most main-
stream LT strategies endure the grave To-English
issue, which ranges from 39.40% to 57.55% even
after data denoise, signifying that the language gen-
eration is disturbed by English. Besides, the T-
Enc and ST-Enc strategies tolerate the severer To-
Source issue than other strategies, indicating that
the target tag on the encoder side may be mixed
with the indication to the source language. Error
distributions on both data settings suggest that the
placement of LT has a non-ignorable impact on the
offtarget issue. To understand the impact of LT
better, we explore the language variation of lan-
guage generation and the encoder’s modeling ten-
dency within different LT strategies. Specifically,
we employ the widel T-Enc and S-Enc-T-
Dec strategies on the denoised OPUS-100 dataset
1o conduct analysis experiments.

33 Fine-grained Language Accuracy along
Decoding Steps

In this section, we explore the variation of language

indication in generation, by calculating the fine-

grained language rate throughout decoding steps.

raining details o both setings are shown in Appendis A,

Figure 1: Fine-grained language rate of the desired tar-
get language (ic., language accuracy) and undesired
English throughout decoding steps on the zero-shot test-
set of denoised OPUS- 100, with 5 words in each interval
of the final translation results.

As shown in Fig.1(a), in terms of language accu-
racy, the S-Enc-T-Dec strategy exhibits a consider-
able decrease of approximately 20%. Besides, as
shown in Fig.1(b). the rate of mistranslating into
English of S-Enc-T-Dec increases by around 20%.
‘These variations signify that the indication from
the S-Enc-T-Dec strategy is rapidly degraded and
switched to English after generating a few tokens
Hence, we conclude that the language indication of
the S-Enc-T-Dec is decreasing after a few tokens,
resulting in the bias to the most common language
in the training set, i.e., English. Conversel
T-Ene strategy exhibi
language indication throughout the decoding steps.
Comparing both the above strategies, we conclude
that the indication from the encoder could be more
sufficient and stable and avoid being diminished
during generation, while this setting suffers from
the To-Source issue.

34 Language Indication in the Encoder
To invest the target language indication in the en-
coder and the To-Source issue, we focus on two
estions: 1) How does the encoder model the
target language tag and the input sentence of the
source language, 1o obtain sufficient target lan-
guage indication? 2) Is there the encoder’s lan-
guage representation connected with the To-Source
Issue?
Toganswer the first question, we visualize the
n of language representation along the en-
Goder layers, by calculating the similarity between
the source and target languages in the zero-shot
sentence pairs on the OPUS-100 dataset. Follow-
ing Pan et al. (2021), we adopt the average-pooled
encoder layer output as the sentence representation,
and then calculate their cosine similarity.
As shown in Fig.2, for the 6-layer encoder, the




Cosine Similarity Variation Along Encoder Layers

— TEne
S-Enc-T-Dec
0.74 — LCS (ours)

Cosine Similarity

0.3

1 2 3 4 5 6
Encoder Layers

Figure 2: Curves of the similarity of the language pairs
along encoder layers on the zero-shot testset of denoised
OPUS-100. The higher similarity denotes the represen-
tation is more similar and language-agnostic.

Noise? ‘ Strategy ‘ Acct To-Src| To-En| To-Other |

T-Enc 44.38 38.71 3.62 13.29

Noise | T-Enc-Mask | 48.49 13.01 25.61 12.89
LCS (ours) | 85.35 0.27 2.65 11.73

De- T-Enc 81.64 2.51 3.17 12.68
Noise T-Enc-Mask | 78.62 0.39 9.62 11.37
LCS (ours) | 86.67 0.19 2.08 11.06

Table 4: The average language rate (%) on the zero-shot
testset of OPUS-100. T-Enc-Mask denotes the source
LT is masked in each layer of 4 shallow encoder layers.
Acc , To-Src, To-En, and To-Other denote the language
rate of the expected target language, the source language,
English, and other undesired languages in translation,
respectively.

similarity scores of both LT strategies maintain the
upward trend from the 1st layer to the 5Sth layer,
and drop in the 6th layer, which is consistent with
(Wu et al., 2021). The variation suggests that the
encoder tends to generate language-agnostic rep-
resentation from different languages first and then
reduce the similarity across languages. In fact, the
representation of the top layer in the T-Enc strategy
tends to be target-language-specific, whereas the
one of the S-Enc-T-Dec strategy tends to be source-
language-specific, which is verified in Appendix
D. Hence, we could answer the first question that
the encoder has a first-agnositc-second-specific ten-
dency on language representation, the target LT
mainly indicates the desired target language on the
top encoder layer. Further, we conjecture that the
target LT is mixed with the source language fea-
tures in the first stage of the tendency, resulting in
the To-Source issue.

To answer the second question and verify our
conjecture, we apply a simple operation to the
T-Enc strategy. Specifically, we mask the target
language tag in the 4 shallow encoder layers and re-

R — i

— Add & Norm — Add &I Norm
!

Feed

Feed Forward

Forward

(N-k) x kx

—  Add&Norm [ GAdd&Nom
|

Self
Attention
1t

Self
Attention

Positional
Encoding

(&) Language
Embedding

Input

Ta 't
Lo [ Embedding

Embedding <zh> 4 RRAREF

<de> Heute ist ein tolles Wetter 1

Source ] <fr> Il fait beau aujourdhui <zh>/<de>/<fr>/..
<en> The weather is good today: ..

Figure 3: Illustration of the encoder of LCS. For the tar-
get, only the language tag could be seen by the encoder.

store it in the Sth layer’. As shown in Tab.4, this op-
eration could significantly mitigate the 7o-Source
issue in the T-Enc strategy, reducing to 13.01%
(A=-25.7%) and 0.39% (A=-2.12%) on this issue.
The remission on To-Source issue verifies our con-
jecture and responds to the second question that the
first-agnostic-second-specific tendency introduces
bias into the target LT in the first stage.

In conclusion, we summarize our findings on the
impact of the placement of LT on the off-target is-
sue as follows: 1) The language indication from the
encoder side is more sufficient and stable, without
being diminished during decoding; 2) The target
language is mainly indicated on the top encoder lay-
ers, and placing the target LT at the bottom layer
of the encoder introduces the 7To-Source issue.

3.5 Language Converter Strategy

Based on the conclusions in §3.3 and §3.4, we
propose Language Converter Strategy (LCS) to
enhance the language indication to mitigate the off-
target issue, which further improves the quality of
zero-shot translation.

According to our conclusions, as shown in Fig 3,
we divide the encoder layers into the shallow lay-
ers and the deep language converter layers by the
k-th® deepest layer. In the shallow layers, we place
the source language tag in front of the sentences
to avoid the To-Source issue. In the deep language
converter layers, we introduce the target language
embedding as auxiliary signals to prompt the de-
sired target language. As pointed out by prior stud-
ies (Bjerva et al., 2019; Oncevay et al., 2020; Jin
and Xiong, 2022), the target language embeddings

"Our prior experiment shows that restoring the LT in the
5th layer performs better. And we roughly implement it via
masking and adding the initial embedding of the tag.

8% is a hyperparameter, describing the number of the lan-
guage converter layers. We set it to 2 in the 6-layer encoder
and explore the selection of k in §5.2.
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Model MultiUN TED OPUS-100
Supervised Zero-Shot Accuracy | Supervised Zero-Shot Accuracy | Supervised Zero-Shot Accuracy

T-Enc 50.73 32.96 92.58 25.20 10.41 94.50 24.72 /22.81 7.29/12.65 44.38 / 81.64
S-Enc-T-Dec 50.71 23.63 71.85 25.27 2.36 62.88 24.74122.07 3.80/4.71 14.09/28.78

ST-Enc 50.66 1.15 0.27 24.47 1.37 13.66 24.82/22.82 1.92/7.38 2.15/36.06
ST-Enc-T-Dec 50.66 19.95 64.15 24.51 4.59 79.02 25.05/22.11 4.23/3.60 55.99/25.83
T-Enc-T-Dec 50.83 32.23 91.10 24.53 12.07 95.73 24.75/22.89 5.97/12.66 35.26/82.73

LCS (Ours) 50.75 36.03* 95.28* 25.27 13.71* 96.21* | 24.80/22.09 15.22*/15.58* 85.35% / 86.67*

Table 5: Experiments in several LT strategies on the MultiUN, TED, and OPUS-100 datasets. Supervised and

Zero-Shot denote the average BLEU scores of the supervised and zero-shot translation directions.

Accuracy

denotes the averaged language accuracy (%) of zero-shot translation. "A / B" separates the scores of noise data and
denoise data in OPUS-100, where ‘A’ and ‘B’ represent the result of the noise and denoised version, respectively.
Results with */** are statistically better than “T-Enc’ in all translation directions with p < 0.01. Bold denotes the

best performance.

Langs & Dirs . .
Dataset ‘ Supervised Zero-Shot Train / Valid / Test
MultiUN 4 & 6 3& 6 2M /4K /4K
TED 20 & 38 19 & 342 14K-22K / 5K/ 5K
OPUS-100 | 100 & 198 6 & 30 10K-1M /2K /2K

Table 6: Data statistics. Langs&Dirs represents the num-
ber of languages and translation directions involved in
the supervised and zero-shot translation. Train / Valid /
Test represents the number of samples in each transla-
tion direction in the training / validation / test set.

contain target language-specific features, which
could provide sufficient indication of the target lan-
guage into the top encoder layers.

Then the final calculation of the self-attention
block (Vaswani et al., 2017) in language converter
layers is as follows:

hi = hi+ ¢, )
s = LayerNorm(h + Sel f Attn(h)), (5)

where h; denotes the i-th state of input tokens to
each converter layer, s denotes the output states
of self-attention block in each converter layer,
Sel f Attn denotes the calculation of self-attention
and Layer N orm represents the LayerNorm func-
tion. Since the language tags have already been in-
cluded in the vocabulary, LCS introduces no extra
parameters. Besides, we maintain the cross-entropy
loss to optimize the MNMT model.

Moreover, we place the target language tag in
front of the decoder input to indicate the target
language better. We verify the effectiveness of this
placement in Appendix B.

4 Experiments

4.1 Experimental Setup

We conduct experiments on three popular datasets,
MultiUN, TED, and OPUS-100 (Gu et al., 2019;

Qi et al., 2018; Zhang et al., 2020). The statis-
tics of the datasets of each translation direction are
presented in Tab.6. (Please refer to Appendix A
for more details.) For direct comparison, we re-
port scores of noise and denoised data versions
of OPUS-100. For all these datasets, English is
the central language in the training sets, serving
as either the source or the target language in each
sentence pair. Following Johnson et al. (2017), we
consider translation directions involving English
as supervised translation and directions between
non-English languages as zero-shot translation.

We employ open-source toolkit fairseq(Ott et al.,
2019) to implement the Transformer models, with
mixed precision (Ott et al., 2018). During infer-
ence, we set beam size to 5 and length penalty to
1.0, following existing studies (Wang et al., 2021;
Jin and Xiong, 2022). We apply SacreBLEU to
calculate BLEU and report the averaged scores for
all models. More details about the dataset, training,
and evaluation can be found in Appendix A.

4.2 Main Results

We respectively establish MNMT models in the
several LT strategies in §2.2 and our LCS on the
three datasets and list the results in Tab.5. Besides,
we conduct experiments in the T-Enc-T-Dec, which
seems to combine the indication from both encoder
and decoder sides. Moreover, we also report the
results of the denoised OPUS-100 dataset for a
comprehensive comparison, where MultiUN and
TED are low-noise datasets.

As shown in Tab.5, our proposed LCS yields the
highest language accuracy and best performance
of zero-shot translation on all datasets among all
LT strategies. Specifically, compared to the widely-
used T-Enc strategy, LCS effectively mitigates the
off-target issue by improving language accuracy
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up to0 95.28% (+2.7%), 96.21% (+1.71%), 85.35%
(+40.97%), and 86.67% (+5.03%) on zero-shot
translation of MultiUN, TED, OPUS-100 (noise
and denoised) datasets, respectively. Furthermore,
LCS outperforms the T-Enc strategy by 3.07, 3.30,
7.93, and 2.93 BLEU scores improvements on
zero-shot translation of these datasets, respectively.
While bringing conspicuous improvement to zero-
shot translation, LCS maintains the performance
of supervised translation. Unfortunately, since the
language detection toolkit is lowly accurate for
medium- and low-resource languages, the perfor-
mance on related translation pairs is reduced in
the denoised OPUS-100. In this case, LCS per-
forms well and robust on zero-shot translation on
the noise version of the OPUS-100 dataset, com-
pared to the denoise version.

We also probe the performance of our method in
prior aspects, i.e., the distribution of the off-target
issue, and the language variation in the encoder.
As shown in Tab.4, LCS could yield the highest
language accuracy, and the lowest rates on the 7o-
Source and To-English issue. These scores sug-
gest that LCS could provide the most accurate
target language indication for zero-shot transla-
tion, and avoid being mixed with the indication of
source language. Since LCS performs better than
T-Enc on the To-English issue, we consider that
LCS also provides sufficient and stable indication
during generation. Besides, in terms of language
representation variation, our proposed LCS yields
the lowest score in the 6-th layer than the T-Enc
strategy, meaning that LCS could generate more
target-language-specific representation to indicate
the target language better.

5 Analysis

In this section, we explore the details of LCS to
understand it better. We invest the generalizability
of LCS to other approaches (§5.1) and the effect
of hyperparameter k (§5.2), and the application of
LCS to deeper encoders (§5.3).

5.1 Application to Stronger Approaches

We evaluate the generalizability of LCS on OPUS-

100 by applying it to the following stronger ap-

proaches:

¢ Fine-Tune (FT). We first train the model in the
S-Enc-T-Dec strategy with 100K steps, and fine-
tune the model in our strategy, with the same
total training steps as other models.

Model ‘ Supervised Zero-Shot Accuracy
S-Enc-T-Dec | 24.74/22.07 3.80/ 4.71 14.09/28.78
FT & LCS 25.29/22.34 1545/15.90 85.26/86.32
DisPI 24.62/22.09 480/ 4.94 18.91/30.36
DisPI & LCS | 24.78/21.87 15.71/15.80 85.34/87.35
DN - - -
DN 19.04/22.83  3.02/12.62 21.75/81.66
DN & LCS 24.32/22.10 14.00/15.55 81.81/86.60
LEEY 2498/ - 10.08 /- 79.90/ -
LEE 24.13/21.56 11.88/12.30 73.69/80.00
LEE & LCS 24.88/21.91 15.20/15.63 85.91/86.97
CTS 24.21/21.72 12.77/10.34 80.09/62.35
CTS & LCS 24.19/21.52 15.13/15.43 86.85/87.86
mBART & FT | 29.03/29.53 3.47/4.94 5.10/13.05
mBART & LCS | 30.84/31.33 21.15/21.24 86.14/87.51

Table 7: Experiments about the application of LCS to
other approaches. ‘{’ represents that the results are cited
from the corresponding papers, and the rest models are
reproduced by us. "/" separates the scores of noise data
and denoise data in OPUS-100.

* Denosing Encoder (DN) (Wang et al., 2021).
DN introduces the denoising auto-encoder train-
ing objective to bridge the connection between
zero-shot language pairs.

* Disentangling Positional Information (DisPI)
(Liu et al., 2021). DisPI removes the residual
connection of the encoder middle layer to yield
the language-agnostic representation.

¢ Contrastive Learning (CTS) (Pan et al., 2021).
CTS introduces the contrastive learning training
objective to close the representation gap of sim-
ilar sentences. We apply this objective to our
shallow encoder layers since the function is simi-
lar to the first encoder stage of LCS.

e Language Embedding Embodiment (LEE)
(Jin and Xiong, 2022). LEE adopts the target
language embedding added to each state at the
decoder side to indicate the desired target lan-
guage without any LT strategies.

e mBART (Liu et al., 2020). mBART is a
widely-used pretrained multilingual sequence-to-
sequence model. We finetune mBART in vanilla
S-Enc-T-Dec and LCS strategies, with the same
training setting. Training setting of mBART is a
bit different from others, details can be referred
in Appendix A.

Results. As shown in Tab.7, LCS is effective in

enhancing the performance of existing approaches.

Specifically, with regard to zero-shot translation

and language accuracy, most approaches achieve

significant improvements with the application of

LCS. On the OPUS-100 dataset, all approaches
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Figure 4: Curves of the similarity of the language pairs
along encoder layers in S-Enc-T-Dec on the zero-shot
testset of noise and denoised OPUS-100.
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24.80/22.09
24.64/21.76
24.13/21.22
23.20/20.81
23.62/20.99

26.62/23.40
26.60/22.85
2.62/9.03
23.75/19.93
22.70/20.15

15.22/15.58
15.32/15.51
15.06 / 15.06
14.03 /14.75
12.79/14.22

16.86/17.39
17.01/16.86
2.33/4.29
15.40/14.62
14.45/ 14.66

Table 8: BLEU scores of LCS with different £ on the
noise and denoise OPUS-100. k denotes the hyperpa-
rameter k and 6/12-layer denotes the encoder’s depth.

yield significant improvements with the application
of LCS, with 11.65, 10.91, 10.98, 3.32, and 2.36
average BLEU scores improvements on the noise
data version, respectively. Compared to the noise
version of the OPUS-100 dataset, LCS also could
yield similar improvements on the denoise version,
even achieving the 15.90 BLEU score by the FT
method and the 87.86% accuracy by the CTS&LCS
method. Further, on the pretrained multilingual
model, LCS exhibits advanced performance to en-
hance the performance of mBART on both super-
vised and zero-shot translation. While in terms
of supervised translation, the application of LCS
generally maintains or slightly improves the perfor-
mance of most approaches. In conclusion, these
results demonstrate that LCS is well-compatible
with other approaches and can achieve further im-
provement when combined with them, without in-
troducing extra parameters.

5.2 Selection of Hyperparameter &

The selection of hyperparameter k is an important
factor of LCS. Indeed, the selection of £ mainly
relies on the variation of language similarity among
encoder layers, which is described in Section 3.4.

25 4 o
6 12 24 48 6 12 24 48
Encoder Depth Encoder Depth

(@) (b)

Figure 5: Performance of deeper encoder on the super-
vised and zero-shot testset of the noise OPUS-100.

We expand the variation into the deeper encoder
with 12 layers, and display the variation in Fig.4.
We list the performance of different values of k in
the 6-layer and 12-layer encoder in Tab.8.

As the results show, the optimal selection of k
is around the inflection point of the variation of
language similarity. We could observe from Fig.4
and Tab.8, when the selected value k is around the
inflection point, LCS could yield better translation
quality. For most settings of k, the performance of
LCS on zero-shot translation is much better than
other methods (as shown in Tab.5 and Tab.7). We
further probe the selection of k in other deeper
encoders (24-layer and 48-layer), and conclude
that the better range selection of k is the nearby
integers of 15% of the encoder depth.

5.3 Effect of LCS on deeper encoders

We conduct experiments to compare the effective-
ness of LCS with the T-Enc and S-Enc-T-Dec,
where we set k to 2 for 6- and 12-layer encoders,
5 for the 24-layer encoder, and 6 for the 48-layer
encoder’. As shown in Fig.5, although T-Enc and
S-Enc-T-Dec could yield better translation on su-
pervised translation with deeper encoders, both can-
not perform much better than the 6-layer encoder
on zero-shot translation. Compared to them, with
deeper encoders, LCS exhibits an upward trend on
zero-shot translation, where the 48-layer encoder
improves around 2.50 BLEU score compared to the
6-layer encoder. Besides, in deep encoders, LCS
maintains a similar supervised performance with
the S-Enc-T-Dec strategy.

6 Conclusion

In this paper, we have identified that the off-farget
issue is sensitive to the placement of LT and pro-
vide the analysis for the details of the issue with

°In spired by Wang et al. (2022a), we train 24- and 48-layer
encoder with the assistance of DeepNorm.
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the prevalent LT strategies. We reveal that placing
LT on the encoder side provides a more stable and
sufficient language indication than the decoder side,
and introducing the target information into the top
layers of the encoder will mitigate the confusion
between the source and the target language. Based
on our findings, we propose LCS to mitigate the off-
target issue, and further improve the performance
of zero-shot translation. Extensive experiments and
analysis suggest that LCS boosts the performance
of zero-shot translation and significantly mitigates
the off-target issue without introducing extra pa-
rameters. Besides, LCS could perform well in the
noised data set.

Limitations

Compared to the boosted performance on zero-shot
translation, LCS yields limited improvements on
the supervised translation, while it is designed to
enhance the language indication for zero-shot trans-
lation. We intend to explore ways to improve the
performance of zero-shot translation further and
achieve greater improvement in supervised transla-
tion.
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A Dataset & Training details

We show the detail of the MultiUN!?, TED!!, and
OPUS-100'? as the following sections. We average
the last five checkpoints to form the final tested
checkpoint for all models in our experiments.

A.1 MultiUN

We select four languages distributed in various lan-
guage families, Arabic (Ar), English (En), Rus-
sian (Ru), and Chinese(Zh), following Wang et al.
(2021). In final, the training set consists of 6M
sentence pairs. We select Transformer-base archi-
tecture based on post-norm to conduct experiments,
and set 6 encoder/decoder layers with 8 attention
heads, embedding size of 512, inner size of 2048,
the dropout rate of 0.1, the maximum learning rate
of 0.0007 and label smoothing rate of 0.1. We share
the vocabulary for all languages and segment words
into subwords using byte pair encoding (BPE) (Sen-
nrich et al., 2016) with 40k merge operations, fol-
lowing Wang et al. (2021). In training, we set the
maximum batch size per GPU to 4096 tokens and
trained on 8 GPUs with 300K steps.

A.2 TED

It includes 60 languages in total (Qi et al., 2018)
and we choose the top 20 languages following
Qu and Watanabe (2022). In final, the training
set consists of 3.5M sentence pairs. We choose
Transformer-base architecture based on post-norm
to conduct experiments, and set 6 encoder/decoder
layers with 8 attention heads, embedding size of
512, inner size of 2048, dropout rate of 0.1, maxi-
mum learning rate of 0.0005 and label smoothing
rate of 0.1. In this dataset, we use SentencePiece
to segment words into subwords with 64k merge
operations, following Qu and Watanabe (2022). In
training, we set the maximum batch size per GPU
to 6400 tokens and trained on 8 GPUs with 100K
steps.

A3 OPUS-100

It includes 100 languages in total and consists of
55M training sentence pairs with up to 1M samples
per language pair. We choose Transformer-base
architecture based on post-norm to conduct experi-
ments, and set 6 encoder/decoder layers with 8 at-
tention heads, embedding size of 512, inner size of

https://conferences.unite.un.org/lUNCORPUS
Mhttps://github.com/neulab/word-embeddings-for-nmt
Phttps://opus.nlpl.eu/opus-100.php
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2048, dropout rate of 0.1, maximum learning rate
of 0.0005 and label smoothing rate of 0.1. In this
dataset, we use SentencePiece (Kudo and Richard-
son, 2018) to segment words into subwords with
64k merge operations, following Jin and Xiong
(2022). In training, we set the maximum batch size
per GPU to 6400 and trained on 8 GPUs with 400K
steps. We train models in both noise and denoise
data versions with the same parameter settings and
similar epochs.

A4 mBART

Since the number of languages in mBART is less
than OPUS-100, we mainly select the six languages
in the zero-shot test set of OPUS-100 (i.e., Ara-
bic, German, French, Russian, and Chinese), and
add English to conduct experiments. The training
set is still English-centric. We select the mBART-
Large'? with 25 languages. During training, we set
dropout to 0.3, and learning rate to 0.00003 with
2500 steps to warmup. We set the maximum batch
size per GPU to 1024 tokens and trained on 8§ GPUs
with 100K steps. For fine-tuning mBART in LCS
strategies, we set k to 2.

A.5 Deep Encoder Training

Inspired by the successful application of Deep-
Norm (Wang et al., 2022a) and BranchNorm (Liu
et al., 2023), we utilize DeepNorm to stabilize the
training of deep models (24-layer and 48-layer),
which applies such a constraint to the early stage
of model training. And the o and 3 are following
DeepNorm, as the following formulas:

Qencoder = 0.81 N4M)T167
1

(
Bencoder = 087(N4M)_ 16,
1
Aencoder = (3M)Za
_1
ﬁdecoder = (12M) 4,

(6)

where N and M denote the depth of the encoder
and decoder for a standard Transformer.

A.6 Evaluation

In MultiUN, we calculate the case-insensitive sacre-
BLEU scores, following Wang et al. (2021), and
calculate case-sensitive sacreBLEU scores for TED
and OPUS-100 datasets, following Jin and Xiong

Bhttps://dl.fbaipublicfiles.com/
fairseqg/models/mbart/mbart.cc25.v2.tar.

gz

Dataset | Strategy | Supervised  Zero-Shot Accuracy
sS-cS 50.75 36.03 95.28
sS-cT 50.75 35.51 94.69
MultiUN | sS-c_ 50.73 35.93 95.12
(Small) S_-C_ 50.63 35.76 95.04
ST-cT 34.68 11.88 18.53
| Remove 50.83 35.86 95.17
sS-cS | 24.80/22.00 15.22/15.58 85.35/86.67
sS-cT | 24.82/22.51 15.18/15.56 85.28/86.95
OPUS-100 | sS-c_ | 24.83/22.15 15.14/1556 85.08/86.79
(Large) | s_-c_ | 23.84/21.63 14.43/15.10 85.95/87.02
sT-cT | 24.77/22.08  5.37/12.36 29.56/79.11
| Remove | 24.73/21.96 1222/13.78 52.44/74.95

Table 9: Experiments of the LCS strategy variants. ‘s/c’
denotes the shallow stage or the language converter
stage in the encoder of LCS, ‘S/T’ denotes the source
or target LT in front of sentences, and ‘_’ denotes no LT
in this stage.

(2022). We respectively average the scores of over-
all supervised or zero-shot translation directions to
report in tables. Specifically, we apply different
tokenizer for all Chinese testset'#, compared to the
rest languages'>.

B Impact of the Language Tag Placement

In this section, we investigate the impact of the LT
placement for LCS. We first conduct experiments
to explore the influence of the source and target LT
in two stages of LCS. As shown in Tab.9, when
placing the source language tag on the shallow
stage, the choice of language tag on the language
converter stage will yield a relatively small impact
on both datasets. However, placing the target LT or
no placing performs unstable on the shallow stage,
with bad BLEU scores. We also explore the impact
of removing the target LT on the decoder side on
LCS, as listed as ‘Remove’ in Tab.9. Compared
to the vanilla LCS strategy (‘sS-cS’ in Tab.9), ‘Re-
move’ degrades 0.17 and 3.00 BLEU scores on
zero-shot translation of two datasets, suggesting
that placing the target LT on the decoder side is
beneficial for LCS to perform better on zero-shot
translation. Therefore, we conclude that placing
the source LT on the encoder side and the target LT
on the decoder side is optimal for LCS.

C Selection of % in deeper encoder

In this section, we supply the experiments of explo-
ration on hyperparameter k£ in 24- and 48-layer

14SacreBLEU signatures: BLEU+case.mixed+numrefs. |
+smooth.exp-+tok.zh+version.2.0.0.

SSacreBLEU signatures: BLEU+case.mixed+numrefs. 1
+smooth.exp-+tok.13a+version.2.0.0.
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En/Zh/Ar->Ru

En/Zh/Ar->Ru

En/Zh/Ar->Ru

(a) Many-to-One, T-Enc

Ru-> En/Zh / Ar

(b) Many-to-One, S-Enc-T-Dec

Ru-> En/Zh / Ar

(c) Many-to-One, LCS

Ru-> En/Zh / Ar
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(d) One-to-Many, T-Enc

(e) One-to-Many, S-Enc-T-Dec
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(f) One-to-Many, LCS

Figure 6: The KDE of T-SNE reduced averaged encoder output in many-to-one and one-to-many directions.

‘ Supervised ‘ Zero-Shot
k ‘ 24-layer ‘ 48-layer ‘ 24-layer 48-layer
2 | 28.01/24.20 | 29.51/25.58 | 4.68/5.26 3.51/4.42
3| 28.16/24.46 | 29.38/25.73 | 4.55/5.03 4.07/9.48
4 | 28.21/24.72 | 29.28/25.68 | 16.19/17.25 | 10.34/6.19
5 | 28.04/24.77 | 29.97/25.45 | 17.29/18.29 | 16.61/18.26
6 | 27.11/24.51 | 28.51/25.20 | 17.20/18.11 | 17.75/18.65

Table 10: BLEU scores of LCS with different & on the
noise and denoise OPUS-100. & denotes the hyperpa-
rameter k and 24/48-layer denotes the encoder’s depth.

Supervised Translation Zero-Shot Translation

— - 18 —_—
26 S-Enc-T-Dec e 16 e 7
~—— LCS (ours) <
25 | )
5 2127 ~ s
z 2 BN S-Ene-T-Dec
2 mIO SN~ LCS (ours)
8 i
23 6
4
2
3 2 24 48 6 12 24 a8

Encoder Depth Encoder Depth

(@) (b)

Figure 7: Translation performance of deeper encoder on
the supervised and zero-shot test set of denoised OPUS-
100.

encoders on the noise and denoise OPUS-100
datasets. We report the results in Tab.10.

As illustrated by Tab.10, the optimal selection of
k in the 24-layer encoder is 5 and 6 in the 48-layer
encoder on zero-shot translation, while keeping
similar performance on supervised translation. The
better range of selection of k is the nearby integers
of 15% of the encoder depth.

Further, we also evaluate the performance of
T-Enc, S-Enc-T-Dec, and LCS strategies on the de-

noised OPUS-100 dataset. Compared to the noise
version, although the T-Enc could roughly yield bet-
ter performance of zero-shot translation with more
encoder layers, LCS could perform better than it,
demonstrating that LCS is effective in boosting the
performance of zero-shot translation.

D T-SNE Visualization

To detect the language-specific of the encoder out-
put representation, we sample 2000 samples from
the MultiUN test set'®, each with four languages,
i.e., Arabic (Ar), English (En), Russian (Ru), and
Chinese(Zh). We retrieve the encoder output repre-
sentation in T-Enc, S-Enc-T-Dec, and LCS strate-
gies on many-to-one and one-to-many directions'’,
and visualize them by T-SNE (Van der Maaten and
Hinton, 2008), following Pan et al. (2021).

As shown in Figure 6, in the many-to-one di-
rection (Figure 6(a), 6(b), and 6(c)), the contour
lines of three strategies tend to overlap, while the
contour lines of T-Enc have the highest degree to
overlap with each other, and the contour lines of
S-Enc-T-Dec have the lowest degree. The over-
lap results suggest that the language-specific of the
encoder output representation is target-language-
specific and the overlap ranking of the three strat-
egy contour lines is consistent with the cosine sim-
ilarity ranking in 2. However, in the one-to-many

!Each sentence has the corresponding translation in every
language.
Qur models are trained in many-to-many direction

9213



direction of S-Enc-T-Dec (Figure 6(e)), the con-
tour lines nearly perfectly overlap with each other,
suggesting that the encoder output representation
of S-Enc-T-Dec tends to be source-specific rather
than target-language-specific with the indication
from the source language tag in deep encoder lay-
ers. In summary, the encoder output representation
of the T-Enc and LCS strategy tends to be target-
language-specific, while the representation of the
S-Enc-T-Dec strategy tends to be source-language-
specific.
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